

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	FLIGHT VEHICLES DESIGN					
Course Code	AAE017	AAE017				
Programme	B.Tech					
Semester	VII AE					
Course Type	Core					
Regulation	IARE - R16					
	Theory Practical					
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits	
	3	1	4	3	2	
Chief Coordinator	Mrs.M. MaryThraza, Assistant Professor					
Course Faculty	Mrs.M. M Ms. K.Sai	aryThraza, Assista Priyanka, Assistan	nt Professor Professor			

I. COURSEOVERVIEW:

The aim of Flight Vehicle design (FVD) is to introduce students the overview of the design process. The course covers basic principles of conceptual design process of an aircraft and the related details of all design techniques. After completion of the course the student gains adequate knowledge to design all the different phase of an aircraft design.Weight estimation of aircraft for differentaircrafts.

II. COURSEPRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AAE004	IV	Low Speed Aerodynamics	4
UG	AAE011	V	Aircraft Performance	3
UG	AAE006	IV	Analysis Of Aircraft Structures	4

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Flight Vehicles Design	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Marker& Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	×	Videos
×	Open Ended Experiments						

V. EVALUATIONMETHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in aquestion.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the Concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component		Total Manla	
Type of Assessment	CIE Exam	Quiz / AAT	I Otal Warks
CIA Marks	25	05	30

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be Page | 2

answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	Presentations on
	mathematics, science, engineering fundamentals, and an		real world
	engineering specialization to the solution of complex		problems
	engineering problems.		
PO 2	Problem analysis: An ability to identify, formulate and	3	Assessing real-
	solve problems in key areas of Aerodynamics, Structures,		world problems by
	Propulsion, Flight Dynamics and Control, Design, Testing,		case study
	Space and Missile Technologies and Aviation of		
	Aeronautical Engineering discipline.		
PO 3	Design/development of solutions: An ability to design and	2	Seminar/
	conduct experiments, analyze and interpret data related to		Research papers
	various areas of Aeronautical Engineering.		
PO 4	Conduct investigations of complex problems: Use	1	Assignments
	research-based knowledge and research methods including		
	design of experiments, analysis and interpretation of data,		
	and synthesis of the information to provide valid		
	Conclusions.		

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

3 = High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES AREASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of	2	Lectures,
	aeronautical/aerospace engineering in innovative, dynamic		Assignments,
	and challenging environment for design and development		Seminars
	of new products.		
PSO2	Problem-solving Skills: Imparted through simulation	2	Tutorials, Software
	language skills and general purpose CAE packages to		Practice
	solve practical, design and analysis problems of		
	Components to complete the challenge of airworthiness for		
	flight vehicles.		
PSO 3	Practical implementation and testing skills: Providing	-	-
	different types of in house and training and industry		
	practice to fabricate and test and develop the products with		
	more innovative technologies		

PSO 4	Successful career and entrepreneurship: To prepare the	-	-
	students with broad aerospace knowledge to design and		
	develop systems and subsystems of aeronautical/aerospace		
	allied systems to become technocrats.		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES:

The course should enable the students to:						
Ι	Understand the basic skills involved in weight estimation for aircraft conceptual design process					
II	Illustrate relevant theoretical knowledge, applicable for initial sizing and configuration layout of aircraft					
III	Evaluate basic techniques in literature retrieval and query, also creative and have systematic scientific research methods and working abilities					
IV	Observe different designing processes and how an aircraft production company works on it.					
v	Explore the new concepts of aerodynamics propulsion and fuel system integration					

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Describe different phases of aircraft design , weight	CLO 1	Understanding the different designing concepts like preliminary design conceptual design and detail deign
	estimation and few basics of aerodynamics	CLO 2	Interpret the weight estimation of propulsion system
		CLO 3	Calculating the dimensioning of engine inlet location
		GY O (and capture area
CO 2	Differentiating size estimation fuel system and understanding the installation of engine	CLO 4	Estimation of wing geometry and wing vertical location, wing tip shapes, tail geometry and arrangements, thrust to weight ratio-statistical estimation
S	systems	CLO 5	Apply a theories and to predict the maximum lift coefficient, and complete drag build up, installed performance of an engine
		CLO 6	Development of configuration lay out from conceptual sketch.
		CLO 7	Calculating the velocity, angle of Attack, angle of attack rate, pitch rate, elevator angle.
CO 3	Estimation of lift curve slopes maximum lift	CLO 8	Constructing v-n diagram, air load distribution on lifting surfaces
	coefficient and different material selection can be	CLO 9	Developing the concept of Propulsion selection fuel selection
	found	CLO 10	Plotting the mission segment with different weight fractions
CO 4	Understanding the concepts of stability for	CLO 11	Understanding the concepts of different landing gear system
	different control surfaces	CLO 12	Estimation of design-stability and control
	and also understanding the methods of structural analysis	CLO 13	Analysis of performance under constrained conditions constraint
CO 5	Acquiring knowledge on cost estimation research, Development, Test, and	CLO 14	Acquire Basic knowledge to solve real time problems in Aircraft propulsion and structure with different loading conditions
	Evaluation and product cost for designing an aircraft	CLO 15	Apply the fundamental concepts in competitive examinations

