Question Paper Code: AEC019

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

B.Tech IV Semester End Examinations (Regular / Supplementary) - May, 2019 Regulation: IARE – R16

DIGITAL AND PULSE CIRCUITS

Time: 3 Hours

(EEE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a)	Write short notes on binary number systems. Discuss 1's and 2's complement methods of subtraction.	[7M]
	(b)	 i) Subtract 14 from 46 using 8 bit 2's complement arithmetic ii) Add -75 to +26 using 8 bit 2's complement arithmetic 	[7M]
2.	(a)	Differentiate between BCD code and 2421 code and excess-3.	[7M]
	(b)	Express the Boolean function $F = A + BC$ as standard sum of min terms.	[7M]
$\mathbf{UNIT}-\mathbf{II}$			
3.	(a)	State and prove the following Laws.i) Demorgan's theoremii) Distributive law	[7M]
	(b)	Simplify the boolean function using 5 variable K-Map $F(A, B, C, D, E) = \sum m(0, 2, 4, 6, 9, 13, 21, 23, 25, 29, 31).$	[7M]
4.	(a) (b)	Design a combinational circuit to produce 2's complement of a 4-bit binary number. Implement the following boolean function with a 8×1 multiplexer	[7M]
	(0)	$F(A, B, C, D) = \sum m (0, 3, 5, 6, 8, 9, 14, 15).$	[7M]
$\mathbf{UNIT} - \mathbf{III}$			
5.	(a)	Define Latch. Explain about different types of Latches in detail.	[7M]
	(b)	Draw the circuit of JK flip-flop using NAND gates and explain its operation. Convert D fli to SR flip-flop.	p-flop [7M]

6. (a) Explain with the help of a block diagram, the basic components of a sequential circuit? [7M]

(b) Design a mod-10 Asynchronous counter using T flip-flops. Design a mod-6 Synchronous counter using JK flip-flops. [7M]

 $\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Explain the advantages and disadvantages of negative feedback. Draw and explain RC phase shift oscillator. [7M]
 - (b) An amplifier has a voltage gain of 400, $f_1=50$ hz, $f_2=200$ KHz and a distortion of 10% without feedback. Determine the amplifier voltage gain and pf when a negative feedback is applied with feedback ratio of 0.01? [7M]
- 8. (a) Write the frequency of oscillation for Colpitts's oscillator? What are the limitations of Colpitts's oscillator? [7M]
 - (b) A crystal oscillator has the following parameters: L=0.5H, C_s=0.06pF, C_p=1.0pF and R=5 kΩ.
 i) Find the series resonant frequency [7M]
 ii) Find Q of the crystal

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Draw the circuit of a CE amplifier with an emitter resistance, and derive the expression for input impedance, output impedance, current gain and voltage gain. [7M]
 - (b) A transistor used in self-bias CE amplifier connection has the following set of h-parameters, $h_{ie}=1.1k\Omega, h_{fe}=50, h_{re}=2.5\times10^{-4}, h_{oe}=25\times10^{-6}\text{A/V}, R_1=100k\Omega, R_2=10k\Omega, R_C=5k\Omega, R_E=1k\Omega, R_S=10k\Omega, R_L=5k\Omega$. Determine input impedance, output impedance, current gain and voltage gain. [7M]
- 10. (a) Why CC is called emitter follower and justify? Deduce the equations for voltage gain, current gain, input impedance and output impedance for a BJT using the approximate hybrid parameter models for CC configuration. [7M]
 - (b) A CC amplifier is driven by voltage source with internal resistance $R_s = 800\Omega$. The load impedance $R_L = 2k \Omega$. The h-parameters are $h_{ic} = 1.1 \text{K}\Omega$, $h_{rc} = 1$, $h_{fc} = -51$, $h_{oc} = 25 \mu \text{A/V}$. Compute A_I , A_V , A_{Is} , R_i , $Z_o \& A_p$. [7M]

$$-\circ\circ\bigcirc\circ\circ-$$