
LINUX INTERNALS
Course code:AIT005

B.Tech VI Semester
Regulation: IARE R-16

BY
Mr. A Krishna ChaitanyaMr. A Krishna Chaitanya

Assistant Professors
Mr. D Rahul

DEPARTMENT OF INFORMATION TECHNOLOGY
INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
DUNDIGAL, HYDERABAD - 500 043 1

CO’s Course outcomes

CO1 Understand the basic commands of linux operating system and
can write shell scripts.

CO2 Create file systems and directories and operate those using
programs.

CO 3 Understand the processes background and fore ground by
process and signals system calls.

CO 4 Create shared memory segments, pipes, message queues and
can exercise inter process communication.

CO 5 Create sockets and semaphores to interact between process of
different system.

UNIT-I

LINUX UTILITIESLINUX UTILITIES

CLOs Course Learning Outcome

CLO 1 Learn the importance of Linux architecture along with
features.

CLO 2 Identify and use Linux utilities to create and manage simple
file and text processing operationsfile and text processing operations

CLO 3 Develop shell scripts to perform more complex tasks in shell
programming environment.

A computer operating system. It is designed to be
used by many people at the same time (multi-
user). Runs on a variety of processors.
It provides a number of facilities:

– management of hardware resources

Operating System :

– management of hardware resources

– directory and file system

– loading / execution / suspension of programs

• Multi-tasking / Multi-user Networking

Capability Graphical (With Command Line)

Easy To Program

Why use UNIX:

• Portable (Pc’s, Mainframes, Super-
computers)

File: s a container for storing information.

A file is of 3 types.

Ordinary file: It contains data as a stream of
characters. It is of 2 types.

Text file: contains printable characters.Text file: contains printable characters.

Binary file: contains both printable & non
printable characters.

Directory file: contains no data but it
maintains some details of the files &
subdirectories that it contains.

Every directory entry contains 2
components:

1.file name.

2.a unique identification number for the file or
directory.directory.

Device file: It represents the device or peripheral.

A simplified UNIX directory/file system:

/

The Architecture of UNIX

bin
. . .

tmp
. . .

dev lib usr

User

User3
User1 User2

• Linux System Architecture is consists of following
layers
– Hardware layer - Hardware consists of all peripheral

devices (RAM/ HDD/ CPU etc).
– Kernel - Core component of Operating System,

interacts directly with hardware, provides low level
services to upper layer components.services to upper layer components.

– Shell - An interface to kernel, hiding complexity of
kernel's functions from users. Takes commands from
user and executes kernel's functions.

– Utilities - Utility programs giving user most of the
functionalities of an operating systems.

/Bin: contains executable files for most of the
unix commands.

/Dev: contain files that control various input &
output devices.

/Lib: contains all the library functions in binary
form.

/Usr: contains several directories each
associated with a particular user.

/Tmp: contain the temporary files created by unix or
by any user.

/Etc: contains configuration files of the system.

Editor:

vi is a full screen text editor. It was created by
Bill Joy.

Bram Moolenaor improved it and called it vim Bram Moolenaor improved it and called it vim
(vi improved).

Invoking vi:

$Vi file name

Vi has 3 mode of operation.

1.Command mode: In this mode all the keys
pressed by the user are interpreted as commands. It
may perform some actions like move cursor, save,
delete text, quit vi, etc.

Modes of Operation

delete text, quit vi, etc.

2.Input/Insert mode: used for inserting text.
– start by typing i; finish with ESC

Ex mode or last line mode:

Used for giving commands at command line.

The bottom line of vi is called the

MODES OF INSERTING TEXT

The bottom line of vi is called the
command line.

h

j

k

l

move cursor one place to left

down one

up one

right one

BASIC CURSOR MOVEMENTS

l

w

b

right one

move forward one

word back one word

Finishing a vi Session
Get to command mode (press ESCs)

ZZ save changes to the file and quit
(no RETURN)

:q!
(no RETURN)
quit without saving
(press RETURN)

:wq! Saves the file & quit.

Inserting Text

Move to insertion point

Switch to input mode: i

Start typing; BACKSPACE orDELETE

for deletion

ESCfinish; back in command mode

Deletion
Must be in command mode.

x Delete character that cursor is on.
dd

D

u

Delete character that cursor is on.

Delete current line.

Delete from cursor position
to end of line

Undo last command

CP (Copying Files)

– To create an exact copy of a file you can use the cp
command. The format of this command is:
cp [-option] source destination

Eg:

File Handling Utilities:

Eg:

Cp file1 file2
Here file1 is copied to file2.
Eg:

Cp file1 file2 dir
File1 file2 are copied to dir.

Copying Files

Cp turns to interactive when –i option is used &
destination file also exists.
$cp -i file1 file2 overwrite file2
(yes/no)?(yes/no)?

Y at this prompt overwrites the file.

mv (Moving and Renaming Files)

Used to rename the
files/directories.
$mv test sample$mv test sample

Here test is renamed as sample.

ln (link):

Used to create links (both soft & hard links).Used to create links (both soft & hard links).

It creates the alias & increase the link count by
one.

$ln file1 file2

ln won‘t work if the destination file also exists.

rm (Deleting Files and Directories)

– To delete or remove a file, you use the ―rm‖
command. For example,

$rm my. listing$rm my. listing
will delete ―my.listing‖.

With –i option removes the files interactively.
$rm –i file1

With –r option recursively removes directories.
$rm –r dir1

mkdir: used to create one or more
directories.

$mkdir book

Creates the directory named book.

$mkdir dbs doc dmc Creates

three directories.

rmdir (remove directories): Removes empty

directories.

$rmdir book

removes directory named book if it is empty.
$rmdir dbs doc dmc

Removes 3 directories.

find: It recursively examines a directory
tree to look for matching some criteria
and then takes some action on the selected
files.

Syntax:Syntax:

find path_list selection_criteria action

To locate all files named a. out use

$find / -name a. out –print

‗/‘ indicates search should start from root
directory.

To locate all c files in current directory

$find . -name ―*.c‖ –print

To find all files begin with an uppercase
letter useletter use
$find . –name ‗[A-Z]*‘ –print

Find operators:

Find uses 3 operators

!,-a ,-o

chmod Command:
chmod command allows you to alter / Change

access rights to files and directories.

SYNTAX:
The Syntax is
chmod [options] [MODE] FileName

File Permission

Security by file permissions:

File Permission
0 none
1 execute only
2 write only
3 write and execute
4 read only
5 read and execute
6 read and write
7 set all permissions

• OPTIONS:

• -c Displays names of only those files whose permissions

• are being changed

• -f Suppress most error messages• -f Suppress most error messages

• -R Change files and directories recursively

• -v Output version information and exit.

Abbreviations used by chmod:

Category operation

+-assign permission

--remove permission

=-assigns absolute permission

u-user

g-group

o-others

a-alla-all

permissions

r-read permission

w-write permission

x-execute permission

Absolute assignment:

Absolute assignment by chmod is done with
the = operator. Unlike the + or – operator s,
it assigns only those permissions that are
specified along with it and removes other
permissions.

If u want to assign only read permission to all
three categories and remove all other
permissions from the file small use

chmod g-wx,o-x small
Or simply use = operator in any of the
following ways.

chmod ugo=r small

chmod a=r small

Chmod =r small

The octal notation:

Chmod also takes a numeric argument that
describes both the category and thedescribes both the category and the
permission. The notation uses octal
numbers. Each permission is assigned a
number like

read permission-4, write permission- 2,
execute permission-1

ps (process status):

Display some process attributes.

$ps

PID TTY TIME CMD

Process Utilities

PID TTY TIME CMD

1078 pts/2 0:00 bash

Ps presents a snapshot of the process table.

ps with –f option displays a fuller listing
that includes the PPID.

ps with –u option followed by user-id
displays the processes owned by the
user-id.

PROCESS UTILITIES

user-id.

ps with –e option displays the system
processes.

who: know the users

Displays the users currently logged in the
system.

$who

who am i: Show you the owner of thiswho am i: Show you the owner of this
account

$whoami

w: Tell you who is logging in and doing
what!

$w

Finger: Displays the information about the
users.

$finger user

Find out the personal information of a user

$finger name$finger name

Try to find the person‘s info. by
his/her name

finger email-address

Try to find the person‘s info across
the network

du: disk usage

Du estimate the file space usage on the
disk.

It produces a list containing the usage of

DISK UTILITIES

It produces a list containing the usage of
each subdirectory of its argument and
finally produces a summary.

$du /home/usr1

df: displays the amount of free space
available on the disk. The output displays
for each file system separately.

$df

mount:

Used to mount the file systems.

Takes 2 arguments-device name ,mount
point.

Mount uses an option to specify the type of
file system.

To mount a file system on the /oracle
directory on Linux system use

$mount –t ext2 /dev/hda3 /oracle$mount –t ext2 /dev/hda3 /oracle

$mount –t iso9660 /dev/cdrom /mnt

/cdrom $mount –t vfat /dev/hda1 /msdos

$mount –t msdos /dev/fd0 /floppy

Umount: unmounting file systems

Unmounting is achieved with the umount
command. which requires either file system
name or the mount point as argument.

$umount /oracle$umount /oracle

$umount /dev/hda3

Unmounting a file system is not possible if
the file is opened.

ulimit: user limit
It contains a value which signifies the
largest file that can be created by the
user in the file system.

When used by itself it displays the currentWhen used by itself it displays the current
setting.

$ulimit
unlimited

User can also set the ulimit value by
using $ulimit 10

unmask:
When u create files and directories, the default

permissions that are assigned to them depend
on the system‘s default setting. Actually this
default is transformed

By subtracting the user mask from it toBy subtracting the user mask from it to
remove one or more permissions.
This value is evaluated by umask
without arguments.

$umask

022

ftp: file transfer protocol
ftp is used to transfer files. It can be used

with host name.

$ftp Saturn

Network Utilities

$ftp Saturn

Connected to Saturn

220 Saturn ftp server
Name (Saturn: summit): Henry

Password: ******

To quit ftp use close and then bye or quit.
ftp>close

221 good bye
ftp>bye

Transferring files: Files Transferring files: Files
can be of 2 types.
Uploading(put & mput):

To upload ur web pages & graphic files to
website.

The put command sends a single file to the
remote machine.

ftp>binary
200 type set to I
ftp>put penguin. gif

To copy multiple files use mput.To copy multiple files use mput.
ftp>mput t*.sql

Downloading files: get & mget To
download the files from remote
machine use get & mget.
ftp>get ls-lR.gz
ftp>_

telnet: Remote login

If u have an account on the host in a local
network (or on internet),u can use this
with the host name or the ip address as
argument.

NETWORK COMMANDS

argument.

$telnet Saturn
Trying to 192.168.0.1…

Connected to Saturn

Login:----
Password:-----
U can quit telnet by using exit command.
telnet prompt:

When telnet used without Ip address theWhen telnet used without Ip address the
system displays a telnet> prompt . U can
invoke a login session from here with
open.

telnet> open 192.168.0.8
Trying to 192.168.0.8…
Connected to 192.168.0.8

rlogin: remote login without password

rlogin is the Berkley's implementation of the
remote login facility.

U can log on to ur own identical remote account
without using either the user name or password.without using either the user name or password.

$rlogin Jupiter

Last login :….

rlogin is terminated with ctrl+d or exit or logout.

cat: cat is used to create the files.

$cat> filename
Type some text here

Press ctrl+d

Text Processing Utilities

Press ctrl+d

$
Cat can also be used to display the

contents of a file.

$cat filename

Cat can also concatenate the contents of 2 files
and store them in third file.

Cat>file1 file2>new file

To append the contents of two files into To append the contents of two files into
another file use

Cat>file1 file2>>new file

tail:
tail command displays the end of the file.

It displays the last ten lines by default.

$tail file

To display last 3 lines use

$tail –n 3 file or

$tail -3 file

We can also address the lines from the
beginning of the file instead of the end.

The + count allows to do that.

head:
head command as the name implies,
displays the top of the file. When used
without an option, it displays the first 10
lines of the file.

$head file$head file
We can use –n option to specify a line
count and display, say first 3 lines of the
file.

$head –n 3 file or
$head -3 file

Sort:
Sort can be used for sorting the contents of
a file.
$sort shortlist

Sorting starts with the first character ofSorting starts with the first character of
each line and proceeds to the next
character only when the characters in
two lines are identical.

Sort options:
With –t option sorts a file based on the
fields.

$sort –t ―|‖+2 shortlist

The sort order can be reversed with – r
option.

Sorting on secondary key:

U can sort on more than one field i.e. uU can sort on more than one field i.e. u
can provide a secondary key to sort.

If the primary key is the third field and the
secondary key the second field, we can
use

$sort –t \| +2 -3 +1 shortlist

Numeric sort (-n):

To sort on number field use sort with –n
option.

$sort –t: +2 -3 –n group1

Removing duplicate lines (-u):Removing duplicate lines (-u):

The –u option u purge duplicate lines from a
file.

nl:
nl is used for numbering lines of a file. Nl
numbers only logical lines –those
containing something other apart from
the new line character.

$nl file$nl file
nl uses a tab as a default delimiter, but we can
change it with –s option.

