Hall	Ticket	No
TTOIL	LICKCU	110

Question Paper Code: AEC019

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

B.Tech IV Semester End Examinations (Regular) - May, 2018 **Regulation: IARE – R16**

DIGITAL AND PULSE CIRCUITS

Time: 3 Hours

(EEE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a) Generate a 7 bit even parity Hamming code for the given 4 bit message 1011 a entire message with Hamming code.	and rewrite the [7M]
	 (b) Simplify the following Boolean expressions to minimum no. of literals. i. xy' + y' z' + x' z' ii. xyz + yyz + y' z + xy' iii. (a' + c) (a' + c') (a' + b + c' d) iv. x' z' + y' + yz' + xyz 	[7M]
2.	(a) Convert the following i. $877_{10} = ()_{16}$ ii. $408.93_{10} = ()_8$ iii. $ABC_{16} = ()_{10}$ iv. $292_{10} = ()_2$	[7M]
	(b) Subtract the following using 2's complement method. i. $1011_2 - 1000_2$ ii. $46_{10} - 12_{10}$	[7M]
	$\mathbf{UNIT} - \mathbf{II}$	
3.	(a) Design a 4 bit BCD to Excess-3 Code Converter and realize using logic gates. (b) Implement the following function using logic gates $F(x, y, z) = \sum m(0, 4, 5, 7)$.	[7M] [7M]
4.	(a) What are the universal gates? Design a full adder using universal gates.(b) Using tabular method obtain the minimal expression for	[7M]

$$F(a, b, c, d) = \sum m(6, 7, 8, 9) + d(10, 11, 12, 13, 14, 15).$$
[7M]

$\mathbf{UNIT}-\mathbf{III}$

5.	(a) Convert S-R flip-flop to J-K flip-flop and draw its logic circuit.	[7M]			
	(b) Draw the logic diagram of 4 bit ring counter using D flip flops and explain its operation with help of bit pattern.	th the [7M]			
6.	(a) Draw the logic diagram of a D flip flop and using excitation table, explain its operation.	[7M]			
	(b) Design a Mod-9 synchronous counter using T Flip-Flop with a neat sketch.	[7M]			
	UNIT - IV				

7.	(a)	Draw the circuit diagram of voltage series feedback and derive expressions for input resistance and output resistance. [7M]
	(b)	What are the types of feedback? Mention the characteristics of a Negative feedback amplifier. [7M]
8.	(a)	With neat diagram, explain the working of Hartley oscillator using BJT and derive an expression for frequency of oscillation. [7M]
	(b)	What do you mean by oscillators and state the conditions for oscillations. [7M]

$\mathbf{UNIT}-\mathbf{V}$

9.	(a)	Draw the simplified h-parameter model of CE configuration and derive the expression for A_I A_v and R_0 .	$, R_I,$ 7M]
	(b)	State and prove millers theorem and dual of millers theorem.	7M]
10.	(a)	Draw the circuit diagram of Darlington emitter follower and derive an expression for A_I, R_I	A_v
		and R_0 .	7M]

(b) Six identical stages are coupled, each amplifier having $f_l = 100$ Hz and $f_h = 100$ KHz. Determine the overall upper cut-off frequency, the overall lower cut off frequency for the six stages. What is cascading? derive the expression for A_I, R_I . [7M]

 $-\circ\circ\bigcirc\circ\circ-$