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CO’s Course outcomes

CO1 Understand the applications of CFD in various engineering fields 
and to generate governing equations in conservative and non-
conservative form.

CO2 Understand the mathematical behaviour of partial differential 
equations and classify into hyperbolic, parabolic and elliptical 
natures.

CO3 Acquire the concepts of finite difference method through 
discretization and grid generation techniques.

CO4 Identify different CFD techniques available for different partial 
differential equations.

CO5 Explore the concepts of finite volume methods, and its 
difference from finite difference method.
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INTRODUCTION TO CFD

UNIT - I
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UNIT - I

CLOs Course Learning Outcome

CLO1 Understand the necessity of CFD tool as both research and 
design areas in modern computational world.

CLO2 Explain the applications of computational fluid dynamics tool in 
various engineering branches other than aerospace 
engineering.

CLO3 Recognize the selection of type of flow from the finite control 
volume and infinitesimal small fluid element depending upon 
the requirements.

CLO4 Develop the governing equations required for computational 
aerodynamics in both conservation and non-conservation 
forms.
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Outline

 Approaches

 Introduction-Benefits

 Modeling of fluid

 Non Dimensional Representation

 Classification of PDE

 Finite Difference

 Consistency, Stability, Error analysis of schemes



Approach Advantages Disadvantages

Experimental Capable of being  most 
realistic

Equipment required,  
Scaling problems,  
Measurement  
Difficulty, Operating  
Cost

Theoretical General Information  in 
Formula form

Restricted to simple  
geometry and  physics, 
Usually for  Linear 
problems

Computational Complicated  Physics, 
Details of  Flow

Truncation Errors,  
Computer Costs,  
Boundary conditions
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Approaches



What is CFD?

 CFD: A methodology for obtaining a discrete solution of real
world fluid flow problems.

 Discrete Solution: Solution is obtained at a finite collection of
space points and at discrete time levels

 For a reasonably accurate solution, the number of space points
that need to involved is of the order of few millions. Solution is
achievable only through modern high speed computers
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Introduction



 Insight

• Difficult to prototype or test through experimentation

• Better Details

 Foresight

• Better prediction: In a short time

 Efficiency

• Design better and faster, economical, meet environmental
regulations and ensure industry compliance.

• CFD analysis leads to shorter design cycles and your products
get to market faster.

• In addition, equipment improvements are built and installed
with minimal downtime.

• CFD is a tool for compressing the design and development
cycle allowing for rapid prototyping.
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The Benefits of CFD



Analysis and Design
 Simulation-based design instead of “build & test”
 More cost effective and more rapid than EFDCFD provides high-

fidelity database for diagnosing flow field

 Simulation of physical fluid phenomena that are difficult  for 
experiments

Full scale simulations (e.g., ships and airplanes)
Environmental effects (wind, weather, etc.)
Hazards (e.g., explosions, radiation, pollution)
Physics (e.g., planetary boundary layer, stellar  evolution)

 Knowledge and exploration of flow physics
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Why use CFD?



 Where is CFD used?

• Aerospace

• Automotive

• Biomedical

• Chemical Processing

• HVAC

• Hydraulics

• Marine

• Oil & Gas

• Power Generation

• Sports

• Pollutant Monitoring
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Where is CFD used?

Aerospace

Streamlines for 

workstation  ventilation

Hydraulics

HVAC



 Where is CFD used?

• Aerospace

• Automotive

• Biomedical

• Chemical Processing

• HVAC

• Hydraulics

• Marine

• Oil & Gas

• Power Generation

• Sports
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Where is CFD used?

Chemical Processing

Polymerization reactor vessel - prediction  

of flow separation and residence time 

effects.



 Where is CFD used?

• Aerospace

• Automotive

• Biomedical

• Chemical Processing

• HVAC

• Hydraulics

• Marine

• Oil & Gas

• Power Generation

• Sports
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Where is CFD used?

Oil & Gas
Sports

Power Generation

Flow around cooling  towers
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Steps in CFD Analysis



Continuum models

– Each Macroscopic property = f(r, t)

Non Continuum models

– Micro, slip flow, molecular Based on the

Knudsen number=Ratio of Mean free path/length scale
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Modelling of Fluid Flow

Overlap region: 0.01 to 0.1

– Levels of approximation: temp and velocity jump at soild-fluid  
interface



 Materials , such as solids, liquids and gases, are composed of
molecules separated by space.

 On a microscopic scale, materials have cracks and discontinuities.
However, certain physical phenomena can be modeled assuming
the materials exist as a continuum, meaning the matter in the
body is continuously distributed and fills the entire region of
space it occupies.

 A continuum is a body that can be continually sub-divided into
infinitesimal elements with properties being those of the bulk
material.
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Continuum Model



All conservative forms are considered most suitable for CFD

 The conservative properties can be easily preserved at
discrete level.

 For high speed flows having discontinuous features like
shock waves, the fluxes in the conservation equations
remain well behaved across these almost discontinuous
features, and therefore the flow behavior is better captured
at the discrete level.
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Conservative form



The governing equations include the following conservation laws of 
physics:

 Conservation of mass.

 Newton’s second law: the change of momentum equals the 
sum of forces on a fluid particle.

 First law of thermodynamics (conservation of energy): rate of 
change of energy equals the sum of rate of heat addition to 
and work done on fluid particle.

The fluid is treated as a continuum. For length scales of, say, 1m 
and larger, the molecular structure and motions may be ignored.
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Governing equations
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Lagrangian vs. Eulerian description
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A fluid flow field can be thought of as

being comprised of a large number of
finite sized fluid particles which have
mass, momentum, internal energy, and
other properties. Mathematical laws
can then be written for each fluid
particle. This is the Lagrangian
description of fluid motion.

Another view of fluid motion is the
Eulerian description. In the Eulerian
description of fluid motion, we
consider how flow properties change
at a fluid element that is fixed in
space and time (x,y,z,t) rather than
following individual fluid particles.

Governing equations can be derived using each
method and converted to the other form.
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Fluid element and properties

The behavior of the fluid is described in terms
of macroscopic properties:

Velocity u.

Pressure p.

Density r.

Temperature T.

Energy E.

Typically ignore (x,y,z,t) in the notation.

Properties are averages of a sufficiently large
number of molecules.

A fluid element can be thought of as the
smallest volume for which the continuum
assumption is valid.

x
y

z
dy

dx

dz(x,y,z)

Fluid element for 

conservation laws

Faces are labeled North, 

East, West, South, Top and 

Bottom
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Mass balance

 Rate of increase of mass in fluid element equals the net rate of flow 
of mass into element.

 Rate of increase is:

 The inflows (positive) and outflows (negative) are shown here:
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Continuity equation

 Summing all terms in the previous slide and dividing by the 
volume dxdydz results in:

 In vector notation:

 For incompressible fluids ρ/ t = 0, and the equation becomes: 
div u = 0.

Alternative ways to write this:                                and

0
)()()(


















z
w

y
v

x
u

t


0)( 



u


div
t

Change in density Net flow of mass across boundaries
Convective term

0









z
w

y
v

x
u 0





i

i

x

u



22

Different forms of the continuity equation
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Rate of change for a fluid particle

 Terminology: fluid element is a volume stationary in space, and a
fluid particle is a volume of fluid moving with the flow.

