Hall Ticket No	Question Paper Code: AAE008				
INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)					
Four Year B.Tech V Semester End Examinations (Regular) - November, 2018					
${\bf Regulation: \ IARE-R16}$					
HIGH SPEED AEBODYNAMICS					

Time: 3 Hours

(AE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1. (a) Define compressible flow. Derive differential form of continues equation for compressible flow.

[7M]

(b) Calculate the standard atmosphere values of T, P, and at a Geo-potential altitude of 15 km.

[7M]

- 2. (a) Define the principle of energy equation and derive the equations for the conservations of energy in integral form. [7M]
 - (b) Consider an executive jet transport patterned after the Cessna 560. The airplane is cruising at a velocity of 492 mph at an altitude of 33,000 ft, where the ambient air density is $7.9656 \times 10-4$ slug/ft3. The weight and wing planform areas of the airplane are 15,000 lb and 342.6 ft2, respectively. The drag coefficient at cruise is 0.015. Calculate the lift coefficient and the lift-to-drag ratio at cruise. [7M]

$\mathbf{UNIT}-\mathbf{II}$

- 3. (a) What is shock expansion theory? how it is applicable to supersonic airfoils? [7M]
 - (b) For the flow field shown in Figure 1, determine βr with respect to the flow direction in zone 2, M_2 and M_3 if $M_1 = 2.0$ and $\beta i = 40^0$. [7M]

Figure 1

4. (a) Derive the expression for density relationship for normal shock for a perfect gas in terms of Mach number. [7M]

(b) A Mach 2 uniform air stream at p1 = 800 kPa and temperature 270 K expands through two convex corners of 10^0 each, as shown in Figure 2 Determine the Mach number M3, downstream of the second fan and p2, T2 and the angle of the angle of the second expansion fan [7M]

M3

Figure 2

$\mathbf{UNIT} - \mathbf{III}$

5.	(a) Explain Quasi-one dimensional flow and area velocity relation	[7M]
	(b) Explain about	[7M]
	i. choked flow	
	ii. ideally expanded	
	iii. over-expanded	
	iv. under expanded flows	
6.	(a) Define De Laval Nozzle and derive the Area Mach number relation.	[7M]
	(b) Cive a brief outline of experience of gungeroonic wind tunnels employing convergent	divergent

(b) Give a brief outline of operation of supersonic wind tunnels employing convergent -divergent nozzles? [7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Derive the equation for determining characteristic lines for two dimensional irrotational flow?
 - (b) Explain about whitcombs transonic area rule? How it will affect the performance of aircraft?

[7M]

[7M]

- 8. (a) Write Convergent-Divergent nozzle design by using method of characteristics. Explain the philosophy of method of characteristics. [7M]
 - (b) Derive the linearized velocity potential equation for steady irrotational flow with neat diagram.

[7M]

$\mathbf{UNIT}-\mathbf{V}$

9.	(a)	Write about supersonic wind tunnel operation ad fluid properties along the flow direction w	with a
		neat sketch.	[7M]
	(b)	What do you understand by shock tunnel? Explain with suitable diagram?	[7M]
10.	(a)	What do you understand by expansion tube? Explain with suitable diagram?	[7M]
	(b)	Differentiate the working of low speed wind tunnels and high speed wind tunnels with	n neat
		sketches?	[7M]

 $-\circ\circ\bigcirc\circ\circ-$