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Course outcomes

COo1

Understand the applications of CFD in various engineering fields
and to generate governing equations in conservative and non-
conservative form.

CO2

Understand the mathematical behaviour of partial differential
equations and classify into hyperbolic, parabolic and elliptical
natures.

CO3

Acquire the concepts of finite difference method through
discretization and grid generation techniques.

CO4

|dentify different CFD techniques available for different partial
differential equations.

CO5

Explore the concepts of finite volume methods, and its
difference from finite difference method.




INTRODUCTION TO CFD




CLOs Course Learning Outcome

CLO1

Understand the necessity of CFD tool as both research and
design areas in modern computational world.

CLO2

Explain the applications of computational fluid dynamics tool in
various engineering branches other than aerospace
engineering.

CLO3

Recognize the selection of type of flow from the finite control
volume and infinitesimal small fluid element depending upon
the requirements.

CLO4

Develop the governing equations required for computational
aerodynamics in both conservation and non-conservation
forms.




Outline

= Approaches

= Introduction-Benefits

= Modeling of fluid

= Non Dimensional Representation
= Classification of PDE

= Finite Difference

= Consistency, Stability, Error analysis of schemes




Approach
Experimental

Approaches

Advantages

Capable of being most
realistic

Disadvantages

Equipment required,
Scaling problems,
Measurement
Difficulty, Operating
Cost

Theoretical

General Information in
Formula form

Restricted to simple
geometry and physics,
Usually for Linear
problems

Computational

Complicated Physics,
Details of Flow

Truncation Errors,
Computer Costs,
Boundary conditions




Introduction

What is CFD?

® CFD: A methodology for obtaining a discrete solution of real
world fluid flow problems.

@ Discrete Solution: Solution is obtained at a finite collection of
space points and at discrete time levels

® For a reasonably accurate solution, the number of space points
that need to involved is of the order of few millions. Solution is
achievable only through modern high speed computers



The Benefits of CFD

® Insight
- Difficult to prototype or test through experimentation
* Better Details

® Foresight
+ Better prediction: In a short time

® Efficiency
- Design better and faster, economical, meet environmental
regulations and ensure industry compliance.

» CFD analysis leads to shorter design cycles and your products
get to market faster.

* In addition, equipment improvements are built and installed
with minimal downtime.

* CFD is a tool for compressing the design and development
cycle allowing for rapid prototyping.



Why use CFD?

Analysis and Design
® Simulation-based design instead of “build & test”

> More cost effective and more rapid than EFDCFD provides high-
fidelity database for diagnosing flow field

® Simulation of physical fluid phenomena that are difficult for
experiments

»Full scale simulations (e.g., ships and airplanes)
»Environmental effects (wind, weather, etc.)

»Hazards (e.g., explosions, radiation, pollution)

»Physics (e.g., planetary boundary layer, stellar evolution)

® Knowledge and exploration of flow physics



Where is CFD used?

® Where is CFD used?

Aerospace
Aerospace P

Automotive

Biomedical Hydraulics

Chemical Processing

HVAC Scour downstream ~
of a flood control A

structure

Hydraulics

Marine

Oil & Gas

Power Generation
Sports

Streamlines for . R

Pollutant Monitoring workstation ventilati



Where is CFD used?

® Where is CFD used?
* Aerospace

e Automotive

* Biomedical | v
Polymerization reactor vessel - prediction

® Chemical Processing of flow separation and residence time

e HVAC effects.

. Hydraulics T
* Marine

e Oil & Gas

e Power Generation
Sports

graphics by Fieldvie



Where is CFD used?

® Where is CFD used?
* Aerospace

* Automotive

* Biomedical

* Chemical Processing
* HVAC

* Hydraulics

® Marine

¢ Oil & Gas

® Power Generation

® Sports

Flow around cooling towers



Pre-processing

Post Processingf
Processing Computing
W
rm
T
o

Mathematical Model
(GE + BCs +IC)

Discrete Equations (algebraiceq)
Decoupled /Coupled

Solution of algebraic equations

Post Processing and Data
analysis, flowvisualization

Physical Laws,

Levels of
approximation:
Constitutive Behavior,
Smplifying
approximation, Semi-
empirical models
Discretization of flow
domain: Grid/Mesh
Generation
Discretization of
GE+BCs:

Numerical Methodology




Modelling of Fluid Flow

®Continuum models

— Each Macroscopic property = f(r, t)
®Non Continuum models

— Micro, slip flow, molecular Based on the

Knudsen number=Ratio of Mean free path/length scale

Continuum Non-Continuum models

models 501 0.1 1.0 10
Overlap region: 0.01 to 0.1

— Levels of approximation: temp and velocity jump at soild-fluid
interface



>

>

Continuum Model

Materials , such as solids, liquids and gases, are composed of
molecules separated by space.

On a microscopic scale, materials have cracks and discontinuities.
However, certain physical phenomena can be modeled assuming
the materials exist as a continuum, meaning the matter in the
body is continuously distributed and fills the entire region of
space it occupies.

A continuum is a body that can be continually sub-divided into
infinitesimal elements with properties being those of the bulk
material.



Conservative form

All conservative forms are considered most suitable for CFD

>

>

The conservative properties can be easily preserved at
discrete level.

For high speed flows having discontinuous features like
shock waves, the fluxes in the conservation equations
remain well behaved across these almost discontinuous
features, and therefore the flow behavior is better captured
at the discrete level.



Governing equations

The governing equations include the following conservation laws of
physics:
* Conservation of mass.

* Newton’s second law: the change of momentum equals the
sum of forces on a fluid particle.

* First law of thermodynamics (conservation of energy): rate of
change of energy equals the sum of rate of heat addition to
and work done on fluid particle.

The fluid is treated as a continuum. For length scales of, say, 1um
and larger, the molecular structure and motions may be ignored.



Lagrangian vs. Eulerian description

A fluid flow field can be thought of as  Another view of fluid motion is the
being comprised of a large number of Eulerian description. In the Eulerian
finite sized fluid particles which have  description of fluid motion, we
mass, momentum, internal energy, and  consider how flow properties change
other properties. Mathematical laws  at a fluid element that is fixed in
can then be written for each fluid  space and time (x,y,zt) rather than
particle. This is the Lagrangian following individual fluid particles.

description of fluid motion.

fluid

pathline streamlines

———
fluid el -
-~ //

particle I R i

]
—
-

——
—
-

-~ control
volume

Governing equations can be derived using each
method and converted to the other form.
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Fluid element and properties

The behavior of the fluid is described in terms  conservation laws
of macroscopic properties:

*Velocity u. - N.
*Pressure p. I(X)./Z) 157
*Densityr. | ] B
*Temperature T. Sy~ ~a
*Energy E. z OX
Typically ignore (x,y,z,t) in the notation. Y X
Properties are averages of a sufficiently large Faces are labeled North,
number of molecules. East, West, South, Top and

' B
A fluid element can be thought of as the ottom

smallest volume for which the continuum
assumption is valid.
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Mass balance

® Rate of increase of mass in fluid element equals the net rate of flow
of mass into element.

® Rate of increase is:
® The inflows (positive) and outflows (negative) are shown here:

o(pw) 1
o(pv) 1 2
[pv+ y E5yj OXO1Z (,OW+ p 252) OXoYy
LR
(pu—ﬁ(pu).éﬁx)éy& — " ...... R (pu+a(§u) 15xj SYS1
OX 2 !le)i\ X




Continuity equation

® Summing all terms in the previous slide and dividing by the
volume oxoyoz results in:

op , O 0 0
P20 20 2 g

® In vector notation:

P ., di _
ﬁ+d|v(,ou)—0

Change in density Net flow of mass across boundaries

Convective term

® For incompressible fluids dp/Jt = 0, and the equation becomes:
divu =0. P

ou v ow_q ol _

and OX

Alternative ways to write this: gy 8y 0z :




Different forms of the continuity equationo”\\f

-

Finite control volume
fixed in space

%jvjjpdV+ijpU-dS=O

Finite control volume fixed
mass moving with flow

D%IVdeV =0

Integral form

-

-

Conservation form

Infinitesimally small
element fixed in space

P V. (pU)=0

ot
Differential form

Conservation form

Integral form
Non — conservation form/
~ u

Infinitesimally small fluid element of fixed
mass (“fluid particle”) moving with the flow

Dp + oV-U=0

-

Dt
Differential form

Non — conservation form /

\_




Rate of change for a fluid particle i 1ARE 2

® Terminology: fluid element is a volume stationary in space, and a
fluid particle is a volume of fluid moving with the flow.

