Hall	Ticket	No

Question Paper Code: AEC020

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

B.Tech III Semester End Examinations (Regular) - December, 2017

${\bf Regulation: \ IARE-R16}$

DIGITAL LOGIC DESIGN

(Common to CSE / IT)

Time: 3 Hours

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

- 1. (a) Perform the subtraction with the following decimal numbers by taking the 10's complement of the subtrahend. [6M]
 - i. 20-100
 - ii. 1753-8640
 - (b) Convert the decimal 153 to octal and (0.6875)10 to binary, clearly indicate each step during the process of conversion. [8M]
- 2. (a) Illustrate the process of detecting errors during the transmission of information from one location to another using parity bits. [7M]
 - (b) What is Radix complement? Explain the procedure of complementing r of an n-digit number N in base r. [7M]

$\mathbf{UNIT}-\mathbf{II}$

- 3. (a) Convert the following expressions into sum of products and product of sums: [5M]
 i. (AB+C)(B+C'D)
 - ii. x' + x(x+y')(y+z')
 - (b) Simplify the following Boolean functions by first finding the essential prime implicants: [9M] i. $F(w, x, y, z) = \sum m(0,2,4,5,6,7,8,10,13,15)$
 - ii. $F(A, B, C, D) = \sum m(1,3,4,5,10,11,12,13,14,15)$
- 4. (a) Simplify the following boolean function $F(A,B,C,D,E) = \pi(0,2,4,6,9,13,21,23,25,29,31)$. [7M]
 - (b) Simplify the following boolean functions to a minimum number of literals. [7M]i. x+x'y
 - ii. x(x'+y)
 - iii. x'y'z+x'yz+xy'

$\mathbf{UNIT} - \mathbf{III}$

5.	(a) Implement a full adder circuit using half adder circuits and OR gate.	[7M]
	(b) Design a BCD to 2421 Code Converter Circuit.	[7M]
6.	Realize the following Boolean function using the following MUX	[14M]
	F (A, B, C, D) = $\sum m$ (1, 4, 5, 7, 9, 12, 13) using 16X1 MUX and 8X1 MUX	

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a)	Explain the characteristics of JK flip-flop with the help of logic diagram, characteristic tal characteristic equation.	ble and [7M]		
	(b)	Explain the design procedure for 3-bit binary counter using T-flip-floP.	[7M]		
8.	(a)	Design a BCD Ripple counter using JK Flip Flops.	[7M]		
	(b)	Design a 4 bit Johnson counter with initial value to be 0000 using D Flip flops.	[7M]		
	$\mathbf{UNIT} - \mathbf{V}$				
9.	(a)	Using PROM, realize the following expressions F1 (a, b, c) = $\sum m (0, 1, 3, 5, 7)$ F2 (a, b, c) = $\sum m (1, 2, 5, 6)$	[7M]		
	(b)	Implement the circuit with a PLA F1 (a, b, c) = $\sum m (0, 1, 3, 4)$ F2 (a, b, c) = $\sum m (1, 2, 3, 4, 5)$	[7M]		
10.	Imp W(A X(A	blement the following Boolean functions given in sum of min terms using PAL A, B, C, D) = $\sum m (2,12,13)$ A,B, C, D) = $\sum m (7,8,9,10,11,12,13,14,15)$	[14M]		

- $\rm Y(A,\,B,C,\,D) = \sum m ~(0,2,3,4,5,6,7,8,9,10,11,15)$
- $Z(A, B, C, D) = \sum m (1,2,8,12,13)$

 $-\circ\circ\bigcirc\circ\circ-$