X. COURSE LEARNING OUTCOMES(CLOs):

CLOCode	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AAE017.01	CLO 1	Understanding the different designing concepts like preliminary design conceptual design and detail design	PO 1	3
AAE017.02	CLO 2	Interpret the weight estimation of propulsion system structural weight empty weight	PO 2	3
AAE017.03	CLO 3	Calculating the dimensioning of engine inlet location and capture area	PO 2	2
AAE017.04	CLO 4	Estimation of wing geometry and wing vertical location, wing tip shapes, tail geometry and arrangements, thrust to weight ratio-statistical estimation	PO 2	3
AAE017.05	CLO 5	Apply a theories and to predict the maximum lift coefficient, and complete drag build up, installed performance of an engine	PO 3	2
AAE017.06	CLO 6	Development of configuration lay out from conceptual sketch.	PO 3	3
AAE017.07	CLO 7	Calculating the velocity, angle of Attack, angle of attack rate, pitch rate, elevator angle.	PO 2	2
AAE017.08	CLO 8	Constructing v-n diagram, air load distribution on lifting surfaces	PO 1	2
AAE017.09	CLO 9	Developing the concept of Propulsion selection fuel selection.	PO 3	1
AAE017.10	CLO 10	Plotting the mission segment with different weight fractions	PO 4	1
AAE017.11	CLO 11	Understanding the concepts of different landing gear system	PO 1	2
AAE017.12	CLO 12	Estimation of design-stability and control	PO 3	3
AAE017.13	CLO 13	Analysis of performance under constrained conditions constraint	PO 2	2
AAE017.14	CLO 14	Acquire Basic knowledge to solve real time problems in Aircraft propulsion and structure with different loading conditions	PO 1	3
AAE017.15	CLO 15	Apply the fundamental concepts in competitive examinations	PO 2	1

3 = High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course		Program Ou	Program Specific Outcomes(PSOs)			
(COs)	PO 1	PO 2	PO 3	PO 4	PSO 1	PSO 2
CO 1	3	3			2	
CO 2		3	3			2
CO 3	2		1	1	2	2
CO 4	2	2	3			
CO 5	3	1			2	2

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFICOUTCOMES:

Course Learning	Program Outcomes (POs)						P O	rogran utcom	n Spec es (PS	ific Os)						
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	3															
CLO 2		3											3			
CLO 3	2													2		
CLO 4		3														
CLO 5			2										2			
CLO 6			3											2		
CLO 7		2														
CLO 8	2															
CLO 9			1											2		
CLO 10				1									2			
CLO 11	2												2			
CLO 12			3											2		
CLO 13		2											2			
CLO 14	3															
CLO 15		1												2		

3 = High; **2** = Medium; **1** = Low

XIII.ASSESSMENTMETHODOLOGIES-DIRECT

CIE Exams	PO 1, PO 2	SEE Exams	PO 1, PO 2	Assignments	PO 4	Seminars	PO 2
	PO 3, PO 4		PO 3, PO 4	_			
	PSO1, PSO2		PSO1, PSO2				
Laboratory		Student	-	Mini Project	-	Certification	-
Practices	PO 4	Viva		_			
Term							
Paper	-						

