

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

CIVIL ENGINEERING

COURSE DESCRIPTOR

Course Title	HYDRAU	HYDRAULICS AND HYDRAULIC MACHINERY						
Course Code	ACE011	ACE011						
Programme	B. Tech	B. Tech						
Semester	V C	E						
Course Type	Core	Core						
Regulation	IARE - R	IARE - R16						
		Theory		Practic	tical			
Course Structure	Lecture	5 Tutorials	Credits	Laboratory	Credits			
	3 1 4 3 2							
Chief Coordinator	Mr. Ch. V. S. S. Sudheer, Assistant Professor							
Course Faculty		Dr. P. Ram Mohan Rao, Professor Mr. Ch. V. S. S. Sudheer, Assistant Professor						

I. COURSE OVERVIEW:

This course is intended to introduce basic principles of fluid mechanics. It is further extended to cover the application of fluid mechanics by the inclusion of fluid machinery especially water turbine and water pumps. Now a day the principles of fluid mechanics find wide applications in many situations directly or indirectly. The use of fluid machinery, turbines pumps in general and in power stations in getting as accelerated fill up. Thus there is a great relevance for this course for mechanical technicians. The Mechanical technicians have to deal with large variety of fluids like water, air, steam, ammonia and even plastics. The major emphasis is given for the study of water. However, the principle dealt with in this course will be applicable to all incompressible fluids.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	ACE005	IV	Fluid Mechanics	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Hydraulics and Hydraulic Machinery	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	×	Seminars	×	Mini Project	×	Videos
~	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.	
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.	

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz / Alternative Assessment Tool (AAT).

Table 1: Assessment	pattern	for CIA
---------------------	---------	---------

Component		Total Marks		
Type of Assessment	CIE Exam Quiz / AAT			
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	2	Presentation on
	mathematics, science, engineering fundamentals, and		real-world application
	an engineering specialization to the solution of		
	complex engineering problems.		
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	3	Seminar
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Assignment

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: To produce engineering	2	Presentation on
	professional capable of synthesizing and analyzing		real-world application
	mechanical systems including allied engineering		
	streams.		

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 2	Software Engineering Practices: An ability to adopt	2	Seminar
	and integrate current technologies in the design and		
	manufacturing domain to enhance the employability.		
PSO 3	Successful Career and Entrepreneurship: To build	-	-
	the nation, by imparting technological inputs and		
	managerial skills to become technocrats.		

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES :

The cour	The course should enable the students to:						
Ι	Strengthen the knowledge of theoretical and technological aspects of hydrodynamic forces on jets.						
II	Correlate the principles with applications in hydraulic turbines.						
III	Apply the practical applications on Francis and Kaplan turbine.						
IV	Analysis the similarities between prototype and model types of hydraulic similitude.						

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Describe the concept of	CLO 1	Explain the concept for types of flows, type of
	different types of flows,		channels, Non uniform flow - Dynamic equation
	designing of most		for G.V.F., Mild, Critical, and Steep channels
	economical sections of	CLO 2	Understand concept of velocity distribution, energy
	the Open Channel and to		and momentum correction factors for different flows.
	understand the concept of	CLO 3	Understand Chezy's, Manning's and Basin formulae
	specific energy.		for uniform flow.
		CLO 4	Explain the concepts based on Specific energy,
			critical depth, critical, subcritical and super critical
			flows.
		CLO 5	Understand and designing for the computation of
			economical sections based on flow parameters and
			channel characteristics.
CO 2	Describe the concept of	CLO 6	Understand the Dimensional quantities and analysis
	dimensional quantities		for various parameters.
	and application of	CLO 7	Derive the problems based on Rayleigh's method
	similitude concept in		and Buckingham's pi theorem with applications.
	designing model and	CLO 8	Explain the concept of similitude with examples and
	prototype.		different types of similitude concepts.
		CLO 9	Remember the concepts of dimensionless numbers to
			solve numerical problems
		CLO 10	Explain the practical problems associated with
			model and prototypes based on concept of
			similitude
CO 3	Understand the concept,	CLO 11	Explain the different types of jets used in
	working applications of		construction of turbines and machinery and their
	impact of jets with the		importance.
	importance of	CLO 12	Demonstrate the formulation of velocity triangles at
	constructing velocity		inlet and out let of vanes with different combinations
	triangles.		of jet.

