Hall Ticket	No Question Paper Code: AEC	2012					
INSTITUTE OF AERONAUTICAL ENGINEERING							
TARE of	(Autonomous)						
FOR	B.Tech VI Semester End Examinations (Regular) - May, 2019						

Regulation: IARE – R16

DIGITAL SIGNAL PROCESSING

Time: 3 Hours

(ECE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	. (a) Discuss in detail the Realization structures of Digital filters .	[7M]
	(b) Determine the convolution sum of two sequences $x(n) = \{4, 2, 1, 3\}$ and $h(n) = \{1, 2, 2, 1, 3\}$	}.
		[7M]
2.	. (a) Define LTI system? Determine if the system described by the following input-output equation LTI or not? Y (n) = n x(n).	uation is [7M]

(b) Obtain the Direct form-II Realization of the equation given: y(n)=-0.1 y(n-1)+0.2 y(n-2)+3x(n)+3.6x(n-1)+0.6x(n-2)[7M]

$\mathbf{UNIT}-\mathbf{II}$

3. (a) State the properties of DFT. What is FFT? Discuss its efficiency with respect to DFT in detail. [7M]

(b) Compute the IDFT using DIF FFT algorithm given that	
$X (k) = \{ 4, 1-j2.414, 0, 1-j0.410, 0, 1+j0.414, 0, 1+j2.414 \}.$	[7M]

4. (a) Define DTFT and compare DTFT with DFT of a sequence. [7M]

(b) Compute the output for a given sequence x(n)=1,2,3,4 using Radix-2 FFT algorithm. [7M]

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) Discuss in detail the transformation of analog filters into equivalent digital filters using Bilinear transformation technique [7M]
 - (b) Design a 4th order band-pass IIR digital filter with lower & upper cut-off frequencies at 300 Hz & 3400 Hz when $f_S = 8$ kHz. [7M]
- 6. (a) Write a MATLAB program to design a Chebyshev Type-1 IIR low pass filter using Impulse invariant transformation technique.(Assume the desired specifications)

[7M]

(b) Apply bilinear transformation to H(s)=2/(s+1) (s+2) with T is 1 sec, find H(z). [7M]

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a)	Write a MATLAB Program to design FIR low pass filter using Rectangular Windowing Tec (Assume the input parameters)	hnique [7M]
	(b)	Design an ideal Hilbert transformer having frequency response $H(e^{j\omega}) = j - \pi \le \omega \le 0 - j0 \le \omega \le \pi$ for N=11 using rectangular window.	[7M]
8.	(a)	Compare and contrast FIR and IIR Filters. With suitable examples.	[7M]
	(b)	Define the terms i) Linear Phase FIR ii) Windowing Technique iii)Least- Mean-Square E	rror
			[7M]

$\mathbf{UNIT}-\mathbf{V}$

9.	(a)	Write a short note on i) Decimation and interpolation ii) Truncation and rounding	[7M]
	(b)	Expose the applications of multirate signal processing for the design of phase shifters	[7M]
10.	(a)	With a neat sketch illustrate the sampling rate conversion by a rational factor $\mathrm{I}/\mathrm{D}.$	[7M]
	(b)	The output of an A/D is fed through a digital system whose system function is $H(z)=1/(1-0.8z^{-1})$. Find the output noise power of the digital system.	[7M]

 $-\circ\circ\bigcirc\circ\circ-$