$nl –s: file
nl won‘t number a line if it contains
nothing.

grep: globally search for a regular
expression and print.

Grep scans a file for the occurrence of a
pattern and depending on the options used,
displaysdisplays

Lines containing the selected pattern.

Lines not containing the selected pattern (- v).
Line numbers where pattern occurs (-n)

No. of lines containing the pattern (-c)

File names where pattern occurs (-l)

Syntax:

grep option pattern filename(s)

egrep: extended grep

egrep extended set includes 2egrep extended set includes 2
special characters + and ?.

--matches one or more occurrences of the
pervious character.

?-- matches zero or more occurrences of the
pervious character.

fgrep: fast grep

If search criteria requires only sequence
expressions, fgrep is the best utility.

Fgrep supports only string patterns, no regular
expressions.expressions.

To extract all the lines that contain an
apostrophe use fgrep as follows:

$fgrep ―‘‖file

Cut: slitting the file vertically U
can slice a file vertically with cut
command.
Cutting columns(-c):
Cut with –c option cuts the columns.Cut with –c option cuts the columns.
To extract first 4 columns of the group file :
$cut –c 1-4 group1

The specification –c 1-4 cuts columns 1 to 4.
Cutting fields:

st rdTo cut 1 and 3 fields

use $cut –d: -f1,3 group1

Paste: pasting files

What u cut with the cut can be pasted backWhat u cut with the cut can be pasted back
with paste command-but vertically rather
than horizontally. u can view two files side
by side by pasting them.

To join two files calc.lst and result.lst use

$paste –d= calc.lst result.lst

join:
is a command in Unix-like operating systems
that merges the lines of two sorted text files
based on the presence of a common field.

The join command takes as input two text files
and a number of options. If no command-lineand a number of options. If no command-line
argument is given, this command looks for a
pair of lines from the two files having the
same first field (a sequence of characters that
are different from space), and outputs a line
composed of the first field followed by the rest
of the two lines.

$join file1 file2

tee:
Unix tee command breaks up its input into two

components; one component is saved in a file, and
other is connected to the standard output.

tee doesn’t perform any filtering action on its input; it
gives exactly what it takes.
tee can be placed any where in a pipeline.
User can use tee to save the output of the who

command in a file and display it as well:
$who |tee user.lst

The tee command reads standard input, writes its
content to standard output and simultaneously
copies it into the specified file or files.

comm:

Suppose if u have 2 list of people, u are asked to
find out the names available in one and not the
other or even those common to both. Comm is the
command that u need to for this work.command that u need to for this work.

It requires two sorted file and lists the differing
entries in different columns.
$comm file1 file2

Comm display a three-column output.

cmp: comparing two files
The two files are compared byte by byte
and the location of the first mismatch is
echoed to the screen using cmp.

cmp when invoked without options it doescmp when invoked without options it does
not bother about possible subsequent
mismatches.

$cmp group1 group2

If two files are identical cmp display s no
message, but simply returns the $ prompt.

diff: converting one file to another
diff takes different approach to displaying
the differences.

It tells u which lines in one file have to be
changed to make two files identical.changed to make two files identical.

When used with the same files it produces a
detailed output.

tar: the tape archive program
Tar doesn‘t normally write to the standard
output but creates an archive in the media. Tar
accepts file and directory names as

BACKUP UTILITIES

accepts file and directory names as
arguments.

It operates recursively.
It can create several versions of same file in a
single archive.

It can append to an archive without
overwriting the entire archive.

-c option is used to copy files to backup device.

$tar –cvf /dev/rdsk/foq18dt
/home/sales/sql/*.sql

The verbose option (-v) shows the no. of
blocks used by each file.blocks used by each file.

Files are restored with the –x (extract) key
option. when no file or directory name is
specified it restores all files from the backup
device.

cpio: copy input-output
Cpio command copies files to and from a
backup device. It uses standard input to
take the list of filenames.

It then copies them with their contents andIt then copies them with their contents and
headers into stream which can be redirected
to a file or a device.

Cpio can be used with redirection and
piping.

Cpio uses two options-o (output) and –i
(input) either of which must be there in
the command line.

SED:
What is sed?

•A non-interactive stream editor
•Interprets sed instructions and performs actions
Use sed to:
•Automatically perform edits on file(s)

STREAM EDITOR

•Automatically perform edits on file(s)
•Simplify doing the same edits on multiple files
•Write conversion programs

sed Command Syntax(Sed Scripts):

Sed Operation
How Does sed Work?

• sed reads line of input
•line of input is copied into a temporary buffer called pattern space
•editing commands are applied

subsequent commands are applied to line in the pattern
space, not the original input linespace, not the original input line

once finished, line is sent to output (unless –n option was
used)

line is removed from pattern space
sed reads next line of input, until end of file

sed instruction format(Sed Addresses):

• address determines which lines in the input file are to be
processed by the command(s)
• if no address is specified, then the command is applied to each • if no address is specified, then the command is applied to each
input line

address types:
• Single-Line address

Set-of-Lines address
Range address
Nested address

Single-Line Address
•Specifies only one line in the input file
Examples:
show only line 3

sed -n -e '3 p' input-file
show only last lineshow only last line

sed -n -e '$ p' input-file
substitute “endif” with “fi” on line 10

sed -e '10 s/endif/fi/' input-file
special: dollar sign ($) denotes last line of input file

Set-of-Lines Address
•use regular expression to match lines
written between two slashes
process only lines that match
may match several lines
lines may or may not be consecutives

Examples:Examples:
sed -e ‘/key/ s/more/other/’ input-file
sed -n -e ‘/r..t/ p’ input-file

Range Address
• Defines a set of consecutive lines
• Format:

start-addr,end-addr (inclusive)
Examples:
10,50 line-number,line-number 10,/R.E/
line-number,/RegExp//R.E./,10
/RegExp/,line-number/R.E./,/R.E//RegExp/,line-number/R.E./,/R.E/
/RegExp/,/RegExp/

Example:
Range Address
% sed -n -e ‘/^BEGIN$/,/^END$/p’ input-file

• Print lines between BEGIN and END, inclusive

BEGIN
Line 1 of input Line 2 of input Line3 of input
END
Line 4 of input Line 5 of input

Nested Address
• Nested address contained within another address
• Example:

print blank lines between line 20 and 30
20,30{
/^$/ p/^$/ p
}
Address with !

• address with an exclamation point (!):
instruction will be applied to all lines that do not match the
address
Example:
print lines that do not contain “obsolete”
sed -e ‘/obsolete/!p’ input-file

awk: Aho, Weinberger and Kernighan

Awk is not just a command, but a programming
language too.

Syntax:

awk command:

Syntax:

awk options ‗selection criteria {action}‘ file(s)

Simple filtering
awk ‗/Simpsons/ { print }‘ homer |Simpsons

Splitting a line into fields

awk –F ‖|‖‗/Simpsons/ {print $1}‘ homer

tr: translating characters

tr command manipulates individual characters in a
character stream.

tr options expr1 expr2< standard input

It takes input only from the standard input, it does
not take input a file name as its argument.not take input a file name as its argument.

When executed, the program reads from the standard
input and writes to the standard output. It takes as
parameters two sets of characters, and replaces
occurrences of the characters in the first set with the
corresponding elements from the other set.

Examples:

$ tr "[a-z]" "z[a-y]" < computer.txt

$tr –d ‘|/’ <shortlist | head -3

$tr ‘|’ ‘\012’ <shortlist | head -6

$tr ‘|/’ ‘~-’ < shortlist |head -3$tr ‘|/’ ‘~-’ < shortlist |head -3

pg:

pg is used to display the output of a file in
page by page.

$pg file1

1.awk allows one-dimensional arrays to store
strings or numbers
2.index can be number or string
3.array need not be declared

• its size
• its elements

AWK ARRAY:

• its elements
4.array elements are created when first used
5.initialized to 0 or “”
Arrays in awk
Syntax:
arrayName[index] = value
Examples:
list[1] = "one" list[2] = "three"
list["other"] = "oh my !"

Awk builtin split functions

split(string, array, fieldsep)

•divides string into pieces separated by fieldsep, and stores the pieces in array
•if the fieldsep is omitted, the value of FS is used.
Example:Example:

split("auto-da-fe", a, "-")

sets the contents of the array a as follows:

a[1] = "auto"

a[2] = "da"

a[3] = "fe"

Associative Arrays
1.awk arrays can use string as index

Example: process sales data
1.input file:

• output:

summary of category sales Illustration: process each input line

Illustration: process each input line

Summary: awk program

Example: complete program

% cat sales.awk
{
deptSales[$2] += $3
}
END {END {
for (x in deptSales)
print x, deptSales[x]
}
% awk –f sales.awk sales

awk built in functions
tolower(string)

•returns a copy of string, with each upper-case character converted to lower-case.
•Nonalphabetic characters are left unchanged.
Example: tolower("MiXeD cAsE 123")
returns "mixed case 123“

toupper(string)toupper(string)

returns a copy of string, with each lower-case character converted to upper-case.

The Bourne shell, or sh, was the default Unix shell of
Unix Version 7. It was developed by Stephen Bourne, of
AT&T Bell Laboratories.
A Unix shell, also called "the command line", provides the
traditional user interface for the Unix operating system and
for Unix-like systems. Users direct the operation of the

Working with Bourne Shell

for Unix-like systems. Users direct the operation of the
computer by entering command input as text for a shell to
execute.
There are many different shells in use. They are

– Bourne shell (sh)

– C shell (csh)

– Korn shell (ksh)

When we issue a command the shell is the first
agency to acquire the information. It accepts and
interprets user requests. The shell examines
&rebuilds the commands &leaves the execution
work to kernel. The kernel handles the h/w on behalfwork to kernel. The kernel handles the h/w on behalf
of these commands &all processes in the system.

The shell is generally sleeping. It wakes up when an
input is keyed in at the prompt. This input is actually
input to the program that represents the shell.

Program Execution
Variable and Filename Substitution

I/O Redirection

Pipeline Hookup

Environment Control

Shell Responsibilities

Environment Control

Interpreted Programming Language

Program Execution:

The shell is responsible for the execution of all
programs that you request from your terminal.

Each time you type in a line to the shell, the shell
analyzes the line and then determines what to do.analyzes the line and then determines what to do.

The line that is typed to the shell is known more
formally as the command line. The shell scans this
command line and determines the name of the
program to be executed and what arguments to pass
to the program.

Like any other programming language, the shell lets
you assign values to variables. Whenever you
specify one of these variables on the command line,
preceded by a dollar sign, the shell substitutes the
value assigned to the variable at that point.

VARIABLE AND FILENAME SUBSTITUTION:

value assigned to the variable at that point.

I/O Redirection:

It is the shell's responsibility to take care of input
and output redirection on the command line. It scans
the command line for the occurrence of the special
redirection characters <, >, or >>.

Pipeline Hookup:

Just as the shell scans the command line looking for
redirection characters, it also looks for the pipe
character |. For each such character that it finds, it
connects the standard output from the commandconnects the standard output from the command
preceding the | to the standard input of the one
following the |. It then initiates

Environment Control:

The shell provides certain commands that let
you customize your environment. Your
environment includes home directory, the
characters that the shell displays to prompt
you to type in a command, and a list of theyou to type in a command, and a list of the
directories to be searched whenever you
request that a program be executed.

The shell has its own built-in programming language.
This language is interpreted, meaning that the shell
analyzes each statement in the language one line at a
time and then executes it. This differs from programming
languages such as C and FORTRAN, in which the
programming statements are typically compiled into a

INTERPRETED PROGRAMMING LANGUAGE:

programming statements are typically compiled into a
machine- executable form before they are executed.

Programs developed in interpreted programming
languages are typically easier to debug and modify than
compiled ones. However, they usually take much longer
to execute than their

compiled equivalents.

Pipes
Standard I/p & standard o/p constitute two separate
streams that can be individually manipulated by
the shell. The shell connects these streams so that
one command takes I /p from other using pipes.

Command Command
Standard | Standard
Output Pipe inputOutput Pipe input

Who produces the list of users , to save this o/p in a
file use

$who > user.lst
To count the no. of lines in this user.lst
use $wc –l <user.lst

This method of using two commands in
sequence has certain disadvantages.
1.The process is slow.
2.An intermediate file is required that has to

be removed after the command has
completed its run.completed its run.

3.When handling large files, temporary files
can build up easily &eat up disk space in no
time.
Instead of using two separate commands, the

shell can use a special operator as the
connector of two commands-the pipe(|).

$who | wc –l

Here who is said to be piped to wc.

When a sequence of commands is
combined together in this way a pipeline is
said to be formed.said to be formed.

To count no. of files in current directory

$ls | wc –l

There‘s no restriction on the no. of
commands u can use a pipeline.

Many of the commands that we used sent their
output to the terminal and also taking the input
from the keyboard. These commands are designed
that way to accept not only fixed sources and
destinations. They are actually designed to use a

REDIRECTION:

destinations. They are actually designed to use a
character stream without knowing its source and
destination.

A stream is a sequence of bytes that many
commands see as input and output. Unix treats these
streams as files and a group of unix commands reads
from and writes to these files.