XIV.ASSESSMENTMETHODOLOGIES-INDIRECT

1	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

Phases of aircraft design, aircraft conceptual design process, project brief / request for proposal, proplem definition, information retrieval, integrated product development and aircraft design, initial conceptual sketches, takeoff gross weight estimation, airfoil selection, airfoil design, airfoil design considerations, wing geometry and wing vertical location, wing ip shapes, tail geometry and arrangements, thrust to weight ratio. (Trust matching, wing loading performance, constraint analysis UNIT-II INITIAL SIZING & CONFIGURATION LAYOUT Sizing with fixed engine and with rubber engine. Geometry sizing of fuselage, wing, tail, control surfaces, and development of configuration lay out from conceptual sketch, the inboard profile drawing, lofting definition, significance and methods, flat wrap lofting, special consideration in configuration lay out, lsobar tailoring. Sears-Hack volume distribution, structural load paths, radar, IR, visual detectability, aural signature, considerations of vulnerability, crashworthiness, producibility, maintainability, fuselage design, crew station, passengers and payload UNIT-III PROPULSION, FUEL SYSTEM INTEGRATION, LANDING GEAR AND BASELINE DESIGN ANALXISIS - I Propulsion selection, jet engine integration, propeller engine integration, engine design considerations, engine size estimation, fuel system design and integration, landing gear and sub system sarangements, guidelines and significance of design layout, report of initial specifications. Estimation of lift curve slope, maximum flit coefficient, complete rag publid up, installed performance on analysis, and evaluation, efficient stability and trim, estimation of static pitch stability and distribution on lifting surfaces, review of methods of structural analysis, material selection, weights and monents statistical group estim	UNIT-I	OVERVIEW OF THE DESIGN PROCESS								
UNIT-II INITIAL SIZING & CONFIGURATION LAYOUT Sizing with fixed engine and with rubber engine. Geometry sizing of fuselage, wing, tail, control surfaces, and development of configuration lay out from conceptual sketch. the inboard profile drawing, lofting definition, significance and methods, flat wrap lofting, special consideration in configuration lay out, Isobar tailoring, Sears-Hack volume distribution, structural load paths, radar, IR, visual detectability, aural signature, considerations of vulnerability, crashworthiness, producibility, maintainability, fuselage design, crew station, passengers and payload. UNT-III PROPULSION, FUEL SYSTEM INTEGRATION, LANDING GEAR AND BASELINE DESIGN ANALYSIS -1 Propulsion selection, jet engine integration, propeller engine integration, engine disc design considerations, the system design and integration, lateral structures and loads categories, air load distribution on lifting surfaces, review of methods of structural analysis, material selection, weights and moments statistical group estimation method, center of gravity excursion control. UNIT-IV BASELINE DESIGN ANALYSIS - II Estimation of stability and trim, estimation of stability and control derivatives, static lateral, directional stability and trim, estimation of stability and control derivatives, static lateral, directional stability and trim, estimation of primal characteristics, performance analysis and constrait analysis, balanced field length, landing analysis, fightre performance steady climbing and descending fight, heart angle and report of spacelitacions. UNIT-IV BASELINE DESIGN ANALYSIS - II Estimation of stability eneregy maneuverability methods of optimal climb trin	Phases of aircraft design, aircraft conceptual design process, project brief / request for proposal, problem definition, information retrieval, integrated product development and aircraft design. initial conceptual sketches, takeoff gross weight estimation, airfoil selection, airfoil design, airfoil design considerations, wing geometry and wing vertical location, wing tip shapes, tail geometry and arrangements, thrust to weight ratio, thrust matching, wing loading performance, constraint analysis									