® A moving fluid particle experiences two rates of changes:
* Change due to changes in the fluid as a function of time.

* Change due to the fact that it moves to a different location in
the fluid with different conditions.

® The sum of these two rates of changes for a property per unit
mass ¢@is called the total or substantive derivative D¢ /Dt:

D¢_6¢+8¢dx+8¢dy+8¢dz
Dt o oxdt oydt oz dt

® With dx/dt=u, dy/dt=v, dz/dt=w, this results in:
D¢ _ 0¢

— = —~ 4+ u.grad
Dt ot J 4
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Rate of change for a stationary fluid element < ars;

® In most cases we are interested in the changes of a flow
property for a fluid element, or fluid volume, that is
stationary in space.

® However, some equations are easier derived for fluid
particles. For a moving fluid particle, the total derivative per
unit volume of this property f is given by:

o . D¢ o¢ . .
(for moving fluid partlcle)pa =p E +u.grad ¢ |(for given location in space)

® For a fluid element, for an arbitrary conserved property f:

%+ div (pu)=0 a(§t¢)+div (pdu)=0

Continuity equation Arbitrary property



Rate of change for a stationary fluid element =«

® In most cases we are interested in the changes of a flow
property for a fluid element, or fluid volume, that is
stationary in space.

® However, some equations are easier derived for fluid
particles. For a moving fluid particle, the total derivative per
unit volume of this property f is given by:

D¢ (¢

(for moving fluid particle)oﬁ =p (E +u.grad ¢j (for given location in sp

® For a fluid element, for an arbitrary conserved property f:

%+ div (pu)=0 a(§t¢)+div (pdu)=0

Continuity equation Arbitrary property



Fluid particle and fluid element

We can derive the relationship between the equations for a fluid
particle (Lagrangian) and a fluid element (Eulerian) as follows:

0¢

+div(pg u) = p[a + u.grad¢} + ¢[%O + div(pu)} = ,oD—¢

Dt

o(p9)
ot

zero because of continuity

4 )

o(p9) D¢
ot Dt

+ div(pgu) = p

ate of increase of Net rate of flow of _ Rate of increase of
io\ffluid element fout of fluid element™ f for a fluid particle/
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To remember so far

» We need to derive conservation equations that we can solve to
calculate fluid velocities and other properties.

» These equations can be derived either for a fluid particle that is
moving with the flow (Lagrangian) or for a fluid element that is
stationary in space (Eulerian).

» For CFD purposes we need them in Eulerian form, but
(according to the book) they are somewhat easier to derive in
Lagrangian form.

» Luckily, when we derive equations for a property ¢ in one form,
we can convert them to the other form using the relationship
shown on the bottom in the previous slide.



Relevant entries for @

X-momentum u Du oY) | i
= + div(puu
" bt ot (et
y-momentum v Dv AN | div( pwu
” bt ot ()
Z-momentum w HOW AN iy owu)

Dt ot

Energy E p% a(aptE) + div(pEu)




Momentum equation in three dimensions

® We will first derive conservation equations for momentum and
energy for fluid particles. Next we will use the above relationships
to transform those to an Eulerian frame (for fluid elements).

® We start with deriving the momentum equations.

® Newton’s second law: rate of change of momentum equals sum of
forces.
® [ -, ¥z, and z-momentum:
Rate of increase of x-, @a d 2@0 e tlg_vv
bt bt Pt
® Forces on fluid particles are:

» Surface forces such as pressure and viscous forces.

* Body forces, which act on a volume, such as gravity, centrifugal,
Coriolis, and electromagnetic forces.



Viscous stresses

» Stresses are forces per area. Unit is N/m? or Pa.

* Viscous stresses denoted by t. 7, X Irn
* Suffix notation t; is used to indicate direction. e

® Nine stress components.
® Lo Yy

E.g. t,, is the stress in the z-direction
on a z-plane.

t,, are normal stresses.

XX?

* Other stresses are shear stresses. E.g. . T o,
t,, is the stress in the y-direction on a V\T_, “ ‘; """ Ty
z-plane. s ——

Fig

Forces aligned with the direction of a coordinate axis are positive.
Opposite direction is negative.
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Forces in the x-direction

o+ Z
"oy 2 \
(p—& . X)dy oz \ ................. .

0
X ~(p+P Lsosya
az_ 1 ) ........ —_— 8
T oy )y ot 5x) &y oz
y \
\
X - (sz o aTZX 152)5)(53/
o/

Net force in the x-direction is the sum of all the force
in that direction.



MOMENTUM EQUATION

® Set the rate of change of x-momentum for a fluid particle Du/Dt
equal to:

* the sum of the forces due to surface stresses shown in the
previous slide, plus

* the body forces. These are usually lumped together into a
sourcetermS,: Du o(-p+r7,) s ort, Ot
p =

+ —2+5,,
Dt OX oy 0Z

° pis a compressive stress and t,, is a tensile stress.

® Similarly for y- and z-momentum:
Dv _ ('%Xy n a(_p +Tyy) n az-zy

bt~ ox oy oz

+ SMy

o _
DW:asz_|_ z-yZ +a( p+Tzz)+S

Dt ~ ox. oy oz e




Energy equation

First law of thermodynamics: rate of change of energy of
a fluid particle is equal to the rate of heat addition plus
the rate of work done.

Rate of increase of energy is pDE/Dt.
Energy E =i + % (u?+v2+w?).
Here, i is the internal (thermal energy).
% (u?+v2+w?) is the kinetic energy.

Potential energy (gravitation) is usually treated separately
and included as a source term.

We will derive the energy equation by setting the total
derivative equal to the change in energy as a result of
work done by viscous stresses and the net heat
conduction.



5)55)’

Work done is force ti



Work done by surface stresses o

<
&

< The total rate of work done by surface stresses is calculated
as follows:

v For work done by x-components of stresses add all terms
in the previous slide.

v Do the same for the y- and z-components.

< Add all and divide by oxodyoz to get the work done per unit
volume by the surface stresses:

a(uz-xx) + 8(uryx) + 8(UTZX) 4+ 8(VTXY)
OX oy 0z OX
) o(vr,,) .\ o(vr,) N o(wr,,) N o(wr,,) N o(uz,,)

oy 0z OX oy 0z

—div(pu) +
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2 000

Energy flux due to heat conduction %.AREg

0(
0 +(q, +—%.=0Z) X
(q, +& —5y)5x5z (4. o7 2 Joxey
oy 2" -
(- 1 S Ky a9, 1
qx 6)( i (qx + ax 55)()5)/52

aq, 1
X ——% .= 0L)X
- Larsay |

The heat flux vector g has three components



Energy flux due to heat conduction T

<
&

® Summing all terms and dividing by oxoyoz gives the net rate of heat
transfer to the fluid particle per unit volume:
_ gCE _Bay _png

= —divq
ox oy oz

® Fourier’s law of heat conduction relates the heat flux to the local
temperature gradient:

-k =—k—- =—k—
% X W oy - 0z
q=—kgradT
In vector form: —divg=div(k grad T)

® Thus, energy flux due to conduction:
® This is the final form used in the energy equation.
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Energy equation

® Setting the total derivative for the energy in a fluid particle equal
to the previously derived work and energy flux terms, results in

the following energy equation:
DE |:a(uz-xx) + a(UTyX) + a(uz-zx) 4+ a(VTXV)

—— =—div(pu) +
o (PW+~ oy o7 ox

Dt
L 0lvz,) alvT,) awr,) , 0Wwr,) | our,)
oy 0z OX oy 0z
+div(k grad T) + S,

® Note that we also added a source term S; that includes sources
(potential energy, sources due to heat production from chemical
reactions, etc.).

38



Kinetic energy equation

® Separately, we can derive a conservation equation for the
kinetic energy of the fluid.

® In order to do this, we multiply the u-momentum equation by
u, the v-momentum equation by v, and the w-momentum
equation by w. We then add the results together.

® This results in the following equation for the kinetic energy:

DE 2 2 2 8
[,(Uu°+v +W)]:—u.grad b +u 8rxx+ ryx+6rzx
Dt OX oy 0z

or,, Or, Of, or.. Ot, Ot
+v| —+ 2+ —F|+w| 2+ L+ 2 [+U.S,
OX oy 0z OX oy 0z
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Internal energy equation

® Subtract the kinetic energy equation from the energy
equation.

