

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	HIGH	HIGH SPEED AERODYNAMICS						
Course Code	AAE0	AAE008						
Programme	B.Tecl	B.Tech						
Semester	V	/ AE						
Course Type	Core	Core						
Regulation	IARE - R16							
			Theory		Practic	cal		
Course Structure	Lect	ures	Tutorials	Credits	Laboratory	Credits		
	3	;	1	4	-	-		
Chief Coordinator	Mr. G Satya Dileep, Assistant Professor							
Course Faculty		Mr. G Satya Dileep, Assistant Professor Ms. D Anitha, Assistant Professor						

I. COURSE OVERVIEW:

The primary objective of this course is to introduce the concept of high-speed aerodynamics (Compressible aerodynamics). The high-speed aerodynamics is the first course for graduate and undergraduate students in Aerospace Engineering. The precise algorithm, mathematical derivation, numerical solutions is also the primary objective of this subject. The experimental techniques and its applications are taught to meet the requirements of industry need. The course consists of a strong mathematical component in addition to the design of various concepts. A number of problems/examples will be cited to enhance the understanding of the subject matter and besides, many unsolved problems will be provided with answers to further learning.

II. COURSE PRE-REQUISITES:

I	Level	Course Code	Semester	Prerequisites	Credits
	UG	AAE004	IV	Low Speed Aerodynamics	4

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
High Speed Aerodynamics	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

✓	Chalk & Talk	\checkmark	Quiz	\checkmark	Assignments	X	MOOCs
✓	LCD / PPT	~	Seminars	~	Mini Project	\checkmark	Videos
X	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into fiveunits and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component		Total Marks	
Type of Assessment	CIE Exam	Quiz / AAT	i otai wiai ks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to

be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	2	Presentation on real-
	mathematics, science, engineering fundamentals, and an		world problems
	engineering specialization to the solution of complex		
	engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	2	Seminar
	literature, and analyze complex engineering problems		
	reaching substantiated conclusions using first principles		
	of mathematics, natural sciences, and engineering		
	sciences		
PO3	Practical implementation and testing skills: Providing	2	Mini project
	different types of in house and training and industry		
	practice to fabricate and test and develop the products		
	with more innovative technologies		
PO 4	Conduct investigations of complex problems: Use	1	Assignments
	research-based knowledge and research methods		
	including design of experiments, analysis and		
	interpretation of data, and synthesis of the information		
	to provide valid conclusions.		

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: The ability to understand, analyze	1	Seminar
	and develop computer programs in the areas related to		
	algorithms, system software, multimedia, web design,		
	big data analytics, and networking for efficient design of		
	computer-based systems of varying complexity.		

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 2	Problem-Solving Skills: The ability to apply standard	2	Tutorials
	practices and strategies in software project development		
	using open-ended programming environments to deliver		
	a quality product for business success.		
PSO 3	Practical implementation and testing skills: Providing	3	Mini Project
	different types of in house and training and industry		
	practice to fabricate and test and develop the products		
	with more innovative technologies		
PSO 4	Successful Career and Entrepreneurship: The ability	1	Capability
	to employ modern computer languages, environments,		Demonstration
	and platforms in creating innovative career paths to be		
	an entrepreneur, and a zest for higher studies.		

3= High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES:

The c	ourse should enable the students to:
Ι	Understand the effect of compressibility at high-speeds and the ability to make intelligent design decisions.
II	Explain the dynamics in subsonic, transonic and supersonic flow regimes in both internal and external geometries.
III	Analyze the airfoils at subsonic, transonic and supersonic flight conditions using the perturbed flow theory assumption.
IV	Formulate appropriate aerodynamic models to predict the forces and performance of realistic three dimensional configurations.

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Explain a brief review of thermodynamics and fluid	CLO 1	Demonstrate the concept of supersonic flow, how it is different from incompressible flow.
	mechanics in relation to compressible flows	CLO 2	Understand governing equations of supersonic flow in various form and thermodynamics properties.
		CLO 3	Describe the governing equations required for compressible flows.
CO 2	Demonstrate different types of shock waves and	CLO 4	Illustrate the impact of supersonic flow in the presence of compression and expansion corner
	expansion waves and its properties across different situations.	CLO 5	Demonstrate supersonic aircraft design and applications to aircrafts, supersonic wind tunnel and shock tubes.
		CLO 6	Understand the concepts of shock wave boundary layer interaction.
CO 3	Understand the importance of quasi one dimensional	CLO 7	Illustrate the concepts of quasi one dimensional flow for compressible flows
	flow for obtaining supersonic speeds.	CLO 8	Describe isentropic flow in nozzles, area Mach relations, choked flow, under and over expanded nozzles, slipstream line.

i i					
		CLO 9	Understand the impact of heat and Friction in		
			duct flow and fanno flow		
CO 4	Illustrate the concepts of	CLO 10	Describe small perturbation equations for		
	method of characteristics		subsonic, transonic, supersonic and hypersonic		
	and its applications in nozzle		flow		
	designs.	CLO 11	Understand experimental characteristics of airfoils in compressible flow, supercritical airfoils and area rule.		
		CLO 12	Explain supersonic nozzle design using method of characteristics.		
CO 5	Understand the experimental methods and their		Illustrate working principle of subsonic wind tunnels, supersonic wind tunnels, shock tunnels		
	characteristics of various wind tunnels.	CLO 14	Explain free-piston shock tunnel, detonation- driven shock tunnels, and expansion tubes and characteristic features, their operation and performance.		
		CLO 15	Demonstrate flow visualization techniques for compressible flows.		

X. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AAE008.01	CLO 1	Demonstrate the concept of supersonic flow, how it is different from incompressible flow.	PO 1	3
AAE008.02	CLO 2	Understand governing equations of supersonic flow in various form and thermodynamics properties.	PO 1	3
AAE008.03	CLO 3	Describe the governing equations required for compressible flows.		2
AAE008.04	CLO 4	Illustrate the impact of supersonic flow in the presence of compression and expansion corner		3
AAE008.05	CLO 5	Demonstrate supersonic aircraft design and applications to aircrafts, supersonic wind tunnel, shock tubes.	PO 2	2
AAE008.06	CLO 6	layer interaction.	PO 2	3
AAE008.07	CLO 7	flow for compressible flows	PO 2, PO 3	1
AAE008.08	CLO 8	Describe isentropic flow in nozzles, area Mach relations, choked flow, under and over expanded nozzles, slipstream line.	PO 3	2
AAE008.09	CLO 9	Understand the impact of heat and Friction in duct flow and fanno flow	PO 2	2
AAE008.10	CLO 10	Describe small perturbation equations for subsonic, transonic, supersonic and hypersonic flow	PO 2	3
AAE008.11	CLO 11	Understand experimental characteristics of airfoils in compressible flow, supercritical airfoils and area rule.	PO 1, PO2	1
AAE008.12	CLO 12	Explain supersonic nozzle design using method of characteristics.	PO 2, PO 3	3
AAE008.13	CLO 13	Illustrate working principle of subsonic wind tunnels, supersonic wind tunnels, shock tunnels	PO 1, PO 3	2
AAE008.14	CLO 14	Explain free-piston shock tunnel, detonation-driven shock tunnels, and expansion tubes and characteristic features, their operation and performance.	PO 2, PO 4	2

CLO	CLO's	At the end of the course, the student will have	PO's	Strength of
Code		the ability to:	Mapped	Mapping
AAE008.15	CLO 15	Demonstrate flow visualization techniques for	PO 3, PO4	1
		compressible flows.		

3= High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course Outcomes	Pr	Program Specific Outcomes (PSOs)						
(COs)	PO 1	PO 2	PO 3	PO 4	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	3	2			1			
CO 2		3			1	2	3	1
CO 3		2	1			1	3	
CO 4	1	3	3				3	1
CO 5	1	2	2	2	1	2	3	1

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning		Program Outcomes(POs)								Program Specific Outcomes (PSOs)						
Outcomes (CLOs)		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO 4
CLO 1	3												1			
CLO 2	3												1			
CLO 3	3	2											1			
CLO 4	3	2											1			
CLO 5		2												2		1
CLO 6		3													3	
CLO 7		2	1											1		
CLO 8			2												3	
CLO 9		2													3	
CLO 10		3													3	
CLO 11	1	2													3	1
CLO 12		2	3												3	
CLO 13	1		3												3	
CLO 14		2		2										2		
CLO 15			1	2									1			1
	3 =]	High	; 2 =	Med	lium	;1=	Low	r								·

XIII. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO 1, PO 2 PO 3, PO 4	SEE Exams	PO 1, PO 2 PO 3, PO 4	Assignments	PO 1, PO 2 PO 3, PO 4	Seminars	PO 1, PO 2 PO 3, PO 4
Laboratory Practices	-	Student Viva	-	Mini Project	PO 4	Certification	-
Term Paper	PO 4						

XIV. ASSESSMENT METHODOLOGIES-INDIRECT

\checkmark	Early Semester Feedback	√	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XV. SYLLABUS