There are 3 streams or standard files. The
shell sets up these 3 standard files and
attaches them to user terminal at the time of
logging in.

Standard i/p ----default source isStandard i/p ----default source is
the keyboard.

Standard o/p ----default source is
the terminal.

Standard error ----default source is
the terminal.

Instead of input coming from the keyboard and
output and error going to the terminal, they can
be redirected to come from or go to any file or
some other device.

Standard o/p: It has 3 sources.

The terminal, default source
A file using redirection with >, >>

Another program using a pipeline.

Using the symbols >,>> u can redirect the o/p
of a command to a file.

$who> newfile

If the output file does not exist the shell creates
it before executing the command. If it exists the
shell overwrites it.

$who>> newfile

Standard i/p:Standard i/p:

The keyboard, default source

A file using redirection with <

Another program using a pipeline.

$wc < calc.lst or

$wc calc.lst or $wc

Standard Error:

When u enter an incorrect command or
trying to open a non existing file, certain
diagnostic messages show up on the screen.diagnostic messages show up on the screen.
This is the standard error stream.

Trying to cat a nonexistent file
produces the error stream.

$cat bar

Cat: cannot open bar :no such file or
directory

The standard error stream can also be
redirected to a file.

$cat bar 2> errorfile

Here 2 is the file descriptor for
standard error file.standard error file.

Each of the standard files has a number called
a file descriptor, which is used for
identification.
0—standard i/p 1---

standard o/p

2---standard error

Here Documents
• There are occasions when the data of ur program

reads is fixed & fairly limited.

• The shell uses << symbols to read data from the
same file containing the script. This referred to as asame file containing the script. This referred to as a
here document, signifying that the data is here
rather than in a separate file.

• Any command using standard i/p can also take
i/p from a here document.

• This feature is useful when used with commands that
don’t accept a file name as argument.

Example:

mail Juliet << MARK

Ur pgm for printing the invoices has been
executed on `date`. Check the print queue

The updated file is known asThe updated file is known as

$flname MARK

The shell treats every line followed by three
lines of data and a delimited by MARK as
input to the command. Juliet at other end
will only see the three lines of message
text, the word MARK itself
doesn‘t show up.

The shell consists of large no. of metacharacters.
These characters plays vital role in Unix
programming.

Types of metacharacters:

1.File substitution

SHELL METACHARACTERS:

1.File substitution

2.I/O redirection

3.Process execution

4.Quoting metacharacters
5.Positional parameters

6.Special characters

Filename substitution:

These metacharacters are used to
match the filenames in a directory.

Metacharacter significance

Filename substitution:

* matches any no. of characters

? matches a single character

[ijk] matches a single character either i,j,k

[!ijk] matches a single character that is not
an I,j,k

I/O redirection:

These special characters specify from
where to take i/p & where to send o/p.

>- to send the o/p to a specific file>- to send the o/p to a specific file

- to take i/p from specific location but
not from keyboard.

>>- to save the o/p in a particular file at the
end of that file without overwriting it.

<<- to take i/p from standard i/p file.

Process execution:

-is used when u want to execute more then one
command at $ prompt.

Eg: $date; cat f1>f2
() –used to group the commands. Eg:() –used to group the commands. Eg:

(date; cat f1) >f2

-used to execute the commands in
background mode.

Eg: $ls &

-this is used when u want to execute
the second command only if the first
command executed successfully.

Eg:
$grep Unix f1 && echo Unix$grep Unix f1 && echo Unix

found $cc f1 && a.out

- used to execute the second command if
first command fails.

Eg:

$grep unix f1 || echo no unix

Quoting:

\ (backslash)- negates the special property of
the single character following it.

Eg:

$echo \? * \?$echo \? * \?

?*?

‗‗(pair of single quotes)-negates the special
properties of all enclosed characters.

Eg:

$echo ‗send $100 towhom?‘

――(pair of double quotes)-negates the
special properties of all enclosed
characters except $,`,\ .

Eg:

$echo ―today date is $date‖or$echo ―today date is $date‖or

$echo ―today date is `date` ―

Positional parameters:

$0- gives the name of the command which is
being executed.

$*-gives the list of arguments.

$#-gives no. of arguments.

Special parameters:

$$- gives PID of the current shell.

$?-gives the exit status of the last
executed command.

$!-gives the PID of last background process.

$- -gives the current setting of shell.

U can define & use variables both in the command
line and shell scripts. These variables are called
shell variables.
No type declaration is necessary before u can
use a shell variable.
Variables provide the ability to store and manipulate
the information with in the shell program. The

Shell Variables

the information with in the shell program. The
variables are completely under the control of user.
Variables in Unix are of two types.

1.Unix defined or system variables
2.User defined variables

User-defined variables:
Generalized form:

variable=value.

Eg: $x=10
$echo $x
1010

To remove a variable use unset.
$unset x

All shell variables are initialized to null strings by
default. To explicitly set null values use

x= or x=‗‘ or x=―‖
To assign multiword strings to a variable use
$msg=‗u have a mail‘

They are initialized when
the shell script starts and
normally capitalized to
distinguish them from user-
defined variables in scripts

To display all variables in
the local shell and their

Environment
Variables

Description

$HOME Home directory

$PATH List of directories to
search for
commands

$PS1 Command prompt

ENVIRONMENTAL VARIABLES

the local shell and their
values, type the set
command.
The unset command
removes the variable
from the current shell and
sub shell

$PS1 Command prompt

$PS2 Secondary prompt

$SHELL Current login shell

$0 Name of the shell
script

$# No . of parameters
passed

$$ Process ID of the
shell script

Parameter Variable Description

$1, $2, …. The parameters given to the
script

$* A list of all the parameters

PARAMETER VARIABLES

$* A list of all the parameters
separated by the first character of
IFS

$@ A list of all the parameters that
doesn’t use the IFS environment
variable

read:

The read statement is a tool for taking input
from the user i.e. making scripts interactive. It
is used with one or more variables. Input
supplied through the standard input is read

SHELL COMMANDS:

supplied through the standard input is read
into these variables.

$read name

What ever u entered is stored in the
variable name.

printf:
Printf is used to print formatted o/p. printf

"format" arg1 arg2 ...

Eg:

$ printf "This is a number: %d\n" 10

This is a number: 10

$

Printf supports conversion specification
characters like %d, %s ,%x ,%o….

Exit status of a command:

Every command returns a value after
execution .This value is called the exit
status or return value of a command.

This value is said to be true if the
command executes successfully and
false if it fails.

There is special parameter used by the shell it
is the $?. It stores the exit status of a
command.

exit:

The exit statement is used to prematurely
terminate a program. When this statement is
encountered in a script, execution is halted
and control is returned to the calling program-and control is returned to the calling program-
in most cases the shell.

U don‘t need to place exit at the end of every
shell script because the shell knows when
script execution is complete.

set:
Set is used to produce the list of
currently defined variables.

$set

Set is used to assign values to
the positional parameters.the positional parameters.

$set welcome to Unix

The do-nothing(:)Command
It is a null command.

In some older shell scripts, colon was used at
the start of a line to introduce a comment, but

.

expr:

The expr command evaluates its arguments as an
expression:

$ expr 8 + 6$ expr 8 + 6

14

$ x=`expr 12 / 4 `

$ echo $x

3

export:
There is a way to make the value of a
variable known to a sub shell, and that's by
exporting it with the export command.
The format of this command is

export variablesexport variables

where variables is the list of variable names
that you want exported. For any sub shells
that get executed from that point on, the
value of the exported variables will be
passed down to the sub
shell.

eval:

eval scans the command line twice before
executing it. General form for eval is

eval command-line

Eg:

$ cat last

eval echo \$$#
$ last one two three

four four

${n}

If u supply more than nine arguments to a
program, u cannot access the tenth and
greater arguments with $10, $11, and so on.

${n} must be used. So to directly access${n} must be used. So to directly access
argument 10, you must write

${10}

42

Shift command:

The shift command allows u to effectively
left shift your positional parameters. If u
execute the command

ShiftShift

whatever was previously stored inside $2 will
be assigned to $1, whatever was previously
stored in $3 will be assigned to $2, and so
on. The old value of $1 will be irretrievably
lost.

43

If conditional:
The if statement takes two-way decisions

depending on the fulfillment of a certain
condition. In shell the statement uses
following form.

CONTROL STRUCTURES:

If command is successful

then

execute commands

else
execute commands fi

if command is successful

then

execute commands

fi

or

if command is successful

then

execute commands

elif command is successful

then..
else..
fi

-d file True if the file is a directory
-e file True if the file exists
-f file True if the file is a regular file
-g file True if set-group-id is set on file
-r file True if the file is readable
-s file True if the file has non-zero size
-u file True if set-user-id is set on file

FILE CONDITIONS

-u file True if set-user-id is set on file
-w file True if the file is writeable
-x file True if the file is executable

Example
$ mkdirtemp
$ if [-f temp];then

echo "temp is a directory" fi

ep1 -eq ep2 True if ep1 = ep2

ep1 -ne ep2 True if ep1  ep2

ep1 -gt ep2 True if ep1 > ep2

ep1 -ge ep2 True if ep1 >= ep2

ep1 -lt ep2 True if ep1 < ep2

ep1 -le ep2 True if ep1 <= ep2

ARITHMETIC COMPARISION

ep1 -le ep2 True if ep1 <= ep2

True if ep is false

Space is necessary

! ep

Example
$ x=5; y=7

$ if [$x -lt $y]; then

> echo "x is less than y"

> fi

Case conditional:

Case is a multi way branching. It matches
strings with wild cards.

syntax: case syntax: case

expr in

pattern1) command1;;
Pattern2) command1;;

pattern3) command1;;

esac

While and until: looping

While statement repeatedly performs a set of
instructions till the command returns a true
exit status.

Syntax:Syntax:

while condition is true

do
commands

done

Until: while’s complement

The until statement complements the while
construct in that the loop body here is
executed repeatedly as long as the
condition remains is false.condition remains is false.

Syntax:

until condition is false

do
commands

done

for loop:

Unlike while and until for doesn‘t test a
condition but uses a list instead.

Syntax:

for variable in list

dodo

commands

done

The list here comprises a series of character
strings separated by whitespace.

Shell script examples

Example:

#!/bin/sh#!/bin/sh

echo "Is it morning? (Answer yes or no)" read
timeofday

if [$timeofday = "yes"]; then echo
"Good Morning"

else

echo "Good afternoon"
fi exit 0

elif - Doing further Checks
#!/bin/sh
echo "Is it morning? Please answer yes or no" read
timeofday

if [$timeofday = "yes"];
then echo "Good Morning" elif [

$timeofday = "no"];
then echo "Good afternoon"then echo "Good afternoon"

else
echo "Wrong answer! Enter yes or no" exit 1

fi exit 0

Looping -- for

for variable in values
do

#!/bin/sh

for i in 1 2 3 4
5 do

echo "Number: $i"

done

#!/bin/shdo
....

done

#!/bin/sh

for file in U N I X do

echo $i

done

case
case variable in

pattern [| pattern] ...) statements;;
pattern [| pattern] ...) statements;;
....

esac

#!/bin/sh

echo "Is it morning? Enter yes or no";read timeofday case echo "Is it morning? Enter yes or no";read timeofday case
"$timeofday" in

yes | y | Yes | YES) n* | N*

)

echo "Good Morning";; echo

"Good Afternoon";;

) echo "Sorry, answer not recognized" echo "Please

answer yes or no" exit 1;;

esac

U can execute a shell script by invoking its
filename.

$filename

U can also use sh command which takes

EXECUTING SHELL SCRIPT

script name as argument.

$sh filename

Using single command:

If only one command is used for solving a
problem then the command is known as
single Unix command for solving a

PROBLEMS SOLVING APPROACHES IN UNIX:

single Unix command for solving a
problem.

Eg:

$mv file1 file2

$cd /usr/bin
This is the simplest approach for solving a

Using compound commands:

When a single command is not sufficient to
solve a problem, try to join the commands
together.

PROBLEM SOLVING APPROACHES IN UNIX

together.
Two approaches for this are:

Redirection

Piping

Redirection:

Unix commands are built-up in such a way
that they can take the input from the
keyboard, often called standard input and
usually send their output to the screen, often
called standard output. Commands also send
error information to the screen.error information to the screen.

We can also change these defaults by
using a process called redirection.

There are three standard files. The shell
sets up these three standard files and
attaches them to user terminal at the time
of logging in.

Standard i/p ----default source is the
keyboard.

Standard o/p ----default source is the
terminal.

Standard error ----default source is the
terminal.

Standard i/p:

It has three sources

The keyboard, default source

A file using redirection with <

Another program using a pipeline.

Eg:Eg:

$wc or $wc file1

$wc < file1 or

$cat file1 | wc

Standard o/p:

It has 3 destinations.

The terminal, default source
A file using redirection with >, >>

Another program using a pipeline.

Using the symbols >,>> u can redirect the o/p Using the symbols >,>> u can redirect the o/p
of a command to a file.

Eg:

$cat file1

$cat file1>file2

$who | newfile

Standard Error:
When u enter an incorrect command or trying
to open a non existing file, certain diagnostic
messages show up on the screen. This is the
standard error stream.

