Question Paper Code: AEC001

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Four Year B.Tech III Semester End Examinations (Supplementary) - July, 2018 Regulation: IARE – R16

ELECTRONIC DEVICES AND CIRCUITS

Time: 3 Hours

(Common to ECE | EEE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

- 1. (a) Explain the static and dynamic resistance of a diode with relevant expressions. Illustrate the two breakdown mechanisms in a diode with relevant example and figure. [7M]
 - (b) Determine the germanium PN junction diode current for the forward bias voltage of 0.2V at room temperature 24^{0} C with reverse saturation current equal to 1.1mA. Take $\eta = 1$ [7M]
- 2. (a) What is a Zener diode? Explain the construction, working and VI characteristics of Zener diode. Illustrate how Zener diode is used a voltage regulator with example and relevant figure [7M]
 - (b) Determine the forward resistance of a silicon PN junction diode when the forward current is 5 mA at room temperature. [7M]

$\mathbf{UNIT} - \mathbf{II}$

- 3. (a) Calculate the ripple factor for the half wave rectifier with a shunt capacitor filter. [7M]
 - (b) A half wave rectifier is used to supply 24V D.C power to a resistive load of 500Ω and the diode has a forward resistance of 50Ω . Calculate the maximum value of the A.C. voltage required at the input. [7M]
- 4. (a) A full-wave rectifier is connected with capacitive filter. Derive expression for the ripple factor and draw relevant waveforms [7M]
 - (b) A full wave rectifier has a center tapped transformer 100-0-100 V. Each one of the diode is rated at Imax of 400 mA and Iav of 150 mA. Neglecting the voltage drop across the diodes, find
 - i. The value of the load resistance that give the largest DC power output [7M]
 - ii. DC output voltage
 - iii. DC load current and
 - iv. PIV of each diode

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) Highlight the need and importance of JFET. Compare the salient features of JFET and bipolar junction transistor(BJT). [7M]
 - (b) Compare and contrast JFET with MOSFET? Draw the symbols of MOSFETs. [7M]

- 6. (a) Illustrate the common base configuration of BJT with relevant figures and explain its input and output characteristics. [7M]
 - (b) A transistor operating in CB configuration has $I_C = 2.98$ mA, $I_E = 3.0$ mA and $I_{co} = 0.01$ mA. What current will flow in collector circuit of that transistor when connected in CE configuration and base current is $30\mu A$ [7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Explain the two important factors to be considered while designing the biasing circuit which are responsible for shifting the operating point. Also list the requirements of a biasing circuit. [7M]
 - (b) Explain the construction and operation of N-channel enhancement type MOSFET with the help of its(ID-VDS) and (ID-VGS) characteristics. [7M]
- 8. (a) Discuss the need to fix the operating point of a transistor and illustrate the DC load line analysis of common emitter output characteristics of BJT. [7M]
 - (b) A collector to base circuit shown in Figure 1 has $V_{CC} = 24$ V, $R_B = 180$ K Ω , $R_C = 3.3$ K Ω and $V_{CE} = 10$ V. Calculate h_{FE} . Determine V_{CE} when a new transistor is replaced having $h_{FE} = 120$ [7M]

$\mathbf{UNIT} - \mathbf{V}$

- 9. (a) Draw the small signal equivalent circuit of the source follower circuit and derive the equations for voltage gain, input admittance and output admittance. [7M]
 - (b) For the circuit shown in Figure 2 below, $V_{CC} = 20$ V, $R_C = 2$ k Ω , $\beta = 50$, V_{BE} act = 0.2 V, $R_1 = 100$ k Ω , $R_2 = 5$ k Ω and $R_E = 100\Omega$. Calculate I_B , V_{CE} and I_C . [7M]

Figure 2

10. (a) Classify the amplifiers based on biasing conditions. [7M]
(b) In the common gate amplifier, R_D = 2 KΩ, gm = 1.43 x 10⁻³ mho and r_d = 35 KΩ. Evaluate the voltage gain AV. [7M]

 $-\circ\circ\bigcirc\circ\circ-$