Hall	Ticket	No
пап	TICKEt	110

Question Paper Code: AEC007

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

B.Tech IV Semester End Examinations (Regular) - May, 2018 Regulation: IARE – R16

ELECTROMAGNETIC THEORY AND TRANSMISSION LINES

Time: 3 Hours

(ECE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

- 1. (a) Deduce the equation for force due to the n number of charges. [7M]
 - (b) A charge of 1 Coloumb is at(2,0,0), what charge must be placed at(-2,0,0) which will make y component of total 'E' is equal to zero at the point(1,2,2). [7M]
- 2. (a) Discuss in detail about four different types of charge distribution. [7M]
 - (b) A uniform line charge in $2.5\mu c/m^2$ lies along the Z-axis and a concentric circular cylinder of radius 3m has a surface charge of $-0.12\mu c/m^2$. Both the distributions are infinite in extent with respect to Z-axis using Gauss's law find D in all regions, the region is free space. [7M]

$\mathbf{UNIT}-\mathbf{II}$

- 3. (a) Prove that the line integral of \vec{H} about any closed path is equal to the current enclosed by the path. [7M]
 - (b) A Solenoid of 10cm diameter and 30cm length in wound with 150 turns and carries a current of 5A. Find the magnetic flux density at a point on the axis at a distance of 10cm from the midpoint of the solenoid. [7M]
- 4. (a) Represent the four Maxwell's equation in integral form .
 - (b) An electric field enters from air into a dielectric slab at an oriented of θ_1 . Show that the electric field leaves the dielectric slab at the same orientation of θ_1 to define boundary conditions. [7M]

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) Establish the relation between E and H for a travelling uniform plane wave. [7M]
 - (b) Determine:
 - i. Attenuation Constant
 - ii. Phase Constant
 - iii. Propagation Constant
 - iv. Wavelength
 - v. Phase Velocity
 - vi. Intrinsic impedance for damp soil at frequency of 1MHz.

given that $\varepsilon_r = 12, \mu_r = 1$ and conductivity $\sigma = 20X10^3 siemens/m$.

[7M]

[7M]

- 6. (a) Define polarization. Explain the types of polarizations in detail. [7M]
 - (b) A 10 GHZ uniform plane wave travelling in free space in x-direction has $E_x=1$ v/m. Find the value of magnetic field and the propagation constant when $\alpha = 0$. [7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) State the various types of transmission lines used in practice. [7M]
 - (b) A generator of IV 1 KHz supplies power to a 100 km open wire line transmitted in 200 Ω resistance. The line parameters are R=10 Ω /m, L=3.8mH/km, G=1X10⁶mho/km, C=0.0085 μ F/km, calculate the input impedance, reflection, co-efficient, the input power, the output power and transmission efficiency. [7M]
- 8. (a) For a cable it is decided to provide lumped loading, the primary constant of cable are R=40 Ω/km , L=1mH/km,G=1 μ mho/km, C=0.05 μ F/km. Find the new value of inductance required to achieve the distortion less condition, By what factor the inductance required to be revised.
 - (b) Derive voltage and current equations for a transmission line.

$\mathbf{UNIT}-\mathbf{V}$

9.	(a)	What is the need for stub matching in transmission line? Discuss briefly the different types stub matching?	pes of [7M]
	(b)	What are standing waves? Determine the VSWR for a 50 Ω line which is terminated with 90+j60 Ω .	n load [7M]
10.	```	Derive the equations for quarter and half-wave lines as circuit elements. If VSWR of a line is 1.5 then calculate its reflection co-efficient.	[7M] [7M]

 $-\circ\circ\bigcirc\circ\circ-$

[7M]

[7M]