Hall Ticket	No											Question Paper Code: AEC005
2 0 0 0	INS	STI	TU	JTE	ΞO	F	٩E	RO	NA	۱U-	ΓΙϹ	
TARE								Au	ton	om	ous)
POR LINE R	Tech	\mathbf{IV}	Sem	neste	er Er	nd E	vam	inat	iong	(Re	وليت	r / Supplementary) - May 2019

B.Tech IV Semester End Examinations (Regular / Supplementary) - May 2019

Regulation: IARE – R16 ANALOG COMMUNICATIONS

Time: 3 Hours

(ECE)

Max Marks: 70

Answer ONE Question from each Unit **All Questions Carry Equal Marks** All parts of the question must be answered in one place only

UNIT - I

and convolution.	[7M]
 (b) Find the even and odd components of the following signals (i) X(t) = e^{j2t} (ii) X(t) = cos(ω_ot + π/3) (iii)X(t) = sin2t + sin2t cos2t + cos2t. 	[7M]
2. (a) Explain the difference between a time invariant system and time variant system?	[7M]
(b) Find the Fourier transforms of	[7M]
i) $\cos wt u(t)$	
ii) sin wt u(t)	

iii)
$$\cos(wt+\phi)$$

iv) e^{jwt}

$\mathbf{UNIT}-\mathbf{II}$

- 3. (a) What is the principle of Amplitude Modulation(AM)? Derive expression for the AM wave and draw its spectrum. [7M]
 - (b) Calculate the percentage modulation employed assuming no distortion. The rms value of the antenna current before modulation is 10A and after modulation is 12A. [7M]
- 4. (a) With the help of the block diagram explain the operation of ring modulator for DSBSC wave generation.

[7M]

(b) An AM system with envelope detection is operating at threshold. Determine the power gain in decibels needed at the transmitter to produce (S/N) = 30 dB for tone modulation with m = 1.

[7M]

UNIT - III

- (a) Explain with block diagram, the phase discrimination method of generating SSB modulated 5.waves. Why VSB system is widely used for TV broadcasting- Explain? [7M]
 - (b) Calculate the power transmitted if it is transmitted as SSB for AM transmitter of 1KW power is fully modulated. [7M]

- 6. (a) Explain the coherent detection of SSB waves and write the advantages & disadvantages of SSB modulation. [7M]
 - (b) Determine i) output frequency spectrum ii) output frequency for a single frequency input $f_m = 5.6$ kHz of the balanced ring modulator, a carrier frequency $f_c = 400$ kHz, and a modulating signal frequency range $f_m = 0$ to 8kHz.

[7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Differentiate between Frequency Modulation(FM) and Phase Modulation(PM). Show that FM can be derived using PM and vice versa. [7M]
 - (b) A sinusoidal wave of amplitude 10volts and frequency of 1 kHz is applied to FM generator that has a frequency sensitivity constant of 40 Hz/volt. Determine the frequency deviation and modulating index. [7M]
- 8. (a) Explain principle of Armstrong method of FM wave generation. [7M]
 - (b) Design Armstrong FM generator for the generation of WBFM signal with $\Delta f = 75$ kHz and $f_c = 100$ MHz, using the narrow band carrier as 100 kHz and second carrier as 9.5 MHz. Find the suitable multiplying factors. Assume the message signal is defined in the range, 100Hz 15KHz.

[7M]

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Discuss the factors influencing the choice of the intermediate frequency of radio receivers. Explain the principle operation of a super heterodyne receiver. [7M]
 - (b) Determine the recovered baseband for a TRF receiver turned to 1000 KHz AM radio broadcast signal by a variable tuned circuit with 1 KHz bandwidth. Find the bandwidth when receiver is returned to 1550 KHz and 550 KHz [7M]
- 10. (a) State and prove sampling theorem for low pass band limited signal and explain the process of reconstruction of the signal from its samples. Define Nyquist rate and Nyquist interval. [7M]
 - (b) The signal $x(t) = \cos 5\pi t + 0.3 \cos 10\pi t$ is instantaneously sampled. Determine the maximum interval of the sample. [7M]

 $-\circ\circ\bigcirc\circ\circ-$