INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	DIGITAL SYSTEM DESIGN					
Course Code	AECB07	AECB07				
Programme	B.Tech					
Semester	III	ECE				
Course Type	Core					
Regulation	R18					
		Theory		Prac	tical	
Course Structure	Lectures	Theory Tutorials	Credits	Prace Practicals	tical Credits	
Course Structure	Lectures 3	Theory Tutorials	Credits 4	Prac Practicals -	tical Credits -	
Course Structure Chief Coordinator	Lectures 3 Dr. V Vijay	Theory Tutorials 1 y, Associate Pro	Credits 4 ofessor	Practicals -	tical Credits -	

I. COURSE OVERVIEW:

2 0 0 0

The course will make them learn the basic theory of switching circuits and their applications in detail. Starting from a problem statement they will learn to design circuits of logic gates that have a specified relationship between signals at the input and output terminals. They will be able to design combinational and sequential circuits. They will learn to design counters, adders, sequence detectors. This course provides a platform for advanced courses like Computer architecture, Microprocessors & Microcontrollers and VLSI design. Greater Emphasis is placed on the use of programmable logic devices and State machines.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
-	-	-	-

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Digital System Design	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	~	Videos
×	Open Ended Experime	ents					

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Component		T-4-1 M-slav		
Type of Assessment	CIE Exam	Quiz	AAT	i otai Marks
CIA Marks	20	05	05	30

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	Lectures, Assignments
	mathematics, science, engineering fundamentals, and		and Exercises
	an engineering specialization to the solution of		
	complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	2	Seminars and
	research literature, and analyze complex engineering		Lab related exercises
	problems reaching substantiated conclusions using		
	first principles of mathematics, natural sciences, and		
	engineering sciences.		
PO 3	Design/development of solutions: Design solutions	1	Assignments
	for complex engineering problems and design system		
	components or processes that meet the specified		
	needs with appropriate consideration for the public		
	health and safety, and the cultural, societal, and		
	environmental considerations.		

PO 4	Conduct investigations of complex problems: Use	1	Five minute videos
	research-based knowledge and research methods		
	including design of experiments, analysis and		
	interpretation of data, and synthesis of the information		
	to provide valid conclusions.		

3 = High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: An ability to understand the	3	Lectures and
	basic concepts in Electronics & Communication		Assignments
	Engineering and to apply them to various areas, like		
	Electronics, Communications, Signal processing,		
	VLSI, Embedded systems etc., in the design and		
	implementation of complex systems.		
PSO 2	Problem-Solving Skills: An ability to solve complex	1	Seminars
	Electronics and communication Engineering		
	problems, using latest hardware and software tools,		
	along with analytical skills to arrive cost effective and		
	appropriate solutions.		
PSO 3	Successful Career and Entrepreneurship: An	2	Guest lectures
	understanding of social-awareness & environmental-		
	wisdom along with ethical responsibility to have a		
	successful career and to sustain passion and zeal for		
	real-world applications using optimal resources as an		
	Entrepreneur		

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES:

The c	The course should enable the students to:				
Ι	Understand common forms of number representation in logic circuits.				
II	Learn basic techniques for the design of digital circuits and fundamental concepts used in the				
	design of digital systems.				
III	Understand the concepts of combinational logic circuits and sequential circuits.				
IV	Understand the Realization of Logic Gates Using Diodes & Transistors.				

