INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Four Year B.Tech III Semester End Examinations (Supplementary) - July, 2018

Regulation: IARE – R16

Computer Architecture and Organization

Time: 3 Hours

(Common to CSE | IT)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

UNIT - I

- 1. (a) Explain the comparison between Dynamic RAM (DRAM) and Static RAM (SRAM), highlight the applications chosen for corresponding RAMs. [7M]
 - (b) Explain different categories of instructions of a relatively simple instruction set architecture.

[7M]

[7M]

[7M]

- 2.(a) Define the instruction cycle and explain the various steps involved in execution of a instruction with flow chart.
 - (b) Explain different types of ROM chips which are differentiated by how often they are programmed. [7M]

UNIT - II

- 3. (a) Illustrate the construction of a bus system with three-state buffers. [7M]
 - (b) Explain different components of a micro program sequencer for control memory. [7M]
- 4. (a) Explain 4 bit arithmetic circuit and draw the corresponding arithmetic circuit function table.
 - (b) Explain the general configuration of a microprogrammed control unit with the help of diagram. [7M]

$\mathbf{UNIT} - \mathbf{III}$

5.	(a) Write the flowchart of decimal arithmetic unit with an example.			
	(b) Show the implementation of slt instruction , for the following rs $<$ rt, and rd = 0 otherwise inputs rs and rt can represe A and B, the following implication: A $<$ B => A - B $<$ 0	ing ; 08M slt rd, rs, rt where $rd = 1$ if nt high-level language input variables [7M]		
6.	(a) Explain addition and subtraction algorithm with neat sket(b) Explain about any three addressing modes with example.	ich. [7M]		
		[ምኪ /፲]		

[7M]

[7M]

$\mathbf{UNIT} - \mathbf{IV}$

7. (a) Briefly explain about RAM and ROM with block diagrams. [7M](b) Explain the cache coherence and how the performance of the processor is effected with respect to the cache hits and misses.

8.	(a)	Explain about	direct associative	e and set associati	ve memories w	ith example.	[7M]
----	-----	---------------	--------------------	---------------------	---------------	--------------	------

(b) Explain the implementation of synchronized DRAM with a clock signal.

[7M]

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Draw the arithmetic pipeline diagram and explain different pipelining techniques. [7M]
 (b) Write about multicomputers and multiprocessors. And also write about the characteristics of multiprocessors. [7M]
- 10. (a) Explain about inter process communication and synchronization in detail with neat sketch.

[7M]

(b) Write about mutual exclusion mechanism to proper functioning of multiprocessor system. [7M]

 $-\circ\circ\bigcirc\circ\circ-$