

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRICAL AND ELECTONICS ENGINEERING

COURSE DESCRIPTOR

Course Title	ANALOG ELECTRONICS					
Course Code	AECB	02				
Programme	B.Tech					
Semester	III	EEE	2			
Course Type	Core					
Regulation	IARE - R18					
	Theory Practical					cal
Course Structure	Lectu	res	Tutorials	Credits	Laboratory	Credits
	3		1	4	-	-
Chief Coordinator	Mrs. M Sreevani, Assistant Professor					
Course Faculty	Mr. P S	ande	ep Kumar, Assis	tant Professor		

I. COURSE OVERVIEW:

This course is designed to build on students' already established knowledge in Waves and Optics and Electrical Circuits. The course introduces the basic electronic devices to Electrical and Electronics Engineering students. Students examine the building blocks of analog electronics through graphical, analytical and computer tools. Upon completion of the class, students should be proficient in electronics.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AEEB03	II	Electrical Circuits	4
UG	AHSB04	II	Waves and Optics	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Analog Electronics	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	>	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	>	Seminars	×	Mini Project	~	Videos
×	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component		Total Manka		
Type of Assessment	CIE Exam	Quiz	AAT	Total Marks
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	Quiz
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Seminars
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Assignments
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	2	Discussion of real-time applications

3 = **High; 2** = **Medium; 1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency
DCO 1			assessed by
PSO 1	Professional Skills: Able to utilize the knowledge of high		
	voltage engineering in collaboration with power systems in	1	C
	innovative, dynamic and challenging environment, for the	1	Seminars
	research based team work.		
PSO 2	Problem Solving Skills: To explore the scientific theories, ideas,		
	methodologies and the new cutting edge technologies in		
	renewable energy engineering, and use this erudition in their	-	-
	professional development and gain sufficient competence to		
	solve the current and future energy problems universally.		

PSO 3	Successful career and entrepreneurship: To be able to utilize		
	of technologies like PLC, PMC, process controllers, transducers		
	and HMI and design, install, test, maintain power systems and	-	-
	industrial applications.		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES :

The	The course should enable the students to:				
т	Explain the components such as diodes, BJTs and FETs their switching characteristics,				
1	application.				
II	Learn the concepts of high frequency analysis of transistors.				
TIT	Describe the various types of basic and feedback amplifier circuits such as small signal,				
111	cascaded, large signal and tuned amplifiers.				
IV	Discuss the basic building blocks of linear integrated circuits.				
V	Understand the concepts of waveform generation and introduce some special function ICs.				

IX. COURSE OUTCOMES(COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Describe the concept of diode	CLO 1	Understand the basic concept of PN diode with
	and transistor operation with		characteristics.
	applications.	CLO 2	Analyze the application of diode in Rectifiers,
			clippers and clampers.
		CLO 3	Understand the working of different
			configurations of Bipolar Junction Transistor.
		CLO 4	Design the various biasing circuits.
		CLO 5	Analyze the different types of Amplifiers with
			BJT.
CO 2	Understand the principle of	CLO 6	Understand the principle of operation of
	operation of MOSFET in		MOSFET and as switch.
	CS, CG, CD amplifiers and	CLO 7	Apply small-signal model to MOSFET and
	analyze MOSFET with high		determine the voltage gain and input and output
	frequency equivalent circuit.		impedances.
		CLO 8	Analyze the MOSFET characteristics of
			common source, common gate and common
			drain amplifiers.
		CLO 9	Determine the parameters of MOSFET
			amplifier from drain and transfer
			characteristics.
		CLO 10	Analyze the high frequency equivalent circuit
			model of MOSFET.
CO 3	Analyze the different types of	CLO 11	Understand the classification of transistor
	multistage amplifiers and		amplifiers.
	Power amplifiers.	CLO 12	Understand the different coupling schemes used
			in amplifiers.
		CLO 13	Analyze frequency response of multistage
			amplifiers.
		CLO 14	Analyze hybrid-pi model of BJT.
		CLO 15	Analyze the different types of power amplifiers.

CO 4	Study and analyze the	CLO 16	Understand the concept of characteristics of
	different characteristics of		feedback amplifiers.
	feedback amplifiers and	CLO 17	Analyze the different configurations of
	oscillators.		feedback amplifiers.
		CLO 18	Distinguish the constructional features and
			operation of feedback amplifiers and oscillators.
		CLO 19	Understand the basic concept of condition for
			oscillations.
		CLO 20	Analyze the different types of oscillators.
CO 5	Understand the principle of	CLO 21	Understand the basic concept Operational
	operation of Op-amp		amplifier.
	characteristics with different	CLO 22	Analyze different characteristics of OP-amp.
	applications.	CLO 23	Understand the different types of op-amp based
			on input.
		CLO 24	Analyze the different applications of Op-amp.
		CLO 25	Design the different types of waveform
			generators.

