

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AIRCRAFT PROPULSION

COURSE DESCRIPTOR

Course Title	AIRCI	AIRCRAFT PROPULSION							
Course Code	AAE00	AAE007							
Programme	B.Tech	B.Tech							
Semester	v	V AE							
Course Type	Core								
Regulation	IARE - R16								
			Theory		Practic	tical			
Course Structure	Lec	tures	Tutorials	Credits	Laboratory	Credits			
	3 - 3								
Chief Coordinator	Dr. Prashant GK, Associate Professor								
Course Faculty			Dr. Maruthupandiyan, Associate Professor Dr. Prashant GK, Associate Professor						

I. COURSE OVERVIEW:

This course presents Aircraft propulsive devices as systems, with functional requirements and engineering and environmental limitations along with requirements and limitations that constrain design choices. Both air-breathing and rocket engines are covered, at a level which enables rational integration of the propulsive system into an overall vehicle design. Mission analysis, fundamental performance relations, and exemplary design solutions are presented.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AME003	IV	Thermodynamics	4
UG	AAE003	III	Fluid Mechanics and Hydraulics	4

III. MARKS DISTRIBUTION:

Subject		SEE Examination	CIA Examination	Total Marks
	Aircraft Propulsion	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Chalk & Talk	\checkmark	Quiz	\checkmark	Assignment	X	MOOCs	
\checkmark	LCD / PPT	>	Seminars	X	Mini Project	\checkmark	Videos	
X	X Open Ended Experiments							

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the
	concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment	pattern for CIA
---------------------	-----------------

Component	Theory		Total Marks
Type of Assessment	CIE Exam	Quiz / AAT	
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency
			assessed by
PO1	General knowledge: An ability to apply the knowledge of	3	Assignments,
	mathematics, science and Engineering for solving		Term paper
	multifaceted issues of Aeronautical Engineering		
PO2	Problem Analysis: An ability to communicate effectively	2	Quiz
	and to prepare formal technical plans leading to solutions		
	and detailed reports for Aeronautical systems		
PO3	Design/Development of solutions: To develop Broad	2	Seminar, Videos,
	theoretical knowledge in Aeronautical Engineering and		
	learn the methods of applying them to identify, formulate		
	and solve practical problems involving Aerodynamics		
PO4	Conduct investigations of complex problems: An ability to	3	Assignments
	apply the techniques of using appropriate technologies to		
	investigate, analyze, design, simulate and/or		
	fabricate/commission complete systems involving complex		
	aerodynamics flow situations		
PO11	Project management and finance: To be familiar with	1	Assignments,
	project management problems and basic financial principles		Seminars
	for a multi-disciplinary work.		

3 = High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed
			by
PSO1	Professional skills: Able to utilize the knowledge of	2	Lecture,
	aeronautical/aerospace engineering in innovative,		Assignments
	dynamic and challenging environment for design and		
	development of new products.		
PSO2	Problem solving skills: Imparted through simulation	3	Assignments
	language skills and general purpose CAE packages		
	to solve practical, design and analysis problems of		
	components to complete the challenge of		
	airworthiness for flight vehicles		
PSO3	Practical implementation and testing skills:	1	Seminar
	Providing different types of in house and training and		/Industrial visits
	industry practice to fabricate and test and develop the		
	products with more innovative technologies		
PSO4	Successful career and entrepreneurship: To prepare	-	-
	the students with broad aerospace knowledge to design		
	and develop systems and subsystems of aerospace and		
	allied systems and become technocrats		

3 = **High; 2** = **Medium; 1** = Low

VIII. COURSE OBJECTIVES:

The cou	The course should enable the students to:					
Ι	Analyze parametric cyclic analysis, performance parameters, efficiency, and specific impulse					
	of all air breathing engines.					
II	Know the design and performance of subsonic and supersonic inlets, types of combustion					
	chambers and factors affecting the combustors					
III	Discuss the types of nozzles, flow conditions in nozzles, interaction of nozzle flow with					
	adjacent surfaces and thrust reversal					
IV	Explain different types of compressors and turbines, work done, velocity diagrams and stage					
	efficiency calculations.					

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO1	Describe the various types, basic function, and	CLO 1	Apply knowledge and understand the essential facts, concepts and principles of thermodynamics.
	performance analysis of	CLO 2	Understand the basic function of all aircraft engine
	air-breathing engine.		components and how they work.
		CLO 3	Analyze the engine performance parameters and
			parameters influencing them.
		CLO 4	Understand the impact of performance parameters
			on endurance and range how they affect the aircraft
			performance.
		CLO 5	Demonstrate different type's aircraft engine
		CL O (operating principle.
		CLO 6	Understand step by step procedure of engine
		CLO 7	parametric cycle analysis. Understand steps involved in performance analysis
		CLO /	of all aircraft engine.
CO2	Understand the various	CLO 8	Describe operational modes of subsonic inlets and
002	inlets and combustion	0200	parameters influencing it.
	chamber performance	CLO 9	Analyze diffuser performance, losses in it and their
	parameters affecting it.		impact on engine performance.
		CLO 10	Describe supersonic inlets, starting problem in it and
			their operating modes.
		CLO 11	Understand different types of combustion chamber
			and functions of all the components.
		CLO 12	Analyze combustion chamber performance and
			parameters influencing them.
CO3	Explain theory of flow in	CLO 13	Describe theory of flow in isentropic nozzle and
	isentropic nozzles and	01.0.14	physics behind nozzle operation.
	variable area nozzle	CLO 14	Understand different nozzle operating conditions for
CO4	Describe principle	CLO 15	convergent and divergent nozzle. Describe principle of operation of axial and
04	operations of compressors,	CLU 15	centrifugal compressor.
	with work done and	CLO 16	Understand different design of compressor and
	pressure rise explaining the		limitations of each method.
	design and performance	CLO 17	Analyze performance characteristics of axial and
	parameters		centrifugal compressor.

