Hall	Ticket	No
пап	TICKEt	TNO

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Four Year B.Tech III Semester End Examinations (Regular) - November, 2019

Regulation: IARE – R18

ANALOG ELECTRONICS

Time: 3 Hours

(EEE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

- 1. (a) Obtain the expressions for DC voltage, RMS voltage, ripple factor and rectification efficiency of half wave rectifier. [7M]
 - (b) For a diode current of 1mA at room temperature a germanium diode requires forward bias of 0.1435 V and silicon diode requires forward bias of 0.718 V. Find the ratio of reverse saturation current in germanium diode to that in silicon diode? [7M]
- 2. (a) Analyze CE amplifier using simplified hybrid CE model and obtain all the characteristic parameters. [7M]
 - (b) Consider a single stage CE amplifier with $R_S = 1K\Omega$, $R_E = 500\Omega$, $R_C = 1K\Omega$, $R_L = 1.2K\Omega$, $h_{fe} = 50 \text{ and } h_{ie} = 1.1K\Omega$, $h_{oe} = 2 \times 10^{-6}$ mhos, $h_{re}=0$. Calculate current gain, input impedance and voltage gain? [7M]

$\mathbf{UNIT} - \mathbf{II}$

- 3. (a) Explain the principle of common drain FET amplifier with the help of circuit diagram. Derive the expressions for input impedance, output impedance and AV. [7M]
 - (b) A common drain FET amplifier circuit has the following circuit parameters: $R_S=4k\Omega$, $R_G=10M\Omega$, $\mu=50$ and $r_d=35K\Omega$. Determine A_V and Z_i and Z_o . [7M]
- 4. (a) With neat diagram, explain the construction and working principle of N-channel depletion type MOSFET. [7M]
 - (b) A common source FET amplifier circuit with un bypassed Rs has the following circuit parameters: $R_d = 15$ K, $R_S = 0.5$ K Ω , $R_g = 1$ M, $r_d = 5$ K, $g_m = 5$ mS and $V_{DD} = 20$ V. Determine $A_V \& R_O$. [7M]

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) Discuss the frequency response characteristics of RC coupled amplifiers. Obtain general expression for gain at a low and high frequencies [7M]
 - (b) A single transistor is acting as ideal Class B amplifier with load of 1K Ω , if DC collector current is 15mA, V_{CC} =20V. Determine its efficiency. [7M]

- 6. (a) Explain the operation of complementary symmetry push pull amplifier. [7M]
 - (b) Define power amplifier and explain different types of power amplifiers.

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Discuss with mathematical expressions, how the negative feedback in amplifiers increases bandwidth and reduces distortions in amplifiers. [7M]
 - (b) A Hartley oscillator is designed with $L = 20\mu H$ and a variable capacitance. Find the range of capacitance values if the frequency of oscillation is varied between 950 KHz to 2050 KHz. [7M]
- 8. (a) Draw the circuit and explain the principle of operation of RC phase shift oscillator circuit. Derive the expression for the frequency of oscillations. [7M]
 - (b) Find the frequency of oscillations of a Wein bridge oscillator with $R=20K\Omega$ and C=1000pF. [7M]

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Explain the terms i) PSRR ii) CMRR iii) Slew rate iv) Input bias current [7M]
 - (b) An inverting amplifier using 741C must have a flat response upto 40KHz. The gain of the amplifier is 10.What maximum peak to peak input signal can be applied without distorting the output? Note: The 741C has typical slew rate of $0.5V/\mu$ s. [7M]
- 10. (a) Explain the characteristics of an ideal operational amplifier. Draw the equivalent circuit and open loop circuit of an Ideal Op-amp. [7M]
 - (b) In circuit shown below $R_1 = 10K\Omega$, $R_f = 100K\Omega$, $v_i = 1V$. A load of $25K\Omega$ is connected to the output terminal. Calculate
 - i) i_1
 - $ii)v_o$

iii) i_l and total current i_o in to the output pin.

Figure 1

[7M]

[7M]