Hall Ticket	No											Question Paper Code: AEC006	
INSTITUTE OF AERONAUTICAL ENGINEERING													

(Autonomous)

B.Tech IV Semester End Examinations (Supplementary) - July, 2018 **Regulation:** IARE – R16

PULSE AND DIGITAL CIRCUITS

Time: 3 Hours

(ECE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

- 1. (a) Draw the output waveform of an high pass RC circuit excited by a square wave input under different time constants. Derive the expression for percentage of tilt. [7M]
 - (b) Explain the types of series clippers with the neat circuit diagram and transfer characteristics.

[7M]

- 2. (a) A square wave is applied to an low pass RC. Draw the output waveforms to scale the following cases i) T=RC ii) T \leq RC iii) T \geq RC. [7M]
 - (b) With the neat circuit diagram and waveforms explain the operation of negative clamper. [7M]

$\mathbf{UNIT}-\mathbf{II}$

3. (a) With a neat circuit diagram explain the operation of monostable multivibrator.

[7M]

- (b) Design a bistable multivibrator to meet the following specifications, $V_{CC} = V_{BB} = 12$ V, $I_C(\text{sat}) = 6$ mA, h_{FE} (min)= 25, maximum triggering frequency = 25KHz. Assume $V_{CE}(\text{sat}) = 0.4$ V, $V_{BE}(\text{sat}) = 0.8$ V, $I_B(\text{actual}) = 1.5I_B(\text{min})$. [7M]
- 4. (a) Explain how the astable multivibrator circuit can act as a voltage to frequency converter. [7M]
 - (b) Design a Schmitt trigger circuit using npn transistor for the following specifications $V_{CC} = 15$ V, $I_C(\text{sat}) = 2$ mA, $U_{TP} = 8$ V, $L_{TP} = 5$ V, $h_{FE}(\text{min}) = 25$. Assume $V_{\Gamma} = 0.5$ V [7M]

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) Explain the effects of control voltage on gate output of a unidirectional diode gate with neat sketches. [7M]
 - (b) What are the methods of generating time base waveforms. Derive an expression for sweep speed error of exponential sweep circuit. [7M]
- 6. (a) With the circuit diagram explain the working of transistor boot strap sweep circuit. [7M]
 - (b) Design a UJT sweep circuit with $R_{B1} = R_{B2} = 0\Omega$. The sweep amplitude is to be 10V. The sweep duration is 1ms sweep speed error is to be 10%, and the valley point voltage is 3V. Specify reasonable values for V_{BB} , V_{YY} , R and C. [7M]

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a)	What do you mean by relaxation circuit. Explain the principle of operation of sweep genera	ator
		using UJT with neat sketches. [7	\mathbf{M}]
	(b)	With the help of circuit diagram and waveforms explain frequency division by an astable mu	ılti-
		vibrator. [7	\mathbf{M}

- 8. (a) Describe the method involved in synchronization of a sweep circuit with symmetrical signals with neat sketches. [7M]
 - (b) With the neat sketch, explain the sine wave frequency division with a sweep circuit. [7M]

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Draw and explain the two input TTL NAND gate with totem pole output. What are the advantages and disadvantages of totem pole. [7M]
 - (b) Draw and explain the operation of ECL OR gate .What are the drawbacks of ECL family. [7M]
- 10. (a) Describe the operation of DTL NAND gate. Clearly mention the purpose served by the diodes D1 & D2. What are the conditions to be fulfilled for the output to be in saturation. [7M]
 - (b) Draw the circuit of CMOS NOT gate and explain its operation . Mention the advantages over other digital logic families. [7M]

 $-\circ\circ\bigcirc\circ\circ-$