Hall Ticke	t No	Question Paper Code: AEC011					
INSTITUTE OF AERONAUTICAL ENGINEERING							
Suchar Star	(Autonomous)						
FOR LIN	Four Year B.Tech V Semester End Examinations(Re	gular) - November, 2019					

Regulation: IARE – R16

ANTENNAS AND PROPOGATION

Time: 3 Hours

(ECE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a)	Explain in detail about the concept of retarded vector potential.	[7M]
	(b)	Discuss in detail about the power radiated by the current element and its radiation resista	ance.
			[7M]
2.	(a)	Starting from linear current distribution discuss in detail about the linear antenna.	[7M]
	(b)	Obtain expressions for the power radiated by a half wave dipole antenna and calculate the	Э
		radiation resistance of the antenna.	[7M]

$\mathbf{UNIT} - \mathbf{II}$

3.	(a)	Find the total electric field of two point sources array with equal amplitude and out of phase at a far distant point. $[7M]$	
	(b)	State three effects of non-uniform amplitude distribution on radiation pattern. Explain the Binomial array. $[7{\rm M}]$	
4.	(a)	(a) Design and explain Yagi-Uda antenna with 5 elements of appropriate length with a neat sh	
	(b)	Explain with sketches a helical antenna and briefly describe its operation in the axial mode.	
		[7M]	

$\mathbf{UNIT} - \mathbf{III}$

5.	(a) Draw and explain the slot antenna with working principle. Draw its radiation pattern	n. [7M]
	(b) What are the advantages of slot antennas. Determine the impedance of slot antenna.	[7M]
6.	(a) Explain in detail about the construction of horn antenna and its operation.	[7M]
	(b) A pyramidal horn antenna having aperture dimensions of $a = 5.2$ cm and $b = 3.8$ cm a frequency of 10GHz. Calculate its gain and HPBW.	1 is used at [7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) With a neat block diagram explain the measurement of gain of an antenna. [7M]
 - (b) Find the diameter of the reflector antenna that has a 0.5 deg HPBW at a frequency of 8.2 GHz. Assume an efficiency constant = 0.6. Calculate the antenna gain and effective aperture. [7M]
- 8. (a) Describe in detail the Cassegrain method of feeding of a paraboloid reflector with the help of the diagram. [7M]
 - (b) A parabolic reflector antenna with diameter 20 m, is designed to operate at frequency of 6GHz and illumination efficiency of 0.54. Calculate antenna gain. [7M]

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Explain clearly about the structure of the atmosphere. Draw the structure of ionosphere. [7M]
 - (b) Calculate the critical frequency for the F1, F2 and E layers for which the maximum ionic densities are 2.3×10^6 , 3.5×10^6 and 1.7×10^6 electrons per c.c respectively? [7M]
- 10. (a) Explain the following terms with expressions.

i)Critical frequency

ii)MUF

iii)Virtual Height

iv) Skip distance

(b) Show that $d = 3.57 \left[\sqrt{h_t} + \sqrt{h_r} \right]$ km is the distance in Line of sight propagation. [7M]

[7M]