Trying to cat a nonexistent file produces
the error stream.the error stream.

$cat bab

Cat: cannot open bab :no such file or
directory

The standard error stream can also be
redirected to a file.

$cat bar 2> errorfile

Here 2 is the file descriptor for
standard error file.

Each of the standard files has a number
called a file descriptor, which is used for
identification.
0—standard i/p

1---standard o/p

2---standard error

Standard | Standard

Standard I/p & standard o/p constitute two
separate streams that can be individually
manipulated by the shell. The shell connects
these streams so that one command takes I
/p from other using pipes.

Command Command

PIPES

Standard | Standard
Output Pipe inputCommand Command

Who produces the list of users , to save this o/p in a
file use

$who > user.lst
To count the no. of lines in this user.lst use
$wc –l <user.lst

Instead of using 2 separate commands we can
combine them using pipes.

$who | wc –l
Here who is said to be piped to wc.

To count no. of files in current directoryTo count no. of files in current directory

$ls | wc –l

There‘s no restriction on the no. of
commands u can use a pipeline.

All the Unix commands can be entered in the
command line itself. When a group of
commands have to be executed regularly,
they are better stored in a file.

SHELL SCRIPT

they are better stored in a file.
All such files are called shell scripts or
shell programs.

There‘s no restriction on the extension of
the file name, though it is helpful to use
.sh as the extension.

The following shell script is a sequence of
commands:

$cat script.sh
echo the date today is `date`

echo ur shell is $SHELL

echo ur home directory is $HOMEecho ur home directory is $HOME

U can use vi to create this script.

To execute this script use

or$sh script.sh

$script.sh

Positional parameters:

Shell script accept arguments in another
manner-from the command line itself.
This is the non interactive method of
specifying the command line arguments.specifying the command line arguments.

When the arguments are specified with a
shell script, they are assigned to certain
special variables-rather positional
parameters.

The first argument is read by the shell into
the parameter $1, second argument into
$2 and so on.

The various special parameters used in the
script are

$1—the first argument

$2—the second argument$2—the second argument

$0—the name of the script

$#--the no. of arguments

$*--the complete set of positional
parameters as a single string.

C is the robust language & most of the
Unix is written in c.

C is a compiled language, i.e. u can use one
of the system editor to write the program.
Then submit this program to C compiler,

PROGRAMS:

Then submit this program to C compiler,
then run the program.

U can build C programs in Unix also.

Steps for writing a C program in UNIX:

Use an editor such as vi, ex or ed to write the
program. The file name of the program must
end with .c in order to identify it as a Cend with .c in order to identify it as a C
program by the compiler.

Submit the file to C compiler using cc.

Eg:

$cc filename.c

Run the program using $a.out

UNIT-II

FILES AND DIRECTORIESFILES AND DIRECTORIES

CLOs Course Learning Outcome

CLO 4 Illustrate file processing operations such as standard I/O and
formatted I/O.

CLO 5 Illustrate memory management of file handling through
file/region lock.file/region lock.

CLO 6 Design and Implement in C some standard linux utilities.

To use the services in the OS Unix offers some
special functions known as system calls. The
system call is a task which performs very
basic functions that requires communication

SYSTEM CALLS

basic functions that requires communication
with CPU, memory and other devices.

UNIX system calls are used to manage the file
system, control processes, and to provide inter
process communication.

Types of system calls in UNIX:
2.create

6.lseek

3.read

7.stat

1.Open

5.Close

9.ioctl 10.umask 11.dup

4.write

8.fstat

12.dup29.ioctl 10.umask 11.dup 12.dup2

File descriptor: To the kernel all open files are
referred to by file descriptors. A fd is a non
negative integer. When open an existing file or
create a new file, the kernel returns a (position in
the table) fd to the process.

open function:

A file is opened or created by calling
the open function.

#include <fcntl.h>

int open(const char *pathname, int oflag,int open(const char *pathname, int oflag,
.../ mode_t mode */);

Returns: file descriptor if OK, -1 on error.

The pathname is the name of the file to
open or create. This function has a
multitude of options, which are
specified by the oflag argument.

This argument is formed by ORing
together one or more of the following
constants from the <fcntl.h> header:

O_RDONLY

O_WRONLY
open for reading only.

open for writing only.O_WRONLY

O_RDWR
open for writing only.

open for reading and writing.

Most implementations define O_RDONLY as
0, O_WRONLY as 1, and O_RDWR as 2, for
compatibility with older programs.

The following constants are optional:

O_APPEND

O_CREAT

Append to the end of file on

each write.

Create the file if it doesn't exist.
This option requires a third argument to the This option requires a third argument to the
open function, the mode, which specifies the
access permission bits of the new file.

O_EXCL Generate an error if O_CREAT is
also specified and the file already exists

O_TRUNC If the file exists and if it is
successfully opened for either write-only or
readwrite, truncate its length to 0.

creat Function

A new file can also be created by calling
the creat function.

Syntax:

#include <fcntl.h>

int creat(const char *pathname, int creat(const char *pathname,
mode_t mode);

Returns: file descriptor opened for write-
only if OK, -1 on error.

This function is equivalent to

open (pathname, O_WRONLY | O_CREAT |
O_TRUNC, mode);

close Function:

An open file is closed by calling the close
function.

#include <unistd.h> #include <unistd.h>

int close(int filedes);

Returns: 0 if OK,-1 on error.

read :

Data is read from an open file with the read
function.

#include <unistd.h>

ssize_t read(int filedes, void *buf, size_t nbytes);ssize_t read(int filedes, void *buf, size_t nbytes);

Returns: number of bytes read, 0 if end of file, -1 on
error

read attempts to read nbyte characters from the file
descriptor filedes into the buffer buf. buf represents the
pointer to the generic buffer. nbyte is the size of the
buffer.

write function:

Data is written to an open file with the
write function.

#include <unistd.h>

ssize_t write(int filedes, const voidssize_t write(int filedes, const void
*buf, size_t nbytes);

Returns: number of bytes written if OK,-1
on error

write writes nbyte no. of bytes from the
generic buffer buf to the file descriptor
filedes.

Implementing cat:
#include< fcntl.h> #define

BUFSIZE 1 main(int argc,

char *argv[])
{
int fd, n; char buf; int fd, n; char buf;

fd=open(argv[1],O_RDONLY);

printf(―contents of %s file are‖,argv[1]);

while((n=read(fd,&buf,1))>0)

{

write(1,&buf,1);

}}

Implementing mv:
#include< fcntl.h>

#include< stdio.h>

#include<unistd.h>

#include<sys/ stat.h> #include<sys/ stat.h>

main(int argc, char *argv[])

{

int fd1,fd2;
fd1=open(argv[1],O_RDONLY);

fd2= creat(argv[2],S_IWUSR);

rename(fd1,fd2); unlink(argv[1]);
}

lseek function:

An open file's offset can be set explicitly
by calling lseek.

#include <unistd.h>

off_t lseek(int filedes, off_t offset,
int whence);

Returns: new file offset if OK, -1 on error.

The interpretation of the offset depends on
the value of the whence argument.

If whence is:

SEEK_SET--the file's offset is set to offset
bytes from the beginning of the file.bytes from the beginning of the file.

SEEK_CUR--the file's offset is set to its
current value plus the offset. The offset
can be positive or negative.

SEEK_END--the file's offset is set to the
size of the file plus the offset. The offset
can be positive or negative.

Eg: lseek(fd, 10, SEEK_CUR)

It moves the pointer forwarded by 10
characters from its current position.

Eg:

lseek(fd, -10, SEEK_END)

It sets pointer 10 characters before EOF.

lseek returns position of pointer in bytes
from the beginning of the file.The
return value can be used to determine the
file size.

Size= lseek(fd, 0,SEEK_END)

An existing file descriptor is duplicated by
either of the following functions.

#include <unistd.h>

int dup(int filedes);

int dup2(int filedes, int filedes2);int dup2(int filedes, int filedes2);

Both return: new file descriptor if OK,-1
on error.

The new file descriptor returned by dup is
guaranteed to be the lowest-numbered
available file descriptor.

With dup2, we specify the value of the new
descriptor with the filedes2 argument. If

filedes2 is already open, it is first closed. If
filedes equals filedes2, then dup2 returns

filedes2 without closing it.filedes2 without closing it.
dup(filedes); is equivalent to fcntl(filedes,

F_DUPFD, 0);

dup2(filedes, filedes2); is equivalent to
close(filedes2);

fcntl(filedes, F_DUPFD, filedes2);

ioctl Function:

It performs a variety of control functions on
devices. The ioctl function has always been
the catchall for I/O operations.

#include <unistd.h> /* System V */

#include <sys/ioctl.h>/* BSD and Linux*/
#include <stropts.h> /* XSI STREAMS */
int ioctl(int filedes, int request, ...);

Returns: -1 on error, something else if OK.

stat, fstat, and lstat Functions:

#include <sys/stat.h>
int stat(const char * pathname, struct stat *

buf); int fstat(int filedes, struct stat *buf); int

lstat(const char * pathname, struct stat
* buf);

All three return: 0 if OK, -1 on error.

Given a pathname, the stat function returns a
structure of information about the named file.
The fstat function obtains information about the
file that is already open on the descriptor
filedes.

The definition of the structure can be:

struct stat {

mode_t st_mode; /*file type & mode*/
ino_t st_ino;

dev_t st_dev;
/* i-node number */

/* device number */

nlink_t st_nlink; /* number of links */
uid_t st_uid; /* user ID of owner */uid_t st_uid;

gid_t st_gid;

off_t st_size;

/* user ID of owner */

/* group ID of owner */

/* size in bytes, for regular files */
time_t st_atime;

time_t st_mtime;
/* time of last access */

/* time of last modification */

time_t st_ctime; /* time of last file status change */

blksize_t st_blksize; blkcnt_t st_blocks; };

File Types:
The types of files are:

1.Regular file

2.Directory file

3.Block special file

4.Character special file

5.FIFO

6.Socket

7.Symbolic link

The type of a file is encoded in the st_mode
member of the stat structure.

Macro Type of file

S_ISREG()

S_ISDIR()

S_ISCHR()

S_ISBLK()

S_ISFIFO()

regular file

directory file

character special file
block special file

pipe or FIFO S_ISFIFO()

S_ISLNK()

S_ISSOCK()

pipe or FIFO

symbolic link

socket

File type macros are defined in
<sys/stat.h>.

The st_mode value also encodes the access
permission bits for the file.

S_IRUSR user-read

S_IWUSR user-write

S_IXUSR user-execute

File Access Permissions:

S_IXUSR user-execute

S_IRGRP group-read

S_IWGRP group-write

S_IXGRP group-execute
other-read

other-write

other-execute

S_IROTH

S_IWOTH

S_IXOTH

Program to print type of file.
#include<sys/ types.h> #include<sys/stat.h> int

main(int argc, char *argv[])
{ int i;
Struct stat buf;

Char *ptr;

for(i=1;i< argc;i++)for(i=1;i< argc;i++)

{

printf(―%s‖,argv[i]);

if(lstat(argv[i],&buf)<0)

{

printf(―lstat error‖);
Continue;}

If(S_ISREG(buf.st_mode))

ptr=―regular‖;
elseif(S_ISDIR(buf.st_mode)) ptr=―directory‖;
elseif(S_ISCHR(buf.st_mode)) ptr=―character special‖;
elseif(S_ISBLK(buf.st_mode))
ptr=―block special‖; elseif(S_ISFIFO(buf.st_mode)) ptr=―fifo‖;ptr=―block special‖; elseif(S_ISFIFO(buf.st_mode)) ptr=―fifo‖;
else ptr=―unknown‖; prinƞ(―%s‖, ptr); }

exit(0); }

access function:

#include <unistd.h>
int access(const char *pathname, int

mode); Returns: 0 if OK,-1 on error.

The mode is the bitwise OR of any of
the constants shown below.the constants shown below.

Mode

R_OK

W_OK

X_OK
F_OK

description

test for read permission test

for write permission

test for execute permission
test for existence of a file

umask Function:

The umask function sets the file mode
creation mask for the process and returns the
previous value.

#include <sys/stat.h>#include <sys/stat.h>
mode_t umask(mode_t cmask); Returns:

previous file mode creation mask.

The cmask argument is formed as the bitwise OR
of any of the nine constants like S_IRUSR,
S_IWUSR, and so on.

The UNIX System supports the sharing of open
files among different processes.

The kernel uses three data structures to represent
an open file:

1.Process table: Every process has an entry in the

File Sharing loop:

1.Process table: Every process has an entry in the
process table. Within each process table entry is a
table of open file descriptors, with one entry per
descriptor.
Associated with each file descriptor are

a)The file descriptor flags
b)A pointer to a file table entry

2.File table: The kernel maintains a file table for all
open files. Each file table entry contains

a)The file status flags for the file, such as read,
write, append, sync, and non blocking

b)The current file offset

A pointer to the v-node table entry for the
filefile

3.v-node table: Each open file (or device) has v-
node structure that contains information

about the type of file and pointers to
functions that operate on the file.

chmod and fchmod Functions:

These two functions allow us to change the file
access permissions for an existing file.