 A moving fluid particle experiences two rates of changes:

 Change due to changes in the fluid as a function of time.

 Change due to the fact that it moves to a different location in
the fluid with different conditions.

 The sum of these two rates of changes for a property per unit
mass  is called the total or substantive derivative D /Dt:

 With dx/dt=u, dy/dt=v, dz/dt=w, this results in:

dt

dz

zdt

dy

ydt

dx

xtDt

D


























grad
tDt

D
.u








24

Rate of change for a stationary fluid element

 In most cases we are interested in the changes of a flow 
property for a fluid element, or fluid volume, that is 
stationary in space.

 However, some equations are easier derived for fluid 
particles. For a moving fluid particle, the total derivative per 
unit volume of this property f is given by:

 For a fluid element, for an arbitrary conserved property f :
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Rate of change for a stationary fluid element

 In most cases we are interested in the changes of a flow 
property for a fluid element, or fluid volume, that is 
stationary in space.

 However, some equations are easier derived for fluid 
particles. For a moving fluid particle, the total derivative per 
unit volume of this property f is given by:

 For a fluid element, for an arbitrary conserved property f :
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Net rate of flow of
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Rate of increase of 
f for a fluid particle

=

Fluid particle and fluid element

We can derive the relationship between the equations for a fluid 
particle (Lagrangian) and a fluid element (Eulerian) as follows:
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To remember so far

 We need to derive conservation equations that we can solve to
calculate fluid velocities and other properties.

 These equations can be derived either for a fluid particle that is
moving with the flow (Lagrangian) or for a fluid element that is
stationary in space (Eulerian).

 For CFD purposes we need them in Eulerian form, but
(according to the book) they are somewhat easier to derive in
Lagrangian form.

 Luckily, when we derive equations for a property  in one form,
we can convert them to the other form using the relationship
shown on the bottom in the previous slide.
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Relevant entries for Φ
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Momentum equation in three dimensions

 We will first derive conservation equations for momentum and
energy for fluid particles. Next we will use the above relationships
to transform those to an Eulerian frame (for fluid elements).

 We start with deriving the momentum equations.

 Newton’s second law: rate of change of momentum equals sum of
forces.

 Rate of increase of x-, y-, and z-momentum:

 Forces on fluid particles are:

 Surface forces such as pressure and viscous forces.

 Body forces, which act on a volume, such as gravity, centrifugal,
Coriolis, and electromagnetic forces.

Dt

Dw

Dt

Dv

Dt

Du
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Viscous stresses

 Nine stress components.

 txx, tyy, tzz are normal stresses.

E.g. tzz is the stress in the z-direction 
on a z-plane.

 Other stresses are shear stresses. E.g. 
tzy is the stress in the y-direction on a 
z-plane.

Fig

Forces aligned with the direction of a coordinate axis are positive. 
Opposite direction is negative.

• Stresses are forces per area. Unit is N/m2 or Pa. 
• Viscous stresses denoted by t.

• Suffix notation tij is used to indicate direction.
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Forces in the x-direction
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Net force in the x-direction is the sum of all the force components
in that direction.



 Set the rate of change of x-momentum for a fluid particle Du/Dt
equal to:

 the sum of the forces due to surface stresses shown in the 
previous slide, plus

 the body forces. These are usually lumped together into a 
source term SM:

 p is a compressive stress and txx is a tensile stress.

 Similarly for y- and z-momentum:

32

Mx

zxyxxx S
zyx

p

Dt

Du




















)(

My

zyyyxy
S

zy

p

xDt

Dv




















)(

Mz
zzyzxz S

z

p

yxDt

Dw

















)( 


MOMENTUM EQUATION 



 First law of thermodynamics: rate of change of energy of
a fluid particle is equal to the rate of heat addition plus
the rate of work done.

 Rate of increase of energy is ρDE/Dt.

 Energy E = i + ½ (u2+v2+w2).

Here, i is the internal (thermal energy).

½ (u2+v2+w2) is the kinetic energy.

 Potential energy (gravitation) is usually treated separately
and included as a source term.

 We will derive the energy equation by setting the total
derivative equal to the change in energy as a result of
work done by viscous stresses and the net heat
conduction.
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Energy equation
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Work done is force times velocity. 

Work done by surface stresses in x-direction



 The total rate of work done by surface stresses is calculated 
as follows:

 For work done by x-components of stresses add all terms 
in the previous slide.

 Do the same for the y- and z-components.

 Add all and divide by dxdydz to get the work done per unit 
volume by the surface stresses:

35

z

u

y

w

x

w

z

v

y

v

x

v

z

u

y

u

x

u
pdiv

zzyzxzzyyy

xyzxyxxx














































)()()()()(

)()()()(
)(




u

Work done by surface stresses
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The heat flux vector q has three components, qx, qy, and qz.

Energy flux due to heat conduction



 Summing all terms and dividing by dxdydz gives the net rate of heat 
transfer to the fluid particle per unit volume:

 Fourier’s law of heat conduction relates the heat flux to the local 
temperature gradient:

In vector form:

 Thus, energy flux due to conduction:   

 This is the final form used in the energy equation.
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Energy flux due to heat conduction



 Setting the total derivative for the energy in a fluid particle equal
to the previously derived work and energy flux terms, results in
the following energy equation:

 Note that we also added a source term SE that includes sources
(potential energy, sources due to heat production from chemical
reactions, etc.).
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Energy equation



 Separately, we can derive a conservation equation for the
kinetic energy of the fluid.

 In order to do this, we multiply the u-momentum equation by
u, the v-momentum equation by v, and the w-momentum
equation by w. We then add the results together.

 This results in the following equation for the kinetic energy:
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Kinetic energy equation



 Subtract the kinetic energy equation from the energy 
equation.

 Define a new source term for the internal energy as 

Si = SE - u.SM. This results in:
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Internal energy equation



An often used alternative form of the energy equation is the 
total enthalpy equation.

 Specific enthalpy h = i + p/ ρ. 

 Total enthalpy h0 = h + ½ (u2+v2+w2) = E + p/ ρ.
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Enthalpy equation



Viscous stresses

 A model for the viscous stresses tij is required.

 We will express the viscous stresses as functions of the local
deformation rate (strain rate) tensor.

 There are two types of deformation:

 Linear deformation rates due to velocity gradients.

○ Elongating stress components (stretching).

○ Shearing stress components.

 Volumetric deformation rates due to expansion or
compression.

 All gases and most fluids are isotropic: viscosity is a scalar.

 Some fluids have anisotropic viscous stress properties, such as
certain polymers and dough.
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Viscous stresses



 Using an isotropic (first) dynamic viscosity m for the linear
deformations and a second viscosity λ=-2/3μ for the volumetric
deformations results in:
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Note: div u = 0 for incompressible fluids

Viscous stress tensor



Including the viscous stress terms in the momentum balance and 
rearranging, results in the Navier-Stokes equations:
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Navier-Stokes equations



Viscous dissipation

 Similarly, substituting the stresses in the internal energy
equation and rearranging results in:

 Here F is the viscous dissipation term. This term is always
positive and describes the conversion of mechanical energy
to heat.
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Viscous dissipation
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Summary of equations in conservation form



 The system of equations is now closed, with seven equations for 
seven variables: pressure, three velocity components, enthalpy, 
temperature, and density.