X. MAPPING COURSE OUTCOMES LEADING TO THE ACHIVEMENT OF PROGRAM OUTCOMES:

Course	Program Outcomes (PO)										
Outcomes (COs)	PO 1	PO 2	PO 3	PO 6	PSO 1	PSO 2					
CO 1	2	3	1	1	1						
CO 2	2	2	1	1	1						
CO 3	2	3									
CO 4	2	2			1						
CO 5	2	2	1	1	1						

3 = High; 2 = Medium; 1 = Low

XI. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AEC001.01	CLO 1	Understand the basic concept of PN diode with	PO1, PO2	2
		characteristics.	&PO6	
AEC001.02	CLO 2	Analyze the application of diode in Rectifiers,	PO1, PO2	2
		clippers and clampers.		
AEC001.03	CLO 3	Understand the working of different	PO1, PO2	2
		configurations of Bipolar Junction Transistor.		
AEC001.04	CLO 4	Design the various biasing circuits.	PO1, PO3	2
AEC001.05	CLO 5	Analyze the different types of Amplifiers with	PO1, PO2	2
		BJT.		
AEC001.06	CLO 6	Understand the principle of operation of	PO1	2
		MOSFET and as switch.		

AEC001.07	CLO 7	Apply small-signal model to MOSFET and	PO1, PO3	2
		determine the voltage gain and input and output	& PO6	
		impedances.		
AEC001.08	CLO 8	Analyze the MOSFET characteristics of common	PO1, PO2	2
		source, common gate and common drain		
		amplifiers.		
AEC001.09	CLO 9	Determine the parameters of MOSFET	PO1, PO2	2
		amplifier from drain and transfer		
		characteristics.		_
AEC001.10	CLO 10	Analyze the high frequency equivalent circuit	PO3	2
		model of MOSFET.		
AEC001.11	CLO 11	Understand the classification of transistor	PO1	2
		amplifiers.		
AEC001.12	CLO 12	Understand the different coupling schemes used	PO1, PO2	2
		in amplifiers.		
AEC001.13	CLO 13	Analyze frequency response of multistage	PO1	2
		amplifiers.		
AEC001.14	CLO 14	Analyze hybrid-pi model of BJT.	PO1	2
AEC001.15	CLO 15	Analyze the different types of power amplifiers.	PO1	2
AEC001.16	CLO 16	Understand the concept of characteristics of	PO1	2
		feedback amplifiers.		
AEC001.17	CLO 17	Analyze the different configurations of	PO1, PO2	2
		feedback amplifiers.		
AEC001.18	CLO 18	Distinguish the constructional features and	PO1, PO2	2
		operation of feedback amplifiers and oscillators.		
AEC001.19	CLO 19	Understand the basic concept of condition for	PO1	2
		oscillations.		
AEC001.20	CLO 20	Analyze the different types of oscillators.	PO1, PO2	2
AEC001.21	CLO 21	Understand the basic concept Operational	PO1	3
		amplifier.		
AEC001.22	CLO 22	Analyze different characteristics of OP-amp.	PO1, PO2	2
AEC001.23	CLO 23	Understand the different types of op-amp based	PO1, PO2	2
		on input.		
AEC001.24	CLO 24	Analyze the different applications of Op-amp.	PO1, PO2	2
AEC001.25	CLO 25	Design the different types of waveform	PO2 PO3	2
AEC001.23	CLO 25	generators	102,103	2
		501010015.		

3 = High; **2** = Medium; **1** = Low

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning		Program Outcomes (POs)								Program Specific Outcomes (PSOs)					
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	2	2				2									
CLO 2	2	2											1		
CLO 3	2	2													

CLO 4	2		2							
CLO 5	1	2							2	
CLO 6	2									
CLO 7	1		2		2					
CLO 8	2	2								
CLO 9	2	2								
CLO 10			2						1	
CLO 11	2									
CLO 12	2	2							2	
CLO 13	2									
CLO 14	2									
CLO 15	2									
CLO 16	2									
CLO 17	2	2							1	
CLO 18	2	3								
CLO 19	1									
CLO 20	2	2								
CLO 21	3									
CLO 22	2	2							2	
CLO 23	2	2								
CLO 24	2	2								
CLO 25		2	2							

3 = High; **2** = Medium; **1** = Low

XIII. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO 1	SEE Exams	PO 1	Assignments	-	Seminars	PO 2
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO 6						

XIV. ASSESSMENT METHODOLOGIES-INDIRECT

>	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS:

