Hall	Ticket	No
man	TICKEU	110

Question Paper Code: AECB06

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Four Year B.Tech III Semester End Examinations (Regular) - November, 2019 Regulation: IARE – R18

ELECTRONIC DEVICES AND CIRCUITS

Time: 3 Hours

current is 10mA.

(ECE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1. (a) Draw the V-I characteristics of a semiconductor diode and discuss the effect of temperature on Cut-in voltage and reverse saturation current. Define static and dynamic resistances

[7M]

- (b) Design a full wave rectifier with C filter to provide 10V DC at 100 mA with a maximum ripple of 2%, input frequency is 50Hz. [7M]
- 2. (a) Illustrate the working of bridge full wave rectifier with circuit diagram and waveforms and obtain expression for ripple factor . [7M]
 - (b) Draw a diode clipping circuit to convert 1 KHz sine-wave of 20V peak to peak, to a symmetric square-wave of 4 volt peak to peak amplitude.

[7M]

$\mathbf{UNIT}-\mathbf{II}$

- 3. (a) Draw and explain the input and output characteristics of Common emitter configuration and mention various parameters there in. [7M]
 (b) A transistor has β = 150. Calculate the approximate collector and base currents if the emitter
- 4. (a) Define operating point. Explain the DC and AC load line analysis of a BJT.

[7M]

[7M]

(b) Determine the parameters h_{fe} , h_{oe} , h_{ie} and h_{re} from the characteristic curves of CE transistor.

[7M]

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) Explain the method of thermistor and sensistor compensation technique in transistor bias compensation. [7M]
 - (b) Calculate the quiescent current and voltage of collector to base bias arrangement using the following data: $V_{CC} = 10$ V, $R_B = 100$ K Ω , $R_C = 2$ K Ω , $\beta = 50$ and also specify a value of R_B so that $V_{CE} = 7$ V. [7M]

- 6. (a) Explain the small signal equivalent of CB amplifier using accurate h-parameter model. Obtain the expression for A_V , A_I , R_I and R_0 [7M]
 - (b) The emitter follower has the following circuit parameters: $R_S = 500\Omega$, $R_1 = R_2 = 50K\Omega$, $R_L = 2K\Omega$, $h_{fe} = 100$ and $h_{ie} = 1.1K\Omega$. Determine the input resistance, output resistance, current gain and voltage gain. [7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Draw and explain the drain and transfer characteristics of enhancement n channel MOSFET with neat sketch. [7M]
 - (b) A common source MOSFET amplifier is to be constructed using a n-channel MOSFET which has a conduction parameter of 50mA/V and a threshold voltage of 2.0 volts. If the supply voltage is +15 volts and the load resistor is 470 Ohms, calculate the values of the resistors required to bias the MOSFET amplifier at $1/3(V_{DD})$. Draw the circuit diagram and Values given: $V_{DD} = +15v$, $V_{TH} = +2.0v$, k = 50mA/V and $R_D = 470\Omega$. [7M]
- 8. (a) Define JFET parameters and establish the relations between them. Explain the operation of JFET with a neat diagram and also draw drain and transfer characteristics. [7M]
 - (b) The following information is included on the data sheets for an N-channel JFET. $I_{DSS} = 25$ mA, $V_P = -10$ V and $g_{m0} = 4000 \mu$ s. Determine the values of transconductance at $V_{GS} = -5$ V.

[7M]

[7M]

$\mathbf{UNIT} - \mathbf{V}$

9. (a) Explain the small signal equivalent circuit of common drain amplifier with necessary diagrams.

[7M] $5KO_{ra} = 10MO_{ra} = 50 \text{ and } ra = 25KO_{ra}$

- (b) The CS amplifier has the following components: $R_D = 5K\Omega$, $R_G = 10M\Omega$, $\mu = 50$ and $r_d = 35K\Omega$. Evaluate A_v , Z_i and Z_0 . [7M]
- 10. (a) Explain the V-I Characteristics of Zener diode and analyze its breakdown mechanisms. [7M]
 - (b) A 5.0V stabilized power supply is required to be produced from a 12V DC power supply input source. The maximum power rating PZ of the zener diode is 2W. Using the zener regulator circuit above calculate:
 - i) The maximum current flowing through the zener diode.
 - ii) The minimum value of the series resistor, R_S .
 - iii) The load current I_L if a load resistor of $1k\Omega$ is connected across the zener diode.
 - iv) The zener current I_Z at full load.

Page 2 of 2