® Define a new source term for the internal energy as
S;=S¢- u.Sy,. This results in:

Di . ou ou ou oV
p—=—pdvu+|r,—+7,—+7,—+7,
Dt T OX oy 0z OX

oV oV oW oW ou

+T, —+T, —+T, —+7, —+7T,

0z OX oy 0z

+div(k grad T) + S,
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Enthalpy equation

An often used alternative form of the energy equation is the
total enthalpy equation.

» Specific enthalpy h =i+ p/ p.
* Total enthalpy h, = h + % (u2+v?+w?) = E + p/ p.

a(gtho) + div(phyu) = div(k grad T)

|:8(UTXX) a(uz-yx) a(UTZX) a(VTXy)
OX oy 0z OX
o(vr,) Od(vr,)  o(wr,) J(wr,)  o(ur,) }
oy 0z OX oy 07

+ S




Viscous stresses

A model for the viscous stresses t; is required.

We will express the viscous stresses as functions of the local
deformation rate (strain rate) tensor.

There are two types of deformation:

* Linear deformation rates due to velocity gradients.
Elongating stress components (stretching).
Shearing stress components.

* Volumetric deformation rates due to expansion or
compression.

All gases and most fluids are isotropic: viscosity is a scalar.

Some fluids have anisotropic viscous stress properties, such-as
certain polymers and dough.
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Viscous stress tensor

® Using an isotropic (first) dynamic viscosity m for the linear
deformations and a second viscosity A=-2/3u for the volumetric
deformations results in:

ERC PP (O I
Hox 3" Moy " ox oz ox
ou  ov v 2 /av oW
= U —+— 21— ——udivu Ul —
oy OX oy 3 \az 6y
ou ow N oW ow 2 .
U —+— U —+— 21— ——pdivu
N 0z OX 0z oy oz 3 )

Note: div u = 0 for incompressible fluids
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Navier-Stokes equations

Including the viscous stress terms in the momentum balance and
rearranging, results in the Navier-Stokes equations:

op

X —momentum: +div(puu):—&+div(y grad u) + S,

d(pu)
ot

op

Yy —momentum: +div(pvu):—5+div(y grad v) +S,,

o(pv)
ot

+ div(,owu) = —g—g +div(u grad w) + S,

Z —momentum:

d(pw)
ot




Viscous dissipation

® Similarly, substituting the stresses in the internal energy
equation and rearranging results in:

o(pl)
ot

Internal energy : +div(plu) =—pdivu+div(k grad T) + ® + S,

® Here F is the viscous dissipation term. This term is always
positive and describes the conversion of mechanical energy

T and () (2] (2 (22

ou owY (ov ow)| 2 .
+| —+— | +| —+— | ;—=wu(divu)
0z OX oz oy 3
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2000

<
&

Summary of equations in conservation form %‘.ARE;;

Mass : %’O +div(pu)=0

X —momentum: a(gu)+div(,ouu):—%+div(y grad u) +S,,

+ div( ovu) = —%5 +div(u grad v) + S,,

y —momentum: 8(6[;\/ )

op

Z —momentum: +div(pvvu):—§+div(y grad w)+3S,,

o(pw)
ot

Internal energy : a(gt)') +div(plu) =—pdivu+div(k grad T) + ® + S,

Equationsof state: p=p(p,T) and i=1(p,T)
e.g. for perfect gas: p= poRT and i=C T
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General transport equations

® The system of equations is now closed, with seven equations for
seven variables: pressure, three velocity components, enthalpy,
temperature, and density.

® There are significant commonalities between the various
equations. Using a general variable ¢, the conservative form of all
fluid flow equations can usefully be written in the following form:

8(gt¢) + div(pgu) = div(Tgrad¢) + S,

© Or,inwords: ot rate of flow

Rate of incrgase of & out of Rate of increase Rate of increase
of ¢ of fluid . = ofpdueto  + of ¢ due to
fluid element . .
element diffusion sources

(convection)
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Integral form

» The key step of the finite volume method is to integrate the
differential equation shown in the previous slide, and then to apply

Gauss’ divergence theorem, which for a vector a states:
[divadV = [n-adA
CVv A

» This then leads to the following general conservation equation in
integral form:

%(Jp¢de + [n-(pgu)dA = [n-(T"grad g)dA + [S,dV

Rate of Net rate of | Net rate of Net rate of
increase decrease of ¢ due increase of ¢ due )
. = e creation
¢ to convection to diffusion of 6
o) across boundaries across boundaries

» This is the actual form of the conservation equations solved by
finite volume based CFD programs to calculate the flow pattern
and associated scalar fields.
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Boundary conditions

® Qverview.
® Inlet and outlet boundaries.
* Velocity.
* Pressure boundaries and others.
® Wall, symmetry, periodic and axis boundaries.
® Internal cell zones.
* Fluid, porous media, moving cell zones.
* Solid.
® Internal face boundaries.
® Material properties.

Proper specification.



Boundary conditions

® When solving the Navier-Stokes
equation and continuity equation,
appropriate initial conditions and
boundary conditions need to be
applied.

AXXXEXR R

® In the example here, a no-slip
boundary condition is applied at
the solid wall.
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Overview

®Boundary conditions are a required
component of the mathematical model. orifice

(interior
orifice_plate and )

@Specify fluxes into the computational orifice_plate-shadow ..

domain; e.g. mass, momentum, and "

-

@ Boundaries direct motion of flow.

energy. &
@Fluid and solid regions are represented
by cell zones. g™
. ) lwall
©®Material and source terms are assigned .
to cell zones. fluid

@®Boundaries and internal surfaces are Example: face and cell

represented by face zones. zones associated with pipe

©Boundary data are assigned to face °W throughorifice plate

zones.
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When using a Dirichlet boundary condition, one prescribes the
value of a variable at the boundary, e.g. u(x) = constant.

When using a Neumann boundary condition, one prescribes the
gradient normal to the boundary of a variable at the boundary,
e.g. 0,u(x) = constant.

When using a mixed boundary condition a function of the form
au(x)+bo u(x) = constant is applied.

Note that at a given boundary, different types of boundary
conditions can be used for different variables.
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Flow inlets and outlets

® A wide range of boundary conditions types permit the flow to
enter and exit the solution domain:

* General: pressure inlet, pressure outlet.
* Incompressible flow: velocity inlet, outflow.
* Compressible flows: mass flow inlet, pressure far-field.

* Special: inlet vent, outlet vent, intake fan, exhaust fan.

® Boundary data required depends on physical models selected.
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Flow inlets and outlets

General guidelines:

» Select boundary location and shape such that flow either goes
in or out. Not mandatory, but will typically result in better
convergence.

» Should not observe large gradients in direction normal to
boundary near inlets and outlets. This indicates an incorrect
problem specification.

» Minimize grid skewness near boundary.



Pressure boundary conditions

® Pressure boundary conditions require

. . pressure
static gauge pressure inputs: level
pabsolute = pstatic T poperating gaupe/static
Pressure
® The operating pressure input is set  absolute operating
separately. pressure L pressure
@ USGfUl When: |:||:|Efat'r|g
* Neither the flow rate nor the pressUre
velocity are known (e.g. buoyancy-
driven flows). I vacuum

* A “free” boundary in an external or

unconfined flow needs to be
defined.
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Pressure inlet boundary (1)

One defines the total gauge pressure, temperature, and other scalar
guantities at flow inlets:

1 5 : .
Piotal = Pstatic T E Yol incompressible flows

Priotal = Pstatic(L+ k-1 M 2)¥/&D  compressible flows

2

Here k is the ratio of specific heats (cp/cv) and M is the Mach
number. If the inlet flow is supersonic you should also specify the
static pressure.

Suitable for compressible and incompressible flows. Mass flux
through boundary varies depending on interior solution and
specified flow direction.

The flow direction must be defined and one can get non-physical
results if no reasonable direction is specified.
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Pressure inlet boundary (2)

Outflow can occur at pressure inlet boundaries. In that case the
flow direction is taken from the interior solution.

For non-isothermal incompressible flows, one specifies the inlet
temperature.

For compressible flows, one specifies the total temperature To,
which is defined as the temperature that the flow would have if

it were brought to a standstill under isentropic conditions:
T, =T, {1+—k2_1M2}

Here k is the ratio of specific heats (cp/cv), M is the Mach
number, and Ts is the static temperature.



Pressure outlet boundary

® Here one defines the static/gauge pressure at the outlet boundary.
This is interpreted as the static pressure of the environment into

which the flow exhausts.

® Usually the static pressure is assumed to be constant over the outlet.
A radial equilibrium pressure distribution option is available for cases
where that is not appropriate, e.g. for strongly swirling flows.