 There are significant commonalities between the various 
equations. Using a general variable , the conservative form of all 
fluid flow equations can usefully be written in the following form:

 Or, in words:
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General transport equations



 The key step of the finite volume method is to integrate the
differential equation shown in the previous slide, and then to apply
Gauss’ divergence theorem, which for a vector a states:

 This then leads to the following general conservation equation in
integral form:

 This is the actual form of the conservation equations solved by
finite volume based CFD programs to calculate the flow pattern
and associated scalar fields.
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Integral form



 Overview.

 Inlet and outlet boundaries.

 Velocity.

 Pressure boundaries and others.

 Wall, symmetry, periodic and axis boundaries.

 Internal cell zones.

 Fluid, porous media, moving cell zones.

 Solid.

 Internal face boundaries.

 Material properties.

 Proper specification.
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Boundary conditions



 When solving the Navier-Stokes
equation and continuity equation,
appropriate initial conditions and
boundary conditions need to be
applied.

 In the example here, a no-slip
boundary condition is applied at
the solid wall.
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Boundary conditions



Boundary conditions are a required
component of the mathematical model.

Boundaries direct motion of flow.

Specify fluxes into the computational
domain, e.g. mass, momentum, and
energy.

Fluid and solid regions are represented
by cell zones.

Material and source terms are assigned
to cell zones.

Boundaries and internal surfaces are
represented by face zones.

Boundary data are assigned to face
zones.
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 When using a Dirichlet boundary condition, one prescribes the
value of a variable at the boundary, e.g. u(x) = constant.

 When using a Neumann boundary condition, one prescribes the
gradient normal to the boundary of a variable at the boundary,
e.g. nu(x) = constant.

 When using a mixed boundary condition a function of the form
au(x)+bnu(x) = constant is applied.

 Note that at a given boundary, different types of boundary
conditions can be used for different variables.
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Neumann and Dirichlet boundary conditions



 A wide range of boundary conditions types permit the flow to 
enter and exit the solution domain:

 General: pressure inlet, pressure outlet.

 Incompressible flow: velocity inlet, outflow.

 Compressible flows: mass flow inlet, pressure far-field.

 Special: inlet vent, outlet vent, intake fan, exhaust fan.

 Boundary data required depends on physical models selected.
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Flow inlets and outlets



General guidelines:

 Select boundary location and shape such that flow either goes
in or out. Not mandatory, but will typically result in better
convergence.

 Should not observe large gradients in direction normal to
boundary near inlets and outlets. This indicates an incorrect
problem specification.

Minimize grid skewness near boundary.
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Flow inlets and outlets



 Pressure boundary conditions require
static gauge pressure inputs:

 The operating pressure input is set
separately.

 Useful when:

 Neither the flow rate nor the
velocity are known (e.g. buoyancy-
driven flows).

 A “free” boundary in an external or
unconfined flow needs to be
defined.
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operatingstaticabsolute
ppp 

Pressure boundary conditions



 One defines the total gauge pressure, temperature, and other scalar
quantities at flow inlets:

 Here k is the ratio of specific heats (cp/cv) and M is the Mach
number. If the inlet flow is supersonic you should also specify the
static pressure.

 Suitable for compressible and incompressible flows. Mass flux
through boundary varies depending on interior solution and
specified flow direction.

 The flow direction must be defined and one can get non-physical
results if no reasonable direction is specified.
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 Outflow can occur at pressure inlet boundaries. In that case the
flow direction is taken from the interior solution.

 For non-isothermal incompressible flows, one specifies the inlet
temperature.

 For compressible flows, one specifies the total temperature T0,
which is defined as the temperature that the flow would have if
it were brought to a standstill under isentropic conditions:

 Here k is the ratio of specific heats (cp/cv), M is the Mach
number, and Ts is the static temperature.
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Pressure inlet boundary (2)



 Here one defines the static/gauge pressure at the outlet boundary. 
This is interpreted as the static pressure of the environment into 
which the flow exhausts.

 Usually the static pressure is assumed to be constant over the outlet. 
A radial equilibrium pressure distribution option is available for cases 
where that is not appropriate, e.g. for strongly swirling flows.

 Backflow can occur at pressure outlet boundaries:

 During solution process or as part of solution.

 Backflow is assumed to be normal to the boundary.

 Convergence difficulties minimized by realistic values for backflow 
quantities.

 Value specified for static pressure used as total pressure wherever 
backflow occurs.

 Pressure outlet must always be used when model is set up with a 
pressure inlet.
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Pressure outlet boundary



 Defines velocity vector and scalar properties of flow at inlet
boundaries.

 Useful when velocity profile is known at inlet. Uniform profile
is default but other profiles can be implemented too.

 Intended for incompressible flows. The total (stagnation)
properties of flow are not fixed. Stagnation properties vary to
accommodate prescribed velocity distribution. Using in
compressible flows can lead to non-physical results.

 Avoid placing a velocity inlet too close to a solid obstruction.
This can force the solution to be non-physical.
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Velocity inlets



 Outflow boundary conditions are used to model flow exits
where the details of the flow velocity and pressure are not
known prior to solution of the flow problem.

 Appropriate where the exit flow is close to a fully developed
condition, as the outflow boundary condition assumes a zero
normal gradient for all flow variables except pressure. The
solver extrapolates the required information from interior.

 Furthermore, an overall mass balance correction is applied.
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Outflow boundary



Outflow boundaries cannot be used:

With compressible flows.

With the pressure inlet boundary 
condition (use velocity inlet 
instead) because the combination 
does not uniquely set a pressure 
gradient over the whole domain.

 In unsteady flows with variable 
density.

Do not use outflow boundaries 
where:

Flow enters domain or when 
backflow occurs (in that case use 
pressure b.c.).

Gradients in flow direction are 
significant.

Conditions downstream of exit 
plane impact flow in domain.

61

outflow 

conditio

n ill-

posed

outflow 

condition 

not obeyed

outflow 

conditio

n 

obeyed

outflow 

conditi

on 

closely 

obeyed

Restrictions on outflow boundaries



 Using outflow boundary condition:

 Mass flow divided equally among all outflow boundaries by 
default.

 Flow rate weighting (FRW) set to one by default.

 For uneven flow distribution one can specify the flow rate 
weighting for each outflow boundary: mi=FRWi/FRWi.

 The static pressure then varies among the exits to accommodate 
this flow distribution. 

 Can also use pressure outlet boundaries to define exits.
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Modeling multiple exits



Mass flow inlet.

 Used in compressible flows to prescribe mass flow rate at 
inlet.

 Not required for incompressible flows.

Pressure far field.

 Available when density is calculated from the ideal gas law.

 Used to model free-stream compressible flow at infinity, 
with free-stream Mach number and static conditions 
specified.
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Other inlet and outlet boundary conditions



Exhaust fan/outlet vent.

 Model external exhaust fan/outlet vent with specified
pressure jump/loss coefficient and ambient (discharge)
pressure and temperature.