Sizing with fixed engine and with rubber engine. Geometry sizing of fuselage, wing, tail, control surfaces, and development of configuration lay out from conceptual sketch. the inboard profile drawing, lofting definition, significance and methods, flat wrap lofting, special considerations in configuration lay out, Isobar tailoring. Sears-Hack volume distribution, structural load paths, radar, IR, visual detectability, aural signature, considerations of vulnerability, crashworthiness, producibility, maintainability, fuselage design, crew station, passengers and payload UNIT-III PROPULSION, FUEL SYSTEM INTEGRATION, LANDING GEAR AND BASELINE DESIGN ANALYSIS - I Propulsion selection, jet engine integration, propeller engine integration, engine design considerations or disgin/facance of design layout, report of initial specifications. Estimation of lift curve slope, maximum lift coefficient, complete drag build up, installed performance of an engine, installed thrust methodology, net propulsive force, part power operation, aircraft structures and loads categories, air load distribution on lifting surfaces, review of methods of structural analysis, material selection, weights and moments statistical group estimation to a intraft dynamical characteristics, handling qualities, Cooper – Harper scale, relation to aircraft dynamical characteristics, performance analysis and evaluation, refineed baseline design and rate of climb, time to climb, fuel to climb, level turning flight, level flight, male and rate of climb, landing analysis, fighter performance mays and evaluation, refineed baseline design and report of specificatons.	UNIT-II	INITIAL SIZING & CONFIGURATION LAYOUT								
UNIT-III PROPULSION, FUEL SYSTEM INTEGRATION, LANDING GEAR AND BASELINE DESIGN ANALYSIS - 1 Propulsion selection, jet engine integration, propeller engine integration, engine design considerations, guidelines and significance of design layout, report of initial specifications. Estimation of lift curve slope, maximum lift coefficient, complete drag build up, installed performance of an engine, installed thrust methodology, net propulsive force, part power operation, aircraft structures and loads categories, air load distribution on lifting surfaces, review of methods of structural analysis, material selection, weights and moments statistical group estimation method, center of gravity excursion control. UNIT-IV BASELINE DESIGN ANALYSIS - 11 Estimation of static pitch stability, velocity stability and trim, estimation of stability and control derivatives, static lateral, directional stability and trim, estimation of aircraft dynamical characteristics, handling qualities, Cooper – Harper scale, relation to aircraft dynamic characteristics, performance analysis and constraint analysis- steady level flight, minimum thrust required for level flight, range and loiter endurance, steady climbing and descending flight, best angle and rate of climb, time to climb, fuel to climb, level turning flight, gliding flight, energy maneuverability methods of optimal climb trajectories and turns, the aircraft operating envelope, take off analysis, balanced field length, landing analysis, fighter performance measures of merit, effects of wind on aircraft performance, initial technical report of baseline design analysis and evaluation, refined baseline design and rate and production costs, operation and maintenance costs, cost measures of merit, aircraft and airline economics, DOC and IOC, airline revenue, breakeven analysis, investment cost analysis, parametric analysis	Sizing with fix and developm definition, sig Isobar tailoring signature, con- crew station, p	Sizing with fixed engine and with rubber engine. Geometry sizing of fuselage, wing, tail, control surfaces, and development of configuration lay out from conceptual sketch. the inboard profile drawing, lofting definition, significance and methods, flat wrap lofting, special consideration in configuration lay out, Isobar tailoring, Sears-Hack volume distribution, structural load paths, radar, IR, visual detectability, aural signature, considerations of vulnerability, crashworthiness, producibility, maintainability, fuselage design, crew station passengers and payload								
