Hall Ticket No	Question Paper Code: AEC002
INSTITUTE OF AERONAUTICAI (Autonomous)	L ENGINEERING
B.Tech III Semester End Examinations (Regular) - December, 2017 Regulation: IARE – R16 DIGITAL SYSTEM DESIGN	
(Electronics and Communication	Engineering))
Time: 3 Hours	Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT}-\mathbf{I}$

(a) Perform the following.	[7M]
i. $(988.85)_{10} = (?)_{16} = (?)_2$	
ii. $(11101010.01011)_2 = (?)_{10} = (?)_{16}$	
(b) Distinguish between weighted and non-weighted codes with suitable example.	[7M]
(a) Generate a 7 bit odd parity Hamming Code for the given 4 bit data word 1101.	[7M]
(b) Perform the following.	[7M]

(b) Perform the following.
i)10101001-10010011 using 2's complement method
ii)(650)-(335)BCD subtraction using 9's complement method.

1.

2.

$\mathbf{UNIT} - \mathbf{II}$

- 3. (a) Discuss the properties of Boolean algebra. [7M]
 (b) Design the combinational logic circuit to convert BCD code to Excess-3 code and draw the circuit diagram using minimum number of NAND gates only. [7M]
- 4. (a) Define combinational logic circuit. Design 3-bit parity generator/checker (output is high for odd number of inputs and low for even number of inputs) using NOR gates only. [7M]
 - (b) Use Quine-Mcluskey minimization technique, obtain the minimal sum expression for the Boolean function $f(a, b, c, d) = \sum m(6, 7, 9, 10, 13) + \sum d(1, 4, 5, 11, 15)$. [7M]

$\mathbf{UNIT}-\mathbf{III}$

- 5. (a) Write the truth table for a binary full subtractor function and obtain the irredundant disjunctive normal expressions for the function. Show how the function could be realized using minimum number of NAND gates. [7M]
 (b) Design 4-bit carry look ahead adder network and write its important merits. [7M]
 6. (a) Design an EX-OR and EX-NOR Gate using NAND Gates [7M]
 - (b) Describe the 4-bit serial adder using full adder with block diagram and illustrate with example.

[7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Explain the operation of Master slave JKFF using logic circuit, function table and timing diagram.
 - (b) Draw the logic diagram for 4-bit universal shift register to perform the following operations, illustrate this register operation with suitable example. [7M]

MODE	OPERATION
s1 s0	
0 0	Hold
$0 \ 1$	Shift Left
1 0	Shift Right
1 1	Parallel Load

- 8. (a) State and Derive the characteristic equations for TFF, SRFF and JKFF. [7M]
 - (b) Design a MOD-5 Synchronous counter using clocked D-FF for the sequence 0, 4, 1, 2, 3, 0, 4,

[7M]

[7M]

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Design Mealy sequential network for the following sequence, output is high for non zero present state when input x =0 using edge triggered JKFF. $0 \rightarrow 1 \rightarrow 2$ for x = 0, $0 \rightarrow 2 \rightarrow 1$ for x = 1. [7M]
 - (b) Construct the excitation table, transition table, state table and state diagram for the Moore sequential circuit expression [7M]

 $J_A = B$, $K_A = BX$, $J_B = X$, $K_B = A \oplus X$ and output $Y = A \oplus B$.

- 10. (a) Describe Mealy and Moore sequential circuit models with neat block diagrams. Compare. $[\mathbf{7M}]$
 - (b) Design a Moore type sequence detector to detect a serial input sequence of 101. [7M]

 $-\circ\circ\bigcirc\circ\circ-$