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Understand the logic	CLO 1	Understand number systems, binary addition and
	simplification and		subtraction, 2's complement Representation and
	combinational logic design.		operations with this representation and understand
			the different binary codes.
		CLO 2	Identify the importance of SOP and POS
			canonical forms in the minimization or other
			optimization of Boolean formulas in general and
			digital circuits.
		CLO 3	Evaluate functions using various types of
			minimizing algorithms like Karnaugh map or
			tabulation method.
CO 2	Explore the MSI devices like	CLO 4	Analyze the design procedures of Combinational
	Comparators, Multiplexers,		logic circuits like adder, binary adder, carry look
	Encoder, Decoder, Driver &		ahead adder
	Multiplexed Display, Half and	CLO 5	Understand Half and Full Adders, Subtractors,
	Full Adders, Subtractors,		Serial and Parallel Adders, BCD Adder.
	Serial and Parallel Adders,	CLO 6	Analyze Barrel shifter and ALU
	BCD Adder, Barrel shifter and		
	ALU.		
CO 3	Understand the building	CLO 7	Understand bi-stable elements like latches, flip-
	Supersonaus counters Shift		flop and illustrate the excitation tables of different
	registers Finite state		flip flops.
	machines Design of	CLO 8	Analyze and apply the design procedures of small
	synchronous FSM.		sequential circuits to build the gated latches.
	Algorithmic State Machines	CLO 9	Understand the concept of Shift Registers and
	charts.		implement the bidirectional and universal shift
			registers.
		CLO 10	Implement the synchronous counters using design
			procedure of sequential circuit and excitation
			tables of flip – flops.
		CLO 11	Implement the Asynchronous counters using
			design procedure of sequential circuit and
			excitation tables of flip – flops.
CO 4	Understand the Logic Families	CLO 12	Analyze TTL NAND gate, Specifications, Noise
	And Semiconductor Memories		margin, Propagation delay, fan-in, fan-out.
		CLO 13	Implement Tristate TTL, ECL, CMOS families and
			their interfacing, Memory elements,

COs	Course Outcome	CLOs	Course Learning Outcome
		CLO 14	Understand Concept of Programmable logic devices
			like FPGA. Logic implementation using
			Programmable Devices.
CO 5	Explore the VHDL Design	CLO 15	Design entry: Schematic, FSM & HDL, different
	entry and Modeling, Synthesis		modeling styles in VHDL,
	and Simulation VHDL	CLO 16	Understand Data types and objects, Dataflow,
	constructs and codes for		Behavioral and Structural Modeling,
	combinational and sequential	CLO 17	Analyze Synthesis and Simulation VHDL constructs
	circuits.		and codes for combinational and sequential circuits.

X. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AECB07.01	CLO 1	Understand number systems, binary	PO 1	2
		addition and subtraction, 2's complement	PO 2	
		Representation and operations with this		
		representation and understand the		
		different binary codes.		
AECB07.02	CLO 2	Identify the importance of SOP and POS	PO 1	2
		canonical forms in the minimization or	PO 2	
		other optimization of Boolean formulas		
		in general and digital circuits.		
AECB07.03	CLO 3	Evaluate functions using various types of	PO 2	2
		minimizing algorithms like Karnaugh		
		map or tabulation method.		
AECB07.04	CLO 4	Analyze the design procedures of	PO 2	2
		Combinational logic circuits like adder,		
		binary adder, carry look ahead adder		
AECB07.05	CLO 5	Understand Half and Full Adders,	PO 1	2
		Subtractors, Serial and Parallel Adders,	PO 2	
		BCD Adder.		
AECB07.06	CLO 6	Analyze Barrel shifter and ALU	PO 2	1
			PO 4	
AECB07.07	CLO 7	Understand bi-stable elements like	PO 4	1
		latches, flip-flop and illustrate the		
		excitation tables of different flip flops.		
AECB07.08	CLO 8	Analyze and apply the design procedures	PO 3	1