Propulsion selection, jet engine integration, propeller engine integration, engine design considerations, engine size estimation, fuel system design and integration, landing gear and sub systems arrangements, guidelines and significance of design layout, report of initial specifications. Estimation of lift curve slope, maximum lift coefficient, complete drag build up, installed performance of an engine, installed thrust methodology, net propulsive force, part power operation, aircraft structures and loads categories, air load distribution on lifting surfaces, review of methods of structural analysis, material selection, weights and moments statistical group estimation method, center of gravity excursion control. UNIT-IV BASELINE DESIGN ANALYSIS - II Estimation of static pitch stability, velocity stability and trim, estimation of stability and control derivatives, static lateral, directional stability and trim, estimation of aircraft dynamical characteristics, handling qualities, Cooper – Harper scale, relation to aircraft dynamic characteristics, performance analysis and constraint analysis– steady level flight, minimum thrust required for level flight, range and loiter endurance, steady climbing and descending flight, best angle and rate of climb, time to climb, fuel to climb, level turning flight, energy maneuverability methods of optimal climb trajectories and turns, the aircraft operating envelope, take off analysis, balanced field length, landing analysis, fighter performance measures of merit, effects of wind on aircraft performance, initial technical report of baseline design analysis and evaluation, refined baseline design and report of specifications. UNIT-V COST ESTIMATION, PARAMETRIC ANALYSIS, OPTIMISATION, REFINED SIZING AND TRADE STUDIES Elements of life cycle cost, cost estimating method, RDT&E and produ	UNIT-III	PROPULSION, FUEL SYSTEM INTEGRATION, LANDING GEAR AND BASELINE DESIGN ANALYSIS - I								
UNIT-IV BASELINE DESIGN ANALYSIS - II Estimation of static pitch stability, velocity stability and trim, estimation of stability and control derivatives, static lateral, directional stability and trim. estimation of aircraft dynamical characteristics, handling qualities, Cooper – Harper scale, relation to aircraft dynamic characteristics, performance analysis and constraint analysis- steady level flight, minimum thrust required for level flight, range and loiter endurance, steady climbing and descending flight, best angle and rate of climb, time to climb, fuel to climb, level turning flight, gliding flight, energy maneuverability methods of optimal climb trajectories and turns, the aircraft operating envelope, take off analysis, balanced field length, landing analysis, fighter performance measures of merit, effects of wind on aircraft performance, initial technical report of baseline design and report of specifications. UNIT-V COST ESTIMATION, PARAMETRIC ANALYSIS, OPTIMISATION, REFINED SIZING AND TRADE STUDIES Elements of life cycle cost, cost estimating method, RDT&E and production costs, operation and maintenance costs, cost measures of merit, aircraft and airline economics, DOC and IOC, airline revenue, breakeven analysis, investment cost analysis, parametric analysis and optimization, improved conceptual sizing methods, sizing matrix plot and carpet plot, trade studies, design trades, requirement trades, growth sensitivities, multivariable design optimization methods, measures of merit, determination of final baseline design configuration, preparation of type specification report. Case studies on design of DC-3 and Boeng B-707&t747. General dynamics F-16, SR-71 Blackbird, Northrop-Grumman B-2 Stealth Bomber. Text Books: 1 Raymer, D.P., Aircraft Design: A Conceptual Approach,	Propulsion se engine size es guidelines and maximum lift methodology, distribution on moments statis	Propulsion selection, jet engine integration, propeller engine integration, engine design considerations, engine size estimation, fuel system design and integration, landing gear and sub systems arrangements, guidelines and significance of design layout, report of initial specifications. Estimation of lift curve slope, maximum lift coefficient, complete drag build up, installed performance of an engine, installed thrust methodology, net propulsive force, part power operation, aircraft structures and loads categories, air load distribution on lifting surfaces, review of methods of structural analysis, material selection, weights and moments statistical group estimation method soft server.								