@ Backflow can occur at pressure outlet boundaries:
* During solution process or as part of solution.
* Backflow is assumed to be normal to the boundary.

* Convergence difficulties minimized by realistic values for backflow
guantities.

* Value specified for static pressure used as total pressure wherever
backflow occurs.

® Pressure outlet must always be used when model is set up with a
pressure inlet.
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Velocity inlets

Defines velocity vector and scalar properties of flow at inlet
boundaries.

Useful when velocity profile is known at inlet. Uniform profile
is default but other profiles can be implemented too.

Intended for incompressible flows. The total (stagnation)
properties of flow are not fixed. Stagnation properties vary to
accommodate prescribed velocity distribution. Using in
compressible flows can lead to non-physical results.

Avoid placing a velocity inlet too close to a solid obstruction.
This can force the solution to be non-physical.
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Outflow boundary

® Outflow boundary conditions are used to model flow exits
where the details of the flow velocity and pressure are not
known prior to solution of the flow problem.

® Appropriate where the exit flow is close to a fully developed
condition, as the outflow boundary condition assumes a zero
normal gradient for all flow variables except pressure. The
solver extrapolates the required information from interior.

® Furthermore, an overall mass balance correction is applied.
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Restrictions on outflow boundaries

Outflow boundaries cannot be used: Do not use outflow boundaries

» With compressible flows. where:

> With the pressure inlet boundary ~ ~ Flow enters domain or when
condition (use velocity inlet backflow occurs (in that case use
instead) because the combination pressure b.c.).
does not uniquely set a pressure » Gradients in flow direction are
gradient over the whole domain. significant.

~ In unsteady flows with variable » Conditions downstream of exit
density. plane impact flow in domain.

a s o

—_—

Tt

7—7’;;& > P
T/ T ﬁ outflow

outflow

» outflow outflow .
. . conditi
zo”r;dltlo condition conditio on
] not obeyed n
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Modeling multiple exits

® Using outflow boundary condition:

* Mass flow divided equally among all outflow boundaries by
default.

* Flow rate weighting (FRW) set to one by default.

* For uneven flow distribution one can specify the flow rate
weighting for each outflow boundary: m=FRW.,/ZFRW..

* The static pressure then varies among the exits to accommodate
this flow distribution.

FRW,
velocity
inlet EE—

FRW,

® Can also use pressure outlet boundaries to define exits.

pressure-outlet

velocity-inlet (vTg) — (b

or - .

pressure-inlet (pg Tl
—— . pressure-outlet

Eps:lz
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Other inlet and outlet boundary conditions %‘.ARE:;

5 Q)
7 \2
% ror W

Mass flow inlet.

* Used in compressible flows to prescribe mass flow rate at
inlet.

* Not required for incompressible flows.
Pressure far field.
* Available when density is calculated from the ideal gas law.

* Used to model free-stream compressible flow at infinity,
with free-stream Mach number and static conditions
specified.
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Other inlet and outlet boundary conditions o

2 Q~
7 \2
Oy FOR \.\$

Exhaust fan/outlet vent.

* Model external exhaust fan/outlet vent with specified
pressure jump/loss coefficient and ambient (discharge)
pressure and temperature.

Inlet vent/intake fan.

* Model inlet vent/external intake fan with specified loss
coefficient/ pressure jump, flow direction, and ambient
(inlet) pressure and temperature.



Determining turbulence parameters . Tanc

2 Q~
7 \2
Oy FOR \.\$

When turbulent flow enters domain at inlet, outlet, or at a far-field
boundary, boundary values are required for:

» Turbulent kinetic energy k.
» Turbulence dissipation rate «.

Four methods available for specifying turbulence parameters:
» Set k and € explicitly.
» Set turbulence intensity and turbulence length scale.
» Set turbulence intensity and turbulent viscosity ratio.
» Set turbulence intensity and hydraulic diameter.
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Turbulence intensity

® The turbulence intensity / is defined as:
-k
| =
u

® Here kis the turbulent kinetic energy and u is the local velocity
magnitude.

® Intensity and length scale depend on conditions upstream:
* Exhaust of a turbine.
Intensity = 20%. Length scale = 1 - 10 % of blade span.
* Downstream of perforated plate or screen.
Intensity = 10%. Length scale = screen/hole size.
* Fully-developed flow in a duct or pipe.
Intensity = 5%. Length scale = hydraulic diameter.
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Wall boundaries

® Used to bound fluid and solid regions.

® In viscous flows, no-slip condition enforced at walls.
» Tangential fluid velocity equal to wall velocity.
* Normal velocity component is set to be zero.

® Alternatively one can specify the shear stress.

® Thermal boundary condition.
* Several types available.

e Wall material and thickness can be defined for 1-D or in-
plane thin plate heat transfer calculations.

® Wall roughness can be defined for turbulent flows.
* Wall shear stress and heat transfer based on local flow field.
® Translational or rotational velocity can be assigned to wall.
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Symmetry boundaries

» Used to reduce computational effort in problem.
> Flow field and geometry must be symmetric:
v Zero normal velocity at symmetry plane.
v Zero normal gradients of all variables at symmetry plane.
> No inputs required.
v Must take care to correctly define symmetry boundary locations.
> Also used to model slip walls in viscous flow.

symmetry
planes
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Periodic boundaries

® Used when physical geometry of interest and expected flow
pattern and the thermal solution are of a periodically repeating
nature.

* Reduces computational effort in problem.
Two types available:
* Ap =0 across periodic planes.
Rotationally or translationally periodic.

Rotationally periodic boundaries require axis of rotation be
defined in fluid zone.

* Ap is finite across periodic planes.
Translationally periodic only.
Models fully developed conditions.
Specify either mean Ap per period or net mass flow rate.
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AXxis boundaries

® Used at the centerline (y=0) of
a 2-D axisymmetric grid.

® Can also be used where
multiple grid lines meet at a
point in a 3D O-type grid.

® No other inouts are reauired.
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Cell zones: fluid

A fluid zone is the group of cells for which all active equations
are solved.

Fluid material input required.

* Single species, phase.

Optional inputs allow setting of source terms:
* Mass, momentum, energy, etc.

Define fluid zone as laminar flow region if modeling transitional
flow.

Can define zone as porous media.
Define axis of rotation for rotationally periodic flows.
Can define motion for fluid zone.

72



Porous media conditions

® Porous zone modeled as special type of fluid zone.

* Enable the porous zone option in the fluid boundary
conditions panel.

® Pressure loss in flow determined via user inputs of
resistance coefficients to lumped parameter model.

® Used to model flow through porous media and other
“distributed” resistances, e.g:

* Packed beds.
* Filter papers.

* Perforated plates.
* Flow distributors.
Tube banks.




Moving zones

® For single zone problems use the rotating reference

frame model. Define the whole zone as moving
reference frame. This has limited applicability.

For multiple zone problems each zone can be
specified as having a moving reference frame:

e Multiple reference frame model. Least accurate,
least demanding on CPU.

* Mixing plane model. Field data are averaged at the
outlet of one zone and used as inlet boundary data
to adjacent zone.

Or each zone can be defined as moving mesh using
the sliding mesh model. Must then also define
interface. Mesh positions are calculated as a function
of time. Relative motion must be tangential (no
normal translation).

P
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Cell zones: solid

A solid zone is a group of cells for which only heat conduction
is solved and no flow equations are solved.

The material being treated as solid may actually be fluid, but
it is assumed that no convection takes place.

The only required input is material type so that appropriate
material properties are being used.

Optional inputs allow you to set a volumetric heat generation
rate (heat source).

Need to specify rotation axis if rotationally periodic
boundaries adjacent to solid zone.

Can define motion for solid zone.
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Internal face boundaries

® Defined on cell faces.
* Do not have finite thickness.

* Provide means of introducing step change in flow
properties.

® Used to implement physical models representing:
* Fans.
e Radiators.
® Porous jumps.

® |nterior walls. In that case also called “thin walls.”




Material properties

® For each zone, a material needs to be specified.
® For the material, relevant properties need to be specified:
* Density.
* Viscosity, may be non-Newtonian.
* Heat capacity.
* Molecular weight.
* Thermal conductivity.
» Diffusion coefficients.

® Which properties need to be specified depends on the model.
Not all properties are always required.

® For mixtures, properties may have to be specified as a function
of the mixture composition.
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Fluid density

For constant density, incompressible flow: p = constant.
For compressible flow: p = p_, . jute/ RT-

Density can also be defined as a function of temperature
(polynomial, piece-wise polynomial, or the Boussinesq model
where p is considered constant except for the buoyancy term in
the momentum equations) or be defined with user specified
functions.