#include <sys / stat.h>

File and Directory Maintenance functions:

#include <sys / stat.h>

int chmod(const char *pathname,
mode_t mode);

int fchmod (int filedes, mode_t mode);

Both return: 0 if OK, -1 on error.

The chmod function operates on the specified
file, whereas the fchmod function operates on a
file that has already been opened.

The mode constants for chmod functions, from
<sys/stat.h>

Mode

S_IRUSRS_IRUSR

S_IWUSR

S_IXUSR

S_IRWXU

chown, fchown, and lchown Functions:

The chown functions allow us to change the user ID
of a file and the group ID of a file.

#include <unistd.h>

int chown (const char *pathname, uid_t owner, gid_t
group);

int fchown (int filedes, uid_t owner, gid_t group);

int lchown (const char *pathname, uid_t owner, gid_t
group);

All three return: 0 if OK,-1 on error.

These three functions operate similarly unless the
referenced file is a symbolic link.

unlink:

To remove an existing directory entry, we call the
unlink function.

#include <unistd.h>

int unlink(const char *pathname);int unlink(const char *pathname);

Returns: 0 if OK, 1 on error.

This function removes the directory entry and decrements the
link count of the file referenced by pathname. If there are
other links to the file, the data in the file is still accessible
through the other links. The file is not changed if an error
occurs.

link:

we can create a link to an existing file is with
the link function.

#include <unistd.h>
int link(const char *existingpath, const char *newpath);int link(const char *existingpath, const char *newpath);

Returns: 0 if OK, -1 on error.
This function creates a new directory entry, newpath, that

references the existing file existingpath. If the newpath
already exists, an error is returned. Only the last
component of the newpath is created.

symlink :

A symbolic link is created with the symlink
function.

#include <unistd.h>
int symlink(const char *actualpath, const char *sympath);int symlink(const char *actualpath, const char *sympath);

Returns: 0 if OK, -1 on error.

A new directory entry, sympath, is created that
points to actualpath. It is not required that
actualpath exist when the symbolic link is created.

mkdir and rmdir :

Directories are created with the mkdir
function and deleted with the rmdir
function.

#include <sys/stat.h>#include <sys/stat.h>
int mkdir (const char *pathname, mode_t mode);

Returns: 0 if OK, -1 on error.

rmdir:

An empty directory is deleted with the rmdir
function. An empty directory is one that
contains entries only for dot and dot-dot.

#include <unistd.h>
int rmdir(const char *pathname);

Returns: 0 if OK, -1 on error.Returns: 0 if OK, -1 on error.

If the link count of the directory becomes 0 with
this call, and if no other process has the
directory open, then the space occupied by the
directory is freed.

chdir, fchdir:
We can change the current working directory of
the calling process by calling the chdir or fchdir
functions.

#include <unistd.h>#include <unistd.h>
int chdir (const char *pathname);

int fchdir(int filedes);

Both return: 0 if OK, -1 on error.

We can specify the new current working
directory either as a pathname or through an
open file descriptor.

Example of chdir function:

int main(void)

{
if (chdir("/tmp") < 0) if (chdir("/tmp") < 0)

err_sys("chdir failed");

printf("chdir to /tmp succeeded\n");

exit(0);

}

getcwd :

#include <unistd.h>
char *getcwd (char *buf, size_t size);

Returns: buf if OK, NULL on error

We must pass to this function the address of aWe must pass to this function the address of a
buffer, buf, and its size (in bytes). The buffer
must be large enough to accommodate the
absolute pathname plus a terminating null byte, or
an error is returned.

Example of getcwd function:

Int main(void)

{

char *ptr; int size;

if (chdir("/usr/spool/uucppublic") < 0) if (chdir("/usr/spool/uucppublic") < 0)
err_sys("chdir failed");

ptr = path_alloc(&size); /* our own function */

if (getcwd(ptr, size) == NULL) err_sys("getcwd

failed");

printf("cwd = %s\n", ptr);
exit(0); }

Directory handling system calls:
opendir:

#include <dirent.h>
DIR *opendir(const char *pathname);

Returns: pointer if OK, NULL on error. Returns: pointer if OK, NULL on error.

readdir:

struct dirent *readdir(DIR *dp);

Returns: pointer if OK, NULL at end of
directory or error.

The dirent structure defined in the file
<dirent.h> is implementation dependent.
Implementations define the structure to
contain at least the following two members:

struct direntstruct dirent

{

ino_t d_ino;/* i-node number */

char d_name [NAME_MAX + 1]; /* null-
terminated filename */

}

closedir, rewinddir, telldir, seekdir:

int closedir(DIR *dp);

Returns: 0 if OK, -1 on

error. void rewinddir(DIRerror. void rewinddir(DIR

*dp); long telldir (DIR *dp); void

seekdir(DIR *dp, long loc);

Returns: current location in directory
associated with dp.

All the I/O routines centered around file descriptors. When a file is

opened, a file descriptor is returned, and that descriptor is then used

for all subsequent I/O operations. With the standard I/O library, the

discussion centers around streams.

STANDARD IO:

When we open a stream, the standard I/O function fopen returns a

pointer to a FILE object. This object is normally a structure that

contains all the information required by the standard I/O library to

manage the stream.

Standard Input, Standard Output, and
Standard Error:

Three streamsarepredefined and automatically
available to a process: standard input, standard
output, and standard error. These streams refer to the same
files as the file descriptors STDIN_FILENO,files as the file descriptors STDIN_FILENO,
STDOUT_FILENO, and STDERR_FILENO.

These three standard I/O streams are referenced through
the predefined file pointers stdin, stdout, and stderr. The
file pointers are defined in the <stdio.h> header.

Opening a Stream: fopen()

The following three functions open a standard I/O
stream.

#include < stdio.h>

FILE *fopen(const char *pathname, FILE *fopen(const char *pathname,
const char *type);

FILE *freopen(const char *pathname,
const char *type,FILE *fp);
FILE *fdopen(int filedes,const char *type);
All three return: file pointer if OK, NULL on
error.

The fopen function opens a specified file.

The freopen function opens a specified file on a specified
stream, closing the stream first if it is already open. If the
stream previously had an orientation, freopen clears it.

The fdopen function takes an existing file descriptor,
which we could obtain from the open, dup, dup2, fcntl,
pipe, socket, socketpair, or accept functions, and
associates a standard I/O stream with the descriptor.

Type


r / rb

W / wb
a / ab

Description
open for reading

truncate to 0 length or create for writing
append; open for writing at end of

file, or create for writing

file, or create for writing


r+ / r+b / rb+ open for reading and writing
w+ / w+b / wb+


truncate to 0 length or create for

reading and writing

a+/ a+b / ab+


open or create for reading and
writing at end of file

fclose:
An open stream is closed by calling fclose.

#include <stdio.h>

int fclose(FILE *fp); Returns:

0 if OK, EOF on error.0 if OK, EOF on error.

Any buffered output data is flushed before the file
is closed. Any input data that may be buffered is
discarded. If the standard I/O library had
automatically allocated a buffer for the stream,
that buffer is released.

Reading and Writing a Stream:

Once we open a stream, we can choose from
among three types of unformatted I/O:

1.Character-at-a-time I/O. We can read or
write one character at a time.write one character at a time.

2.Line-at-a-time I/O. If we want to read or write a
line at a time, we use fgets and fputs.

3.Direct I/O. This type of I/O is supported by
the fread and fwrite functions

Input Functions:

Three functions allow us to read one character at a
time.
#include <stdio.h>

int getc (FILE *fp);

int fgetc (FILE *fp);

int getchar (void);int getchar (void);

All three return: next character if OK, EOF on end of file or
error.

The function getchar is equivalent to getc(stdin). getc can be
implemented as a macro, whereas fgetc cannot be
implemented as a macro.

Output Functions:

an output function that corresponds to each of
the input functions are:

#include <stdio.h>
int putc (int c, FILE *fp);

int fputc (int c, FILE

*fp); int putchar (int c);
All three return: c if OK, EOF on error.

Like the input functions, putchar(c) is equivalent to
putc(c, stdout), and putc can be implemented as a
macro, whereas fputc cannot be implemented as a macro.

Line-at-a-Time I/O:

#include <stdio.h>

char *fgets (char *buf, int n, FILE

*fp); char *gets(char *buf);

Both return: buf if OK, NULL on end of fileBoth return: buf if OK, NULL on end of file
or error.

Both specify the address of the buffer to read the
line into. The gets function reads from standard
input, whereas fgets reads from the specified
stream.

With fgets, we have to specify the size of the
buffer, n. This function reads up through and
including the next newline, but no more than n1
characters, into the buffer. The buffer is
terminated with a null byte.

The gets function should never be used. The
problem is that it doesn't allow the caller to
specify the buffer size. This allows the buffer to
overflow, if the line is longer than the buffer,
writing over whatever happens to follow the
buffer in memory.

Line-at-a-time output is provided by fputs&
puts.

#include <stdio.h>
int fputs(const char *str, FILE *fp);

int puts(const char *str);int puts(const char *str);

Both return: non-negative value if OK, EOF
on error.

The function fputs writes the null-terminated
string to the specified stream. The null byte at
the end is not written.

Copy standard input to standard output using
getc and putc:

int main(void)

{

int c;int c;
while ((c = getc(stdin)) != EOF) if

(putc(c, stdout) == EOF)

err_sys("output error"); if (ferror(

stdin))

err_sys("input error");
exit(0);}

Copy standard input to standard
output using fgets and fputs:

int main(void)

{

char buf[MAXLINE];
while (fgets(buf, MAXLINE, stdin) != NULL) if

(fputs(buf, stdout) == EOF) err_sys("output

error"); if (ferror(stdin))

err_sys("input error");
exit(0); }

#include<stdio.h>
size_t fread(void *ptr, size_t size, size_t nobj, FILE *fp); size_t

fwrite(const void *ptr, size_t size, size_t nobj, FILE *fp);

Both return: number of objects read or written
Example:
struct {

DIRECT IO FUNCTIONS:

struct {

Short count;

Long total;

Char name[NAMESIZE];

}item;
If (fwrite(&item, sizeof(item),1,fp)!=)

err_sys(―fwrite error‖);

Formatted Output:

Formatted output is handled by the four
printf functions.

#include <stdio.h>

int printf(const char *format, ...);

FORMATED IO

int printf(const char *format, ...);

int fprintf(FILE *fp, const char *format, ...);

Both return: number of characters output if
OK, negative value if output error.

int sprintf (char *buf, const char *format, ...);

int snprintf (char *buf, size_t n, const
char *format, ...);

Both return: number of characters stored in array if
OK, negative value if encoding error.OK, negative value if encoding error.

The printf function writes to the standard o/p, fprintf
writes to the specified stream& sprintf places the
formatted characters in the array buf. The sprintf function
automatically appends a null byte at the end of the array,
but this null byte is not included in the return value.

Formatted Input:

Formatted input is handled by the three
scanf functions.

#include <stdio.h>

int scanf (const char *format, ...);int scanf (const char *format, ...);

int fscanf (FILE *fp, const char *format, ...);

int sscanf (const char *buf, const char *format, ...);
All three return: number of input items assigned, EOF if

input error or end of file before any conversion.

The scanf family is used to parse an input string and convert
character sequences into variables of specified types.

Handling errors:

#include<stdio.h>

int ferror(FILE *fp);

int feof(FILE *fp);int feof(FILE *fp);
Both return: nonzero (true) if condition is true, 0 (false) otherwise

These functions return the same value whether an
error occurs or the end of file is reached.

UNIT-III

PROCESS AND SIGNALS

CLOs Course Learning Outcome

CLO 7 Understand process structure, scheduling and management
through system calls.

CLO 8 Implement C programs to control process using system calls
and identify difference between process and threads.and identify difference between process and threads.

CLO 9 Generalize signal functions to handle interrupts by using
system calls.

Process ,Process structure:

• Every process has a unique process ID, a non-
negative integer. Unique, process IDs are reused.
As processes terminate, their IDs become
candidates for reuse.

PROCESS AND SIGNALS:

• Process ID 0 is usually the scheduler process and
is often known as the swapper.

• Process ID 1 is usually the init process and is
invoked by the kernel at the end of the bootstrap
procedure. The init process never dies.

• process ID 2 is the page daemon.

In addition to the process ID, there are other
identifiers for every process. The following
functions return these identifiers.
#include <unistd.h>

pid_t getpid (void);pid_t getpid (void);

Returns: process ID of calling process.

pid_t getppid (void);

Returns: parent process ID of calling process.

uid_t getuid (void);

Returns: real user ID of calling process.

uid_t geteuid (void);
Returns: effective user ID of calling

process gid_t getgid (void); Returns:

real group ID of calling process. gid_t

getegid (void);

Returns: effective group ID of calling process.

None of these functions has an error return.

Process structures contains: process state, pid,
ppid, file table, signal table, threads, scheduling
and other information.

fork()
Process A

fork()Global
Variables

Process B

Code

Stack

Process B

Global
Variables

Code

Stack

A process has a series of characteristics:

The process ID or PID: a unique identification number used
to refer to the process.

The parent process ID or PPID: the number of the
process (PID) that started this process.

Terminal or TTY: terminal to which the process is

PROCESS ATTRIBUTES

Terminal or TTY: terminal to which the process is
connected.