 Estimation of static pitch stability, velocity stability and trim, estimation of stability and control derivatives, static lateral, directional stability and trim. estimation of aircraft dynamic characteristics, handling qualities, Cooper – Harper scale, relation to aircraft dynamic characteristics, performance analysis and constraint analysis- steady level flight, minimum thrust required for level flight, range and loiter endurance, steady climbing and descending flight, best angle and rate of climb, time to climb, fuel to climb, level turning flight, energy maneuverability methods of optimal climb trajectories and turns, the aircraft operating envelope, take off analysis, balanced field length, landing analysis, fighter performance measures of merit, effects of wind on aircraft performance, initial technical report of baseline design analysis and evaluation, refined baseline design and report of specifications. UNIT-V COST ESTIMATION, PARAMETRIC ANALYSIS, OPTIMISATION, REFINED SIZING AND TRADE STUDIES Elements of life cycle cost, cost estimating method, RDT&E and production costs, operation and maintenance costs, cost measures of merit, aircraft and airline economics, DOC and IOC, airline revenue, breakeven analysis, investment cost analysis, parametric analysis and optimization, improved conceptual sizing methods, sizing matrix plot and carpet plot, trade studies, design trades, requirement trades, growth sensitivities, multivariable design optimization methods, measures of merit, determination of final baseline design optimization report. Case studies on design of DC-3 and Boeing B-707&747; General dynamics F-16, SR-71 Blackbird, Northrop-Grumman B-2 Stealth Bomber. Text Books: Raymer, D.P., Aircraft Design: A Conceptual Approach, 3rdedn., AIAA Education Series, AIAA, 1999, ISBN: 1-56347-281-0. Howe, D., Aircraft Conceptual Design Synthesis, Professional Engineering Publishing, London, 2000, ISBN: 1-56058-301-6.<td>UNIT-IV</td><td>BASELINE DESIGN ANALYSIS - II</td>	UNIT-IV	BASELINE DESIGN ANALYSIS - II								
UNIT-V COST ESTIMATION, PARAMETRIC ANALYSIS, OPTIMISATION, REFINED SIZING AND TRADE STUDIES Elements of life cycle cost, cost estimating method, RDT&E and production costs, operation and maintenance costs, cost measures of merit, aircraft and airline economics, DOC and IOC, airline revenue, breakeven analysis, investment cost analysis, parametric analysis and optimization, improved conceptual sizing methods, sizing matrix plot and carpet plot, trade studies, design trades, requirement trades, growth sensitivities, multivariable design optimization methods, measures of merit, determination of final baseline design configuration, preparation of type specification report. Case studies on design of DC-3 and Boeing B-707&747; General dynamics F-16, SR-71 Blackbird, Northrop-Grumman B-2 Stealth Bomber. Text Books: 1. 1. Raymer, D.P., Aircraft Design: A Conceptual Approach, 3 rd edn., AIAA Education Series, AIAA, 1999, ISBN: 1-56347-281-0. 2. Howe, D., Aircraft Conceptual Design Synthesis, Professional Engineering Publishing, London, 2000, ISBN: 1-86058-301-6. 3. Fielding, J.P., Introduction to Aircraft Design, Cambridge University Press, 2005, ISBN: 0-521- 657222-9. Reference Books: 1. 1. E. Torenbeek, Synthesis of Subsonic Airplane Design, Delft University Press, New York, 1986. 2. E. H Bruhn, Analysis and Design of Flight Vehicles Structures, Jacobs Publishing House, USA, New Edition, 1973.	Estimation of a static lateral, qualities, Coo constraint anal steady climbin turning flight, aircraft operat measures of n analysis and e	Estimation of static pitch stability, velocity stability and trim, estimation of stability and control derivatives, static lateral, directional stability and trim. estimation of aircraft dynamical characteristics, handling qualities, Cooper – Harper scale, relation to aircraft dynamic characteristics, performance analysis and constraint analysis– steady level flight, minimum thrust required for level flight, range and loiter endurance, steady climbing and descending flight, best angle and rate of climb, time to climb, fuel to climb, level turning flight, gliding flight, energy maneuverability methods of optimal climb trajectories and turns, the aircraft operating envelope, take off analysis, balanced field length, landing analysis, fighter performance measures of merit, effects of wind on aircraft performance, initial technical report of baseline design analysis and evaluation, refined baseline design and report of specifications.								
