Hall Ticket No	Question Paper Code: ACS004				
INSTITUTE OF AERONAUTICAL ENGINEERING					
(Autonomous)					
B.Tech III Semester End Examinations (Supple	mentary) - February, 2018				
${\bf Regulation: \ IARE-R16}$					
COMPUTER OR AND AND A DOULTROOMIDE					

COMPUTER ORGANIZATION AND ARCHITECTURE

(Common for CSE | IT)

Time: 3 Hours

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT}-\mathbf{I}$

1.	(a)	Briefly discuss the process of memory read and memory write operations with the help of timing diagrams. [7M]		
	(b)	Enumerate the working of an bidirectional I/O device with its interface and enable/ load logic. $$[7\mathrm{M}]$$		
2.	(a)	Illustrate different methods of constructing memory subsystem configuration by taking an example for each. $[7M]$		
	(b)	Explain the classification of Assembly language instructions based on the operation they performed. $[7M]$		
	$\mathbf{UNIT} - \mathbf{II}$			
3.	(a)	Write about bus and memory transfer instructions with neat example. [7M]		
	(b)	What is micro program and explain the use of micro programming in control memory. $[7M]$		
4.	(a)	Draw and explain about 4-bit arithmetic circuit for the addition, subtraction, increment and decrement by using 4X1 MUX and two selection lines. [7M]		
	(b)	Write about shift micro operations and explain the right and left shift operations with example.		

$\mathbf{UNIT} - \mathbf{III}$

5.	(a) Explain about floating-point representation in computer arithmetic with example.	[7M]
	(b) Write about division addition/subtraction algorithm with flow chart.	[7M]
6.	(a) Explain about any three addressing modes with example.	[7M]
	(b) Explain the architecture of carry-lookahead adder (CLA).	[7M]

[7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) List different principles of locality and explain the typical memory hierarchy. [7M]
 - (b) Briefly discuss the time needed for checking the interrupts to be added to the instruction cycle?

[7M]

- 8. (a) Briefly explain about daisy-chaining priority and Draw the circuit diagram for one stage of the daisy-chain priority arrangement. [7M]
 - (b) Draw the pipeline for floating point addition and subtraction if the given floating point numbers are $A = 0.1342 \ X10^3$ and $B = 0.7330 X10^2$ then what are the sub operations performed in each segment. [7M]

$\mathbf{UNIT}-\mathbf{V}$

9. (a) Illustrate the process of pipeline floating-point addition and subtraction for the following normalized floating-point binary numbers: [7M]

$$X = A \ge 2^{a}$$
$$Y = B \ge 2^{b}$$

- (b) Explain the classification of computer system based on number of instructions and umber of processing units. [7M]
- 10. (a) Describe about the parallel arbitration procedure used in multiprocessor organization. [7M]
 - (b) Write about synchronous and asynchronous data transfers in pipe lining concept. [7M]

$$-\circ\circ\bigcirc\circ\circ-$$