MODULE -I	DIODE CIRCUITS	Classes: 09				
P-N junction diode, I-V characteristics of a diode; review of half-wave and full-wave rectifiers, clamping and clipping circuits. Input output characteristics of BJT in CB, CE, CC configurations, biasing circuits, Load line analysis, common emitter, common base and common collector amplifiers; Small signal equivalent circuits.						
MODULE - II	MOSFET CIRCUITS	Classes: 09				
MOSFET struct input and output amplifiers, trans	ure and I-V characteristics. MOSFET as a switch. small signal equi impedances, small-signal model and common-source, common-gat conductance, high frequency equivalent circuit.	valent circuits - gain, te and common-drain				
MODULE - III	MULTI-STAGE AND POWER AMPLIFIERS	Classes: 09				
Classification of Frequency respo Transistor at H gain bandwidth, Class C, Class	Amplifiers, Distortion in amplifiers, Different coupling schemes us nse and Analysis of multistage amplifiers, Cascade amplifier, Darli igh Frequency: Hybrid - model of Common Emitter transistor mod Gain band width product. Differential Amplifiers, Power amplifiers AB.	sed in amplifiers, ngton pair. del, fα, β and unity s - Class A, Class B,				
MODULE - IV	FEEDBACK AMPLIFIERS	Classes: 09				
Concepts of feed amplifiers, effect current shunt fee Oscillators RC p Oscillators, Hart	back: Classification of feedback amplifiers, general characteristics of feedback on amplifier characteristics, voltage series, voltage sh dback configurations, simple problems; Oscillators: Condition for hase shift and Wien-bridge Oscillators, LC type Oscillators, genera ley and Colpitts oscillators.	of Negative feedback unt, current series and Oscillations, RC type lized analysis of LC				
MODULE - V	OPERATIONAL AMPLIFIERS	Classes: 09				
Ideal op-amp, O product, Invertin wave generators. Text Books:	utput offset voltage, input bias current, input offset current, slew ra g and non-inverting amplifier, Differentiator, integrator, Square-wa	te, gain bandwidth ave and triangular-				
 Jacob Millman, Christos C Halkias, "Integrated Electronics", McGraw Hill Education, 2nd Edition 2010. Ramakanth A Gayakwad, "Op-Amps & Linear ICS", PHI, 1st Edition, 2003. Reference Books: 						
 Electronic Devices – Conventional current version – Thomas L Floyd, 2015, Pearson J Millman and A Grabel, "Microelectronics", McGraw Hill Education, 1988. P Horowitz and W Hill, "The Art of Electronics", Cambridge University Press, 1989. P. R Gray, R.G. Meyer and S. Lewis, "Analysis and Design of Analog Integrated Circuits", John Wiley & Sons, 2001. 						

Web References:

- 1. https://www.mdp.eng.cam.ac.uk/web/library/enginfo/electrical/hong1.pdf
- 2. https://www.archive.org/details/ElectronicDevicesCircuits
- 3. https://www.nptel.ac.in/courses/webcourse-contents/IIT-ROORKEE/BASICELECTRONICS/home_page.htm
- 4. http://notes.specworld.in/pdc-pulse-and-digital-circuits/

E-Text Books:

- 1. https://services.eng.uts.edu.au/pmcl/ec/Downloads/LectureNotes.pdf
- 2. https://nptel.ac.in/courses/122106025
- 3. http://www.freebookcentre.net/electronics-ebooks-download/Electronic-Devices-and-Circuits-(PDF-313p).html
- 4. http://www.introni.it/pdf/Millmam-Taub-Pulse and Digital Switching Waveforms 1965.pdf
- 5. https://www.jntubook.com/pulse-digital-circuits-textbook-free-download/

XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No.	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1.	Understand the P-N junction diode.	CL01	T1: 3.1
2.	Understand the P-N junction diode-FB & RB.	CL01	T1: 3.2
3.	Understand the I-V characteristics of a diode.	CLO1	T1: 3.3-3.4
4.	Analysis of half-wave rectifiers-Vac, Irms, PIV.	CLO2	T1:4.8
5.	Analysis of half-wave rectifiers-Efficiency, Ripple factor	CLO2	T1:4.8
6.	Analysis of full-wave rectifiers.	CLO2	T1: 4.9
7.	Analysis of Clipping circuits.	CLO2	T1: 4.4-4.5
8.	Analysis of Clamping circuits.	CLO2	T1: 4.11
9.	Analysis of Input output characteristics of BJT in CB configuration.	CLO3	T1: 5.1-5.5
10.	Analysis of Input output characteristics of BJT in CE configurations.	CLO3	T1: 5.6-5.10
11.	Analysis of Input output characteristics of BJT in CC configurations.	CLO3	T1: 5.11
12.	Design the different biasing circuits-Self bias.	CLO4	T1:9.3
13.	Design the different biasing circuits- Fixed bias.	CLO4	T2:9.2
14.	Understand the Load line analysis.	CLO4	T1: 9.1
15.	Analysis of common emitter amplifier.	CLO5	T1: 8.1-8.4
16.	Analysis of common base amplifier.	CLO5	T1: 8.1-8.4
17.	Analysis of common collector amplifiers.	CLO5	T1:8.8
18.	Design the Small signal equivalent circuits.	CLO5	T1: 8.6
19.	Understand the MOSFET structure.	CLO6	R1:7.4
20.	Analyze the I-V characteristics.	CLO6	R1:7.5
21.	Understand the concept of MOSFET as a switch.	CLO6	R1:7.5
22.	Design the small signal equivalent circuits.	CLO7	R1:8.1
23.	Determine the gain, input and output impedances.	CLO7	R1:8.1
24.	Apply small-signal model to MOSFET.	CLO7	R1:8.2
25.	Analyze the Common-source amplifier.	CLO8	R1:8.2
26.	Analyze the Common-gate amplifier.	CLO8	R1:8.3