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
		of small sequential circuits to build the		
		gated latches.		
AECB07.09	CLO 9	Understand the concept of Shift Registers	PO 3	1
		and implement the bidirectional and		
		universal shift registers.		
AECB07.10	CLO 10	Implement the synchronous counters	PO 2	2
		using design procedure of sequential		
		circuit and excitation tables of flip –		
		flops.		
AECB07.11	CLO 11	Implement the Asynchronous counters	PO 3	1
		using design procedure of sequential		
		circuit and excitation tables of flip –		
		flops.		
AECB07.12	CLO 12	Analyze TTL NAND gate, Specifications,	PO 3	1
		Noise margin, Propagation delay, fan-in,		
		fan-out.		
AECB07.13	CLO 13	Implement Tristate TTL, ECL, CMOS	PO 3	1
		families and their interfacing, Memory		
		elements,		
AECB07.14	CLO 14	Understand Concept of Programmable logic	PO 2	2
		devices like FPGA. Logic implementation		
		using Programmable Devices.		
AECB07.15	CLO 15	Design entry: Schematic, FSM & HDL,	PO 3	1
		different modeling styles in VHDL,		
AECB07.16	CLO 16	Understand Data types and objects,	PO 2	2
		Dataflow, Behavioral and Structural		
		Modeling,		
AECB07.17	CLO 17	Analyze Synthesis and Simulation VHDL	PO 2	2
		constructs and codes for combinational and		
		sequential circuits.		

3 = High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course Outcomes	Program Outcomes (PO)										
(COs)	PO 1	PO 2	PO 3	PO 4	PSO 1	PSO 2	PSO 3				
CO 1	3	2	3		1						
CO 2	3		3				1				
CO 3	3	2				1					
CO 4		2	3				1				
CO 5	3	2		2	1						

3 = High; **2** = Medium; **1** = Low

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course	Program Outcomes (POs)											Prog	ram S	pecific	
Learning											Outo	omes (PSOs)		
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3	2												1	
CLO 2	3	2												1	
CLO 3		2												1	
CLO 4		2											3		
CLO 5	3	2												1	
CLO 6		2		1										1	
CLO 7				1										1	
CLO 8			1												
CLO 9			1												
CLO 10		2												1	
CLO 11			1											1	
CLO 12			1											1	
CLO 13			1										3		
CLO 14		2												1	
CLO 15			1												2

CLO 16	2							2
CLO 17	2						1	

3 = High; **2** = Medium; **1** = Low

XIII. ASSESSMENT METHODOLOGIES -DIRECT

CIE Exams	PO 1, PO 2	SEE Exams	PO 1, PO 2	Seminar and	PO 1, PO 2
	PO3, PO 4		PO 3, PO 4	Term Paper	PO 3
Viva	-	Mini Project	-	Laboratory	-
				Practices	

XIV. ASSESSMENT METHODOLOGIES -INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS:

Module - I	LOGIC SIMPLIFICATION AND COMBINATIONAL LOGIC DESIGN								
Review of Boolean Algebra and De Morgan's Theorem, SOP & POS forms, Canonical forms,									
Karnaugh maps up to 6 variables, Binary codes, Code Conversion.									
Module - II	Module - II MSI DEVICES								
MSI devices lik	e Comparators, Multiplexers, Encoder, Decoder, Driver & Multiplexed Display, Half								
and Full Adders	and Full Adders, Subtractors, Serial and Parallel Adders, BCD Adder, Barrel shifter and ALU								
Module - III	SEQUENTIAL LOGIC DESIGN								
Building blocks	like S-R, JK and Master-Slave JK FF, Edge triggered FF, Ripple and Synchronous								
counters, Shift 1	egisters.								
Finite state mac	hines, Design of synchronous FSM, Algorithmic State Machines charts. Designing								
synchronous cir	cuits like Pulse train generator, Pseudo Random Binary Sequence generator, Clock								
generation									
Module - IV	LOGIC FAMILIES AND SEMICONDUCTOR MEMORIES								
TTL NAND ga	te, Specifications, Noise margin, Propagation delay, fan-in, fan-out, Tristate TTL, ECL,								
CMOS families	and their interfacing, Memory elements, Concept of Programmable logic devices like								
FPGA. Logic in	nplementation using Programmable Devices.								
Module - V	VLSI DESIGN FLOW								
Design entry: S	chematic, FSM & HDL, different modeling styles in VHDL, Data types and objects,								
Dataflow, Behavioral and Structural Modeling, Synthesis and Simulation VHDL constructs and codes									
for combinational and sequential circuits.									