For incompressible flows where density is a function of
temperature one can also use the so-called incompressible-
ideal-gas law: p = pgperating/ RT.

Generally speaking, one should set p,, i, ClOse to the mean
pressure in the domain to avoid round-off errors.

However, for high Mach number flows using the coupled solver,
set Py perating tO ZENO.
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When is a problem properly specified?

Proper specification of boundary conditions is very important.
Incorrect boundary conditions will lead to incorrect results.
Boundary conditions may be overspecified or underspecified.

Overspecification occurs when more boundary conditions are
specified than appropriate and not all conditions can hold at
the same time.

Underspecification occurs when the problem is incompletely
specified, e.g. there are boundaries for which no condition is
specified.

Commercially available CFD codes will usually perform a
number of checks on the boundary condition set-up to prevent
obvious errors from occurring.
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Summary

Zones are used to assign boundary conditions.

Wide range of boundary conditions permit flow to enter and
exit solution domain.

Wall boundary conditions used to bound fluid and solid
regions.

Repeating boundaries used to reduce computational effort.

Internal cell zones used to specify fluid, solid, and porous
regions.

Internal face boundaries provide way to introduce step
change in flow properties.
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Simplified Models

General 3D flow Equations

Compressible Incompressible

Viscous Inviscid Viscous Inviscid

Space Space
time time
Dynamics Dynamics

Laminar Turbulent Laminar Turbulent




UNIT- I

MATHEMATICAL BEHAVIOR OF
PARTIAL DIFFERENTIAL EQUATIONS
AND THEIR IMPACT ON
COMPUTATIONAL AERODYNAMICS



UNIT - i

CLOs Course Learning Outcome

cLO5  Explain the need of classification of quasi linear partial
differential equations by Cramer’s rule and Eigen Value Method.

CLO6 Understand the concepts of range of influence and domain of
dependence for a flow field.

CLO7 Explain the general behavior of the partial differential equations
which falls in hyperbolic, parabolic and elliptic equations.

cLog8 Demonstrate the CFD aspects of the hyperbolic, parabolic and
elliptic equations in aerodynamic problems and physical
problems.




Numerical Integration of
Partial Differential Equations (PDEs)

® Introduction to PDEs.

® Semi-analytic methods to solve PDEs.
® Introduction to Finite Differences.

@ Stationary Problems, Elliptic PDEs.

® Time dependent Problems.

® Complex Problems in Solar System Research.
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Differential Equations

® A differential equation is an equation for an unknown function
of one or several variables that relates the values of the
function itself and of its derivatives of various orders.

® Ordinary Differential Equation: Function has 1 independent
variable.

@ Partial Differential Equation: At least 2 independent variables.
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PDEs definitions

® General (implicit) form for one function u(x,y) :

Ou(z,y) Oulz,y) 0% u(z,y) _ 0
97 : 5y uw Ejj;ij g | — Uy

F (:::,?,u[:::,y),

® Highest derivative defines order of PDE

® Explicit PDE => We can resolve the equation
to the highest derivative of u.

® Linear PDE => PDE is linear in u(x,y) and
for all derivatives of u(x,y)

® Semi-linear PDEs are nonlinear PDEs, which
are linear in the highest order derivative.
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Linear PDEs of 2. Order

a(x,y)c(x,y) —b(x,y)2/4 >0 Elliptic
® a(x,y)c(x,y) —b(x,y)2/4 =0 Parabolic
@ a(x,y)c(x,y) —b(x,y)2/4 <0 Hyperbolic

Quasi-linear: coefficients depend on u and/or first derivative of u,
but NOT on second derivatives.




PDEs and Quadratic Equations

® Quadratic equations in the form describe cone sections.

Az’ + Bay+ Cy*+ Dz + Ey+ F =0

a(x,y)c(x,y) —b(x,y)2/4 >0 Ellipse
a(x,y)c(x,y) — b(x,y)2 /4 =0 Parabola
a(x,y)c(x,y) — b(x,y)2 /4 <0 Hyperbola




PDEs and Quadratic Equations

With coordinate transformations these equations can be
written in the standard forms:

U
Ellipse: a2 | p2
2 __
Parabola: Y — dax
2?2 g2
Hyperbola: P 1

Coordinate transformations can be also applied to get rid of the
mixed derivatives in PDEs.

(For space dependent coefficients this is only possible locally, not
globally)

89



PDEs and Quadratic Equations

90



Second Order PDEs with more then

™ =
z IARE s

2 independent variables

Classification by eigen values of the coefficient matrix:

Elliptic: All eigen values have the same sign. [Laplace-Eq.]
Parabolic: One eigen value is zero. [Diffusion-Eq.]
Hyperbolic: One eigen value has opposite sign. [Wave-Eq.]

©@ ® ® @®

Ultra hyperbolic: More than one positive and negative
eigenvalue.

Mixed types are possible for non-constant coefficients,
appear frequently in science and are often difficult to solve.
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Classifications

® Classification of partial differential equations

® A general partial differential equation in coordinates x and
y:Characterization depends on the roots of the higher order
(here Second order) terms:

»b2-4ac> 0 then the equation is called hyperbolic.
»b2-4ac =0 then the equation is called parabolic.
»b?-4ac< 0 then the equation is called elliptic.

® Note: if a, b, and ¢ themselves depend on x and vy, the
equations may be of different type, depending on the
location in x-y space.
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ELLIPTIC PROBLEMS

Elliptic equations are characteristic of equilibrium problems, this
includes many (but not all) steady state flows.

Examples are potential flow, the steady state temperature
distribution in a rod of Solid material and equilibrium stress
distributions in solid objects under applied Loads.

For potential flows the velocity is expressed in terms of a velocity
potential: u=Vd. Because the flow is incompressible, V.u=0, which
results in V2¢=0. This is also known as Laplace’s equation

The solution depends solely on the boundary conditions. This is also
known as a boundary value problem.

A disturbance in the interior of the solution affects the solution
everywhere else. The disturbance signals travel in all directions.

As a result, solutions are always smooth, even when boundary
conditions are Discontinuous. This makes numerical solution easier.
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PARABOLIC PROBLEMS

Parabolic equations describe marching problems. This
includes time dependent problems which involve significant
amounts of dissipation. Examples are unsteady viscous flows
and unsteady heat conduction. Steady viscous boundary
layer flow is also parabolic (march along streamline, not in
time).

An example is the transient temperature distribution in a
cooling down rod: The temperature depends on both the
initial and boundary conditions. This is also called an initial-
boundary-value problem.

Disturbances can only affect solutions at a later time.
Dissipation ensures that the solution is always smooth.
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HYPERBOLIC PROBLEMS

Hyperbolic equations are typical of marching problems with
negligible dissipation.
An example is the wave equation:

This describes the transverse displacement of a string during small
amplitude vibrations. If y is the displacement, x the coordinate
along the string, and a the initial amplitude, the solution is: Note
that the amplitude is independent of time, i.e. there is no
dissipation. Hyperbolic problems can have discontinuous solutions.

® Disturbances may affect only a limited region in space. This is
called the zone of influence. Disturbances propagate at the wave
speed c.

® Local solutions may only depend on initial conditions in the
domain of dependence.
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Well posed problems

(as defined by Hadamard 1902) "

A problem is well posed if:
® A solution exists.
® The solution is unique.

® The solution depends continuously on the
data (boundary and/or initial conditions).

@ Problems which do not fulfill these criteria
are ill-posed.

Well posed problems have a good chance to be solved
numerically with a stable algorithm.

1865-1963
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lll-posed problems

® |ll-posed problems play an important role in some areas, for

example for inverse problems like tomography.
® Problem needs to be reformulated for numerical treatment.

® Add additional constraints, for example smoothness of the

solution.

Input data need to be regularized / preprocessed.




lll-conditioned problems

Even well posed problems can be ill-conditioned.

Small changes (errors, noise) in data lead to large errors in the
solution.

Can occur if continuous problems are solved approximately on a
numerical grid.

PDE => algebraic equation in form Ax=b
Condition number of matrix A:

Amasx (A1)
-:"minl::fl)

are maximal and minimal Eigen values of A.
:“ma.x(fl)j /"'lmin(fl)

K(A) =

Well conditioned problems have a low condition number.
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How to solve PDEs?

PDEs are solved together with appropriate Boundary conditions
and/or Initial Conditions.