27.	Analyze the Common-drain amplifier.	CLO8	R1:8.4
28.	Determine the Trans conductance.	CLO9	R1:8.4
29.	Analyze the high frequency equivalent circuit.	CLO10	R1: 8.4
30.	Understand the classification of Amplifiers.	CLO11	T1:12.1
31.	Understand the distortion in amplifiers.	CLO11	T1:12.2
32.	Analyze the different coupling schemes-Direct	CLO12	T1:12.7
	coupled.		
33.	Analyze the different coupling schemes-	CLO12	T1:12.7
	Transformer coupled.		
34.	Analyze the frequency response and Analysis of	CLO13	T1: 12.8
	multistage amplifiers.		
35.	Analyze the Cascade amplifier.	CLO13	T1: 12.10
36.	Analyze the Darlington pair circuit.	CLO13	T1: 8.16
37.	Analyze the Hybrid – pi model of Common Emitter	CLO14	T1: 11.1
	transistor model, $f\alpha$, β .		
38.	Understand the unity gain bandwidth. Gain band	CLO14	T1: 11.9
	width product.		
39.	Analyze the Differential Amplifiers-DIBO.	CLO14	T2:1.2
40.	Analyze the Differential Amplifiers-DIUO.	CLO14	T2:1.5
41.	Analyze the Differential Amplifiers-SIBO & SIUO.	CLO14	T2:1.6-1.7
42.	Analyze the Class A Power amplifiers.	CLO15	T1: 18.1
43.	Analyze the Class B Power amplifiers.	CLO15	T1:18.7
44.	Analyze the Class C Power amplifiers.	CL015	R1:9.3
45	Analyze the Class AB Power amplifiers	CL 015	T1.18.8
45.	Anaryze the Class AB Tower amplifiers.	CLO15	T1.10.0
46.	Understand the Concepts of feedback.	CL016	T1:13.2
47.	Understand the Classification of feedback	CL016	11:13.7
40	amplifiers.	CL 017	T1.12 4
40.	foodbook omplifiers	CL017	11:15.4
40	A paluza the affect of feedback on amplifier	CL 017	T1.14 1
49.	characteristics	CL017	11.14.1
50	Analyze the voltage series feedback configuration	CL 017	T1.12.0
51	Analyze the voltage shurt feedback configuration.	CL017	T1.13.9
52	Analyze the current series and current shunt	CL017	T1.13.12 T1.12 10 12 11
32.	foodback configurations	CL017	11:15.10-15.11
52	Distinguish the constructional features and	CL 018	D1.16 1
55.	operation of feedback amplifiers and oscillators	CLUIO	N1.10.1
54	Understand the Condition for Oscillations	CI 010	D1.16.2
55	Analyze the PC phase shift Oscillator	CLO19	P1:16.2
55.	Analyze the Wien_bridge Oscillator	CLO20	P1.16.2
50.	Anaryze the wien-bridge Osemator.	CL020	K1.10.J
57.	Analyze the Generalized analysis of LC	CLO20	R1:16.4
	Oscillators, Hartley and Colpitts oscillators.		
58.	Understand the concept of Ideal op-amp.	CLO21	T2:3.3
59.	Determine the Output offset voltage, input bias	CLO22	T2:5.1-5.11
	current, input offset current, slew rate and gain		
	bandwidth product.		
60.	Analyze the Inverting and non-inverting amplifier.	CLO23	T1: 3.6,4.3-4.4
61.	Analyze the Differentiator and integrator.	CLO24	T2:7.12-7.13
62.	Design the Square-wave generator.	CLO25	T2:8.15
63.	Design the Triangular-wave generator.	CLO25	T2: 8.16

XVII. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed Actions	Relevance With POs
1	Analysis of JFET amplifiers.	Seminars / NPTEL	PO 1, PO 2
2	Voltage regulators	Seminars / NPTEL	PO 1, PO 2

Prepared by: Ms. M Sreevani, Assistant Professor

HOD, ECE