 Elements of life cycle cost, cost estimating method, RDT&E and production costs, operation and maintenance costs, cost measures of merit, aircraft and airline economics, DOC and IOC, airline revenue, breakeven analysis, investment cost analysis, parametric analysis and optimization, improved conceptual sizing methods, sizing matrix plot and carpet plot, trade studies, design trades, requirement trades, growth sensitivities, multivariable design optimization methods, measures of merit, determination of final baseline design configuration, preparation of type specification report. Case studies on design of DC-3 and Boeing B-707&747; General dynamics F-16, SR-71 Blackbird, Northrop-Grumman B-2 Stealth Bomber. Text Books: Raymer, D.P., Aircraft Design: A Conceptual Approach, 3rdedn., AIAA Education Series, AIAA, 1999, ISBN: 1-56347-281-0. Howe, D., Aircraft Conceptual Design Synthesis, Professional Engineering Publishing, London, 2000, ISBN: 1-86058-301-6. Fielding, J.P., Introduction to Aircraft Design, Cambridge University Press, 2005, ISBN: 0-521-657222-9. Reference Books: E. Torenbeek, Synthesis of Subsonic Airplane Design, Delft University Press, New York, 1986. E. H Bruhn, Analysis and Design of Flight Vehicles Structures, Jacobs Publishing House, USA, New Edition, 1973. 	UNIT-V	COST ESTIMATION, PARAMETRIC ANALYSIS, OPTIMISATION, REFINED SIZING AND TRADE STUDIES								
 Text Books: Raymer, D.P., Aircraft Design: A Conceptual Approach, 3rdedn., AIAA Education Series, AIAA, 1999, ISBN: 1-56347-281-0. Howe, D., Aircraft Conceptual Design Synthesis, Professional Engineering Publishing, London, 2000, ISBN: 1-86058-301-6. Fielding, J.P., Introduction to Aircraft Design, Cambridge University Press, 2005, ISBN: 0-521-657222-9. Reference Books: E. Torenbeek, Synthesis of Subsonic Airplane Design, Delft University Press, New York, 1986. E. H Bruhn, Analysis and Design of Flight Vehicles Structures, Jacobs Publishing House, USA, New Edition, 1973. E. F. Schelar, L.C. Dump, Aimplane Structures Analysis and Design Lehr, Wilce, & Sang, USA, 1062 	Elements of life cycle cost, cost estimating method, RDT&E and production costs, operation and maintenance costs, cost measures of merit, aircraft and airline economics, DOC and IOC, airline revenue, breakeven analysis, investment cost analysis, parametric analysis and optimization, improved conceptual sizing methods, sizing matrix plot and carpet plot, trade studies, design trades, requirement trades, growth sensitivities, multivariable design optimization methods, measures of merit, determination of final baseline design configuration, preparation of type specification report. Case studies on design of DC-3 and Boeing B-707&747; General dynamics F-16, SR-71 Blackbird. Northrop-Grumman B-2 Stealth Bomber.									
 Raymer, D.P., Aircraft Design: A Conceptual Approach, 3rdedn., AIAA Education Series, AIAA, 1999, ISBN: 1-56347-281-0. Howe, D., Aircraft Conceptual Design Synthesis, Professional Engineering Publishing, London, 2000, ISBN: 1-86058-301-6. Fielding, J.P., Introduction to Aircraft Design, Cambridge University Press, 2005, ISBN: 0-521-657222-9. Reference Books: E. Torenbeek, Synthesis of Subsonic Airplane Design, Delft University Press, New York, 1986. E. H Bruhn, Analysis and Design of Flight Vehicles Structures, Jacobs Publishing House, USA, New Edition, 1973. E. F. Schelar, L.C. Dump, Aimplane Structures Analysis and Design, Long Michael 1062 	Text Books:									
 Reference Books: E. Torenbeek, Synthesis of Subsonic Airplane Design, Delft University Press, New York, 1986. E. H Bruhn, Analysis and Design of Flight Vehicles Structures, Jacobs Publishing House, USA, New Edition, 1973. E. E. Scheler, L.C. Dunn, Aimlane Structured Analysis and Design, Jack Song, USA, 1962. 	 Raymer, D.P., Aircraft Design: A Conceptual Approach, 3rdedn., AIAA Education Series, AIAA, 1999, ISBN: 1-56347-281-0. Howe, D., Aircraft Conceptual Design Synthesis, Professional Engineering Publishing, London, 2000, ISBN: 1-86058-301-6. Fielding, J.P., Introduction to Aircraft Design, Cambridge University Press, 2005, ISBN: 0-521-657222-9. 									
 E. Torenbeek, Synthesis of Subsonic Airplane Design, Delft University Press, New York, 1986. E. H Bruhn, Analysis and Design of Flight Vehicles Structures, Jacobs Publishing House, USA, New Edition, 1973. E. E. Scheller, L. C. Dunn, Aimlane Structural Analysis and Design, Jack Wiley, & Sang, USA, 1967. 	Reference Books:									
5. E. E. Scheier, L.G. Dunn, Airplane Structural Analysis and Design, John Wiley & Sons, USA, 1965.	 E. Toren E. H Bru Edition, E. E Sch 	beek, Synthesis of Subsonic Airplane Design, Delft University Press, New York, 1986. hn, Analysis and Design of Flight Vehicles Structures, Jacobs Publishing House, USA, New 1973. eler, L.G Dunn, Airplane Structural Analysis and Design, John Wiley & Sons, USA, 1963.								