CO5	Determine the various	CLO 18	Describe principle of operation of centrifugal and
	types of turbine,		axial flow turbine.
	understand configuration	CLO 19	Understand different design of axial and centrifugal
	associated with it		turbine.
		CLO 20	Design of ramjet engine and steps involved in it.

X. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's	At the end of the course, the student will have	PO's	Strength of
Code		the ability to:	Mapped	Mapping
AAE007.01	CLO 1	Apply knowledge and understand the essential facts, concepts and principles of thermodynamics.	PO 1	3
AAE007.02	CLO 2	Understand the basic function of all aircraft engine components and how they work.	PO 3	2
AAE007.03	CLO 3	Analyze the engine performance parameters and parameters influencing them.	PO 4	3
AAE007.04	CLO 4	Understand the impact of performance parameters on endurance and range how they affect the aircraft performance.	PO 1	3
AAE007.05	CLO 5	Demonstrate different type's aircraft engine operating principle.	PO 1	3
AAE007.06	CLO 6	Understand step by step procedure of engine parametric cycle analysis.	PO 11	1
AAE007.07	CLO 7	Understand steps involved in performance analysis of all aircraft engine.	PO 3	2
AAE007.08	CLO 8	Describe operational modes of subsonic inlets and parameters influencing it.	PO 4	3
AAE007.09	CLO 9	Analyze diffuser performance, losses in it and their impact on engine performance.	PO 2	2
AAE007.10	CLO 10	Describe supersonic inlets, starting problem in it and their operating modes.	PO 1	3
AAE007.11	CLO 11	Understand different types of combustion chamber and functions of all the components.	PO 1	3
AAE007.12	CLO 12	Analyze combustion chamber performance and parameters influencing them.	PO 11	1
AAE007.13	CLO 13	Describe theory of flow in isentropic nozzle and physics behind nozzle operation.	PO 1	3
AAE007.14	CLO 14	Understand different nozzle operating conditions for convergent and divergent nozzle.	PO 11	1
AAE007.15	CLO 15	Describe principle of operation of axial and centrifugal compressor.	PO 1	3
AAE007.16	CLO 16	Understand different design of compressor and limitations of each method.	PO 3	2
AAE007.17	CLO 17	Analyze performance characteristics of axial and centrifugal compressor.	PO 2	2
AAE007.18	CLO 18	Describe principle of operation of centrifugal and axial flow turbine.	PO 1	3
AAE007.19	CLO 19	Understand different design of axial and centrifugal turbine.	PO 4	3
AAE007.20	CLO 20	Design of ramjet engine and steps involved in it.	PO 11	1

^{3 =} High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course Outcomes		Program Outcomes					Program Sp Outcor			
(COs)	PO1	PO2	PO3	PO4	PO11	PSO1	PSO2	PSO3		
CO1	3		2	3	1	2	3			
CO2	3	2		3	1	2		1		
CO3	3				1	2				
CO4	3	2	2		1		3	1		
CO5	3			3	1		3	1		

3 = High; **2** = Medium; **1** = Low

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

CLOs	Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12								Program Specific Outcomes (PSOs)							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	3													3		
CLO 2			2										2		1	
CLO 3				3										3		
CLO 4	3															
CLO 5	3												2		1	
CLO 6											1				1	
CLO 7			2											3		
CLO 8				3										3		
CLO 9		2											2		1	
CLO 10	3															
CLO 11	3													3	1	
CLO 12											1		2			
CLO 13	3														1	
CLO 14											1			3		
CLO 15	3												2		1	
CLO 16			2												1	
CLO 17		2												3		
CLO 18	3												2			
CLO 19				3										3		
CLO 20											1		2		1	

3 = High; **2** = Medium; **1** = Low

CIE Exams	PO1, PO2, PO3, PO4, PO11	SEE Exams	PO1, PO2, PO3, PO4, PO11	Assignments	PO1, PO4, PO11	Seminars	PO3, PO11
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO1						

