	INSTITUTE OF AERONAUTICAL ENGINEER (Autonomous)	ING			
Four Year B.Tech III Semester End Examinations(Regular) - November, 2019 Regulation: IARE – R18 DIGITAL ELECTRONICS					
Tir	me: 3 Hours (EEE)	Max Marks: 70			
	Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place or	nly			
	$\mathbf{UNIT} - \mathbf{I}$				
1.	 (a) Define the following terms i) Fan in ii) Power Dissipation iii) Propagation delay 	[7M]			
	(b) Construct 7 bit Hamming code using even parity for the message 0110.	[7M]			
2.	(a) Explain the operation of TTL NAND gate. (b) Add $(600)_{10} + (612)_{10}$ using BCD Arithmetic.	[7M] [7M]			
	$\mathbf{UNIT} - \mathbf{II}$				
3.	 (a) Design half adder and half subtracter circuit using NAND gates. (b) Minimize the following function using K-map. F (A, B,C, D) = ∑ m(1,3,5,7,9,10,11,12,15) 	[7M] [7M]			
4.	(a) Differentiate between BCD and Gray code converters. Design BCD to gray	code converter.			

Hall Ticket No

(b) Implement the following function with 8x1 MUX $F(A, B, C) = \sum m(0,2,6,7)$ [7M]

$\mathbf{UNIT}-\mathbf{III}$

5.	(a) With the help of circuit diagram and functional table, explain the working of D flip-flop.	[7M]
	(b) Design a Mod-10 Asynchronous Counter using JK flip-Flop.	[7M]
6.	(a) Compare the asynchronous and synchronous counters.	[7M]
	(b) Draw the logic circuit of clocked SR flip-flop using NAND gates and explain its operation	.[7M]

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a) Discuss the various specifications of digital to analog Converter.	[7M]
	(b) Explain the operation of successive approximation ADC with necessary diagrams.	[7M]

[7M]

Question Paper Code: AECB03

8. (a) Explain the working of Sample and Hold circuit? [7M](b) With the help of circuit diagram and functional table, explain the working of Parallel Comparator A/D converter. [7M]

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Demonstrate the organization of ROM and illustrate the features of a ROM cell? [7M]
 - (b) Implement the combinational circuit with a PLA having 3 inputs, 4 product terms and 2 outputs for the functions. F

$$1 = \sum m(3,5,6,7); F2 = \sum m(0,2,4,7)$$
[7M]

- 10. (a) Explain PLA with the help of block diagram. Mention the advantages of programmable logic devices.
 - (b) What is PROM? Implement full adder using PROM. [7M]

[7M]