Hall Tick	xet No			Question Pap	per Code: AEC009		
2000	INSTITUTE OF AERONAUTICAL ENGINEERING						
FURTION FOR LIBERT	(Autonomous)						
Four Year B.Tech V Semester End Examinations (Regular) - November, 2018							
${\bf Regulation: \ IARE-R16}$							
		DIGITAL CON	AMUNIC	ATIONS			
Time: 3 Ho	ours	(1	ECE)		Max Marks: 70		

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a)	Define Quantization. What is the need for Companding in PCM system and show that the m	nean
		square quantization error in PCM is $\Delta^2/12$. ['	7M]
	(b)	Illustrate with waveforms, how PPM is generated using PWM. [7]	7M]
2.	(a)	Explain the encoding scheme used in DPCM scheme with block diagram description and m ematical modeling. ['	ath- 7 M]
	(b)	What are the noise present in Delta Modulation. Explain the modulation scheme to avoid t noise effects	hese 7 M]

$\mathbf{UNIT} - \mathbf{II}$

3.	(a)	Explain the	generation	of QPSK	$\operatorname{modulation}$	scheme	using	constellation	diagram.	[7M]
----	-----	-------------	------------	---------	-----------------------------	--------	-------	---------------	----------	------

- (b) Determine the amount of probability of error in matched filter Receiver. [7M]
- 4. (a) How does the phase of the carrier vary for message m(n)={1,0,1,1,0,1...} in BPSK and DPSK. Draw the block diagram of QPSK receiver. [7M]
 - (b) A binary data has to be transmitted over a telephone link that has a usable bandwidth of 3000Hz and a maximum achievable signal to noise power of 6dB at its output. [7M]
 (i) Determine the maximum signaling rate and probability of error if a coherent ASK is used for transmitting binary data through this channel
 (ii) if the later task is the index of 200 kits (a probability of error is a ballity).

(ii) if the data rate is maintained at 300 bits/sec. Find the error probability.

$\mathbf{UNIT} - \mathbf{III}$

5.	(a) Write down the Unipolar, Polar and Bipolar Line Coding Schemes.	[7M]
	(b) Explain Eye Diagram with neat diagram and how to draw eye diagram for ASK.	[7M]
6.	(a) What is pulse shaping? Why it is useful in baseband transmission? Explain in detail.	[7M]

(b) A line coding scheme uses Unipolar NRZ encoding with rectangular pulses. Sketch the signal corresponding to the bit sequence "101100". Compute its Power spectral density. [7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Define Mutual Information and Prove the relation I(X:Y) = H(X) + H(Y) H(X,Y). [7M]
 - (b) A Guassian channel has 5MHz bandwidth. Calculate the channel capacity if the signal power to noise spectral density ratio is 10^6 Hz. Discuss the trade off between bandwidth and S/N ratio.

[7M]

- 8. (a) Describe spread spectrum modulation techniques in detail. [7M]
 - (b) A source emits letters from an alphabet $A = \{a1, a2, a3, a4, a5, a6\}$ with probabilities P(a1) = =0.1, P(a2) = 0.4, P(a3) = 0.06, P(a4) = 0.1, P(a5) = 0.04 and P(a6) = 0.3 [7M]
 - (i) Find a Huffman code for this source.
 - (ii) Find the average length of the code.

$\mathbf{UNIT} - \mathbf{V}$

- 9. (a) What is a convolutional code? How it is different from a block code? [7M]
 - (b) Show that if ci and cj are two code vectors in an (n,k) linear block code, then their sum is also a code vector. [7M]
- 10. (a) Explain how generator and parity matrices are obtained for cyclic codes with an example. [7M]
 - (b) Decode the Received code word [10 11 10] using viterbi algorithm and find the correct transmitted code word using the given convolutional encoder. [7M]

Figure 1