

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

B.Tech IV Semester End Examinations (Regular) - May, 2018

Regulation: IARE - R16

LOW SPEED AERODYNAMICS

Time: 3 Hours (AE) Max Marks: 70

Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

UNIT - I

- 1. (a) Define stream function and velocity potential and obtain the relation between them. [7M]
 - (b) Two components of velocity and incompressible flow is given by $u = x^3 y^3$ and $v = z^3 y^3$. Determine the third component, assuming that the origin a stagnation point. [7M]
- 2. (a) Obtain an expression for stream function and velocity potential for a source in uniform horizontal stream. [7M]
 - (b) Consider a velocity field where the x and y components of velocity are given $u = y/(x^2 + y^2)$ and $v = -x/(x^2 + y^2)$, where 'c' is a constant. Show that it is a possible case of flow fieldand determine the equation of the stream line. [7M]

UNIT - II

3. (a) Draw a schematic diagram of an airfoil and explain the salient geometric parameters.

[7M]

- (b) Define the center of pressure and aerodynamic center and derive the relation to calculate the aerodynamic center. [7M]
- 4. (a) Explain the basic concept of classical thin airfoil theory.

[7M]

(b) Prove that using thin airfoil theory, the quarter chord point is the center of pressure and also the aerodynamic centre of an airfoil. [7M]

UNIT - III

- 5. (a) Briefly explain the following with relevant sketches:
 - i) Downwash
 - ii) Horse shoe vortex
 - iii) Induced drag coefficient

[7M]

- (b) Assuming elliptic circulation distribution given, obtain the closed form expression for the Induced angle of attack and Induced drag coefficient. [7M]
- 6. (a) Explain the following
 - i) Biot-Savart Law.
 - ii) Helmholtz vortex theorems

[7M]

(b) Explain the source panel and vortex panel methods and write the governing equations.

[7M]

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a) Define D-Alembert Paradox. [7]	7 M]
	(b) Explain with relevant sketches subsonic and supersonic leading edges.	7M]
8.	(a) Discuss the effects of propeller on the aircraft wing and airplane dynamics.	7M]
	(b) Explain the method of singularities (Prandtl-Glauret singularity) [7]	7M]
$\mathbf{UNIT} - \mathbf{V}$		
9.	(a) What do you understand by the boundary layer theory, explain laminar, turbulent and transi over a flat plate at low Reynold's number	${f 7M}]$
	(b) Derive the expressions for displacement thickness.	7M]
10.	(a) Derive the Navier-Stokes equation for 2D flows in partial differential non-conservation form.(b) Derive the expressions for Momentum thickness	7M]
	-	-