COs	Course Outcome	CLOs	Course Learning Outcome
		CLO 13	Derive the expressions based on Angular momentum principle, work done and efficiency for various types of vanes.
		CLO 14	Explaining the concepts of hydro power plant with various components and their functioning.
		CLO 15	Deriving numerical problems based on power developed in Hydro power plant, efficiency of jet, stationary and moving vanes.
CO 4	Explore the design concept of Pelton, Francis	CLO 16	Demonstrating different types of turbines with their principles and practical applications
	and Kaplan turbines, Centrifugal pumps along with the design of most	CLO 17	Remember the concept of work done, efficiency for different vanes and application to the concept of turbines.
	economical designs.	CLO 18	Deriving the expressions for most economical design of turbines to withstand for the designed discharge.
		CLO 19	Understand the working principles for various and working of different components of Kaplan, Francis and Pelton turbines.
		CLO 20	Understand the working mechanism of different types of pumps, importance and functioning of various components.
CO 5	Understand the working mechanism of different	CLO 21	Explain characteristic curves for pumps with their practical applications
	types of the pumps with their important	CLO 22	Understand the concept of NPSH, performance of pumps and working efficiency.
	characteristic curves.	CLO 23	Explain the designing of reciprocating pump and centrifugal pump.
		CLO 24	Understand the practical problems associated during the installation of pumps
		CLO 25	Understand the concept ANOVA to the real world problems to measure the atmospheric tides.

X. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
ACE011.01	CLO 1	Explain the concept for types of flows, type of	PO 1, PO4	2
		channels, Non uniform flow - Dynamic equation		
		for G.V.F., Mild, Critical, and Steep channels		
ACE011.02	CLO 2	Understand concept of velocity distribution, energy	PO 1, PO4	2
		and momentum correction factors for different		
		flows.		
ACE011.03	CLO 3	Understand Chezy's, Manning's and Basin	PO 4	3
		formulae for uniform flow.		
ACE011.04	CLO 4	Explain the concepts based on Specific energy,	PO 1, PO4	2
		critical depth, critical, subcritical and super critical		
		flows.		
ACE011.05	CLO 5	Understand and designing for the computation of	PO 1, PO 2,	2
		economical sections based on flow parameters and	PO4	
		channel characteristics.		