User name of the real and effective user (RUID and EUID): the
owner of the process. The real owner is the user issuing the
command, the effective user is the one determining access to
system resources. RUID and EUID are usually the same, and
the process has the same access rights the issuing user would
have.

Process states in Linux:
Running: Process is either running or ready to run

Interruptible: a Blocked state of a process and waiting for
an event or signal from another process

Uninterruptible: a blocked state. Process waits for a
hardware condition and cannot handle any signalhardware condition and cannot handle any signal

Stopped: Process is stopped or halted and can be
restarted by some other process

Zombie: process terminated, but information is still there in
the process table.

The UNIX process hierarchy
every process in UNIX (except one) has a parent

processes may create many children (via fork())

example: the UNIX boot procedure

– initially, a single parentless process called init
runsruns

– init reads a file which logs the
connected terminals

– init forks a login process for each terminal

– if a login process validates a user it forks a

fork Function:

An existing process can create a new one by
calling the fork function.

#include <unistd.h>

pid_t fork(void);

Returns: 0 in child, process ID of child in
parent, -1 on error.

The new process created by fork is called the child
process. This function is called once but returns
twice. The only difference in the returns is that the
return value in the child is 0, whereas the return
value in the parent is the
8

process ID of the new child.

Eg:

int glob = 6;
char buf[] = "a write to stdout\n";

int main(void)

{

int var; pid_t pid; var = 88;

if (write(STDOUT_FILENO, buf, sizeof (buf)-1) !=if (write(STDOUT_FILENO, buf, sizeof (buf)-1) !=
sizeof (buf)-1)
err_sys("write error");

printf("before fork\n");
if ((pid = fork()) < 0)

{err_sys("fork error");

else if (pid == 0)

{

glob++; var++;

}

else

{

sleep(2);sleep(2);

}

printf("pid = %d, glob = %d, var = %d\n", getpid(),
glob, var);

exit(0);

}

$./a.out
a write to stdout

before fork

pid = 430, glob = 7, var = 89

pid = 429, glob = 6, var = 88

uses for fork:uses for fork:

1.When a process wants to duplicate itself so
that the parent and child can each execute
different sections of code at the same time.

2. When a process wants to execute a different
program. This is common for shells.

vfork :

The function vfork has the same calling
sequence and same return values as fork.

The vfork function creates the new process, The vfork function creates the new process,
just like fork, without copying the address
space of the parent into the child, as the child
won't reference that address space.

vfork guarantees that the child runs first, until
the child calls exec or exit. When the child calls
either of these functions, the parent resumes.

exit :
A process can terminate normally in five ways:

1.Executing a return from the main function.

2.Calling the exit function.

3.Calling the _exit or _Exit function. 3.Calling the _exit or _Exit function.

4.Executing a return from the start routine of
the last thread in the process.

5.Calling the pthread_exit function from the
last thread in the process.
Once the process terminates, the kernel closes all the
open descriptors for the process, releases thememory that it
wasusing.

Exit Functions

Three functions terminate a program normally:
_exit and _Exit, which return to the kernel
immediately, and exit, which performs certain
cleanup processing and then returns to the
kernel.kernel.

#include <stdlib.h>

void exit(int status);

void _Exit(int status);

#include <unistd.h>

void _exit(int status);

wait and waitpid Functions:
#include <sys/ wait.h>

pid_t wait(int *statloc);

pid_t waitpid(pid_t pid, int *statloc, int options);

Both return: process ID if OK, 0, or -1 on error.Both return: process ID if OK, 0, or -1 on error.

The wait function can block the caller until a child
process terminates, whereas waitpid has an option
that prevents it from blocking.

The waitpid function doesn't wait for the child that
terminates first; it has a number of options that
control which process it waits for.

For both functions, the argument statloc is a
pointer to an integer. If this argument is not a
null pointer, the termination status of the
terminated process is stored in the location
pointed to by the argument.

The interpretation of the pid argument
for waitpid depends on its value:for waitpid depends on its value:

pid == -1 Waits for any child process.

pid > 0 Waits for the child whose process ID equals pid. pid

== 0 Waits for any child whose process group ID equals
that of the calling process.

pid < 1 Waits for any child whose process group ID equals the
absolute value of pid.

The options constants for waitpid:

WNOHANG-wait pid will not block if a child
specified by pid is not immediately available.

WUNTRACED-Return status of child if child stopped
and status has not already been returned (assumes
job control support)

The waitpid function returns the process ID ofThe waitpid function returns the process ID of
the child that terminated and stores the child's
termination status in the memory location
pointed to by statloc.

The waitpid function provides these features that

are not provided by the wait function are:

waitpid lets us to wait for one particular process

waitpid provides a non-blocking version of waitwaitpid provides a non-blocking version of wait

waitpid supports job control (with the

WUNTRACED option)

wait3 and wait4 functions

#include<sys/types.h>

#include<sys/wait.h>

pid_t wait3(int *statloc, int options, struct rusage *rusage);pid_t wait3(int *statloc, int options, struct rusage *rusage);

pid_t wait4(pid_t pid, int *statloc, int options, struct rusage *rusage)

Both return: process ID if OK, 0, or -1 on error

The resource information includes information such as the amount
of user CPU time , the amount of system CPU time, number of
page faults, number of signals received.

exec replaces the current process its text, data,
heap, and stack segments with a brand new
program from disk.

with the exec functions, we can initiate new
programs.

Exec functions:

programs.

There are six different exec functions.

#include <unistd.h>

int execl (const char *pathname, const
char *arg0, ... /* (char *)0 */);

int execv (const char *pathname, char
*const argv []);

int execle (const char *pathname, const char
arg0, ... / (char *)0, char *const envp[] */);*arg0, ... /* (char *)0, char *const envp[] */);

int execve (const char *pathname, char
*const argv[], char *const envp []);

int execlp (const char *filename, const
char *arg0, ... /* (char *)0 */);

int execvp (const char *filename, char *const
argv []);

The functions execl, execlp, and execle require
each of the command-line arguments to the new
program to be specified as separate arguments. We
mark the end of the arguments with a null pointer.

For the other three functions (execv, execvp, and
execve), we have to build an array of pointers to
the arguments, and the address of this array is the
argument to these three functions.

A zombie process or defunct process is a process that has
completed execution but still has an entry in the process table.
This entry is still needed to allow the parent process to read its
child's exit status.

When a process terminates, the OS kernel:

_ Discards all memory used by the process

zombie process:

_ Discards all memory used by the process

– closes all process‘ files

– Keeps some minimal info (PID, exit status, CPU time
usage)

– Provides info to parent when parent calls wait

The ps – x command prints the status of a zombie process as
Z.

#sample progrom for zombies:
#include <stdio.h>

main()

{

int pid;

pid=fork(); /* Duplicate */

if (pid!=0) /* Branch based on return value from fork() */

{
while (1) /* never terminate, and never execute a wait() */ while (1) /* never terminate, and never execute a wait() */

wait(&statloc);

sleep(1000);

}

else

{

exit(42); /* Exit with a silly number */

}

}

Input:

$ cc prog17.c
./a.out& ... execute the program in the background.

[1] 13545

Output:

$ ps

PID TT STAT TIME COMMAND

13535 p2 s 0:00 -ksh(ksh) ...the shell13535 p2 s

13545 p2 s

13536 p2 z

13537 p2 R

$ kill 13545

0:00 -ksh(ksh) ...the shell

0:00 aombie.exe...the parent process
0:00 <defunct> ...the zombie child process

0:00 ps

... kill the parent process.

[1] Terminated zombie.exe

$ ps ... notice the zombie is gone now.

PID TT STAT TIME COMMAND

0:00 -csh(csh)

0:00 ps

13535 p2 s

13548 p2 R
. Linux Programming 238

Orphan Process:

An orphan process is a process that is still executing
but whose parent died.

If a parent dies before its child, the child isIf a parent dies before its child, the child is
automatically adopted by the original "init" process,
PID 1.

To illustrate this, modify the previous program by
inserting a sleep statement into the child's code. This
ensured that the parent process terminated before the
child.

#include <stdio.h>

main()

{

int pid;

printf("I'm the original process with PID %d and PPID
%d.\n", getpid(),getppid());

pid=fork(); /* Duplicate. Child and parent continue from here.*/
if (pid!=0) /* Branch based on return value from fork() */

{ /* pid is non-zero, so I must be the parent */

printf("I'm the parent process with PID %d and PPID

%d.\n", getpid(),getppid());%d.\n", getpid(),getppid());

printf("My child's PID is %d.\n", pid);

}

else

{ /* pid is zero, so I must be the child. */
sleep(5); /*Make sure that the parent terminates first. */
printf("I'm the child process with PID %d and PPID %d.\n",

getpid(),getppid());

}

printf("PID %d terminates.\n",pid); /* Both processes execute this */
}

$cc prog18.c

./a.out ... run the program.
I'm the original process with PID 13364 and PPID 13346. I'm the

parent process with PID 13364 and PPID 13346.

PID 13364 terminates.
I'm the child process with PID 13365 and PPID 1. ...orphaned! PIDI'm the child process with PID 13365 and PPID 1. ...orphaned! PID

13365 terminates. ... child terminates.

A signal (software interrupt) is a notification to a
process that an event has occurred.

Signals are software interrupts. Signals provide a way

of handling asynchronous events.

SIGNALS:

Every signal has a name. These names all begin with the

three characters SIG. These names are all defined by

positive integer constants (the signal number) in the

header <signal.h>.

No signal has a signal number of 0.

•Signals can be sent
•by one process to another process(or itself)
•by the kernel to a process

SIGCHLD signal: a signal sent by the kernel
whenever a process terminates, to the parent of
the terminating process

The simplest interface to the signal features of
the UNIX System is the signal function.

include <signal.h>

void (*signal(int signo, void (*func)(int)))(int);

Returns: previous disposition of signal if

SIGNAL FUNCTION

Returns: previous disposition of signal if
OK, SIG_ERR on error.

The signo argument is just the name of the
signal. The value of func is (a) the constant
SIG_IGN, (b) the constant SIG_DFL, or (c) the
address of a function to be called when
the signal occurs.

Signal Names:
Abnormal termination

Time out

Illegal hardware instruction

Terminal interrupt character

Termination of process (cant be caught or

• SIGABRT -

• SIGALRM –

• SIGILL –

• SIGINT –

• SIGKILL –
ignored)

• SIGPIPE –

• SIGSEGV –

• SIGTERM –

Write to pipe with no readers

Invalid memory segment access.

TERMINATION• SIGTERM –

• SIGUSR1 –

• SIGUSR2 –

• SIGCHLD -

• SIGCONT -

• SIGSTOP -

• SIGTSTP -

• SIG_IGN -

• SIG_DFL -

TERMINATION

User defined signal1

User defined signal2

Child process has stopped or exited

Continue executing, if stopped

Stop executing (cant be caught or ignored)

Terminal stop signal
Ignore the signal

Linux Programming

Restore default behavior

The prototype for the signal function states that the
function requires two arguments and returns a pointer to a
function that returns nothing (void). The first argument,
signo, is an integer. The second argument is a pointer to a
function that takes a single integer argument and returnsfunction that takes a single integer argument and returns
nothing. The function whose address is returned as the
value of signal takes a single integer argument (the final
(int)).

Simple program for Signal Handler:

#include<signal.h>
void abc();

main()
{
printf(―press del to stop‖); printf(―press del to stop‖);

signal(SIGINT,abc);

for(;;);

}

void abc()

{

printf(―signal received‖);

printf(―you pressed del key‖);

}

Unreliable Signals:

Unreliable signals mean that signals could
get lost: a signal could occur and the
process would never know about it.

Also, a process had little control over a signal: a
process could catch the signal or ignore it. –
RELIABLE SIGNAL

It is a system call within the kernel that is
interrupted when a signal is caught.

To support this feature, the system calls are
divided into two categories: the "slow" system

INTERRUPTED SYSTEM CALLS:

calls and all the others.

The slow system calls are those that can block
forever.

Reads that can block the caller forever if data
isn't present with certain file types.

Writes that can block the caller forever if the
data can't be accepted immediately by these
same file types.same file types.

Opens that block until some condition occurs on
certain file types.

The pause function and the wait function.

Some of the inter process communication
functions .

kill and raise Functions:

The kill function sends a signal to a process or
a group of processes.

The raise function allows a process to send a
signal to itself.signal to itself.

#include <signal.h>

int kill(pid_t pid, int

signo); int raise(int signo);

Both return: 0 if OK,-1 on error.

There are four different conditions for the
pid argument to kill.

pid > 0The signal is sent to the process
whose process ID is pid.

pid == 0The signal is sent to all processespid == 0The signal is sent to all processes
whose process group ID equals the process
group ID of the sender and for which the
sender has permission to send the signal.

pid < 0The signal is sent to all processes
whose process group ID equals the absolute

value of pid and for which the sender has
permission to send the signal.

pid == 1 The signal is sent to all processes on
the system for which the sender has permission
to send the signal.

The super user can send a signal to any
process.process.

The alarm function allows us to set a timer
that will expire at a specified time in the
future.

When the timer expires, the SIGALRM signal is
generated.