Inlet vent/intake fan.

 Model inlet vent/external intake fan with specified loss
coefficient/ pressure jump, flow direction, and ambient
(inlet) pressure and temperature.
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Other inlet and outlet boundary conditions



When turbulent flow enters domain at inlet, outlet, or at a far-field
boundary, boundary values are required for:

 Turbulent kinetic energy k.

 Turbulence dissipation rate .

Four methods available for specifying turbulence parameters:

 Set k and  explicitly.

 Set turbulence intensity and turbulence length scale.

 Set turbulence intensity and turbulent viscosity ratio.

 Set turbulence intensity and hydraulic diameter.
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Determining turbulence parameters



 The turbulence intensity I is defined as:

 Here k is the turbulent kinetic energy and u is the local velocity 
magnitude.

 Intensity and length scale depend on conditions upstream:

 Exhaust of a turbine.

Intensity = 20%. Length scale = 1 - 10 % of blade span.

 Downstream of perforated plate or screen.

Intensity = 10%. Length scale = screen/hole size.

 Fully-developed flow in a duct or pipe.

Intensity = 5%. Length scale = hydraulic diameter.
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Turbulence intensity



 Used to bound fluid and solid regions.

 In viscous flows, no-slip condition enforced at walls.

 Tangential fluid velocity equal to wall velocity.

 Normal velocity component is set to be zero.

 Alternatively one can specify the shear stress.

 Thermal boundary condition.

 Several types available.

 Wall material and thickness can be defined for 1-D or in-
plane thin plate heat transfer calculations.

 Wall roughness can be defined for turbulent flows.

 Wall shear stress and heat transfer based on local flow field.

 Translational or rotational velocity can be assigned to wall.
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Wall boundaries



 Used to reduce computational effort in problem.

 Flow field and geometry must be symmetric:

 Zero normal velocity at symmetry plane.

 Zero normal gradients of all variables at symmetry plane.

 No inputs required.

Must take care to correctly define symmetry boundary locations.

 Also used to model slip walls in viscous flow.
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Symmetry boundaries



 Used when physical geometry of interest and expected flow 
pattern and the thermal solution are of a periodically repeating 
nature.

 Reduces computational effort in problem.

Two types available:

 p = 0 across periodic planes.

○ Rotationally or translationally periodic.

○ Rotationally periodic boundaries require axis of rotation be 
defined in fluid zone.

 p is finite across periodic planes.

○ Translationally periodic only.

○ Models fully developed conditions.

○ Specify either mean p per period or net mass flow rate.
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Periodic boundaries
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Periodic boundaries: examples



 Used at the centerline (y=0) of 
a 2-D axisymmetric grid.

 Can also be used where 
multiple grid lines meet at a 
point in a 3D O-type grid.

 No other inputs are required.
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AXIS

boundary

Axis boundaries



 A fluid zone is the group of cells for which all active equations 
are solved.

 Fluid material input required.

 Single species, phase.

 Optional inputs allow setting of source terms:

 Mass, momentum, energy, etc.

 Define fluid zone as laminar flow region if modeling transitional 
flow.

 Can define zone as porous media. 

 Define axis of rotation for rotationally periodic flows.

 Can define motion for fluid zone.
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Cell zones: fluid



 Porous zone modeled as special type of fluid zone.

 Enable the porous zone option in the fluid boundary
conditions panel.

 Pressure loss in flow determined via user inputs of
resistance coefficients to lumped parameter model.

 Used to model flow through porous media and other
“distributed” resistances, e.g:

 Packed beds.

 Filter papers.

 Perforated plates.

 Flow distributors.

 Tube banks.

73

Porous media conditions



 For single zone problems use the rotating reference
frame model. Define the whole zone as moving
reference frame. This has limited applicability.

 For multiple zone problems each zone can be
specified as having a moving reference frame:

 Multiple reference frame model. Least accurate,
least demanding on CPU.

 Mixing plane model. Field data are averaged at the
outlet of one zone and used as inlet boundary data
to adjacent zone.

 Or each zone can be defined as moving mesh using
the sliding mesh model. Must then also define
interface. Mesh positions are calculated as a function
of time. Relative motion must be tangential (no
normal translation).
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Moving zones



 A solid zone is a group of cells for which only heat conduction
is solved and no flow equations are solved.

 The material being treated as solid may actually be fluid, but
it is assumed that no convection takes place.

 The only required input is material type so that appropriate
material properties are being used.

 Optional inputs allow you to set a volumetric heat generation
rate (heat source).

 Need to specify rotation axis if rotationally periodic
boundaries adjacent to solid zone.

 Can define motion for solid zone.
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Cell zones: solid



 Defined on cell faces.

 Do not have finite thickness.

 Provide means of introducing step change in flow
properties.

 Used to implement physical models representing:

 Fans.

 Radiators.

 Porous jumps.

 Interior walls. In that case also called “thin walls.”
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Internal face boundaries



 For each zone, a material needs to be specified.

 For the material, relevant properties need to be specified:

 Density.

 Viscosity, may be non-Newtonian.

 Heat capacity.

 Molecular weight.

 Thermal conductivity.

 Diffusion coefficients.

 Which properties need to be specified depends on the model.
Not all properties are always required.

 For mixtures, properties may have to be specified as a function

of the mixture composition.
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Material properties



 For constant density, incompressible flow:  = constant.

 For compressible flow:  = pabsolute/RT.

 Density can also be defined as a function of temperature
(polynomial, piece-wise polynomial, or the Boussinesq model
where  is considered constant except for the buoyancy term in
the momentum equations) or be defined with user specified
functions.

 For incompressible flows where density is a function of
temperature one can also use the so-called incompressible-
ideal-gas law:  = poperating/RT.

 Generally speaking, one should set poperating close to the mean
pressure in the domain to avoid round-off errors.

 However, for high Mach number flows using the coupled solver,
set poperating to zero.

78

Fluid density



 Proper specification of boundary conditions is very important.

 Incorrect boundary conditions will lead to incorrect results.

 Boundary conditions may be overspecified or underspecified.

 Overspecification occurs when more boundary conditions are
specified than appropriate and not all conditions can hold at
the same time.

 Underspecification occurs when the problem is incompletely
specified, e.g. there are boundaries for which no condition is
specified.

 Commercially available CFD codes will usually perform a
number of checks on the boundary condition set-up to prevent
obvious errors from occurring.
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When is a problem properly specified?



 Zones are used to assign boundary conditions.

 Wide range of boundary conditions permit flow to enter and
exit solution domain.

 Wall boundary conditions used to bound fluid and solid
regions.

 Repeating boundaries used to reduce computational effort.

 Internal cell zones used to specify fluid, solid, and porous
regions.

 Internal face boundaries provide way to introduce step
change in flow properties.
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Summary
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MATHEMATICAL BEHAVIOR OF 
PARTIAL DIFFERENTIAL EQUATIONS 

AND THEIR IMPACT ON 
COMPUTATIONAL AERODYNAMICS
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UNIT- II
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UNIT - II

CLOs Course Learning Outcome

CLO5 Explain the need of classification of quasi linear partial 
differential equations by Cramer’s rule and Eigen Value Method.