Boundary value problem
Dirichlet B.C:

Specify u(x,y,...) on boundaries (say at x=0, x=Lx, y=0, y=Ly in a
rectangular box)

Von Neumann B.C:
Specify normal gradient of u(x,y,...) on boundaries.

In principle boundary can be arbitrary shaped.(but difficult to
implement in computer codes)

Boundary walue
ey RN & given along the

SN boundary curve
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Initial value problem

Boundary values are usually specified on all boundaries of the
computational domain.

Initial conditions are specified in the entire computational
(spatial) domain, but only for the initial time t=0.

Initial conditions as a Cauchy problem:

-Specify initial distribution u(x,y,...,t=0)

for parabolic problems like the Heat equation]
Specify u and du/dt for t=0

for hyperbolic problems like wave equation.]




UNIT - 1l

BASIC ASPECTS OF
DISCRETIZATION
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UNIT - 1l

CLOs Course Learning Outcome

CLO9 Explain the need of classification of quasi linear partial
differential equations by Cramer’s rule and Eigen Value Method.

CLO10 Understand the concepts of range of influence and domain of
dependence for a flow field.

CLO11 Explain the general behavior of the partial differential equations
which falls in hyperbolic, parabolic and elliptic equations.

cLO12 Demonstrate the CFD aspects of the hyperbolic, parabolic and
elliptic equations in aerodynamic problems and physical
problems.

CLO13 Understand the need for generating grids for solving the finite
differential equations in analyzing a flow field.

CLO14 Explain the technique of pressure correction method with the
need of staggered grid and its philosophy.




Numerical methods

Most PDEs cannot be solved analytically.

Variable separation works only for some simple cases and in
particular usually not for in homogenous and/or nonlinear
PDEs.

Numerical methods require that the PDE become discretized
on a grid.

Finite difference methods are popular/ most commonly used in
science. They replace differential equation by difference
equations)

Engineers (and a growing number of scientists too) often use
Finite Elements.
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Finite differences

Remember the definition of differential quotient:

®

df (x) — £/(x) = lim f(x+ h) — f(x)
dx h—0 h

How to compute differential quotient numerically?

Just apply the formular above for a finite h.

For simplicity we use an equidistant grid in
x=[0,h,2h,3h,......(n-1) h] and evaluate f(x) on the
corresponding grid points xi.

Grid resolution h must be sufficient high. Depends strongly
on function f(x)!
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VWe approximate the derivative of 1(x)=sin{n x) on a grid x=0 .
Pi with 50 (and 500) grid points by df/dx=(f(x+h)-f(x))/h and
compare with the exact solution df/dx= n cos(n x)

d sin(n x)/dx=n cos(nx), n=1
1‘0 ""'l""""'|""""' R S """'

0.5 Average error done by
discretization:
50 grid points: 0.040

500 grid points: 0.004

0.0

df(x) /dx

_0.5]

T Bosgaasrsosesmpsd
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Accuracy of finite differences

We approximate the derivative of f(x)=sin(n x) on a grid x=0...2 Pi
with 50 (and 500) grid points by df/dx=(f(x+h)-f(x))/h and
compare with the exact solution df/dx= n cos(n x)

d sin(n x)/dx=n cos(nx), n=8
10 -Tll'llITI‘Ilrlll1Tll'Tllllrlll]llllrllllllll1llllrl‘l1l’lll1llll
;X J S "
shoA ] oA Average error done by
discretization:
=
S b : 50 grid points: 2.49
* i . . .
= | 500 grid points: 0.256
¥y :
I ¥ ‘ ¥ Y
e 10 s I I I | I I
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Higher accuracy methods

Can we use more points for higher accuracy?




<
&

Higher accuracy: Central differences . Tar::

® df/dx=(f(x+h)-f(x))/h computes the derivative at x+h/2 and
not exactly at x.

® The alternative formular df/dx=(f(x)-f(x-h))/h has the same
shortcomings.

® We introduce central differences: df/dx=(f(x+h)-f(x-h))/(2 h)
which provides the derivative at x.

® Central differences are of 2. order accuracy instead of 1.
order for the simpler methods above.
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How to find higher order formulas? %‘.ARE:;
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For sufficient smooth functions we describe the function f(x)
locally by polynomial of nth order. To do so n+1 grid points are
required. n defines the order of the scheme.

Make a Taylor expansion (Definition = xit1 = xi + Ax

2 3
fier = i B () + S5 0n) - S0 + 0(ax?)
2 3
i1 = f—Oxf/(x)+ &Txf”(x,-) - &%f”’(x,-) + o(axh)
4Ax3

firs = i+ 2AxfF'(x;) + 2Ax%F" (x;) + " (x;) + O(Ax?)
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Accuracy of finite differences oy

We approximate the derivative of f(x)=sin(n x) on a grid x=0 ...2
Pi with 50 (and 500) grid points with 1th, 2th and 4th order

schemes:
1th order 2th order 4th order
n=1, 50 pixel 0.04 0.0017 5.4 10°
n=1, 500 pixel 0.004 1.7 107 4.9 10°
n=8, 50 pixel  2.49 0.82 0.15
n=8, 500 pixel 0.26 0.0086 4.510°
n=20, 50 pixel 13.5 9.9 8.1

n=20, 500 pix.  1.60 0.13 0.0017

113



OUTLINE OF DISCRETIZATION

® Approximations to partial derivatives

® Finite difference representation of Partial Differential
Equations

@ Discretization

— Consistency

— Stability

— Convergence
Explicit and implicit approaches
The finite volume technique
Boundary conditions

®©@ ® ©@ ®

Stability analysis



2 000

THE WAYS TO OBTAIN FINITE DIFFERENCE e

REPRESENTATIONS OF DERIVATIVES

® Forward difference

@ Backward difference

® Central difference




2 000

ON THE SELECTION OF AFINITE DIFFERENCE S&

APPROXIMATION v

@ Depends on the physics of the problem being studied

® Any scheme that fails to represents the physics correctly will
fail when you attempt to obtain a solution

Steps of Numerical Solution

@Discretization
@Consistency
@®Stability
@Convergence




Discretization

® This is the process of replacing derivatives by finite difference
approximations.

® This introduces an error due to the truncation error arising
from the finite difference approximation and any errors due
to treatment of BC’s.

® The size of the truncation error will depend locally on the
solution. In most cases we expect the discretization error to
be larger than round-off error.
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Stability

A stable numerical scheme is one for which errors from any source
(round-off, truncation) are not permitted to grow in the sequence of
numerical procedures as the calculation proceeds from one marching

step, or iteration, to the next, thus: errors grow—> unstable errors
decay - stable

» Stability is normally thought of as being associated with marching
problems

» Stability requirements often dictate allowable step sizes

» In many cases a stability analysis can be made to define the
stability requirements.
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Convergence

The solution of the FDE’s should approach the solution of the PDE
as the mesh is refined.

Lax Equivalence Theorem (linear, initial value)

For a properly posed problem, with a consistent finite difference
representation, stability is the necessary and sufficient condition for
convergence.

In practice, numerical experiments must be conducted to

determine if the solution appears to be converged with respect to
mesh size.
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Two Different Approaches

There are many difference techniques used in CFD, you will find
that any technique falls into One or the other of following two
different general approaches:

— Explicit approach

— Implicit approach




Explicit approach

Advantages of explicit
» Relative simple to set up and program

» This scheme is easily vectorized and a natural for massively
parallel computation

Disadvantage of explicit

» Stability requirements require very small steps sizes




Implicit approach

Advantage of implicit
» Stability requirements allow a large step size

Disadvantages of implicit
» More complicated to set up and program
» This scheme is harder to vectorize or parallelize

> Since the solution of a system of equations is required at
each step, the computer time per step is much larger than in

the explicit approach.
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Solution schemes

® Because of the large number of mesh points, it is generally
not practical to solve the system of equations

® Instead, an iterative procedure is usually employed.

Initial guess for the solution is made and then each mesh
point in the flow field is updated repeatedly until the values
satisfy the governing equation.