ALARM FUNCTION:

generated.

#include <unistd.h>

unsigned int alarm(unsigned int seconds);

Returns: 0 or number of seconds
until previously set alarm.

The seconds value is no.of clock seconds in the future

when the signal should be generated.

If, when we call alarm, a previously registered
alarm clock for the process has not yet expired,
the number of seconds left for that alarm clock is
returned as the value of this function.

If a previously registered alarm clock for theIf a previously registered alarm clock for the
process has not yet expired and if the seconds
value is 0, the previous alarm clock is
canceled. The number of seconds left for that
previous alarm clock is still returned as the
value of the function.

pause function:

The pause function suspends the calling
process until a signal is caught.

#include <unistd.h>

int pause(void);int pause(void);

Returns: 1 with errno set to EINTR

The only time pause returns is if a signal handler
is executed and that handler returns.

Example 2:

#include<signal.h>

#include<unistd.h>

sig_alrm(int signo)

{

printf(―alarm time elapsed‖):printf(―alarm time elapsed‖):

exit(0);

}

main()

{
signal(SIGALRM,sig_alrm);

alarm(20);

Abort();

}

abort Function:

The abort function causes abnormal program
termination.

#include <stdlib.h>

void abort(void);void abort(void);

This function never returns.

This function sends the SIGABRT signal to
the caller.

system Function:

It is convenient to execute a command string
from within a program.

#include <stdlib.h>

int system(const char *cmdstring);int system(const char *cmdstring);

If cmdstring is a null pointer, system returns
nonzero only if a command processor is
available. This feature determines whether the
system function is supported on a given
operating system. Under the UNIX System,
system is always available.

sleep Function:

#include <unistd.h>
unsigned int sleep(unsigned int seconds);

Returns: 0 or number of unslept seconds.

This function causes the calling process to be This function causes the calling process to be
suspended until either

The amount of wall clock time specified by
seconds has elapsed. The return value is 0.

A signal is caught by the process and the
signal handler returns. Return value is the
number of unslept seconds.

UNIT-IV
INTER PROCESS COMMUNICATIONINTER PROCESS COMMUNICATION

CLOs Course Learning Outcome

CLO 10 Design and implement inter process communication (IPC) in
client server environment by using pipes and named pipes
system calls.

CLO 11 Design and implement inter process communication (IPC) in
client server environment by using message queues systems client server environment by using message queues systems
calls.

CLO 13 Illustrate client server authenticated communication in IPC
through shared memory.

The communication of more than one process
with an another process for making a program is
known as the inter process communication.

IPC is divided into pipes,FIFOs, message

INTER PROCESS COMMUNICATION:

IPC is divided into pipes,FIFOs, message
queues, semaphores and shared memory.

Pipes are the oldest form of UNIX System IPC
and are provided by all UNIX systems. Pipes
have two limitations.

1.They have been half duplex.

PIPEs:

2.Pipes can be used only between
processes that have a common ancestor.

A pipe is a one-way mechanism that allows
two related processes to send data from one of
them to the other one.

A pipe is created by calling the pipe function.

#include <unistd.h>

int pipe(int filedes[2]);

Returns: 0 if OK, 1 on error.

•Two file descriptors are returned through the •Two file descriptors are returned through the
filedes argument: filedes[0] is open for reading,
and filedes[1] is open for writing. The output of
filedes[1] is the input for filedes[0].

popen and pclose :

A common operation is to create a pipe to another
process, to either read its output or send it input, the
standard I/O library has historically provided the
popen and pclose functions.

#include <stdio.h>#include <stdio.h>

FILE *popen (const char *cmdstring, const char
*type);

Returns: file pointer if OK, NULL on error.

int pclose(FILE *fp);
Returns: terminationstatusof cmdstring, or -1

on error

The function popen does a fork and exec to execute
the cmdstring, and returns a standard I/O file
pointer. If type is "r", the file pointer is connected
to the standard output of cmdstring.

•If type is "w", the file pointer is connected to
the standard input of cmdstring.
•The pclose function closes the standard I/O
stream, waits for the command to terminate, and
returns the termination status of the shell.

FIFOs are sometimes called named pipes. Pipes
can be used only between related processes
when a common ancestor has created the pipe.
With FIFOs, unrelated processes can exchange
data.

FIFOs

data.

Creating a FIFO is similar to creating a file.

#include <sys/ stat.h>

int mkfifo(const char *pathname,
mode_t mode);

Returns: 0 if OK,-1 on error.

Uses for FIFOs:

FIFOs are used by shell commands to pass dataFIFOs are used by shell commands to pass data
from one shell pipeline to another without
creating intermediate temporary files.

FIFOs are used in client-server applications to
pass data between the clients and the servers.

A message queue is a linked list of messages stored
within the kernel and identified by a message queue
identifier. We'll call the message queue just a queue and
its identifier a queue ID.

A new queue is created or an existing queue opened by
msgget. New messages are added to the end of a queue

MESSAGE QUEUES:

msgget. New messages are added to the end of a queue
by msgsnd.
Every message has a positive long integer type field,

a non-negative length, and the actual data bytes all of

which are specified to msgsnd when the message is

added to a msgsnd.

Messages are fetched from a queue by
msgrcv.

Each queue has the following msqid_ds
structure associated with it:

struct msqid_ds

{
struct ipc_perm msg_perm; struct ipc_perm msg_perm;

msgqnum_t msg_qnum;

msglen_t msg_qbytes; pid_t

msg_lspid;

pid_t msg_lrpid;
time_t msg_stime; time_t msg_rtime;}

msgget is used to either open an existing
queue or create a new queue.

#include <sys/ msg.h>

int msgget(key_t key, int flag);

Returns: message queue ID if OK,-1 on error.Returns: message queue ID if OK,-1 on error.

On success, msgget returns the non-negative
queue ID. This value is then used with the other
three message queue functions.

The msgctl function performs various
operations on a queue.

#include <sys/msg.h>

int msgctl(int msqid, int cmd, struct
msqid_ds *buf);msqid_ds *buf);

Returns: 0 if OK,-1 on error.

The cmd argument specifies the command to be
performed on the queue specified by msqid.

IPC_STAT --- Fetch the msqid_ds structure for
this queue, storing it in the structure pointed to
by buf.

IPC_SET ---- Copy the following fields
from the structure pointed to by buf
to the msqid_ds structure associated
with this queue: msg_perm.uid,with this queue: msg_perm.uid,
msg_perm.gid, msg_perm.mode, and

msg_qbytes.

IPC_RMID ---- Remove the message queue
from the system and any data still on the
queue. This removal is immediate.

Data is placed onto a message queue by calling
msgsnd.

#include <sys/msg.h>

int msgsnd(int msqid, const void *ptr,
size_t nbytes, int flag);

Returns: 0 if OK, -1 on error.Returns: 0 if OK, -1 on error.

When msgsnd returns successfully, the msqid_ds
structure associated with the message queue is
updated to indicate the process ID that made the
call (msg_lspid), the time that the call was made
(msg_stime),
and that one more message is on the queue

275

(msg_qnum).

Messages are retrieved from a queue by
msgrcv.

#include <sys/msg.h>

ssize_t msgrcv(int msqid, void *ptr,
size_t nbytes , long type, int flag);

Returns: size of data portion of message if

276

Returns: size of data portion of message if
OK, -1 on error.

When msgrcv succeeds, the kernel updates the
msqid_ds structure associated with the
message queue to indicate the caller's process
ID (msg_lrpid), the time of the call
(msg_rtime), and that one less message is on
the queue (msg_qnum).

The communication of more than one process
with an another process for making a program is
known as the inter process communication.

IPC is divided into pipes,FIFOs, message
queues, semaphores, and shared memory.

INTER PROCESS COMMUNICATION:

queues, semaphores, and shared memory.

277

A semaphore is a counter used to provide
access to a shared data object for multiple
processes.

To obtain a shared resource, a process
needs to do the following:

SEMAPHORES

1.Test the semaphore that controls the
resource.

If the value of the semaphore is positive, the
process can use the resource. In this case, the
process decrements the semaphore value by 1,
indicating that it has used one unit of

the resource.

3.If the value of the semaphore is 0, the process
goes to sleep until the semaphore value is greater
than 0. When the process wakes up, it returns to

step 1.
The kernel maintains a semid_ds structure for
each semaphore set:

struct semid_ds{struct semid_ds{

struct sem *sem_base;

ushort sem_nsems;

time_t sem_otime;

time_t sem_ctime;

/*ptr to first semaphore in set */

/*# of semaphores in set */

/*last-semop() time */

/*last-change time*/

};

The sem_base pointer is worthless to a user process, since it
points to memory in the kernel. What it points

to is an array of sem structure, containing sem_nsems
elements, one element in the array for each semaphore

value in the set.
struct sem{

ushort semval; /*semaphore value, always>=0*/ushort semval; /*semaphore value, always>=0*/

pid_t sempid;

ushort semncnt;
curval*/

/*pid for last operation*/

/*# processes awaiting semval >

ushort semcnt; /*processes awaiting semval = 0*/

};
280

The first function to call is semget to obtain a
semaphore ID.

#include <sys/ sem.h>
int semget(key_t key, int nsems, int flag);

Returns: semaphore ID if OK, -1 on error.Returns: semaphore ID if OK, -1 on error.

The number of semaphores in the set is nsems.
If a new set is being created (typically in the
server), we must specify nsems. If we are
referencing an existing set (a client), we can
specify nsems as 0.

The semctl function is the catchall for various semaphore
operations

#include<sys/types.h>
#include<sys/ipc.h>

#include<sys/semh>

int semctl(int semid, int semnum, int cmd, union semun

arg); Returns: as follows

/*for SETVAL*/

/*for IPC_STAT and IPC_SET*/

/*for GETALL and SETALL*/

Union is declared it as

union semun{

int val;

struct semid_ds *buf;

ushort *array;

};

The cmd argument specified one of the following 10 commands to be performed on
the set specified by semid. The five commands that refer to one particular
semaphore value use semnum to specify one member of the set. The value of
semnum is between 0 and nsems-1, inclusive.

IPC_STAT: Fetch the semid_ds structure for this set ,storing it in the
structure pointed to by arg.buf

IPC_SET: Set the following three fields from the structure pointed by
arg.buf in the structure associated with this set : sem_perm.uid,
sem_perm.gid,and sem_perm.mode. This command can be executed
by a process whose effective user ID equals sem_perm.cuid orby a process whose effective user ID equals sem_perm.cuid or
sem_perm.uid, or by a process with super user privileges.

IPC_RMID: Remove the semaphore set from the system. This removal is
immediate. Any other process still using the semaphore will get an error of EIDRM
on its next attempted operation on the semaphore. This command can be

executed only by a process whose effective user ID equals
sem_perm.cuid or sem_perm.uid, or by a process with super user privileges.

GETVAL:

Return the value of semval for the member semnum.

SETVAL:

Set the value of semval for the member semnum . The valueis
specified by arg.val.

GETPID:GETPID:

Return the value of sempid for the member semnum.

GETNCNT:

Return the value of semzcnt for the member semnum.

GETALL:

Fetch all the semaphore values in the set . These values are
stored in the array pointed by arg.array.

Set all semaphore values in the set to the values pointed to by
arg.array.

The function semop atomically performs an array of opertions ona
semaphore set.

include <sys/types.h>

include < sys/ipc.h> include < sys/ipc.h>

include < sys/sem.h>

int semop(int semid, struct sembuf semoparray[], size_t nops);

Returns: 0 if OK, -1 on error

Semoparray is a pointer to array of semaphore operations.

Struct sembuf

{

Ushort sem_num ;

Short sem_op;

Short sem_flg;
};

nops specifies the number of operations (elements) in the array.

The operation on each member of the set is specified by the
corresponding sem_op Value. This value can be negative , 0 positive.
(In the following discussion we refer to the ―undo‖flag fro a semaphore.
This flag corresponds to the SEM_UNDO bit in the corresponding
sem_flg member.)

The earliest case is when sem_op is positive.

UNIT-V
SHARED MEMEORY AND SOCKETS

CLOs Course Learning Outcome

CLO 12 Illustrate client server authenticated communication in IPC
through shared memory.

CLO 14 Demonstrate various client server applications on network
using TCP or UDP protocols.using TCP or UDP protocols.

CLO 15 Design custom based network applications using the Sockets
Interface in heterogeneous platforms.

Shared Memory:

Shared memory allows two or more processes to
share a given region of memory. This is the
fastest form of IPC, because the data does not
need to be copied between the client and the

SHARED MEMORY:

need to be copied between the client and the
server.

The kernel maintains a structure with at least
the following members for each shared memory
segment:

struct ipc_perm shm_perm;

size_t shm_segsz; pid_t

shm_lpid;

pid_t shm_cpid;
shmatt_t shm_nattch; shmatt_t shm_nattch;

time_t shm_atime;

time_t shm_dtime;

time_t shm_ctime;

}

The first function called is usually shmget, to
obtain a shared memory identifier.

#include <sys/ shm.h>
int shmget(key_t key, size_t size, int flag);

Returns: shared memory ID if OK, -1 on error.

The shmctl function is the catchall for various
shared memory operations.

