Hall Ticket No								Question Paper Code: ACE014
	STIT	UTE	OF A	AERC)NA	\U7	ГІС	AL ENGINEERING

(Autonomous)

B. Tech VI Semester End Examinations (Regular) - May, 2019
 ${\bf Regulation: \ IARE-R16}$

WATER RESOURCE ENGINEERING

Time: 3 Hours

(CE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

- 1. (a) Describe practical applications of hydrology and discuss the various forms of precipitation in detail. [7M]
 - (b) List infiltration indices and the total runoff volume during a 6h storm with a uniform intensity of 1.5 cm/h is $21.6 \times 10^6 \text{ } m^3$. If the area of the basin is $300 \text{ } km^2$, find the average infiltration rate for the basin. [7M]
- 2. (a) Describe the various empirical equations used to estimate evaporation. [7M]
 - (b) The isohyets drawn for a storm which occurred over a drainage basin of area 950 sq.km yielded the following information in Table 1. Determine the average depth of rainfall over the basin.

[7M]

[7M]

Table 1

Isohyetal interval in (mm)	85-75	75-65	65-55	55-45	45-35
Area between isohyets (sq.km)	125	236	264	175	150

$\mathbf{UNIT} - \mathbf{II}$

- 3. (a) Define unit Hydrograph. Explain the assumptions underlying the unit Hydrograph theory and explain its limitations. [7M]
 - (b) A 3 hr storm produced a flood hydrograph as given in Table 2.

Table

Time (hr)	0	3	6	9	12	15	18	21	24	27	30
Discharge (m^3/sec)	4	9	12	18	20	16	20	10	8	6	4

Assuming a constant base flow of 4 m^3 /sec determine the ordinates of unit hydrograph. The catchment area is 50 km^2 .

- 4. (a) Draw and define S-Hydro graph? How it is different from other hydro graphs. Explain base flow separation from hydro graph. [7M]
 - (b) The ordinates of 2hr UHG are given in Table 3. Compute S-Curve and 3hr UHG for catchment area of 184.3 sq.km [7M]

Table 3

Time (hrs)		1	2	3	4	5	6	7	8	9	10
2hr UHG ordinates (cumec)		6	33	90	119	103	79	$\overline{50}$	$\overline{25}$	7	0

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) Define the following terms with suitable examples i) Aquifer ii)Aquiclude iii)Aquifuge iv)Aquitard [7M]
 - (b) Design a tube well for the following data : Yield required = 0.2 cumec Thickness of confined aquifer =40 m Radius of circle of influence = 300m Permeability coefficient =80m/ day draw down= 6m [7M]
- 6. (a) Deduce the equation of yield of an open well by Recuperation test.
 - (b) A 300 mm diameter well penetrates 25 m below the static water table. After 24 hours of pumping at 6000 litres/minute, the water table in a test well at 90 m is lowered by 0.53 m and in a well 30 m away the draw down is 1.11 m. What is transmissibility of the aquifer? [7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Discuss the various surface irrigation methods. Indicate their limitations. [7M]
 - (b) The root zone of irrigation soil has dry weight of $15 \text{kN}/m^3$ and a field capacity of 30%. The root zone depth of a certain crop having permanent wilting percentage of 8% is 0.8 m. Determine i) Depth of moisture in the root zone at field capacity ii) Depth of moisture in the root zone at permanent wilting point and iii) Depth of water available. [7M]
- 8. (a) Define consumptive use? What are the factors affecting consumptive use? Explain different methods of estimating consumptive use? [7M]
 - (b) The gross commanded area for an irrigation canal is 30000 Hectares, out of which 75% is cultivable command area. The intensity of irrigation is 30% for ragi and 20% for paddy. If Kor period is 4 weeks for ragi and 3 weeks for paddy, determine the outlet discharge. Outlet factors for ragi and paddy may be assumed as 1800 hectares/cumec and 780 hectares/cumec. Also compute delta for each case.
 [7M]

$\mathbf{UNIT} - \mathbf{V}$

- 9. (a) Design the procedure for designing a irrigation channel using Lacey's theory [7M]
 - (b) Design an irrigation channel in alluvial soil according to Lacey's silt theory, for the given data. Full supply discharge = $15m^3$ /sec, Lacey's silt factor = 1.0, Channel side slopes = $\frac{1}{2}$:1. [7M]
- 10. (a) What is the necessity, advantages and disadvantages of lining of irrigation channels? and also mention the types of lining? [7M]
 - (b) Mean and standard deviation from annual peak of a river covering 80 years of data are 4100 m^3 /sec and 1600 m^3 /sec respectively. Using Gumbel's method, calculate the return period of the flood of 9100 m^3 /sec. [7M]

$$-\circ\circ\bigcirc\circ\circ-$$

[7M]