CLO6 Understand the concepts of range of influence and domain of 
dependence for a flow field.

CLO7 Explain the general behavior of the partial differential equations 
which falls in hyperbolic, parabolic and elliptic equations.

CLO8 Demonstrate the CFD aspects of the hyperbolic, parabolic and 
elliptic equations in aerodynamic problems and physical 
problems.



 Introduction to PDEs.

 Semi-analytic methods to solve PDEs.

 Introduction to Finite Differences.

 Stationary Problems, Elliptic PDEs.

 Time dependent Problems.

 Complex Problems in Solar System Research.
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Numerical Integration of
Partial Differential Equations (PDEs)



 A differential equation is an equation for an unknown function
of one or several variables that relates the values of the
function itself and of its derivatives of various orders.

 Ordinary Differential Equation: Function has 1 independent
variable.

 Partial Differential Equation: At least 2 independent variables.
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Differential Equations



 General (implicit) form for one function u(x,y) :

 Highest derivative defines order of PDE

 Explicit PDE => We can resolve the equation
to the highest derivative of u. 

 Linear PDE => PDE is linear in u(x,y) and 
for all derivatives of u(x,y)

 Semi-linear PDEs are nonlinear PDEs, which
are linear in the highest order derivative.
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PDEs definitions



a(x,y)c(x,y) − b(x,y)2 / 4 > 0  Elliptic

 a(x,y)c(x,y) − b(x,y)2 / 4 = 0  Parabolic

 a(x,y)c(x,y) − b(x,y)2 / 4 < 0  Hyperbolic
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Quasi-linear: coefficients depend on u and/or first derivative of u, 
but NOT on second derivatives.

Linear PDEs of 2. Order



 Quadratic equations in the form  describe cone sections.
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a(x,y)c(x,y) − b(x,y)2 / 4 > 0  Ellipse

a(x,y)c(x,y) − b(x,y)2 / 4 = 0  Parabola

a(x,y)c(x,y) − b(x,y)2 / 4 < 0  Hyperbola

PDEs and Quadratic Equations
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With coordinate transformations these equations can be
written in the standard forms:

Ellipse:

Parabola:

Hyperbola:

Coordinate transformations can be also applied to get rid of the
mixed derivatives in PDEs.
(For space dependent coefficients this is only possible locally, not
globally)

PDEs and Quadratic Equations
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PDEs and Quadratic Equations



 Elliptic: All eigen values have the same sign. [Laplace-Eq.]

 Parabolic: One eigen value is zero. [Diffusion-Eq.]

 Hyperbolic: One eigen value has opposite sign. [Wave-Eq.]

 Ultra hyperbolic: More than one positive and negative 
eigenvalue. 

Mixed types are possible for non-constant coefficients,
appear frequently in science and are often difficult to solve.
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Classification by eigen values of the coefficient matrix:

Second Order PDEs with more then
2 independent variables



 Classification of partial differential equations

 A general partial differential equation in coordinates x and
y:Characterization depends on the roots of the higher order
(here Second order) terms:

b2-4ac> 0 then the equation is called hyperbolic.

b2-4ac = 0 then the equation is called parabolic.

b2-4ac< 0 then the equation is called elliptic.

 Note: if a, b, and c themselves depend on x and y, the
equations may be of different type, depending on the
location in x-y space.
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Classifications



 Elliptic equations are characteristic of equilibrium problems, this
includes many (but not all) steady state flows.

 Examples are potential flow, the steady state temperature
distribution in a rod of Solid material and equilibrium stress
distributions in solid objects under applied Loads.

 For potential flows the velocity is expressed in terms of a velocity
potential: u=∇φ. Because the flow is incompressible, ∇.u=0, which
results in ∇2φ=0. This is also known as Laplace’s equation

 The solution depends solely on the boundary conditions. This is also
known as a boundary value problem.

 A disturbance in the interior of the solution affects the solution
everywhere else. The disturbance signals travel in all directions.

 As a result, solutions are always smooth, even when boundary
conditions are Discontinuous. This makes numerical solution easier.
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ELLIPTIC PROBLEMS



 Parabolic equations describe marching problems. This
includes time dependent problems which involve significant
amounts of dissipation. Examples are unsteady viscous flows
and unsteady heat conduction. Steady viscous boundary
layer flow is also parabolic (march along streamline, not in
time).

 An example is the transient temperature distribution in a
cooling down rod: The temperature depends on both the
initial and boundary conditions. This is also called an initial-
boundary-value problem.

 Disturbances can only affect solutions at a later time.

 Dissipation ensures that the solution is always smooth.
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PARABOLIC PROBLEMS
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PARABOLIC PROBLEMS



Hyperbolic equations are typical of marching problems with
negligible dissipation.

An example is the wave equation:

This describes the transverse displacement of a string during small
amplitude vibrations. If y is the displacement, x the coordinate
along the string, and a the initial amplitude, the solution is: Note
that the amplitude is independent of time, i.e. there is no
dissipation. Hyperbolic problems can have discontinuous solutions.

 Disturbances may affect only a limited region in space. This is
called the zone of influence. Disturbances propagate at the wave
speed c.

 Local solutions may only depend on initial conditions in the
domain of dependence.
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HYPERBOLIC PROBLEMS
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HYPERBOLIC PROBLEMS



A problem is well posed if:

 A solution exists.

 The solution is unique.

 The solution depends continuously on the
data (boundary and/or initial conditions).

 Problems which do not fulfill these criteria
are ill-posed.
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Well posed problems have a good chance to be solved
numerically with a stable algorithm.

1865-1963

Well posed problems

(as defined by Hadamard 1902)

http://en.wikipedia.org/wiki/Image:Hadamard2.jpg
http://en.wikipedia.org/wiki/Image:Hadamard2.jpg


 Ill-posed problems play an important role in some areas, for 

example for inverse problems like tomography.

 Problem needs to be reformulated for numerical treatment.

 Add additional constraints, for example smoothness of the 

solution.

 Input data need to be regularized / preprocessed.
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Ill-posed problems



 Even well posed problems can be ill-conditioned. 
 Small changes (errors, noise) in data lead to large errors in the 

solution.
 Can occur if continuous problems are solved approximately on a 

numerical grid.
 PDE => algebraic equation in form  Ax = b
 Condition number  of matrix  A:

are maximal and minimal Eigen values of A.

 Well conditioned problems have a low condition number.
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Ill-conditioned problems



PDEs are solved together with appropriate Boundary conditions
and/or Initial Conditions.

Boundary value problem

Dirichlet B.C:

Specify u(x,y,...) on boundaries (say at x=0, x=Lx, y=0, y=Ly in a
rectangular box)

Von Neumann B.C:

Specify normal gradient of u(x,y,...) on boundaries.

In principle boundary can be arbitrary shaped.(but difficult to
implement in computer codes)
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How to solve PDEs?

http://en.wikipedia.org/wiki/Image:Bounday_value_problem.PNG
http://en.wikipedia.org/wiki/Image:Bounday_value_problem.PNG
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Boundary value problem



 Boundary values are usually specified on all boundaries of the
computational domain.

 Initial conditions are specified in the entire computational
(spatial) domain, but only for the initial time t=0.

