Hall Ticket No							Question Paper Code: ACS007
2000	от	 	- ~	– (

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

B. Tech IV Semester End Examinations (Supplementary) - July, 2018

Regulation: IARE - R16

OPERATING SYSTEMS

Time: 3 Hours

(Common to CSE | IT)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a) What is a system call? Explain how it is been implemented by passing the parameters.	[7M]
	(b) What are the differences between kernel mode and user mode?	[7M]
2.	(a) Explain the differences between multiprogramming, multi-tasking and time-sharing syste	$\mathrm{ms}?$
		[7M]
	(b) Explain the system architectures of single, multi processors and clustered systems.	[7M]

$\mathbf{UNIT} - \mathbf{II}$

3. (a) What is a thread? What is a process? Describe how to create each of these in detail. [7M]

(b) What is the producer consumer problem? Give an example of its occurrence in operating systems.

[7M]

- 4. (a) Can any of the two scheduling schemes First Come First Serve and Shortest Job First result in starvation? If so, how might you fix this. [7M]
 - (b) Assume you have the following jobs to execute with one processor, with the jobs arriving in the order listed as shown in Table 1. [7M]

Table 1

Job	Burst time (sec)	Priority
P1	8	4
P2	6	1
P3	9	2
P4	1	2
P5	3	3

Calculate average waiting time and turnaround time for the following:

- i. First Come First Served method
- ii. Shortest Job First method

$\mathbf{UNIT} - \mathbf{III}$

[7M]

[7M]

- 5. (a) Differentiate between internal and external fragmentation and which one occurs in paging scheme.
 [7M]
 - (b) What is FIFO page replacement algorithm? Enumerate the FIFO with the given reference string as w = dcbadcedcbae with 3 and 4 frames. [7M]
- 6. (a) What is thrashing? How it is been detected? How might one recover from it once detected?
 - (b) Consider a logical address space of eight pages of 1024 words each, mapped onto a physical memory of 32 frames. [7M]
 - i. How many bits are there in the logical address?
 - ii. How many bits are there in the physical address?

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Describe the attributes of the file and its various operations involved in it. [7M]
 - (b) Calculate the total time taken by the FCFS, SCAN and LOOK disk scheduling algorithms on a queue 23, 89, 132, 42, 187 in which there are 200 cylinders numbered from 0 199 and the disk head starts at number 100. [7M]
- 8. (a) Compare and contrast the methods of direct access and sequential access in file systems. [7M]
 - (b) Base-limit MMUs can support swapping. What is swapping? Can swapping permit an application requiring 16MB memory to run on a machine with 8MB of RAM? How does the Linux support the swap? [7M]

$\mathbf{UNIT} - \mathbf{V}$

- 9. (a) Explain briefly resource allocation graph with examples?
 - (b) Why do you need to provide protection to the system? Explain how access matrix can be used for the purpose? [7M]
- 10. (a) What is deadlock? What is starvation? How do they differ from each other? What are the four conditions required for deadlock to occur? [7M]
 - (b) Assume that there are three resources, A, B, and C. There are 4 processes P0 to P3. At T0 we have the following snapshot of the system as shown in Table 2. Is the system in a safe state? Why or why not? [7M]

	Al	locati	on		Max		Available			
	А	В	С	А	В	С	А	В	С	
P0	1	0	1	2	1	1	2	1	1	
P1	2	1	2	5	4	4				
P2	3	0	0	3	1	1				
P3	1	0	1	1	1	1				

-			~
Ta.	hI	ρ	2