Hall Ticket No	Question Pa	per Code: ACE006		
	TUTE OF AERONAUTICAL ENGINEERING	i		
THE TARE OF	(Autonomous)			
	B.Tech IV Semester End Examinations (Regular) - May, 2018			
${\bf Regulation: \ IARE-R16}$				
	GEOTECHNICAL ENGINEERING			
Time: 3 Hours	(CE)	Max Marks: 70		

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

- 1. (a) What are the corrections to be applied in hydrometer analysis? Explain the principle of hydrometer analysis. [7M]
 - (b) A soil specimen has water content of 10% and a wet unit weight of $20 \text{kN}/m^3$. If the specific gravity of solids is 2.70, determine the dry unit weight, void ratio and degree of saturation. Take $\gamma_w = 19 \text{kN}/m^3$. [7M]
- 2. (a) What are the different types of soil structures? Explain them with neat sketch. [7M]
 - (b) A soil has a liquid limit of 25% and flow index of 12.5%, if the plastic limit is 15%, determine the plasticity index and toughness index.
 If the water content of the soil in its natural condition in the field is 20%. Find the liquidity index.

$\mathbf{UNIT}-\mathbf{II}$

- 3. (a) Define permeability. Explain the factors affecting permeability of soil. [7M]
 - (b) Compute the coefficient of permeability of a soil on which a falling head test has been carried out. Area of sample $=80 \ cm^2$, area of stand pipe $=4cm^2$ and length of soil sample =15cm. Time Vs Head difference readings are as given in Table 1. [7M]

Table	1
Table	т

Time (minute)	0	27	60
Head difference, h (cm)	107	105	103

- 4. (a) Explain about total stress, neutral stress and effective stress conditions. Determine the factor of safety with respect to cohesion for a submerged embankment 25m high and having a slope of 40^{0} is subjected to sudden drawdown. (c=40kN/m², $\Phi = 10^{\circ}$, $\gamma_{sat} = 18$ kN/m³). [7M]
 - (b) A saturated sand layer over a clay stratum is 5m in depth. The water table is 1.5m below ground level. If the bulk density of saturated sand is $17.66 \text{kN}/m^3$, calculate the effective and neutral pressure on top of the clay layer. [7M]

$\mathbf{UNIT}-\mathbf{III}$

- 5. (a) Explain the laboratory test procedure of Modified Proctor Test of compaction. [7M]
 - (b) A concentrated load of 2000kN is applied at the ground surface. Determine the vertical stress at a point P which is 6m directly below the load. Also calculate the vertical stress at a point R which is at a depth of 6m but at a horizontal distance of 5m from the axis of the load. [7M]
- 6. (a) Define compaction. Explain the various factors affecting the compaction. [7M]
 - (b) Summarize the assumptions and limitations of Boussinesq's solution. [7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Explain the square root of time method and logarithm of time method for the determination of coefficient of consolidation. [7M]
 - (b) A clay stratum 5m thick has the initial void ratio of 1.50 and the effective overburden pressure of $120 \text{kN}/m^2$. When the sample is subjected to an increase of pressure of $120 \text{kN}/m^2$, the void ratio reduces to 1.44. Determine the coefficient of the volume compressibility and the final settlement of the stratum. [7M]
- 8. (a) Explain about Initial consolidation, Primary and Secondary consolidation. [7M]
 - (b) Define coefficient of compressibility, compression index and expansion index. Derive an expression for void ratio using height of solids method. [7M]

$\mathbf{UNIT}-\mathbf{V}$

9. (a) Write the test procedure of Triaxial Test and explain the merits and demerits of Triaxial Test.

[7M]

- (b) A sample of dry cohesionless soil was tested in a triaxial machine. If the angle of shearing resistance was 36^0 and confining pressure $100 \text{kN}/m^2$, determine the deviator stress at which the sample failed. [7M]
- 10. (a) Explain the Mohr-Coulomb theory. And also draw the failure envelopes. [7M]
 - (b) An undrained triaxial compression test was conducted on a sample of compacted clay. Pore-water pressure was measured after the application of the cell pressure and also at failure, as given below. Find the pore pressure coefficients A and B. [7M]

i. Consolidation stage:

Change in cell pressure = 0 to $100 \text{kN}/m^2$

Change in pore water pressure = -60 to +10kN/m²

ii. Shearing stage:

Deviator stress at failure = $500 \text{kN}/m^2$

Pore pressure at failure = $-70 \text{kN}/m^2$

$$-\circ\circ\bigcirc\circ\circ-$$