 Initial conditions as a Cauchy problem:
-Specify initial distribution u(x,y,...,t=0)
[for parabolic problems like the Heat equation]
- Specify u and du/dt for t=0
[for hyperbolic problems like wave equation.] 
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Initial value problem



BASIC ASPECTS OF 
DISCRETIZATION

104

UNIT - III
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UNIT - III

CLOs Course Learning Outcome

CLO9 Explain the need of classification of quasi linear partial 
differential equations by Cramer’s rule and Eigen Value Method.

CLO10 Understand the concepts of range of influence and domain of 
dependence for a flow field.

CLO11 Explain the general behavior of the partial differential equations 
which falls in hyperbolic, parabolic and elliptic equations.

CLO12 Demonstrate the CFD aspects of the hyperbolic, parabolic and 
elliptic equations in aerodynamic problems and physical 
problems.

CLO13 Understand the need for generating grids for solving the finite 
differential equations in analyzing a flow field.

CLO14 Explain the technique of pressure correction method with the 
need of staggered grid and its philosophy.



 Most PDEs cannot be solved analytically.
 Variable separation works only for some simple cases and in

particular usually not for in homogenous and/or nonlinear
PDEs.

 Numerical methods require that the PDE become discretized
on a grid.

 Finite difference methods are popular/ most commonly used in
science. They replace differential equation by difference
equations)

 Engineers (and a growing number of scientists too) often use
Finite Elements.
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Numerical methods
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 How to compute differential quotient numerically?

 Just apply the formular above for a finite h.

 For simplicity we use an equidistant grid in
x=[0,h,2h,3h,......(n-1) h] and evaluate f(x) on the
corresponding grid points xi.

 Grid resolution h must be sufficient high. Depends strongly
on function f(x)!

Remember the definition of differential quotient:

Finite differences
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We approximate the derivative of f(x)=sin(n x) on a grid x=0 ...2
Pi with 50 (and 500) grid points by df/dx=(f(x+h)-f(x))/h and
compare with the exact solution df/dx= n cos(n x)

Average error done by 
discretization: 
50 grid points:  0.040 
500 grid points: 0.004 

Accuracy of finite differences



109

We approximate the derivative of f(x)=sin(n x) on a grid x=0 ...2 Pi 
with 50 (and 500) grid points by df/dx=(f(x+h)-f(x))/h and 
compare with the exact solution df/dx= n cos(n x)

Average error done by 
discretization: 
50 grid points:  2.49 
500 grid points: 0.256 

Accuracy of finite differences
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Can we use more points for higher accuracy?

Higher accuracy methods



 df/dx=(f(x+h)-f(x))/h computes the derivative at x+h/2 and 
not exactly at x.

 The alternative formular df/dx=(f(x)-f(x-h))/h has the same 
shortcomings. 

 We introduce central differences: df/dx=(f(x+h)-f(x-h))/(2 h)  
which provides the derivative at x.

 Central differences are of 2. order accuracy instead of 1. 
order for the simpler methods above.
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Higher accuracy: Central differences
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For sufficient smooth functions we describe the function f(x)
locally by polynomial of nth order. To do so n+1 grid points are
required. n defines the order of the scheme.

Make a Taylor expansion (Definition                         ):

How to find higher order formulas?
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We approximate the derivative of f(x)=sin(n x) on a grid x=0 ...2
Pi with 50 (and 500) grid points with 1th, 2th and 4th order
schemes:

1th order 2th order 4th order

n=1, 50 pixel 0.04 0.0017 5.4 10-6

n=1, 500 pixel 0.004 1.7 10-5 4.9 10-6

n=8, 50 pixel 2.49 0.82 0.15

n=8, 500 pixel 0.26 0.0086 4.5 10-5

n=20, 50 pixel 13.5 9.9 8.1

n=20, 500 pix. 1.60 0.13 0.0017

Accuracy of finite differences



 Approximations to partial derivatives

 Finite difference representation of Partial Differential 
Equations

 Discretization

– Consistency

– Stability

– Convergence

 Explicit and implicit approaches

 The finite volume technique

 Boundary conditions

 Stability analysis
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OUTLINE OF DISCRETIZATION 



 Forward difference

 Backward difference

 Central difference
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THE WAYS TO OBTAIN FINITE DIFFERENCE 
REPRESENTATIONS OF DERIVATIVES



 Depends on the physics of the problem being studied

 Any scheme that fails to represents the physics correctly will 
fail when you attempt to obtain a solution

Steps of Numerical Solution

Discretization

Consistency

Stability

Convergence
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ON THE SELECTION OF A FINITE DIFFERENCE 

APPROXIMATION



 This is the process of replacing derivatives by finite difference
approximations.

 This introduces an error due to the truncation error arising
from the finite difference approximation and any errors due
to treatment of BC’s.

 The size of the truncation error will depend locally on the
solution. In most cases we expect the discretization error to
be larger than round-off error.
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Discretization



A stable numerical scheme is one for which errors from any source 
(round-off, truncation) are not permitted to grow in the sequence of 
numerical procedures as the calculation proceeds from one marching 
step, or iteration, to the next, thus: errors grow→ unstable errors 
decay → stable

 Stability is normally thought of  as being associated with marching 
problems

 Stability requirements often dictate allowable step sizes

 In many cases a stability analysis can be made to define the 
stability requirements.
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Stability



The solution of the FDE’s should approach the solution of the PDE 
as the mesh is refined.

Lax Equivalence Theorem (linear, initial value)

For a properly posed problem, with a consistent finite difference 
representation, stability is the necessary and sufficient condition for 
convergence.

In practice, numerical experiments must be conducted to 
determine if the solution appears to be converged with respect to 
mesh size.
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Convergence



There are many difference techniques used in CFD, you will find
that any technique falls into One or the other of following two
different general approaches:

– Explicit approach

– Implicit approach
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Two Different Approaches



Advantages of explicit

 Relative simple to set up and program

 This scheme is easily vectorized and a natural for massively 
parallel computation

Disadvantage of explicit

 Stability requirements require very small steps sizes
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Explicit approach



Advantage of implicit

 Stability requirements allow a large step size

Disadvantages of implicit

 More complicated to set up and program

 This scheme is harder to vectorize or parallelize

 Since the solution of a system of equations is required at
each step, the computer time per step is much larger than in
the explicit approach.
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Implicit approach



 Because of the large number of mesh points, it is generally
not practical to solve the system of equations

 Instead, an iterative procedure is usually employed.

Initial guess for the solution is made and then each mesh
point in the flow field is updated repeatedly until the values
satisfy the governing equation.

 This iterative procedure can be thought of as having a time-
like quality
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Solution schemes



GRIDS
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Different Types Of Grids
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Unstructured Grid



Cartesian Grids
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Structured Grid
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H Type
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C Type
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O Type 
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I Type
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C-H Grid
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H-O-H Type
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Butterfly Grid



Overset Grid
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Overset Grid
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Unstructured grid
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Tetrahedra grid
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Tetrahedra grid
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Hybrid Grid
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Quadrilateral Grid
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Hexahedral Cells
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Structured and Hybrid Grids



CFD TECHNIQUES
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UNIT-IV
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UNIT - IV

CLOs Course Learning Outcome

CLO15 Discuss the aspects of numerical dissipation and numerical 
dispersion and explain the applications of each in CFD 
techniques.

