

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

CIVIL ENGINEERING

COURSE DESCRIPTOR

Course Title	ADVANCED SOLID MECHANICS							
Course Code	BSTB02							
Programme	M.Tech							
Semester	III STE							
Course Type	Core							
Regulation	IARE - R18							
		Theory			Practical			
Course Structure	Lecture	s	Tutorials	Credits	Laboratory	Credits		
	3		-	3	-	-		
Chief Coordinator	Dr. J S R Prasad, Professor, Civil Engineering							
Course Faculty	Dr. J S R	Pra	sad, Professor, G	Civil Engineeri	ng			

I. COURSE OVERVIEW:

This course is sequel to a Strength of Materials Course that already studied in undergraduate. This course introduces the principles of elasticity, components of stresses and strains, differential equations of equilibrium, boundary conditions, compatibility conditions and stress function. This course also covers the two dimensional problems in rectangular coordinates and polar coordinates, Fourier series for two dimensional problems stress distribution symmetrical about an axis, pure bending of curved bars, strain components in polar coordinates, displacements for symmetrical stress distributions, simple symmetric and asymmetric problems, analysis of stress strain in three dimensions, torsion of prismatical bars and plasticity. This course in reached to student by power point presentations, lecture notes, and assignment questions, seminars, previous model question papers, and question bank of long and short answers.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
-	-	-	Strength of Materials – I	-
-	-	-	Structural Analysis	-

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Advanced Solid Mechanics	70 Marks	30	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

X	Chalk & Talk	X	Quiz	\checkmark	Assignments	X	MOOCs
√	LCD / PPT	X	Seminars	X	Mini Project	\checkmark	Videos
X	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

Each theory course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIE during the semester, marks are awarded by taking average of two sessional examinations.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.
50 %	To test the application skill of the concept.

Continuous Internal Assessment (CIA):

For each theory course the CIA shall be conducted by the faculty/teacher handling the course as given in Table 4. CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Technical Seminar and Term Paper.

Component		Theory	Tatal Maalar
Type of Assessment	CIE Exam	Technical Seminar and Term Paper	1 otal Marks
Max. CIA	25	05	30

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 9th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration, consisting of 5 one mark compulsory questions in part-A and 4 questions in part-B. The student has to answer any 4 questions out of five questions, each carrying 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two seminar presentations are conducted during I year I semester and II semester. For seminar, a student under the supervision of a concerned faculty member, shall identify a topic in each course and prepare the term paper with overview of topic. The evaluation of Technical seminar and term paper is for maximum of 5 marks. Marks are awarded by taking average of marks scored in two Seminar Evaluations.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 3	Capable to apply the core, multidisciplinary knowledge for understanding the problems in structural engineering and allied fields.	2	Assignments, Tutorials
PO 4	Apply appropriate techniques, resources, modern engineering and Information Technology (IT) tools including predictions, modeling of complex structural engineering activities.	2	Assignments
PO 5	Able to identify and analyze the impact of Structural Engineering in development projects and find a suitable solution from number of alternatives.	2	Assignments
PO 6	Conceptualize and design civil engineering structures considering various socio-economic factors.	2	Presentation on realworld problems

3 = High; **2** = Medium; **1** = Low

VII. COURSE OBJECTIVES:

The course should enable the students to:					
Ι	Solve advanced solid mechanics problems using classical methods				
II	Apply commercial software on select, applied solid mechanics problems.				

VIII. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome		
CO 1	Understand the theory of	CLO 1	Understand the Displacement, Strain and Stress Fields		
	elasticity including strain/displacement and Hooke's law relationships	CLO 2	Understand the Constitutive Relations, Cartesian Tensors		
		CLO 3	Solve the problems on Equations of Elasticity		
		CLO 4	Know the Elementary Concept of Strain		
CON	Analyse solid mechanics	CLO 5	Understand the Strain at a Point		
02	problems using classical	CLO 6	Know concept of Principal Strains and Principal		

COs	Course Outcome	CLOs	Course Learning Outcome			
	methods and energy		Axes			
	methods		Understand the concept of Compatibility Conditions			
			Understand the concept of Stress at a Point			
		CLO 9	Develop the Stress Components on an Arbitrary Plane			
		CLO 10	Understand the concepts on differential Equations of Equilibrium			
CO 3	Solve for strasses and	CLO 11	Know the Hydrostatic and Deviatoric Components.			
	Solve for stresses and deflections of two- dimensional under unsymmetrical loading	CLO 12	Understand the Equations of Equilibrium, Strain Displacement and Compatibility Relations			
		CLO 13	Understand the formulation of Stress- Strain relations			
		CLO 14	Concept of Strain Displacement			
		CLO 15	Understand the solutions for boundary value problems			
	Obtain stresses and deflections of torsion of beams on elastic foundations	CLO 16	Know the co-axiality of the Principal Directions			
		CLO 17	Understand the Plane Stress and Plane Strain Problems			
CO 4		CLO 18	Know the Two-Dimensional Problems in Polar Coordinates			
		CLO 19	Understand the Saint Venant's Method, Prandtl's Membrane Analogy			
	A male marious failure	CLO 20	Formulation of Torsion of Rectangular Bar and thin plates			
CO 5	criteria for general stress	CLO 21	Understand the concept of Plastic Stress-Strain Relations			
	states at points	CLO 22	Solution of Principle of Normality and Plastic Potential, Isotropic Hardening			

