Question Paper Code: AEC020

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Four Year B.Tech III Semester End Examinations (Supplementary) - July, 2018

Regulation: IARE – R16

DIGITAL LOGIC DESIGN

Time: 3 Hours

 $(Common to CSE \mid IT)$

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a)	Perform the subtraction operation using 2's complement of the subtrahend	[7M]
		i. $(5C)_{16} - (3F)_{16}$	
		ii. $(C0)_{16} - (7A)_{16}$	
	(b)	Convert the following to the designated bases	[7M]
		a. $(1000)_2$ to () gray	
		b. $(22.64)_{10}$ to () ₁₆	
		c. $(A72F)_{16}$ to () ₈	
2.	(a)	Write about binary logic in detail and explain binary addition and binary subtraction	with
		examples.	[7M]
	(b)	Explain why Excess- 3 is self complementing code with an example.	[7M]

$\mathbf{UNIT}-\mathbf{II}$

3.	(a) Write the truth table for DeMorgans theorem by taking an example.	[7M]
	(b) Simplify the boolean function F(w,x,y,z)= $\sum(1,3,7,11,15)$ that has the $d(w,x,y,z)=\sum(0,2,5)$	don't-care conditions [7M]
4.	 (a) Implement the following Boolean functions using the following logic i. (AB+CD) using NAND- NAND Realization ii. (A+B) (C+D) using NOR- NOR Realization 	[7M]
	(b) Simplify the following using four- variable K-map i. $w'z + xz + x'y + wx'z$ ii. $B'D + A'BC' + AB'C + ABC'$	[7M]

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) Explain the working of 2-bit magnitude comparator with the help truth table and logic diagram.
 - (b) Enumerate the implementation of full-adder using two half-adders and an OR gate, for the following boolean expressions: [7M]

S = x'y'z + x'yz' + xy'z' + xyzC = xy + xz + yz

- 6. (a) Show the construction of a 2-to-4-line decoder with an enable input constructed with NAND gates, construct the corresponding truth table for the same. [7M]
 - (b) Implement the half adder using decoder and multiplexer for the following simplified boolean function [7M]

S = x'y + xy'C = xy

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Explain the process of construction of a master-slave JK flip-flop using NAND gates. [7M]
 - (b) Enumerate the construction of RS flip-flop with the help of logic diagram and characteristic table for the same. [7M]
- 8. (a) Explain the excitation table for the 3-bit binary counter and write the simplified maps for the excitation table based on flip-flop input function. [7M]
 - (b) Construct the toggle flip-flop. Derive the characteristic table and characteristic equation. [7M]

$\mathbf{UNIT} - \mathbf{V}$

- 9. (a) Using PROM, realize the following expressions [7M] $F1 (a, b, c) = \sum (0, 1, 3, 5, 7)$ $F2 (a, b, c) = \sum (1, 2, 5, 6)$
 - (b) Implement the circuit with a PLA [7M] $F1 (a, b, c) = \sum (0, 1, 3, 4)$ $F2 (a, b, c) = \sum (1, 2, 3, 4, 5)$
- 10. (a) Implement the Combinational circuit defined by the function with a PAL. $f1(A, B, C, D) = \sum (0, 2, 5, 7, 8, 10, 12, 13)$ [7M]
 - (b) Design a BCD to excess-3 code converter and implement using suitable PLA. [7M]

 $-\circ\circ\bigcirc\circ\circ-$

[7M]