DIGITAL AND PULSE CIRCUITS

IV Semester: EEE									
Course Code	Category	Hours / Week		Credits	Maximum Marks				
AEC019	Foundation	L	Т	Р	С	CIA	SEE	Total	
		4	-	-	3	30	70	100	
Contact Classes: 45	Tutorial Classes: 15	Practical Classes: Nil				Total Classes: 60			

OBJECTIVES:

The course should enable the students to:

- I. Enrich the knowledge of probability on single random variables and probability distributions and apply the concept of correlation and regression to find covariance.
- II. Analyze the given data for appropriate test of hypothesis and discuss the concept of sequential circuits and analyze sequential systems.
- III. Interpret the concept of feedback and classify various types of feedback amplifiers and understand the principle of oscillation and design different types of oscillators.
- IV. Design and analyze single stage and multi stage Amplifiers.

COURSE LEARNING OUTCOMES (CLOs):

- 1. Understand number systems, binary addition and subtraction, 2's complement Representation and operations with this representation and understand the different binary codes.
- 2. Illustrate the switching algebra theorems and apply them for reduction of Boolean function.
- 3. Identify the importance of SOP and POS canonical forms in the minimization or other optimization of Boolean formulas in general and digital circuits.
- 4. Discuss about digital logic gates and their properties, and implement logic gates using universal gates.
- 5. Evaluate functions using various types of minimizing algorithms like Boolean algebra.
- 6. Evaluate functions using various types of minimizing algorithms like Karnaugh map or tabulation method.
- 7. Design Gate level minimization using K-Maps and realize the Boolean function using logic gates.
- 8. Analyze the design procedures of Combinational logic circuits like adder, binary adder, carry look ahead adder.
- 9. Understand bi-stable elements like latches, flip-flop and illustrate the excitation tables of different flip flops.
- 10. Analyze and apply the design procedures of small sequential circuits to build the gated latches.
- 11. Understand the concept of Shift Registers and implement the bidirectional and universal shift registers.
- 12. Implement the synchronous counters using design procedure of sequential circuit and excitation tables of flip flops.
- 13. Implement the Asynchronous counters using design procedure of sequential circuit and excitation tables of flip flops.
- 14. Understand the design analysis of feedback amplifiers & types of feedback circuits.
- 15. Design various sinusoidal Oscillators like RC Phase shift, Wien bridge, Hartley and Colpitts oscillator for various frequency ranges.
- 16. Analyze the design of BJT as single stage and multistage amplifier circuits.
- 17. Implement the design analysis of coupling amplifiers and types of coupling circuits.

Unit-I	BOOLEAN ALGEBRA AND SWITCHING FUNCTIONS	Classes: 09				
properties, u	of binary numbers: Complements of numbers, codes, binary codes, binary code decim nit distance codes, alpha numeric codes, error detecting and correcting codes; Boolean d properties, switching functions, canonical and standard form.					
Unit -II	MINIMIZATION TECHNIQUES AND DESIGN OF MSI	Classes: 09				
map entries,	n with theorem: Karnaugh map method, five variable map, prime and essential implica tabular method, partially specified expressions; combination all design: Arithmetic cire, code converters, hazards and hazard free relations.					
Unit -III	SEQUENTIAL CIRCUITS DESIGN	Classes: 09				
machine ope conversion f Counters: D	ences between combinational and sequential logic circuits, binary cell, fundamentals of eration, D Flip Flop, T Flip Flop, J K Flip Flop, design procedure for conversion of Flip rom one type of Flip-Flop to another, timing and triggering consideration, clock skew. esign of single mode counter, ripple counter, ring counter, shift register, shift register g shift register.	Flops,				
Unit -IV	FEEDBACK AMPLIFIERS AND OSCILLATORS	Classes: 09				
Feedback Amplifiers: Concepts of feedback, classification of feedback amplifiers, general characteristics of negative feedback amplifiers, effect of feedback on amplifier characteristics, voltage series, voltage shunt; Current series; Current shunt feedback configurations, illustrative examples; Oscillators: Classification of oscillators, condition for oscillations, RC phase shift oscillators; Generalized analysis of LC oscillators: Hartley and Colpitts oscillators, Wien Bridge and crystal oscillators, stability of oscillators.						
Unit -V	SINGLE STAGE AMPLIFIERS AND MULTISTAGE AMPLIFIERS	Classes: 09				
configuratio Miller's the Analysis of	e Amplifiers: Classification of amplifiers, distortion in amplifiers, analysis of C ns with simplified hybrid model, analysis of CE amplifier with emitter resistance and orem and its dual design of single stage RC coupled amplifier using BJT; Mult cascaded RC coupled BJT amplifiers, cascade amplifier, darlington pair, different lifiers RC coupled amplifiers, transformer coupled amplifier, direct coupled amplifier.	emitter follower, istage amplifiers:				
Text Book	s:					
2. Fletcher Limited	is Mano, Michael D Ciletti, "Digital Design", Pearson Education / PHI, 3rd Ed W I, "An Engineering Approach to Digital Design", Prentice Hall India Learn , 1990. avi, "Switching and Finite Automata Theory", Tata McGraw-Hill, 3rd Edition,	ing Private				
4. John M	Yarbrough, "Digital logic applications and design", Thomson publications, 1st an, C C Halkias, "Integrated Electronics", Tata McGraw -Hill, 2008.					
Reference	Books:					
2008. 2. Thomas 3. Roth, "H 4. Comer, 5. Rashid,	L Floyd, "Digital Fundamentals", Pearson Publications, 10th Edition, 2013. Fundamentals of Logic Design", Thomson Publications, 7th Edition, 2004 "Digital Logic and State Machine Design", Oxford Publications, 3rd Edition, 2 "Electronic Circuit Analysis", Cengage Publishers, 12th Edition, 2013. L Boylestad, Louis Nashelsky, "Electronic Devices and Circuits Theory", PHI,	.013.				