CLO16 Explain the technique of pressure correction method with the 
need of staggered grid and its philosophy.

CLO17 Explain the numerical procedures for analysis like SIMPLE, 
SIMPLER SIMPLEC and PISO algorithms and differentiate with 
regular CFD techniques.



 The Lax–Wendroff method, named after Peter Lax and Burton
Wendroff, is a numerical method for the solution of hyperbolic
partial differential equations, based on finite differences.

 It is second-order accurate in both space and time. This method is
an example of explicit time integration where the function that
defines governing equation is evaluated at the current time.

Suppose one has an equation of the following form:

 Where x and t are independent variables, and the initial state,
u(x, 0) is given.

 The first step in the Lax–Wendroff method calculates values for
u(x, t) at half time steps, tn + 1/2 and half grid points, xi + 1/2. In the
second step values at tn + 1 are calculated using the data
for tn and tn + 1/2.
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LAX–WENDROFF TECHNIQUE



 First (Lax) steps:

 Second step:
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LAX–WENDROFF TECHNIQUE



 In computational fluid dynamics, the MacCormack method is
a widely used discretization scheme for the numerical
solution of hyperbolic partial differential equations.

 This second-order finite difference method was introduced
by Robert W. MacCormack in 1969 The MacCormack method
is elegant and easy to understand and program

 The application of MacCormack method to the above
equation proceeds in two steps; a predictor step which is
followed by a corrector step.
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MAC-CORMACKS TECHNIQUE



 In the predictor step, a "provisional" value of at time
level (denoted by ) is estimated as follows

 It may be noted that the above equation is obtained by replacing
the spatial and temporal derivatives in the previous first order
hyperbolic equation using forward differences.
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Predictor step



 In the corrector step, the predicted value is corrected according 
to the equation

 Note that the corrector step uses backward finite 
difference approximations for spatial derivative. Note also that 
the time-step used in the corrector step is in contrast to 
the used in the predictor step.

 Replacing the term by the temporal average to obtain the 
corrector step as
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Corrector step
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RELAXATION TECHNIQUE



In numerical analysis, the Alternating Direction Implicit (ADI)
method is a finite difference method for solving parabolic,
hyperbolic and elliptic partial differential equations.

It is most notably used to solve the problem of heat conduction or
solving the diffusion equation in two or more dimensions.

It is an example of an operator splitting method
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ALTERNATING-DIRECTION-IMPLICIT
(ADI) TECHNIQUE



 Consider the linear diffusion equation in two dimensions,

 The implicit Crank–Nicolson method produces the following 
finite difference equation:

 The idea behind the ADI method is to split the finite 
difference equations into two, one with the x-derivative 
taken implicitly and the next with the y-derivative taken 
implicitly,
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ALTERNATING-DIRECTION-IMPLICIT (ADI) 

TECHNIQUE



 Pressure-correction method is a class of methods used 
in computational fluid dynamics for numerically solving the 
Navier-Stokes equations normally for incompressible flows.

 The equations solved in this approach arise from the implicit 
time integration of the incompressible Navier–Stokes 

equations.
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PRESSURE CORRECTION TECHNIQUE



 SIMPLE 

 SIMPLER

 SIMPLEC and 

 PISO
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Numerical Procedures



 In computational fluid dynamics (CFD), SIMPLE algorithm is a
widely used numerical procedure to solve the Navier-Stokes
equations.

 SIMPLE is an acronym for Semi-Implicit Method for Pressure
Linked Equations.
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SIMPLE algorithm



 Specify the boundary conditions and guess the initial values.

 Determine the velocity and pressure gradients.

 Calculate the pseudo velocities.

 Solve for the pressure equation and get the p.

 Set p*=p.

 Using p* solve the discretized momentum equation and 
get u* and v*.

 Solve the pressure correction equation.

 Get the pressure correction term and evaluate the corrected 
velocities and get p, u, v, Φ*.

 Solve all other discretized transport equations.

 If Φ shows convergence, then STOP and if not, then set p*=p, 
u*=u, v*=v, Φ*=Φ and start the iteration again.
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SIMPLEC ALGORITHM



Set the boundary conditions

 Solve the discretized momentum equation to compute an 
intermediate velocity field.

 Compute the mass fluxes at the cells faces.

 Solve the pressure equation.

 Correct the mass fluxes at the cell faces.

 Correct the velocities on the basis of the new pressure field.

 Update the boundary conditions.

 Repeat from 3 for the prescribed number of times.

 Increase the time step and repeat from 1.
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PISO ALGORITHM



 Guess velocity field

 Compute momentum coefficients and store.

 Compute pressure coefficients and store.

 Solve pressure equation and obtain pressure

 Solve momentum equations using stored momentum

 coefficients and just-computed pressure. Find u* and v*

 Find b term in pressure-correction equation using u*
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SIMPLER ALGORITHM



FINITE VOLUME METHODS

159

UNIT-V
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UNIT - V

CLOs Course Learning Outcome

CLO18 Discuss the concepts of finite volume method and explain the 
difference from finite difference method for solving different 
flow field.

CLO19 Demonstrate the need of finite volume discretization and its 
general formulation of a numerical scheme in finite volume 
method.

CLO20 Understand the principle of two dimensional finite volume 
methods in solving flow fields with finite control volume.
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Finite-Volume Formulation
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The integral equation for the conservation statement is:

• Equation applies for a control volume.

• Control surface bounds the control volume.

• Q is conserved quantity representing the flow.

• Flow can be through the control surface.

• Control volume and control surface can vary shape in 
time and space.

• Flow can be time-varying (unsteady).

    
),(),(),(

ˆ
trVtrStrV

dVPdSnQgvdVQ
dt

d




D

Time variation 

of Q in volume 

V

Flux of Q 

through surface 

S

Production of 

Q in volume V

V(r,t)

S(r,t)

Review of the Integral Equation 
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Represent the integral equation as an ordinary differential
equation (then eventually an algebraic equation) amenable to a
solution using computational (numerical) methods.

Thus, we need to approximate the volume integrals and the
surface integrals to form algebraic expressions.

Prior to discussing these approximations, lets examine the
control volumes on which the integrals will be approximated…

Objective of the F-V Formulation
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The control volumes exists at several levels:

1. Flow Domain, Extent of CFD analysis

2. Zone,  Divide domain for convenience, if needed

3. Grid,  Divides the zone into cells

4. Cell,  Smallest control volume, but “finite”

1 

Domain

4 

Zones

Grid in each zone 

with 1000s of 

cells

Let’s Examine 

a hexahedral 

cell

Each control volume is “air-tight”

Domain, Zone, Grid, and Cell 
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Grid is “body-fitted” to the follow 
the shape of the body (wing). 
Grid points (vertices) are arranged 
in an array structure with indices 
(i,j,k). 
Transformation between physical 
space (x,y,z) and a Cartesian 
computational space with 
coordinates directions (, , ).
Grid points are clustered to the 
wing to provide resolution of the 
boundary layer.
Cells are hexahedral (6 quadrilateral 
sides).