ACE011.06 ACE011.07 ACE011.08	CLO 6	Understand the Dimensional quantities and		Mapping
		analysis for various parameters.	PO 1, PO 2, PO 4	2
ACE011.09	CLO 7	Derive the problems based on Rayleigh's method and Buckingham's pi theorem with applications.	PO 2	3
ACE011.08	CLO 8	Explain the concept of similitude with examples and different types of similitude concepts.	PO 1	2
ACE011.09	CLO 9	Remember the concepts of dimensionless numbers to solve numerical problems.	PO 1	3
ACE011.10	CLO 10	Explain the practical problems associated with model and prototypes based on concept of similitude.	PO 2, PO 4	2
ACE011.11	CLO 11	Explain the different types of jets used in construction of turbines and machinery and their importance.	PO 1, PO 4	3
ACE011.12	CLO 12	Demonstrate the formulation of velocity triangles at inlet and out let of vanes with different combinations of jet.	PO 1, PO 2, PO 4	2
ACE011.13	CLO 13	Derive the expressions based on Angular momentum principle, work done and efficiency for various types of vanes.	PO 2	3
ACE011.14	CLO 14	Explaining the concepts of hydro power plant with various components and their functioning.	PO 2, PO 4	2
ACE011.15	CLO 15	Deriving numerical problems based on power developed in Hydro power plant, efficiency of jet, stationary and moving vanes.	PO 1, PO 2, PO 4	2
ACE011.16	CLO 16	Demonstrating different types of turbines with their principles and practical applications	PO 1, PO 4	2
ACE011.17	CLO 17	Remember the concept of work done, efficiency for different vanes and application to the concept of turbines.	PO 1	3
ACE011.18	CLO 18	Deriving the expressions for most economical design of turbines to withstand for the designed discharge.	PO 1, PO 4	3
ACE011.19	CLO 19	Understand the working principles for various and working of different components of Kaplan, Francis and Pelton turbines.	PO 1	3
ACE011.20	CLO 20	Understand the working mechanism of different types of pumps, importance and functioning of various components.	PO 1, PO 2	2
ACE011.21	CLO 21	Explain characteristic curves for pumps with their practical applications	PO 1, PO 4	2
ACE011.22	CLO 22	Understand the concept of NPSH, performance of pumps and working efficiency.	PO 1	3
ACE011.23	CLO 23	Explain the designing of reciprocating pump and centrifugal pump.	PO 1, PO 2	3
ACE011.24	CLO 24	Understand the practical problems associated during the installation of pumps	PO 1, PO 2, PO 4	2
ACE011.25	CLO 25	Understand the concept ANOVA to the real world Problems to measure the atmospheric tides.	PO 1, PO 2, PO 4	2

3= High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course		Pro	ogram Outcomes	s (POs)	
Outcomes (COs)	PO 1	PO 2	PO 4	PSO1	PSO2
CO 1	3	1	3	3	2
CO 2	2	2	2	3	1
CO 3	2	3	2	2	2
CO 4	2	1	2	2	
CO 5	3	3	2	2	

3= High; 2 = Medium; 1 = Low

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	g Program Outcomes (POs)											Program Specific Outcomes (PSOs)			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
(CLOs)		_										_			
CLO 1	3			2									3		
CLO 2	2			3									2	3	
CLO 3				3										2	
CLO 4	3			3									3	2	
CLO 5	2	3		3									2	1	
CLO 6	2	2		2									3		
CLO 7		3													
CLO 8	2												2		
CLO 9	3												3		
CLO 10		2		2										2	
CLO 11	3			3									3		
CLO 12	2	3		2									2	2	
CLO 13		3													
CLO 14		3		2										2	
CLO 15	2	2		2									2	2	
CLO 16	2			2									2		

Course Learning	Program Outcomes (POs)										Program Specific Outcomes (PSOs)				
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 17	3														
CLO 18	1			2									2		
CLO 19	3												3		
CLO 20	3	3											3		
CLO 21	2			2									2		
CLO 22	3														
CLO 23	3	3													
CLO 24	2	3		2									2		
CLO 25	3	3		2									3		

3 = **High**; **2** = **Medium**; **1** = Low

XIII. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO1, PO2, PO4, PSO 1, PSO 2	SEE Exams	PO1, PO2, PO4, PSO 1, PSO 2	Assignments	PO 4	Seminars	PSO 2
Laboratory Practices	PO1	Student Viva	PO 2	Mini Project	-	Certification	-
Term Paper	-	Guest lectures	PSO 1				

XIV. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

Unit – I	OPEN CHANNEL FLOW					
Types of flow	s, types of channels, channel characteristics, velocity distribution, energy and momentum					
correction fact	tors, Chezy's, Manning's, Basin's formulae for uniform flow, economical sections, critical					
flow, critical d	lepth, specific energy, channel transitions					
Unit – II	DIMENSIONAL ANALYSIS AND SIMILITUDE					
Dimensional a	nalysis, Rayleigh's method, Buckingham's pi theorem, hydraulic models, similarity laws,					
geometric, kin	ematic and dynamic similarities, dimensionless numbers, model and prototype relations.					
Unit – III	Unit – III HYDRODYNAMIC FORCE ON JETS					
Hydrodynamic force of jets on stationary and moving flat inclined and curved vanes, jet striking						
centrally and a	ıt tip.					