XIII. ASSESSMENT METHODOLOGIES – DIRECT

XIV. ASSESSMENT METHODOLOGIES – INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

MODULE-I	AIR-BREATHING ENGINES					
Classification, operational envelopes; Description and function of gas generator, turbojet, turbofan, turboprop, turbo-shaft, ramjet, scramjet, turbojet/ramjet combined cycle engine; Engine thrust, takeoff thrust, installed thrust, thrust equation; Engine performance parameters, specific thrust, specific fuel consumption and specific impulse, thermal efficiency, propulsive efficiency, engine overall efficiency and its impact on aircraft range and endurance; Engine cycle analysis and performance analysis for turbojet, turbojet with afterburner, turbofan engine, turboprop engine.						
MODULE-II INLETS AND COMBUSTION CHAMBERS						
Internal flow and stall in subsonic inlets, relation between minimum area ratio and eternal deceleration ratio, diffuser performance, supersonic inlets, starting problem on supersonic inlets, shock swallowing by area variation; Classification of combustion chambers, combustion chamber performance, effect of operating variables on performance, flame stabilization.						
MODULE-III	NOZZLES					
losses in nozzles.	isentropic nozzles, nozzles and choking, nozzle throat conditions, nozzle efficiency, Over expanded and under expanded nozzles, ejector and variable area nozzles, zle flow with adjacent surfaces, thrust reversal					
MODULE-IV	COMPRESSORS					
Principle of operation of centrifugal compressor and axial flow compressor, work done and pressure rise, velocity triangles, degree of reaction, free vortex and constant reaction designs of axial flow compressor, performance characteristics of centrifugal and axial flow compressors, stage efficiency calculations, cascade testing						
MODULE-V	TURBINES					
Principle of operation of axial flow turbines, limitations of radial flow turbines, work done and pressure rise, velocity triangles, degree of reaction, free vortex and constant angle designs, performance characteristics, sample ramjet design calculations, flame stability problems in ramjet combustors, integral ram rockets						

Text Books:

- 1. Hill, P.G. & Peterson, C.R. —Mechanics & Thermodynamics of Propulsion Addison Wesley Longman INC, 1999.
- 2. Mattingly J.D., -Elements of Propulsion: Gas Turbines and Rocket, AIAA, 1991.

Reference Books:

- 1. Cohen, H.Rogers, G.F.C. and Saravanamuttoo, H.I.H. -Gas Turbine Theory, Longman, 1989.
- 2. Oates, G.C., —Aero thermodynamics of Aircraft Engine Components, AIAA Education Series, New York, 1985.

XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-2	Define function of gas generator. Classify gas turbine engines	CO1	T2-1.1 , 1.31.4 and 1.7
3-4	Define engine thrust, takeoff thrust. Explain thrust equation	CO1	T1- 1.2,1.8,1.9
5-7	Explain performance parameters	CO1	T2- 1.15, 1.16
8-10	Discuss engine cycle analysis Calculate problems on performance analysis	CO1	T2- 1.6
11-12	Define stall in inlets. Explain relation between minimum area ratio and external acceleration	CO2	T2- 2.2, 2.6
13-14	Explain starting problem on supersonic inlets Discuss shock swallowing by area variation	CO2	R1-2.6, 2.10
15-17	Classify combustion chamber. Explain combustion chamber performance	CO2	T2-3.2, 3.3,
18-20	Discuss effect of operating variables on performance. Define flame stabilization	CO2	T2-3.5
21-23	Explain theory of flow in nozzle. Define nozzle chocking	CO3	T2-2.13, 2.14and 2.16
24-25	Discuss nozzle throat conditions. Calculate problems in nozzle efficiency	CO3	R2-2.15
26-27	Explain over-expanded and under expanded nozzle. Discuss variable area nozzle	CO3	R2-3.9, 3.6
28	Explain thrust reversal	CO3	T2-6.1, 6.3
29	Explain principle of operation of compressor	CO4	T1-6.2, 6.3
30-31	Discuss work done and pressure rise. Design velocity triangle. Define degree of reaction	CO4	T2-6.5, 6.6
32-33	Discuss free vortex and constant reaction design Solve design problems	CO4	R1-6.7, 6.8
34-35	Discuss performance characteristics of centrifugal compressor	CO4	T2-7.1
36	Calculate stage efficiency	CO4	T1- 7.2, 7.3 and 7.4
37-38	Explain principle of operation of turbine. Discuss limitation of radial flow turbines	CO5	T2- 7.9

39-40	Discuss work done and pressure rise. Design velocity	CO5	T2-7.9, 7.10
	triangle. Define degree of reaction		
41-42	Discuss free vortex and constant reaction design	CO5	T2- 7.11
	Solve design problems		
43	Solve problems in ramjet design	CO5	T2- 10.1, 10.2,
			10.3
44-45	Explain flame stability in ramjet combustors. Discuss	CO5	T2-10.4, 10.5
	integral ram rockets		

XVII. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed Actions	Relevance With POs	Relevance With PSOs
1	Design of gas turbine for	Guest	PO1,PO2,PO4,	PSO2
	industrial application	lecture/Industrial	PO5	
		visit		
2	Design and development of compressor for steam turbine application	Seminar/ Guest Lecture	PO6,PO5	PSO2,PSO4
3	Design and development of micro gas turbine	Seminar/ Guest Lecture	PO6,PO5	PSO2,PSO3

Prepared By: Dr. Marathupandian, Associate Professor Dr. Prashant GK, Associate Professor

HOD, AE