#include <sys/shm.h>

int shmctl(int shmid, int cmd, struct
shmid_ds *buf);

Returns: 0 if OK, -1 on error.
.

Applications of IPC

ClientServer Properties:

Let's detail some of the properties of clients
and servers that are affected by the various
types of IPC used between them. The
simplest type of relationship is to have the
client fork and exec the desired server. Two
half-duplex pipes can be created before the
fork to allow data to be transferred in both
directions.

The server that is executed can be a set-
user-ID program, giving it special privileges.
Also, the server can determine the real
identity of the client by looking at its real
user ID.user ID.

.

What is a socket?
An interface between application and network. It is a
communication mechanism that allows client / server
to be developed either locally, on a single machine or
across networks.

SOCKET PROGRAMMING:

– The application creates a socket
– The socket type dictates the style of communication

reliable vs. best effort
connection-oriented vs. connectionless

Once configured the application can
– pass data to the socket for network transmission .–receive

data from theLinux Programmingsocket (transmitted through296

What is Socket ?

Endpoint of any connection

Two Types :

– TCP– TCP

– UDP

Identified by Two values
– An IP Address

– A Port Number

Two essential types of sockets

SOCK_STREAM

reliable delivery in-
order guaranteed

connection-oriented

Bidirectional

Segment retransmission,

SOCK_DGRAM

– unreliable delivery

– no order guarantees

– no notion of ―connection‖ –app
indicates dest. for each

Segment retransmission,
ack

App segments

packet

– can send or receive

App D1

3 2 1
socket Dest. 3 2 1 socket D2

D3

299

int socket(int family, int type, int protocol);
– s: socket descriptor, an integer (like a file-handle)
– family: integer, communication domain, it specifies the

network medium that the socket communication will
use.

SCOKET CREATION IN C

use.
e.g., AF_INET (IPv4 protocol) – typically used

– type: communication type
SOCK_STREAM: reliable, 2-way, connection-based

.service
SOCK_DGRAM: unreliable, connectionless,

Socket Creation in C: socket

– protocol: specifies protocol
– usually set to ―0‖ (zero) to select the system‘s

default for the given combination of family and
type.

NOTE: socket call does not specify where data will be
coming from, nor where it will be going to – it just creates the
interface!

Protocol family constants
Family Description

AF_INET IPv4 protocol

AF_INET6 IPv6 protocolAF_INET6 IPv6 protocol

AF_LOCAL UNIX DOMAIN PROTOCOL

AF_ROUTE Routing socket

AF_KEY Key socket

Type of socket

Type Description

SOCK_STREAM STREAM socket

SOCK_DGRAM Datagram socket

SOCK_SEQPACKET Sequenced packet socket

SOCK_RAW Raw socket

Protocol of socket

protocol description

IPPROTO_TCP TCP transport protocol

IPPROTO_UDP UDP transport protocol

IPPROTO_SCTP SCTP transport
protocol

Addresses, Ports and Sockets

Like apartments and mailboxes
– You are the application

– Your apartment building address is the address

– Your mailbox is the port

– The post-office is the network

– The socket is the key that gives you access to the right mailbox (one
difference: assume outgoing mail is placed by you in your mailbox)

IPv4 Socket Address Structure

Socket functions require a pointer to a socket address structure as an
argument. Each supported protocol suite defines its own socket
address structure. The names of these structures begins with
sockaddr_ and end with a unique suffix for each protocol suite.

Struct in_addr{

in_addr_t s_addr;

};

/*32bit IPv4 address*/

/*network byte ordered*/

struct sockaddr_in {
uint8_t

sa_family_t

in_port_t

sin_len;

sin_family;

sin_port;

struct in_addr sin_addr;
.

char sin_zero[8];

/*) */

/* AF_INET */length of structure(16

/* 16bit TCP or UDP port number */

/*network byte ordered*/
/* 32bit IPv4 address */

Linux Programming
/*network byte ordered*/
/* unused */

• Length field simplifies the handling of variable-
length socket address structures.

• Used with routing socket.

• In_addr_t datatype must be an unsigned integer

SOCKET ADDRESS STRUCTURE:

• In_addr_t datatype must be an unsigned integer
type of at least 32 bits.

Generic Socket Address structure

• A Socket address structure must be passed
by reference

• socket function that takes one of these pointers
as an argument must deal with socket addressas an argument must deal with socket address
structures from any of the supported protocol
families.

• How to declare the type of pointer

• Soln : void *
• Define Generic socket address structure

<sys/socket.h>

Generic Socket Address structure

Struct sockaddr

{
uint8_tsa_len; sa_family_tuint8_tsa_len; sa_family_t

sa_family;

char sa_data[14];/* protocol specific
address*/

};

From an application programmer's point

IPv6 Socket Address Structure
Struct in6_addr{

uint8_t s6_addr[16]; /*128bit IPv6 address*/

/*network byte ordered*/

/* required for compile-time tests */

};
#define SIN6_LEN

struct sockaddr_in6 {

uint8_t sin6_len; /* length of structure(24) */
sa_family_t

in_port_t

sin6_family;

sin6_port;

uint32_t

struct

sin6_flowinfo;

in6_addr sin6_addr;

/* length of structure(24) */

/* AF_INET6*/

/* Transport layer port# */

/*network byte ordered*/

/* priority & flow label */

/*network byte ordered*/

/* IPv6 address */

/*network byte ordered*/
}; /* included in <netinet/in.h> */

.

New Generic Socket Address structure
Struct sockaddr

{

uint8_tsa_len;

sa_family_t sa_family;sa_family_t sa_family;

/* implementation dependent elements
to provide

alignment

enough storage to hold any type of
socket

.

•If any socket address structures that the
sockaddr_storage different from struct
system supports have alignment sockaddr in
two ways:
Requirements, the sockaddr_storage
provides the strictest alignmentprovides the strictest alignment
requirement.

The sockaddr_storage is large enough to
contain any socket address structure that the
system supports.

Comparison of socket address
structure

314

Solution: Network Byte-Ordering

Defs:
– Host Byte-Ordering: the byte ordering

used by a host (big or little)
– Network Byte-Ordering: the byte ordering– Network Byte-Ordering: the byte ordering

used by the network – always big-endian
Any words sent through the network should be
converted to Network Byte-Order prior to
transmission (and back to Host Byte-Order once
received)

program

Two types of Byte Ordering
– Little-AddressendianA+1Byte OrderingAddressA

MSB LSB

BYTE ORDERING FUNCTIONS:

Address A
– Big-endian Byte

Address A+1
Ordering

MSB LSB

abstract
Socket function

connect function

bind function

listen function

accept function

fork and exec function

concurrent server close

function
• getsockname and getpeername function

.

Client program connect to server s by establishing a
connection between an unnamed socket and the
server listen socket.

#include <sys/socket.h>
int connect(int sockfd, const struct sockaddr

CONNECT FUNCTION:

int connect(int sockfd, const struct sockaddr
*servaddr, socklen_t addrlen);

– Returns : 0 if successful connect, -1 otherwise
– sockfd: integer, socket to be used in connection
– struct sockaddr: address of passive participant
– integer, sizeof(struct)

(If connect fails, the SYN_SENT socket is no longer

Connect function

Return error
– ETIMEOUT : no response from server– ETIMEOUT : no response from server

– RST : server process is not running

– EHOSTUNREACH : client‘s SYN unreachable
from some intermediate router.

Error Return by Connect

If the client TCP receives no response to its SYN
segment, ETIMEDOUT is returned.segment, ETIMEDOUT is returned.

If the server‘s response to the client‘s SYN is a reset
(RST), this indicates that no process is waiting for
connections on the server host at the port specified.

– Hard error
– ECONNREFUSED is returned to the client as soon as the RST is

received.

Error Return by Connect

Three conditions that generate an RST are:
– When a SYN arrives for a port that has no

listening server

– When TCP wants to abort an existing connection

– When TCP receives a segment for a connection that
does not exist.

Error Return by Connect

ICMP destination unreachable received in response to client
TCP‘s SYN (maybe due to transient routing problem), resendTCP‘s SYN (maybe due to transient routing problem), resend
SYN timeout after 75 sec, returns EHOSTUNREACH or
ENETUNREACH

connect Function: Three-Way Handshake

No bind before connect :The kernel chooses the source IP, if
necessary, and an ephemeral port (for the client).

Hard error: RST received in response to client TCP’s SYN (server not
running) returns ECONNREFUSEDrunning) returns ECONNREFUSED

Soft error:
no response to client TCP’s SYN, resend SYN, timeout after 75 sec (in
4.4BSD), returns ETIMEOUT

ICMP destination unreachable received in response to client TCP’s SYN
(maybe due to transient routing problem), retx SYN, timeout after 75 sec,
returns EHOSTUNREACH)

The bind function
Assigns a local protocol address to a socket.

int bind(int sockid, const struct sockaddr *myaddr,
socklen_t addrlen);

– status: error status, = -1 if bind failed, 0 if OK.– status: error status, = -1 if bind failed, 0 if OK.

– sockid: integer, socket descriptor

– myaddr: struct sockaddr, the (IP) address and port
of the machine (address usually set to
INADDR_ANY – chooses a local address)

– addrlen: the size (in bytes) of the addr port structure

bind Function
Usually servers bind themselves to their
well-known ports.

RPC servers let kernel choose ephemeral
ports which are then registered with the RPCports which are then registered with the RPC
port mapper.

Normally, TCP client does not bind an IP
address to its socket.

If a TCP server does not bind an IP address
to its socket, the kernel uses the
.destination IP addressof the client‘s SYN

To accept incoming connections on a socket, a server program must
create a queue to store pending requests.

#include <sys/socket.h>

int listen(int sockfd, int backlog);
Returns:0 if OK, -1 on error

LISTEN FUNCTION:

==>This function is called only by a TCP server

The listen function converts an unconnected socket into a passive socket,
indicating that the kernel should accept incoming connection requests directed
to this socket.

backlog =>specify the maximum number of connections that the
kernel should queue for this socket.

If the queues are full when client SYN arrives, TCP server ignore the SYN, it does
not send RST.

listen function
●An incomplete connection queue, which contains
an entry for each SYN that has arrived from a
client for which the server is awaiting completionclient for which the server is awaiting completion
of the TCP three-way handshake

●A completed connection queue, which contains
an entry for each client with whom the TCP three-
way handshake has completed

Backlog argument to the listen function has historically specified the
330

maximum value for the sum of both queues

Backlog argument to listen function has
specified the maximum value for the sum
of both queues
Berkeley derived : multipied by 1.5

LISTEN FUNCTION:

Do not specify backlog of 0

What value should the application specify?

Allow Command line or an environment
variable to override default.

Listen that allows an environment var to specify backlog

Void Listen(int fd, int

backlog) { char *ptr;

if ((ptr=getenv(―LISTENQ‖))!=NULL) if ((ptr=getenv(―LISTENQ‖))!=NULL)

backlog=atoi(ptr);

if (listen(fd,backlog)<0)

printf(―listen error‖);

}

listen Function
If the queues are full when a client SYN
arrives, TCP ignores the arriving SYN : it
does not send an RST.

Data that arrives after the three wayData that arrives after the three way
handshake completes, but before the server
call accept, should be queued by the server
TCP, up to the size of the connected socket‘s
receive buffer.

accept function
Once a server program has created and named a socket, it can wait

for connections to be made to the socket by using the accept call.

#include <sys/socket.h>

int accept(int sockfd, struct sockaddr *cliaddr,int accept(int sockfd, struct sockaddr *cliaddr,

socklen_t *addrlen);
Returns:nonnegative descriptor if OK, -1 on error

=> return the next completed connection from the
front of the completed connection queue.

.If queue is empty, theprocess is put to sleep.

Return three values:
integer return code
protocol address of the client process
size of this address :size of this address :

This integer value contains the actual number of bytes
stored by the kernel in the socket address structure.

If we are not interested in having the protocol address of the
client returned, we set both cliaddr and addrlen to null
pointers.

335

UDP Client

socket()

sendto()

UDP Server

socket()

bind()

recvfrom()

block until datagram sendto()
data(request)

recvfrom()
data(reply)

block until datagram
received from a client

Process request

sendto()

close()

Socket functions for UDP client-server

recvfrom and sendto Functions
#include<sys/socket.h>

The recvfrom function fills in the socket address structure pointed to by from
with the protocol address of who sent the datagram.

ssize_t recvfrom(int sockfd, void *buff, size_t nbyte, int flag,

struct sockaddr *from, socklen_t *addrlen);

ssize_t sendto(int sockfd, const void *buff, size_t nbyte, int flag,

const struct sockaddr *to, socklen_t addrlen);

The to argument for sendto is a socket address structure containing the protocol
address of where the data is to be sent.

The size of the socket address structure is specified by addrlen.
Both return: number of bytes read or written if OK,-1 on error

concurrent servers with TCP:

client
connection fork fork connectionserver

child
server
child

listenin
g

server

client

TCP
TCP

connection connection

TCP

Summary of TCP client-server with two clients .

client server client

Socket receive
buffer

ITERATIVE SERVERS:

buffer

UDP
UDP UDP

datagram datagram

Summary of UDP client-server with two clients

THE ENDTHE END