, 

i

, 

j

, 

k

Structured Grid Example 
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Grid is “body-fitted” to the follow
the shape of the body (duct).
Grid points (vertices) are do not
have any set structure.
No transformation from physical
space (x,y,z) and a computational
Space. Specify and store geometric
and connectivity information.
Grid points are clustered to the
duct surfaces to provide resolution
of the boundary layer.
Cells are tetrahedral (4 triangular
sides).

Unstructured Grid Example 
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Finite-Volume Cell:

• Cell can take on a generalized shape.

• Cell contains a finite (positive) volume.

• Integral equation will be approximated on 
the cell to form an algebraic relation.

• Size of cell indicates the level of 
computational resolution of the CFD 
analysis.

• Control surface is faceted into a finite 
number of faces.

• Faces can take on a variety of shapes.

• Face is bounded by edges.

• Edges are usually straight lines.

Hexahedral Cell

6 Quadrilateral Faces

12 Linear Edges 

(4 per face, edges 

shared)

Cell

Fac

e

Edge

Anatomy of a Finite-Volume Cell 
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Approximation:  Q is uniform within the finite-volume:

QQVdVQ
trV

ˆ

),(




PPVdVP
trV

ˆ

),(




iii QQV ˆ

Cell i

(i is an index for the 

cell)

iii PPV ˆThe position of the solution point in 
the cell is not yet defined.

Volume Integral Approximation 
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Approximation:  The flux is uniform over the surface of each 
face of the cell:

   FFdSnQgv
nf

f

f

trS

ˆˆˆ
1),(

 



D

    
fff dSnQgvF ˆˆ  D



where the flux on the face is define as

Computing the flux on the face is one of 
the most difficult and computationally 
intensive operations of a CFD code.

Face f

( f is an index for the 

face )

fF̂

 
f

dSn̂

Area 

normal 

vector for 

face f

Surface Integral Approximation 
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Start with the integral equation,

and substitute in the volume and surface integral approximations
to yield:

This equation is a first-order, non-linear, ordinary differential
equation for which various numerical methods exist for its
solution.

FP
dt

Qd ˆˆ
ˆ



    
),(),(),(

ˆ
trVtrStrV

dVPdSnQgvdVQ
dt

d




D

Resulting Equation 
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A structured grid can only contain finite-volume cells with a 
hexahedral shape.    Unstructured grids allow greater freedom 
for cell shapes.  Possibilities include:

• Generalized Cell   (X quadrilateral faces, Y triangular faces)

• Prismatic Cell   (3 quadrilateral faces, 2 triangular faces)

• Pyramidal Cell   (1 quadrilateral face, 4 triangular faces)

• Tetrahedral Cell   (4 triangular faces)

To keep cell geometry simple, quadrilateral or triangular faces with 
straight-line  edges are generally used.  The geometry and the normal 
area vector of a triangle is uniquely known, and so, quadrilaterals are 
usually divided into triangles to compute their geometric properties.

Other Cell Shapes 
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The location of the flow solution and geometry of the finite
volume cell with respect to the grid can be of two types:

Cell-Vertex (Node-Centered) Cell. The flow solution is located at
the vertices of the grid. The finite-volume cell is formed about
the vertex.

Cell-Centered Cell. The flow solution is located at the centroid of
the cell volume defined by the grid lines (primary grid).

Each approach has its advantages and disadvantages, but if
things are done right, both approaches do well.

Location of the Solution in the Cell
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·  Solution located at vertices.

·  Cell formed about vertex.

·  Half-cell at the boundary.

·  Solution point at boundary.

Cell-Vertex Cell
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·  Solution located at centroid.

·  Grid forms the cell.

·  Full cell at the boundary.

·  Flux at boundary.

Cell-Centered Cell
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Often assumptions can be applied to simplify the geometry of the
flow domain, grid, and cells from a three-dimensional geometry:

Quasi-three dimensional cell. Grid is planar (x,y) with the z-
coordinate varying to indicate variable depth of the cell.

Planar axisymmetric cell. Grid is planar (x,y) with y indicating the
distance from an axis-of-symmetry. Angle of axisymmetric wedge
indicates depth.

Planar two-dimensional cell. Grid is planar (x,y) with the z-
coordinate indicating the fixed depth of the cell.

Quasi-one-dimensional cell. Grid is one-dimensional (x) with the
cross-sectional area variable and specified along x.

One-dimensional cell. Grid is one-dimensional (x) with the cross-
sectional area constant along x.

Simplified Cell Shapes 
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Degenerate cell shapes are sometimes used to build in flexibility:

Wedged-shaped cell.   The hexahedral has one face on the 
boundary that has collapsed to a line that is a singular axis.  Since 
face as zero area, the flux is zero, so all is fine with the numerical 
methods.  Special boundary condition is usually applied to handle 
these.

Sharp Nose Cell.  The hexahedral has 
one edge that has collapsed to a point.  
This type of cell is used at a 
sharp nose (i.e. nose 
of a cone).

Singular axis

Nose

Degenerate Cell Shapes 



The strength of the FVM is its direct connection to the physical
flow properties.

Indeed, the basis of the method relies on the direct
discretization of the integral form of the conservation law.

Integral form is the most general expression of a conservation
law, as it does not require the fluxes to be continuous (property
which is not satisfied for instance along shock waves or
along free Surfaces).

This is why we can state that the FVM is close to the physics of
the flow system.
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Degenerate Cell Shapes 



The FVM requires setting up the following steps:

Subdivide the mesh, obtained from the space discretization,
into finite (small) volumes, one Control volume being
associated to each mesh point.

Apply the integral conservation law to each of these finite
volumes.
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Degenerate Cell Shapes 



 The integral conservation law is applied to each control
volume ΩJ associated to mesh point J defining hereby the
discretized equation for the unknowns UJ attached to that
same vertex or cell. The advantage of this method,
especially in absence of sources terms, is that the fluxes
are calculated only on two-dimensional surfaces instead of in
the three-dimensional space.

 Equation is replaced by its discrete form, where the
volume integrals are expressed as the averaged values
over the cell and where the surface integral is replaced
by a sum over all the bounding faces of the considered
volume ΩJ
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Definition of the Finite Volume Discretization



A general and important interpretation of any numerical,
conservative scheme is obtained directly from the integral
conservation laws.

The formulation that follows is valid for all possible cases, with
structured grids or unstructured grids, either cell-centred or cell-
vertices
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General Formulation of a Numerical Scheme



Extending the subdivisions of equation to an arbitrary number
of cells, J =1–N, and summing over all the cells it is seen, after
cancellation of the contributions from all the internal cell
faces, that the sum will contain only contributions from the
fluxes along the parts of the cells belonging to the
boundaries of the domain and from the sources.
Therefore, the conservative condition can be expressed as a
requirement on the transient time evolution of the scheme.
Note that for stationary sources and boundary fluxes, the
right-hand side of this equation vanishes at convergence.
Defining ∆UJ/∆t as the average value of ∂U/∂t over the cell ΩJ,
conservation of the scheme requires that, at each time step,
the following condition is to be satisfied.

181

Alternative formulation of the conservative condition