XVI. COURSEPLAN:

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-2	Describe the basic Phases of aircraft design, aircraft conceptual design process, project brief / request for proposal, problem definition, information retrieval	CLO 1	T2: 1.1-1.5, T1: 4.1
3-4	Recall the integrated product development and aircraft design. initial conceptual sketches, takeoff gross weight estimation	CLO 1	T2: 2.1-2.2, R1: 3.1
5-6	Identify the airfoil selection, airfoil design,	CLO 2	T2: 2.3-2.4
7-8	Recall airfoil design considerations	CLO 2	T2: 2.5-2.6, R1: 3.3
9-10	Recognize the wing geometry and wing vertical location	CLO 3	T2: 3.3
11	Explain about wing tip shapes, tail geometry and arrangements	CLO 4	T2: 3.4, R1:4.1
12	Explain about trim tabs and types of trim tabs, static margin for stick fixed and stick free conditions.	CLO 5	T2: 3.4
13-14	Explain the concept of thrust to weight ratio	CLO 5	T2: 3.3
15-16	Recognize thrust matching, wing.	CLO 6	T2: 4.2
17-18	Explain about the aircraft loading performance, constraint analysis.	CLO 6	T2: 5.1
19-20	Define about the aircraft Sizing with fixed engine and with rubber engine.	CLO 7	T2: 5.2
21-22	Estimate the aircraft geometry sizing of fuselage, wing, tail, control surfaces	CLO 7	T2: 5.3
23-24	Recognize description of surfaces	CLO 8	T2: 4.5
25	Recall development of configuration lay out from conceptual sketch.	CLO 8	T1: 4.1
26	Define. the inboard profile drawing, lofting definition, significance and methods, flat wrap lofting, special consideration in configuration lay out	CLO 9	T1: 4.2
27-28	Recognize Isobar tailoring, Sears-Haack volume distribution, structural load paths	CLO 9	T1: 4.3
29-30	Recall radar, IR, visual delectability, aural signature, considerations of vulnerability	CLO 10	T2: 5.2
31	Describe Propulsion selection, jet engine integration, propeller engine integration, engine design considerations, engine size estimation, fuel system design and integration, landing gear and sub systems arrangements, guidelines and significance of design layout	CLO 10	T2: 5.2
32	Explain report of initial specifications	CLO 11	T2: 5.2
33	Interpret description of installed performance of an engine, installed thrust methodology, net propulsive force, part power operation, aircraft structures and loads categories, air load distribution on lifting surfaces	CLO 11	T2: 5.3
34	Estimation of review of methods of structural analysis, material selection, weights and moments statistical group estimation method, center of gravity excursion control.	CLO 11	T2: 5.3

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
35-36	Estimation of static pitch stability, velocity stability and trim, estimation of stability and control derivatives, static lateral, directional stability and trim. estimation of aircraft dynamical characteristics, handling qualities, Cooper – Harper scale	CLO 11	T1: 6.1-6.2
37-38	Identify liberalized of , relation to aircraft dynamic characteristics, performance analysis and constraint analysis– steady level flight	CLO 12	T1: 6.3, R2:6.1
39-40	Inferred derivatives of minimum thrust required for level flight, range and loiter endurance, steady climbing and descending flight, best angle and rate of climb.	CLO 12	T1: 6.4
41-42	Identify Principle modes of time to climb and 140 P a g e fuel to climb, level turning flight, gliding flight, energy maneuverability methods of optimal climb trajectories and turns.	CLO 13	T1: 6.5
43-44	Interpret undammed natural frequency and damping ratio, mode shapes, significance.	CLO 13	T1: 7.1
45-46	Recall the aircraft operating envelope, take off analysis, balanced field length, landing analysis, fighter performance measures of merit	CLO 14	T1: 7.2
47	State and apply effects of wind on aircraft performance, initial technical report of baseline design analysis and evaluation	CLO 14	T1: 7.3
48-49	Explain refined baseline design and report of specifications	CLO 14	T1: 7.4, R2: 4.1-4.4
50	Explain Elements of life cycle cost, cost estimating method, RDT&E and production costs, operation and maintenance costs, cost measures of merit, aircraft and airline economics.	CLO 15	T1: 7.5, R2: 7.3
51	DOC and IOC, airline revenue, breakeven analysis, investment cost analysis, parametric analysis and optimization, improved conceptual sizing methods	CLO 15	T1: 7.5, R2: 7.3
52	Apply the concept of aircraft spin- entry, balance of forces in steady spin.	CLO 15	T1: 7.6
53	Explain sizing matrix plot and carpet plot, trade studies, design trades, requirement trades, growth sensitivities, multivariable design optimization methods	CLO 15	T1: 7.5, R2: 7.4
54	Explain the measures of merit, determination of final baseline design configuration, preparation of type specification report.	CLO 15	T1: 7.7
55	Case studies on design of DC-3 and Boeing B-707&747; General dynamics F-16, SR-71 Blackbird, Northrop- Grumman B-2 Stealth Bomber.	CLO 15	T1: 7.5, R2: 7.5

XVII. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSIONREQUIREMENTS:

S No	Description	Proposed actions	Relevance with	Relevance with
			POS	PSUs
1	Application of knowledge and skills	Seminars / Expert	PO 2, PO 4	PSO 1
	in the estimation of aircraft stability	Lectures / Flight		
	and control system	testing		
2	Experimental knowledge of aircraft	Experimental work	PO 2, PO 4	PSO 2
	Stability measurement and data			
	handling.			

Prepared by:

Ms.M.MaryThraza, Assistant Professor, AE Ms. K.SaiPriyanka, Assistant Professor, AE Page | 9