Hall Ticket No				Question Paper C	ode: AEC002
	STITUTE	OF AER		AL ENGINEERING	
Four Y	ear B.Tech III	(² I Semester E Regul a	nd Examinations ation: IARE –	s (Supplementary) - July, 201 R16	8
		DIGITAL	SYSTEM D	ESIGN	
Time: 3 Hours			(ECE)	Max	x Marks: 70
A	Ar ll parts of th	nswer ONE All Questic ne question	Question from ons Carry Equ must be answ	n each Unit al Marks ⁄ered in one place only	
			$\mathbf{UNIT} - \mathbf{I}$		

1.	(a) Generate a 7 bit odd parity Hamming Code for the given 4 bit data word 1101.	[7M]
	 (b) Convert the following into Gray Code i. (3A8)₁₆ ii. (578)₈ 	[7M]
2.	 (a) Convert the following Binary numbers to Decimal and then to Hexadecimal. i. 1010 ii. 1011.11 iii. 1101101 	[7M]
	(b) Distinguish between weighted and non-weighted codes with suitable example.	[7M]
	$\mathbf{UNIT} - \mathbf{II}$	
3.	(a) State and prove the De-Morgans theorem.	[7M]
	(b) Solve(Simplify) the following Boolean equation Using Quine-McClusky technique H= d) = $\sum m(0,1,2,4,5,6,8,9,12,13)$.	f(a, b, c, [7M]
4.	 (a) Define canonical form? Translate the following expressions into canonical form: i) f (a, b, c, d) = a'bc + a'c + bcd ii) F (x, y, z) = (x' + y') (y + z') 	[7M]

(b) Get the minimized sum-of products expression for $N = f(a, b, c, d) = \prod (0, 1, 5, 6, 7, 8, 9)$ with don't cares: $\prod X(10, 11, 12, 13, 14, 15)$. Use Karnaugh map for simplification and write PIs and EPIs. [7M]

$\mathbf{UNIT}-\mathbf{III}$

5.	(a) Implement a Full Subtractor using Half Subtractor and one OR Gate	[7M]
	(b) Design a 4 bit BCD to Excess-3 Code Converter using Logic gates.	[7M]
6.	(a) Design a 4 Bit Prime Number Detector using Logic gates	[7M]
	(b) Describe the 4-bit serial adder using full adder with block diagram and illustrate wi	ith example.
		[7M]

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a)	Draw the circuit diagram of T Flip-Flop using NAND gates and exaplain its operation with	h the
		help of functional table.	[7M]
	(b)	Design a Mod-12 Asynchronous Counter using J-K-Flip-Flop	[7M]
8.	(a)	Convert D Flip-Flop to J-K Flip-Flop	[7M]
	(b)	With the help of logic Diagram and Functional Table explain the operation of 4-bit Bidirect Shift Registers	ional [7M]

$\mathbf{UNIT}-\mathbf{V}$

9.	(a)	Explain Mealy and Moore models with general block diagrams.	[7M]
	(b)	Design a Mealy type sequence detector to detect a serial input sequence of 101.	[7M]
10.	(a)	Construct the excitation table, transition table, state table and state diagram for the sequential circuit shown.	Mealy [7M]
	(\mathbf{h})	Design Moore sequential network for the following sequence, output is high for non zero p	rocont

(b) Design Moore sequential network for the following sequence, output is high for non zero present state irrespective of the x input using edge triggered JKFF. $0 \rightarrow 1 \rightarrow 2 \rightarrow 0$ for the input x=1, $0 \rightarrow 2 \rightarrow 1 \rightarrow 0$ for the input x=0. [7M]

 $-\circ\circ\bigcirc\circ\circ-$