Velocity triangles at inlet and outlet, work done, efficiency, angular momentum principle, layout of hydropower plant, heads and efficiencies.

Unit – IV	HYDRAULICS TURBINES						
Classification	of hydraulic machine, Euler's equation of turbo machines, selection of hydraulic						
machines, des	machines, design of Pelton turbines, design of Francis turbine, design of Kaplan/ axial flow turbine, draft						
tube, theory an	nd function efficiency.						
Unit – V	CENTRAIFUGAL PUMPS						
Pump installa	tions, classification of pumps, work done, Manometric head, minimum starting speed,						
losses and effi	ciency, specific speed, multistage pump, pumps in parallel, performance of pumps, design						
of centrifugal	pumps, design of reciprocating pumps, NPSH, cavitation.						
Text Books:							
1. Subramany	a K, "Open Channel Flow", Tata McGraw Hill Publications, New Delhi, 2008.						
2. Modi, Seth	, "Fluid Mechanics. Hydraulic and Hydraulic Machines", Standard Book House, 2011.						
3. Madan Mo	han Das, Mimi Das Saikia, Bhargab Mohan Das, "Hydraulics and Hydraulic Machines						
Textbook"	, PHI Learning, 1 st edition, 2013.						
Reference Bo	oks:						
1. Ojha CSP,	Chandramouli P. N., Berndtsson R., "Fluid Mechanics and Machinery", Oxford University						
Press, 2010).						
2. Chow V.T.	, "Open Channel Hydraulics", Blackburn Press, 2009.						
3. Rajput R.K	., "A text book of Fluid Mechanics", S. Chand Publications, 1998.						
4. Franck N.	White, "Fluid Mechanics", Tata Mc Grawhill Publications, 8 th Edition, 2015.						
	unsal A text book of Fluid mechanics & Hydraulics machines in SI units Laxmi						
publication							

XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture	Topics to be covered	Course Learning	Reference
No		Outcomes	
		(CLOs)	
1 - 2	To understand the Basics of Open Channel Flow.	CLO 1	T1:22.5
			R1:2.3
3 - 4	To know the types of flows, Type of channels, Velocity	CLO 2	T1:22.5
	distribution.		R1:2.4
5 - 6	To derive the derivation of Energy and momentum	CLO 3	T1:22.6
	correction factors, Chezy's, Manning's and Bazin's		R1:2.6
	formulae for uniform flow.		
7 - 8	Ability to solve the problems on Energy and	CLO 4	T1:22.7
	momentum correction factors, Chezy's, Manning's and		R1:4.4
	Bazin's formulae for uniform flow.		
9 – 11	Ability to know the Most Economical sections.	CLO 5	T1:22.7
			R1:4.10
12 - 13	To understand the Basics of Critical Flow	CLO 6	T1:22.8
14 - 15	To know the Specific energy, critical depth,	CLO 7	T1:22.9
	computation of critical depth		R1:5.4
16 - 18	To know the critical sub-critical and super critical	CLO 8	T1:22.9
	flows		R1:5.8
19 - 20	Ability to solve the problems on Specific energy,	CLO 9	T1:23.10
	critical depth, computation of critical depth		R1:6.8
21 - 23	Ability to understand Non uniform flow-Dynamic	CLO 10	T1:23.10
	equation for G.V.F., Mild, Critical, Steep		R1:6.13
24 - 26	Ability to understand Non uniform flow-Dynamic	CLO 11	T1:23.9
	equation for horizontal and adverse slopes, surface		R1:7.5
	profiles, direct step method		