® This iterative procedure can be thought of as having a time-
like quality
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Structured Grid

Cartesian Grids




w. ,
e .
- L & 4 - i 8 - ' B
il rssasdtfd st die
_ E F.
! rvﬂv = R R RR 3 ) - chrbtgead
: -
-
L b - P - -
IR R R E B R EERRER E - 4 -4 - :
s et r 4y .v“ -4
: u FE RN
N 3 EH BN Y T
. " ﬁ.v -
| N S & 4
* . ) - i 8 ;o 5
3 ) - ;| b | .
| . 4 - ) 4 - - -«
2 pow
3 . H‘” . .
. - re )«
‘ h-
) -
. —EE=S- . =
-
] mlhl =
| A
- el
| - .
. el =
] : : B8 -
3 . 4 -
. 1 - . 4
\ 1 EEESE —
lﬁ b - - by -
] . 2
; f e .
AR R Rl p -4
- 4
* 1 - :
> A
.
.
R
S < -
4
.
4 g ; * TER -
LAARS - - 3
-~ Aghe
"
T 4
3 p RS
>
4 1
$ T
| =
. .
4 - 3
-
T
— A
~
B
R =
| :
3
|
] - - R =3
: b -,
| '
] .
! 3 - A
! T - I - . 4
Y * 20 - . v
: ' ;o =Trs - e
1 Swe B -
, -4 P : ++ e B BE BE o >
+hay EE ER ne
_ -+ . ety )
b + . : "
- "»
B = R EEREER *vv R B ER B
. 2
5 4
LR - . L =
3 2% 2 - ’ i
- H H w " - F.s

128



M_
M

129



2 000

% &
o ror W

oy ‘ L g A
AAEZ32Z, Ma=0.729, x=2.21"
D-and, 160543 o5
20E Euler
Fressure

Py
Ry,
‘fflf.';#’*g

AT
7 #ﬁ;‘rgfll;f.'.lnnn







H Grid

C




ITEEEANS|

SEEeEiis

biig
e

.

5

\

(b) Leading edge detail

")
.\-
X

S 7

e S

/ X .—,é.v. W\.

(s 77

5% o,
V22 e, e
W ~ ]
% v ~ -

T i

3 : Triiss pis
it 1 LS|
|- 54
|mwe -
12T i
A m
| wastnwmnm T
il i1 34
|smnassnes: Sed
2% -
S A ’ 4 ' 4 h J

(a) Blade to blade mesh

Blade to blade mesh




Butterfly Grid




A
AR RS

\

i
.

it
&




Unstructured grid

\(

/NI

NVasies s
DERRARK

ay;

¥

\

¥




Tetrahedra grid




Tetrahedra grid %




Hybrid Grid

yeaadaua IR n




©
-
O
S
.
Q
ofd
L
=
ge)
(g0)
-
o




Hexahedral Cells




s
My s
f.‘ My

A ML

» 4
A 'ohva'\i' .'.;'
AT




UNIT-IV

CFD TECHNIQUES

I



UNIT - IV

CLOs Course Learning Outcome

CLO15 Discuss the aspects of numerical dissipation and numerical
dispersion and explain the applications of each in CFD
techniques.

CLO16 Explain the technique of pressure correction method with the
need of staggered grid and its philosophy.

cLO17 Explain the numerical procedures for analysis like SIMPLE,
SIMPLER SIMPLEC and PISO algorithms and differentiate with
regular CFD techniques.




LAX-WENDROFF TECHNIQUE

® The Lax—Wendroff method, named after Peter Lax and Burton
Wendroff, is a numerical method for the solution of hyperbolic
partial differential equations, based on finite differences.

® |t is second-order accurate in both space and time. This method is
an example of explicit time integration where the function that
defines governing equation is evaluated at the current time.

Suppose one has an equation of the following form:

® Where x and t are independent variables, and the initial state,
u(x, 0) is given.

® The first step in the Lax—Wendroff method calculates values for
u(x, t) at half time steps, t,,,,, and half grid points, x;, ,/,. In the

second step values at t, , ; are calculated using the data
fort,andt,, /.



@ First (Lax) steps:

n 1 n n ﬂt T 1
“:‘J:rll,*? = E(ut'-l—l + ;') — m(f(“:ﬂ) — flu})),
n+1/2 1 At

Ui 19 = ﬁ(“? + ;) Zﬂx(f(u?) - fluy)).

® Second step:




MAC-CORMACKS TECHNIQUE

® In computational fluid dynamics, the MacCormack method is
a widely used discretization scheme for the numerical
solution of hyperbolic partial differential equations.

® This second-order finite difference method was introduced
by Robert W. MacCormack in 1969 The MacCormack method
is elegant and easy to understand and program

u Ou_ .
o "%~

® The application of MacCormack method to the above
equation proceeds in two steps; a predictor step which is
followed by a corrector step.



Predictor step

® In the predictor step, a "provisional" value of at time
level (denoted by ) is estimated as follows

s ﬂt(n n)

U =1 Hﬂx Uiy — U
® It may be noted that the above equation is obtained by replacing

the spatial and temporal derivatives in the previous first order
hyperbolic equation using forward differences.



Corrector step

® In the corrector step, the predicted value is corrected according
to the equation

ut = 2 az‘i‘; (ul ¥ — )
® Note that the corrector step uses backward finite
difference approximations for spatial derivative. Note also that
the time-step used in the corrector step is in contrast to

the used in the predictor step.

® Replacingthe a4t term by the temporal average to obtain the
corrector step as 2

T n+1 _
ntl _ Wi T U Al ( nt1 n+1)

U U, — Uy
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ALTERNATING-DIRECTION-IMPLICIT

S IARE §
[}

(ADI) TECHNIQUE

In numerical analysis, the Alternating Direction Implicit (ADI)
method is a finite difference method for solving parabolic,
hyperbolic and elliptic partial differential equations.

It is most notably used to solve the problem of heat conduction or
solving the diffusion equation in two or more dimensions.

It is an example of an operator splitting method



ALTERNATING-DIRECTION-IMPLICIT (ADI) ;‘} ¢

TECHNIQUE

@ Consider the linear diffusion equation in two dimensions,

du Fu  Fu
E: @—Fa—yz = (Ugz + Uyy) = Au

® The implicit Crank—Nicolson method produces the following
finite difference equation:

wttt — oy

=g ) (1 )

® The idea behind the ADI method is to split the finite
difference equations into two, one with the x-derivative
taken implicitly and the next with the y-derivative taken
implicitly, uli ™t — :)

ij ij 2 n+1/2 2, n
AT = (82u % + S2u
n+l n+1/2
Uyg ij — (52 n+1/2 52 ﬂ-l-l)
At/2 vty )




PRESSURE CORRECTION TECHNIQUE

® Pressure-correction method is a class of methods used
in computational fluid dynamics for numerically solving the
Navier-Stokes equations normally for incompressible flows.

Inertia
.
F Ny

ov
= TtV V) = -Vp + pV?v + _f
* Convective Pressure  Viscosity Other
Unsteady acceleration gradient forces

acceleration

® The equations solved in this approach arise from the implicit
time integration of the incompressible Navier—Stokes

equations.



Numerical Procedures

» SIMPLE

» SIMPLER

» SIMPLEC and

» PISO




SIMPLE algorithm

» In computational fluid dynamics (CFD), SIMPLE algorithm is a
widely used numerical procedure to solve the Navier-Stokes

equations.

» SIMPLE is an acronym for Semi-Implicit Method for Pressure
Linked Equations.




©@ ® ®©® ©®@ ® @

®©@ ©®

SIMPLEC ALGORITHM

Specify the boundary conditions and guess the initial values.
Determine the velocity and pressure gradients.

Calculate the pseudo velocities.

Solve for the pressure equation and get the p.

Set p*=p.

Using p* solve the discretized momentum equation and
get u* and v*.

Solve the pressure correction equation.

Get the pressure correction term and evaluate the corrected
velocities and get p, u, v, O*.

Solve all other discretized transport equations.

If ® shows convergence, then STOP and if not, then set p*=p,
u*=u, v*=v, ®*=0 and start the iteration again.



PISO ALGORITHM

Set the boundary conditions

® Solve the discretized momentum equation to compute an
intermediate velocity field.

Compute the mass fluxes at the cells faces.

Solve the pressure equation.

Correct the mass fluxes at the cell faces.

Correct the velocities on the basis of the new pressure field.
Update the boundary conditions.

Repeat from 3 for the prescribed number of times.

©@ ®©® ©®© ©® ® ® @

Increase the time step and repeat from 1.



SIMPLER ALGORITHM

® Guess velocity field

® Compute momentum coefficients and store.

® Compute pressure coefficients and store.

® Solve pressure equation and obtain pressure

® Solve momentum equations using stored momentum

® coefficients and just-computed pressure. Find u* and v*

® Find b term in pressure-correction equation using u*



FINITE VOLUME METHODS

I




CLOs Course Learning Outcome

CLO18

Discuss the concepts of finite volume method and explain the

difference from finite difference method for solving different
flow field.

CLO19

Demonstrate the need of finite volume discretization and its

general formulation of a numerical scheme in finite volume
method.

