Hall Ticket No				Question Paper Code: AAE011
	STIT	UTE C	DNAUTIC utonomous))))

Four Year B.Tech V Semester End Examinations(Regular) - November, 2019 Regulation: IARE – R16

AIRCRAFT PERFORMANCE

Time: 3 Hours

(AE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a)	Define the meaning of off standard atmosphere. Explain briefly about design atmosphere mode with suitable sketch. [7M
	(b)	Describe with the help of a diagram the mission profile of a civil transport aircraft. What i involved in performance estimation? [7M
2.	(a)	Obtain expression for maximum lift to drag ratio (L/D) with respect to the coefficient of drag (C_{D_0}) at zero angle of attack. [7M
	(b)	Explain international standard atmosphere with suitable plot. [7M

$\mathbf{UNIT}-\mathbf{II}$

3.	(a)	Elaborate the cruise technique of constant angle of attack and constant altitude	[7M]
	(b)	"The maximum range, in the presence of wind, is not obtained at E_m but at a different I	L/D".
		Discuss this issue and give your opinion on this statement with necessary formula and plot.	[7M]

- 4. (a) Discuss the effect of Mach number on lift and drag coefficient with relevant graphs. [7M]
 - (b) Highlight the effect of weight, altitude and temperature on cruise performance. [7M]

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) Explain briefly about limit load factor and ultimate load factor with relevant diagram. [7M]
 - (b) Given an airplane of mass 50000 kg, lift/drag ratio 10, thrust per engine 60,000N, assume $g=10 \text{ m/s}^2$. For a straight, steady, wings level climb of a twin engine airplane, calculate the all engine climb gradient.

[7M]

- 6. (a) Explain in detail, with relevant formulae climb rate, climb gradient, thrust producing engines and minimum fuel climbs. [7M]
 - (b) Consider the Gulfstream IV flying at 30,000 ft. Assume a total loss of engine thrust. Calculate i) The minimum glide path angle
 - ii) The maximum range covered over the ground

iii)The corresponding equilibrium glide velocity at 30,000 ft and at sea level.

 $(\rho_{3000}{=}~1.5455~{\rm X}~10^{-5}~{\rm Ns}/m^2)$

[7M]

$\mathbf{UNIT}-\mathbf{IV}$

7.		Discuss with the help of a diagram the airspeed boundaries for maneuver envelope. [7M Determine the load factor for the following i) Level flight ii) Free fall iii) In a turn of radius 200 m at a speed of 100 m/s iv) At the bettern of a loop of radius 200 m at a speed of 100 m /s	1
8.	()	iv) At the bottom of a loop of radius 200 m at a speed of 100 m/s. [7M Describe the equations of motion of an aircraft undergoing lateral maneuver or level turn an obtain an expression for radius of turn. [7M Determine the stall speed of a utility aircraft with mass 4500 kg, a wing area of 19.5 m^2 and the maximum lift coefficient of 2.5. Perform this analysis at sea level for the following two flight condition.	.d [] .d
		ii) Turning flight with a 30^0 bank angle [7M UNIT – V	[]
9.		Explain the following: i) Trip fuel ii) Diversion fuel iii) Reserves iv) Tankering [7M Give the position of the flight controls during take off and landing of the aircraft. Explain effect of each controls with neat diagram. [7M]	ts
10.		Illustrate the effects on the take off distances of the below flight variables. i) Aircraft weight ii) Head wind iii) Atmosphere effects iv) Runway conditions [7M Deduce the expressions for ground run and airborne distances for the landing performance. [7M	