Lecture	Topics to be covered	Course Learning	Reference
No		Outcomes	
		(CLOs)	
27 - 28	Ability to understand Rapidly varied flow, hydraulic	CLO 12	T1:23.10
	jump, energy dissipation		R1:7.5
29 - 30	Ability to solve the problems on Non uniform flow-	CLO 13	T1:23.10
	Dynamic equation for G.V.F., Mild, Critical, Steep.		R1:8.1
31 – 32	Ability to solve the problems on Rapidly varied flow,	CLO 14	T1:23.1
	hydraulic jump, energy dissipation		R1:9.2
33 - 34	To understand the Dimensional analysis, Rayleigh's	CLO 15	T1:23.1
	method and Buckingham's pi theorem		R1:9.4
35 - 36	To study of Hydraulic models, Geometric, kinematic	CLO 16	T1:23.1
	and dynamic similarities. To know dimensionless		R1:9.9
	numbers, model and prototype relations.		
37 - 38	To solve the problems Rayleigh's method and	CLO 16	T1:23.1
	Buckingham's pi theorem		R1:9.9
39-41	Ability to solve the problems on kinematic and	CLO 17	T1:23.1
57 11	dynamic similarities. Ability to solve dimension less		R1:9.10
	numbers, model and prototype relations.		11.9.110
41-43	To understand the Basics of Basics of Turbo	CLO 18	T2:27.5
+1 - +J	Machinery, to know the Hydrodynamic force of jets on	CLO 10	R1:10.2
	stationary and moving flat inclined and curved vanes.		R1.10.2
44 - 46	Ability to solve the problems on Hydrodynamic force	CLO 19	T2:27.7
44 - 40	of jets on stationary and moving flat inclined and	CLO 19	R1:11.3
			K1.11.5
	curved vanes, to know the jet striking centrally and at		
47 50	tip, velocity triangles at inlet and outlet.		TO 07 0
47 – 50	Ability to solve the problems jet striking centrally and	CLO 20	T2:27.8
	at tip, velocity triangles at inlet and outlet.		R1:11.6
51 - 52	To know the concept of the Angular momentum	CLO 20	T2:27.8
	principle, applications to radial flow turbines.		R1:11.6
52 - 53	Ability to solve the problems on Angular momentum	CLO 21	T2:27.12
	principle, To know Layout of a typical Hydropower		R1:11.7
	installation, Heads and efficiencies.		
54 - 55	To know about the Hydraulic Turbines, To know	CLO 21	T2:27.12
	classification of turbines- Pelton wheel, Francis turbine		R1:11.7
	and Kaplan turbine working, working Proportions		
56 - 57	To know velocity diagram, hydraulic design, draft	CLO 22	T2:27.12
	tube, theory and function efficiency.		R1:11.8
58 - 59	To know Governing of turbines, surge tanks, unit and	CLO 22	T2:27.12
	specific turbines, unit speed, unit quantity, unit power		R1:11.8
	and specific speed, performance characteristics		
60 - 61	To know the centrifugal pumps, To study the Pump	CLO 23	T2:27.12
	installation details, classification, Manometric head,		R1:11.9
	minimum starting speed.		
62 - 63	Ability to solve problems on specific speed, multi	CLO 24	T2:27.12
	stage pumps, speed.		R1:11.10
64 - 65	Ability to solve problems on multi stage pumps, pumps	CLO 25	T2:27.14
	in pumps in parallel. Ability to solve the problems on		R1:12.3
	performance of pumps characteristic curves –NSPH		
	cavitation.		
66 - 68	Classification of hydro power plants – definition of	CLO 25	T2:27.14
00 - 00	terms: load factor, utilization factor, capacity factor,	CLO 25	R1:12.3
			K1.12.3
	estimation of hydro power potential.		

XVII. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	To improve standards and analyze the concepts.	Seminars	PO 1	PSO 1
2	Practical applications of dimensional analysis and design of pumps.	Seminars / NPTEL	PO 4	PSO 2
3	Encourage students to solve real time applications and prepare towards competitive examinations.	NPTEL	PO 2	PSO 1

Prepared by: Mr. Ch. V. S. S. Sudheer, Assistant Professor

HOD, CE