Unit-I	INTRODUCTION TO COMPRESSIBLE FLOWS							
mechanics,	cepts: Introduction to compressible flow, brief review of thermodynamics and fluid integral forms of conservation equations, differential conservation equations, continuum acoustic speed and Mach number, governing equations for compressible flows.							
Unit-II	SHOCK AND EXPANSION WAVES							
moving no polar, supe	d expansion waves: Development of governing equations for normal shock, stationery and ormal shock waves, applications to aircrafts, supersonic wind tunnel, shock tubes, shock rsonic pitot probes; oblique shocks, governing equations, reflection of shock, Prandtl-Meyer flow, shock expansion method for flow over airfoil, introduction to shock wave boundary action.							
Unit-III	DIMENSIONAL AND QUASI ONE DIMENSINAL FLOW							
-	dimensional flow: Isentropic flow in nozzles, area Mach relations, choked flow, under and ded nozzles, slip stream line.							
	nsional flow: Flow in constant area duct with friction and heat transfer, Fanno flow and ow, flow tables and charts for Fanno flow and Rayleigh flow.							
Unit-IV	APPLICATIONS OF COMPRESSIBLE FLOWS AND NUMERICAL TECHNIQUES							
characteris characteris	urbation equations for subsonic, transonic, supersonic and hypersonic flow; Experimental tics of airfoils in compressible flow, supercritical airfoils, area rule; Theory of tics, determination of the characteristic lines and compatibility equations, supersonic nozzle ag method of characteristics.							
Unit-V	EXPERIMENTAL METHODS IN COMPRESSIBLE FLOWS							
shock tunn	tal methods: Subsonic wind tunnels, supersonic wind tunnels, shock tunnels, free-piston el, detonation-driven shock tunnels, and expansion tubes and characteristic features, their nd performance, flow visualization techniques for compressible flows							
Text Book	s:							
Educa	 D. Anderson, "Modern Compressible flow with historical perspective", McGraw-Hill tion, 3rd Edition, 2002. D. Anderson, "Fundamentals of Aerodynamics", McGraw-Hill Education, 6th Edition, 2016. 							
Reference	Books:							
Wiley 2. Radha	r H. Shapiro, "The Dynamics and Thermodynamics of Compressible Fluid Flow", John & Sons; Volume 1 ed. Edition, 1977. krishnan Ethirajan, "Gas Dynamics", John Wiley & Sons, 2nd edition 2010. .iepmann and A Roshko, "Elements of Gas Dynamics", John Wiley & Sons, 4th edition,							

XVI. COURSE PLAN: The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference	
1	Introduction to compressible flow	CLO 1	T1:60, T1:534	
2-3	Brief review of thermodynamics and fluid mechanics	CLO 1	T1:488-499	
4-5	Integral forms of conservation equations, differential conservation equations	CLO 3	T1:97-132	
6	Continuum postulates	CLO 1	T1:58	
7-8	Acoustic speed and Mach number	CLO 1 CLO 2	T1:560-564	
9-10	Governing equations for compressible flows	CLO 2 CLO 2	T1:499-501	
11	Shocks and expansion waves	CLO 2	T1:602-606	
12-13	Development of governing equations for normal	CLO 4	T1:515-557	
12 15	shock, stationery and moving normal shock waves,	CLO I	11.515 557	
14	applications to aircrafts	CLO 5	T1:580-581	
15-16	Supersonic wind tunnel, shock tubes, shock polars,	CLO 5	T1:570-575	
	supersonic pitot probes			
17-18	Oblique shocks, governing equations, reflection of shock	CLO 6	T1:566-570	
19-20	Prandtl's-Meyer expansion flow, shock expansion method for flow over airfoil	CLO 6	T1:590-596	
21	Introduction to shock wave boundary layer interaction	CLO 6	T1:870 T1:939	
22	Quasi one dimensional flow	CLO 7	T1:289	
23-24	Isentropic flow in nozzles, area Mach relations, choked flow	CLO 8	T1:626-630	
25	Under and over expanded nozzles, slip streamline.	CLO 8	T1:631-638	
26	One dimensional flow	CLO 9	R2:61	
2728	Flow in constant area duct with friction and heat transfer	CLO 9	R2:314:321	
29	Fanno flow and Rayleigh flow	CLO 9	R2:302-314	
30-31	Flow tables and charts for Fanno flow and Rayleigh flow.	CLO 9	R2:302-314	
32	Small perturbation	CLO 10	R2:232	
33-35	Perturbation equations for subsonic, transonic, supersonic and hypersonic flow	CLO 10	R2:232	
36-37	Experimental characteristics of airfoils in compressible flow	CLO 11	R2:24	
38	Supercritical airfoils	CLO 11	R2:2712	
38	Area rule	CLO 11	T1:691-693, T1:704- 705,	
40-41	Theory of characteristics, determination of the characteristic lines	CLO 12	T1:729-736	
42-44	Compatibility equations, supersonic nozzle design using method of characteristics	CLO 12	T1:729-736	
45	Experimental methods	CLO 13	T1:200-215	
46-47	Subsonic wind tunnels	CLO 13	T1:200-215	
48-52	supersonic wind tunnels, shock tunnels, free-piston shock tunnel, detonation-driven shock tunnels, and expansion tubes and characteristic features, their operation and performance	CLO 14	T1:486.701	

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
53-55	Flow visualization techniques for compressible flows.	CLO 15	T1:486.701

XVII. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs	RELEVANCE WITH PSOs
1	Application of knowledge and skills in the scientific programming	Seminars	PO 1	PSO 1
2	Broad knowledge of high speed aerodynamics and industrial applications	Seminars / NPTEL	PO 3	PSO 1

Prepared By:

Mr. G Satya Dileep, Assistant Professor

HOD, AE