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have	PO's	Strength of
		the ability to:	Mapped	Mapping
BSTB02.01	CLO 1	Understand the Displacement, Strain and Stress	PO 3	2
		Fields		Z
BSTB02.02	CLO 2	Understand the Constitutive Relations, Cartesian	PO 3	2
		Tensors		2
BSTB02.03	CLO 3	Solve the problems on Equations of Elasticity	PO 3, PO 4	1
BSTB02.04	CLO 4	Know the Elementary Concept of Strain	PO 3	2
BSTB02.05	CLO 5	Understand the Strain at a Point	PO 3	2
BSTB02.06	CLO 6	Know concept of Principal Strains and Principal	PO 5, PO 6	1
		Axes		1
BSTB02.07	CLO 7	Understand the concept of Compatibility	PO 3	1
		Conditions		1
BSTB02.08	CLO 8	Understand the concept of Stress at a Point	PO 3, PO 4	2
BSTB02.09	CLO 9	Develop the Stress Components on an Arbitrary	PO 3	1
		Plane		1
BSTB02.10	CLO 10	Understand the concepts on differential Equations	PO 3, PO 4	1
		of Equilibrium		1
BSTB02.11	CLO 11	Know the Hydrostatic and Deviatoric	PO 3, PO 4,	2
		Components.	PO 5	2
BSTB02.12	CLO 12	Understand the Equations of Equilibrium, Strain	PO 3, PO 4,	1
		Displacement and Compatibility Relations	PO 6	1
BSTB02.13	CLO 13	Understand the formulation of Stress- Strain	PO 3, PO 6	2
		relations		2

CLO Code	CLO's	At the end of the course, the student will have	PO's	Strength of
		the ability to:	Mapped	Mapping
BSTB02.14	CLO 14	Concept of Strain Displacement	PO 3, PO 4	2
BSTB02.15	CLO 15	Understand the solutions for boundary value problems	PO 3	2
BSTB02.16	CLO 16	Know the co-axiality of the Principal Directions	PO 3	2
BSTB02.17	CLO 17	Understand the Plane Stress and Plane Strain	PO 3, PO 4	1
		Problems	PO 5, PO 6	1
BSTB02.18	CLO 18	Know the Two-Dimensional Problems in Polar	PO 3, PO 6	ſ
		Coordinates		2
BSTB02.19	CLO 19	Understand the Saint Venant's Method, Prandtl's	PO 3, PO 5	2
		Membrane Analogy		2
BSTB02.20	CLO 20	Formulation of Torsion of Rectangular Bar and	PO 3, PO 4	2
		thin plates	PO 5, PO 6	2
BSTB02.21	CLO 21	Understand the concept of Plastic Stress-Strain	PO 3, PO 4	1
		Relations		1
BSTB02.22	CLO 22	Solution of Principle of Normality and Plastic	PO 3, PO 4,	2
		Potential, Isotropic Hardening	PO 6	2

³⁼ High; 2 = Medium; 1 = Low

X. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course	Program Outcomes (POs)					
(COs)	PO 3	PO 4	PO 5	PO 6		
CO 1	2	1				
CO 2	2	2	2	1		
CO 3	2	2	2	1		
CO 4	2	1	2	1		
CO 5	2	2	1	2		

3 = High; **2** = Medium; **1** = Low

XI. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course	Program Outcomes (POs)						
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CLO 1			2				
CLO 2			2				
CLO 3			2	1			
CLO 4			2				
CLO 5			2				
CLO 6					2	1	

Course	Program Outcomes (POs)						
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CLO 7			1				
CLO 8			2	2			
CLO 9			1				
CLO 10			2	1			
CLO 11			2	2	2		
CLO 12			1	2		1	
CLO 13			2			2	
CLO 14			2	2			
CLO 15			2				
CLO 16			2				
CLO 17			2	1	2	1	
CLO 18			2			2	
CLO 19			2		2		
CLO 20			2	2	1	2	
CLO 21			1	2			
CLO 22			2	2		2	

3 = **High**; **2** = **Medium**; **1** = Low

XII. ASSESSMENT METHODOLOGIES-DIRECT:

CIE Exams	PO3, PO4, PO5,PO6	SEE Exams	PO3, PO4, PO5, PO6	Assignments	PO3, PO4, PO5, PO6	Seminars	-
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-						

XIII. SYLLABUS

UNIT-I	INTRODUCTION TO ELASTICITY					
Displacement	, Strain and Stress Fields, Constitutive Relations, Cartesian Tensors and Equations of					
Elasticity.						
UNIT-II	STRAIN AND STRESS FIELD					
Elementary Concept of Strain, Stain at a Point, Principal Strains and Principal Axes, Compatibility						
Conditions, S	Conditions, Stress at a Point, Stress Components on an Arbitrary Plane, Differential Equations of					