CLO20

Understand the principle of two dimensional finite volume
methods in solving flow fields with finite control volume.




Finite-Volume Formulation




Review of the Integral Equation

The integral equation for the conservation statement is:

deV+ f[ ~§)Q-D]-AdS = dev

V(r 1) S(F 1) V(F.b)

e Equation applies for a control volume.
e Control surface bounds the control volume.
e Qis conserved quantity representing the flow.

e Flow can be through the control surface.

e Control volume and control surface can vary shape in
time and space.

e Flow can be time-varying (unsteady).



Objective of the F-V Formulation

Represent the integral equation as an ordinary differential
equation (then eventually an algebraic equation) amenable to a
solution using computational (numerical) methods.

Thus, we need to approximate the volume integrals and the
surface integrals to form algebraic expressions.

Prior to discussing these approximations, lets examine the
control volumes on which the integrals will be approximated...

163



Domain, Zone, Grid, and Cell

The control volumes exists at several levels: 1
Domain

1. Flow Domain, Extent of CFD analysis

2. Zone, Divide domain for convenience, if needed

3. Grid, Divides the zone into cells

4. Cell, Smallest control volume, but “finite”

Let's Examine
a hexahedral
cell =

Grid in each zone
with 1000s of
cells

Each control volume is “air-tight”

Zones

164



Grid is “body-fitted” to the follow
the shape of the body (wing).
Grid points (vertices) are arranged
in an array structure with indices
(i,j,k).

Transformation between physical
space (x,y,z) and a Cartesian
computational space with

coordinates directions (&, n, ).
Grid points are clustered to the

wing to provide resolution of the

boundary layer.
Cells are hexahedral (6 quadrilateral

sides).




Grid is “body-fitted” to the follow
the shape of the body (duct).
Grid points (vertices) are do not
have any set structure.

No transformation from physical
space (X,y,z) and a computational
Space. Specify and store geometric
and connectivity information.

Grid points are clustered to the
duct surfaces to provide resolution
of the boundary layer.

Cells are tetrahedral (4 triangular
sides).




Anatomy of a Finite-Volume Cell

Cell can take on a generalized shape.
Cell contains a finite (positive) volume. - Edge

Integral equation will be approximated on
the cell to form an algebraic relation.

Size of cell indicates the level of
computational resolution of the CFD
analysis.

Control surface is faceted into a finite V i
number of faces. e
Hexahedral Cell
6 Quadrilateral Faces

Face is bounded by edges. 12 Linear Edges

(4 per face, edges
shared)

Faces can take on a variety of shapes.

Edges are usually straight lines.



Volume Integral Approximation

Approximation: Q is uniform within the finite-volume:

[Qdv~vQ=Q

V (F,t)

[Pdv~vP=P

V (7,t)

VI Qi — QAI

The position of the solution point in V.P=P

the cell is not yet defined. L
Cell |

(i is an index for the
cell)



Approximation: The flux is uniform over the surface of each
face of the cell:

nf Area
—» A I = B normal
§[V Q D n dsS ~ ZFf_F vector for
S(F.t) f=1 face f
where the flux on the face is define as (ﬁ dS)f
Ff :[(V_Q)Q_D]f '(ﬁ dS)f I:f
. . Face f
Computing the flux on the face is one of (fis an index for the
the most difficult and computationally face )

intensive operations of a CFD code.



Resulting Equation

Start with the integral equation,

% [Qdv+ §[(V-g)Q-D]-nds= [Pdv

V (F,t) S(r,t) V (r,t)

and substitute in the volume and surface integral approximations
to yield: A
d .
aQ =P-F
dt
This equation is a first-order, non-linear, ordinary differential

equation for which various numerical methods exist for its
solution.



Other Cell Shapes

A structured grid can only contain finite-volume cells with a
hexahedral shape. Unstructured grids allow greater freedom
for cell shapes. Possibilities include:

Generalized Cell (X quadrilateral faces, Y triangular faces)
Prismatic Cell (3 quadrilateral faces, 2 triangular faces)
Pyramidal Cell (1 quadrilateral face, 4 triangular faces)
Tetrahedral Cell (4 triangular faces)

To keep cell geometry simple, quadrilateral or triangular faces with
straight-line edges are generally used. The geometry and the normal
area vector of a triangle is uniquely known, and so, quadrilaterals are
usually divided into triangles to compute their geometric properties.



Location of the Solution in the Cell o

<«
&

The location of the flow solution and geometry of the finite
volume cell with respect to the grid can be of two types:

Cell-Vertex (Node-Centered) Cell. The flow solution is located at
the vertices of the grid. The finite-volume cell is formed about
the vertex.

Cell-Centered Cell. The flow solution is located at the centroid of
the cell volume defined by the grid lines (primary grid).

Each approach has its advantages and disadvantages, but if
things are done right, both approaches do well.



Cell-Vertex Cell

- Solution located at vertices.
- Cell formed about vertex.
- Half-cell at the boundary.
- Solution point at boundary.

Wertex f Solution
Grid lines
Boundary

Cell edzes

WIND uses a cell-vertex finite-volume cell.




Cell-Centered Cell

- Grid forms the cell.
- Full cell at the boundary.
- Flux at boundary.




Simplified Cell Shapes

Often assumptions can be applied to simplify the geometry of the
flow domain, grid, and cells from a three-dimensional geometry:

Quasi-three dimensional cell.  Grid is planar (x,y) with the z-
coordinate varying to indicate variable depth of the cell.

Planar axisymmetric cell. Grid is planar (x,y) with y indicating the
distance from an axis-of-symmetry. Angle of axisymmetric wedge
indicates depth.

Planar two-dimensional cell. Grid is planar (x,y) with the z-
coordinate indicating the fixed depth of the cell.

Quasi-one-dimensional cell. Grid is one-dimensional (x) with the
cross-sectional area variable and specified along x.

One-dimensional cell. Grid is one-dimensional (x) with the cross-
sectional area constant along x.



Degenerate cell shapes are sometimes used to buila in tiexipility:

Wedged-shaped cell. The hexahedral has one face on the
boundary that has collapsed to a line that is a singular axis. Since
face as zero area, the flux is zero, so all is fine with the numerical
methods. Special boundary condition is usually applied to handle
these.

Sharp Nose Cell. The hexahedral has
one edge that has collapsed to a point.
This type of cell is used at a

sharp nose (i.e. nose

of a cone).
Singular axis
Nose



Degenerate Cell Shapes

The strength of the FVM is its direct connection to the physical
flow properties.

Indeed, the basis of the method relies on the direct
discretization of the integral form of the conservation law.

Integral form is the most general expression of a conservation
law, as it does not require the fluxes to be continuous (property
which is not satisfied for instance along shock waves or
along free Surfaces).

This is why we can state that the FVM is close to the physics of
the flow system.



Degenerate Cell Shapes

The FVM requires setting up the following steps:

Subdivide the mesh, obtained from the space discretization,
into finite (small) volumes, one Control volume being
associated to each mesh point.

Apply the integral conservation law to each of these finite
volumes.




Definition of the Finite Volume Discretization

® The integral conservation law is applied to each control
volume QJ associated to mesh point J defining hereby the
discretized equation for the unknowns UJ attached to that
same vertex or cell. The advantage of this method,
especially in absence of sources terms, is that the fluxes
are calculated only on two-dimensional surfaces instead of in
the three-dimensional space.

® Equation is replaced by its discrete form, where the
volume integrals are expressed as the averaged values
over the cell and where the surface integral is replaced
by a sum over all the bounding faces of the considered
volume QJ
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General Formulation of a Numerical Schemcg%.AREg
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A general and important interpretation of any numerical,
conservative scheme is obtained directly from the integral
conservation laws.

The formulation that follows is valid for all possible cases, with
structured grids or unstructured grids, either cell-centred or cell-
vertices




Alternative formulation of the conservative condition : Tare ;

/
Oy FOR \_\Q

Extending the subdivisions of equation to an arbitrary number
of cells, J =1-N, and summing over all the cells it is seen, after
cancellation of the contributions from all the internal cell
faces, that the sum will contain only contributions from the
fluxes along the parts of the cells belonging to the
boundaries of the domain and from the sources.

Therefore, the conservative condition can be expressed as a
requirement on the transient time evolution of the scheme.

Note that for stationary sources and boundary fluxes, the
right-hand side of this equation vanishes at convergence.

Defining AUJ/At as the average value of dU/dt over the cell QJ,
conservation of the scheme requires that, at each time step,
the following condition is to be satisfied.



