ANALYSIS OF AIRCRAFT STRUCTURES

IV Semester: AE									
Course Code	Category	Hours / Week			Credits	Maximum Marks			
AAE006	Core	L	Т	Р	С	CIA	SEE	Total	
		3	1	-	4	30	70	100	
Contact Classes: 45	Tutorial Classes: 15	Practical Classes: 45				Total Classes: 60			

OBJECTIVES:

The course should enable the students to:

- I. Understand the aircraft structural components and its behavior under different loading conditions
- II. Obtain knowledge in plate buckling and structural instability of stiffened panels for airframe structural analysis.
- III. Explain the thin walled section and structural idealization of panels and differentiate from the type of loads carried.
- IV. Solve for stresses and deflection in aircraft structures like fuselage, wing and landing gear.

COURSE LEARNING OUTCOMES (CLOs):

- 1 Discuss the Aircraft Structural components, various functions of the components and airframe loads acting on it.
- 2 Discuss different types of structural joints and the effect of Aircraft inertia loads, Symmetric maneuver loads, gust loads on the joints.
- 3 Differentiate Monocoque and semi monocoque structures and analyze stresses in thin and thick shells.
- 4 Explain energy principles and its application in the analysis of structural components of Aircraft.
- 5 Explain the Theory of thin plates and Analyze thin rectangular plates subject to bending, twisting, distributed transverse load, combined bending and in-plane loading.
- 6 Describe Buckling phenomena of thin plates and derive Elastic, inelastic, experimental determination of critical load for a flat plate.
- 7 Calculate the local instability, instability of stiffened panels, failure stresses in plates and stiffened panels.
- 8 Discuss critical buckling load for flat plate with various loading and end conditions
- 9 Solve for bending and shear stresses of symmetric and un-symmetric beams under loading conditions
- 10 Solve for deflections of beams under loading with various approaches
- 11 Calculate the shear stresses and shear flow distribution of thin walled sections subjected to shear loads.
- 12 Explain Torsion phenomenon, Displacements and Warping associated with Bredt-Batho shear flow theory of beams.
- 13 Explain the theory of Structural idealization
- 14 Principal assumptions in the analysis of thin walled beams under bending, shear, torsion.
- 15 Solve for stress distribution of idealized thin walled sections subjected to bending.
- 16 Solve for stress distribution of idealized thin walled sections subjected to, shear and torsion.
- 17 Calculate and analysis of idealized thin walled sections subjected to bending
- 18 Calculate and analysis of idealized thin walled sections subjected to shear and torsion.
- 19 Analyze fuselage of variable stringer areas subjected to transverse and shear loads.
- 20 Analyze Wing spar and box beams of variable stringer areas subjected to transverse and shear loads.

INTRODUCTION TO AIRCRAFT STRUCTURAL COMPONENTS AND UNIT-I Classes: 09 **ENERGY METHODS** Aircraft Structural components and loads, functions of structural components, airframe loads; Types of structural joints, type of loads on structural joints; Aircraft inertia loads; Symmetric manoeuvre loads, gust loads. Monocoque and semi monocoque structures, stress in thin and thick shells; Introductions to energy principles, castiglianos theorems, max wells reciprocal theorem, unit load method, Rayleigh Ritz method, total potential energy method, flexibility method. UNIT-II THIN PLATE THEORY, STRUCTURAL INSTABILITY Classes: 09 Analysis of thin rectangular plates subject to bending, twisting, distributed transverse load, combined bending and in-plane loading: Thin plates having small initial curvature, energy methods of analysis. Buckling of thin plates: Elastic, inelastic, experimental determination of critical load for a flat plate, local instability, instability of stiffened panels, failure stresses in plates and stiffened panels. Tension field beams- complete diagonal tension, incomplete diagonal tension, post buckling behavior. **UNIT-III BENDING, SHEAR AND TORSION OF THIN WALLED BEAMS** Classes: 09 Unsymmetrical bending: Resolution of bending moments, direct stress distribution, position of neutral axis; Deflections due to bending: Approximations for thin walled sections, temperature effects; Shear loaded thin walled beams: General stress, strain and displacement relationships, direct stress and shear flow system, shear centre, twist and warping. Torsion of beams of closed section: Displacements associated with Bredt-Batho shear flow; Torsion of open section beams; Warping of cross section, conditions for zero warping; Bending, shear, torsion of combined open and closed section beams. **UNIT-IV** STRUCTURAL IDEALIZATION Classes: 09 Structural idealization: Principal assumptions, idealization of panel, effect on the analysis of thin walled beams under bending, shear, torsion loading- application to determining deflection of open and closed section beams. Fuselage frames - bending, shear and torsion. **UNIT-V** ANALYSIS OF FUSELAGE, WING AND LANDING GEAR Classes: 09 Wing spar and box beams, tapered wing spar, open and closed sections beams, beams having variable stringer areas; wings – three boom shell in bending, torsion and shear, tapered wings, deflections, cutouts in wings; Cutouts in fuselages; Fuselage frame and wing rib; principle of stiffener, web constructions. Landing gear and types; Analysis of landing gear. **Text Books:** T. H. G. Megson, "Aircraft Structures", Butterworth-Heinemann Ltd, 5th Edition, 2012. 1. E. H. Bruhn, "Analysis and Design of Flight vehicles Structures", Tri-state off set company, USA, 2. 4th Edition, 1965. **Reference Books:**

- B. K. Donaldson, "Analysis of Aircraft Structures An Introduction", McGraw Hill, 3rd Edition, 1993.
- 2. S. Timoshenko, "Strength of Materials", Volumes I and II, Princeton D. Von Nostrand Co., Reprint, 1977.

Web	References:

- 1. http://link.springer.com/book
- 2. http://www.sciencedirect.com/science
- 3. http://www.e-booksdirectory.com

E-Text Books:

- 1. https://soaneemrana.org/onewebmedia/AIRCRAFT%20STRUCTURES%20BY%20T.H.G.%20ME GSON%20(4th%20%20Edition).pdf
- 2. https://www.academia.edu/34820677/AIRCRAFT_STRUCTURES_BY_T.H.G._MEGSON_4th_Ed ition_.pdf
- 3. http://164.100.133.129:81/econtent/Uploads/ACD2501_Day%206_Aircraft_Structures.pdf