Equilibrium,	Hydrostatic and Deviatoric Components.							
UNIT-III EQUATIONS OF ELASTICITY AND TWO-DIMENSIONAL PROBLEMS OF ELASTICITY								
Equations of	Equations of Equilibrium, Stress-Strain relations, Strain Displacement and Compatibility Relations,							
Boundary Val	lue Problems, Co-axiality of the Principal Directions.							
Plane Stress a Coordinates.	nd Plane Strain Problems, Airy's stress Function, Two-Dimensional Problems in Polar							
UNIT-IV	TORSION OF PRISMATIC BARS							
Torsion of Pri Bar, Torsion of	smatic Bars: Saint Venant"s Method, Prandtl's Membrane Analogy, Torsion of Rectangular f Thin Tubes.							
UNIT-V	PLASTIC DEFORMATION							
Plastic Deform Criterion, Tres Potential, Isotr	nation: Strain Hardening, Idealized Stress- Strain curve, Yield Criteria, von Mises Yield sca Yield Criterion, Plastic Stress-Strain Relations, Principle of Normality and Plastic ropic Hardening.							
Text Books:								
 Timoshenk RagabA.R. Kazimi S. I 	to and Goodier, "Theory of Elasticity", McGraw Hill Publishing Company, 1970. "BayoumiS.E, "Engineering Solid Mechanics"., CRC Press,1999. M. A, "Solid Mechanics"., Tata McGraw Hill,1994							
Reference Bo	ooks:							
 SaddM.H Ameen.M, KazimiS. I SrinathL.S 	, "Elasticity", Elsevier, 2005. "Computational Elasticity", Narosa, 2005. M. A, "Solid Mechanics", Tata McGraw Hill, 1994. , "Advanced Mechanics of Solids", Tata McGraw Hill, 2000.							
Web References:								
1. https://www.youtube.com/watch?v=4meZNc2wB4s&t=1464s								
E-Text Book	S:							
1. http://www	$1. http://www.kstr.lth.se/fileadmin/kstr/pdf_files/forsk_kurs/Theory_of_elastic_stability_by_S._Timoshe$							
nko_and_J	nko_and_J.MGere1963pdf							
2. https://briji anics%20o	bedu.org/Brij%20Data/Advance%20Mechanics%20of%20Solids/Book/Advanced%20Mech f%20Solids%20By%20L.%20S.%20Srinath.pdf							

XIV. ASSESSMENT METHODOLOGIES-INDIRECT:

✓	Early Semester Feedback	✓	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XV. COURSE PLAN:

Lecture No.	Topics to be covered	Course	Reference
		Learning	
		(CLOs)	
1-2	Displacement, Strain and Stress Fields	CLO 1	T2:5-10
3-4	Constitutive Relations, Cartesian Tensors	CLO 2	T2:11-20
5-6	Equations of Elasticity	CLO 3	T2:21-28
7-9	Elementary Concept of Strain, Strain at a Point	CLO 4	T2:29-45
10-12	Principal Strains and Principal Axes, Compatibility Conditions	CLO 4	T2:50-65
13-16	Stress at a Point, Stress Components on an Arbitrary Plane	CLO 5	T2:66-75
16-17	Differential Equations of Equilibrium, Hydrostatic and	CLO 6	T2:75-85
	Deviatoric Components		

18-19	Equations of Equilibrium, Stress-Strain relations	CLO 7	T2:90-110
20-21	Strain Displacement and Compatibility Relations	CLO 9	T2:115-130
22-24	Boundary Value Problems, Co-axiality of the Principal	CLO 10	T2:131-145
	Directions.		
25-27	Plane Stress and Plane Strain Problems,	CLO 11	T2:146-160
28-30	Airy's stress Function, Two-Dimensional Problems in Polar	CLO 12	T2:161-180
	Coordinates		
31-33	Torsion of Prismatic Bars: Saint Venant"s Method, Prandtl's	CLO 13	T2:181-200
	Membrane Analogy		
34-36	Torsion of Rectangular Bar, Torsion of Thin Tubes.	CLO 14	T2:201-215
37-41	Plastic Deformation: Strain Hardening, Idealized Stress- Strain	CLO 18	T2:217-240
	curve, Yield Criteria		
42-46	Von Mises Yield Criterion, Tresca Yield Criterion, Plastic	CLO 20	T2:240270
	Stress-Strain Relations		
47-50	Principle of Normality and Plastic Potential, Isotropic	CLO 20	T2:240270
	Hardening.		

XVI. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No.	Description	Proposed Actions	Relevancewith POs
1	Understand advanced topics of rigid body kinematics and dynamics	Seminars / NPTEL	PO 3, PO 4, PO 6
2	Design dynamical systems	Seminars / NPTEL	PO 3, PO 4, PO 6

Prepared by: Dr. J S R Prasad, Professor, Civil Engineering

HOD, CE