Text Books:

- 1. R.P. Jain, "Modern digital Electronics", Tata McGraw Hill, 4th Edition, 2009.
- 2. Douglas Perry, "VHDL", Tata McGraw Hill, 4th Edition, 2002.
- 3. W.H. Gothmann, "Digital Electronics- An introduction to theory and practice", PHI, 2nd Edition, 2006.

Reference Books:

- 1. D.V. Hall, "Digital Circuits and Systems", Tata McGraw Hill, 1989
- 2. Charles Roth, "Digital System Design using VHDL", Tata McGraw Hill 2nd Edition 2012.

Web References:

- 1. mcsbzu.blogspot.com
- 2. http://books.askvenkat.com
- 3. http://worldclassprogramme.com
- 4. http://www.daenotes.com
- 5. http://nptel.ac.in/courses/117106086/1

E-Text Books:

- 1. https://books.google.co.in/books/about/Switching_Theory_and_Logic_Design
- 2. https://www.smartzworld.com/notes/switching-theory-and-logic-design-stld
- 3. https://www.researchgate.net/.../295616521_Switching_Theory_and_Logic_Design
- 4. https://books.askvenkat.com/switching-theory-and-logic-design-textbook-by-anand-kumar/
- 5. http://www.springer.com/in/book/9780387285931

XVI. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Lecture	Topics to be covered	Reference
No		
1-3	Number systems, base conversion methods.	T1:1.1 to 1.5
		R1:3.1 to 3.5
4-6	Complements of numbers, codes- binary codes, BCD code and its	T1:2.1 to 2.6
	properties.	R2:2.8 to 3.5
7-9	Unit distance code, alphanumeric codes, and error detecting and	T1:4.1 to 4.9
	correcting codes.	R2:2.1 to 2.4
10-13	Basic theorems and its properties, switching functions, canonical and	T1:6.1 to 6.5
	standard form.	R2:7.1 to 7.7
14-16	Algebraic simplification of digital logic gates, properties of XOR gates.	T2:5.1 to 5.4
		R2:4.1 to 4.8
17-20	Universal gates, Multilevel NAND/NOR realizations.	T1:2.8
		R2:3.3 to 3.7
21-24	Combinational design, arithmetic circuits- adders, subtractors.	T3:3.7 to 3.8
		R2: 2.7 to 2.9

Lecture	Topics to be covered	Reference
No		
25-28	Serial adder, 1's complement subtractor, 2's complement subtractor.	T1:4.1 to 4.9
29-32	Combinational and sequential circuits, the binary cell, the fundamentals	T1:5.1 to 5.2
	of sequential machine operation.	R1:3.1 to 3.5
32-36	Flip-flop, D-Latch Flip-flop, "Clocked T" Flip-flop, "Clocked JK "flip-	T1:5.3 to 5.5
	flop.	R2:5.1 to 5.8
37-40	Design of a clocked flip-flop conversion from one type of flip-flop to	T1:4.9 to 4.2
	another.	R1:8.1 to 8.5
41-42	Registers and counters	T1:1.1 to 1.5
		R1:3.1 to 3.5
43-44	Analyze TTL NAND gate, Specifications, Noise margin, Propagation	T1:6.1 to 6.5
	delay, fan-in, fan-out.	R2:7.1 to 7.7
45-46	Implement Tristate TTL, ECL, CMOS families and their interfacing,	T2:5.1 to 5.4
	Memory elements,	R2:4.1 to 4.8
47-48	Understand Concept of Programmable logic devices like FPGA. Logic	T1:2.8
	implementation using Programmable Devices.	R2:3.3 to 3.7
49-50	Design entry: Schematic, FSM & HDL, different modeling styles in	T1:6.1 to 6.5
	VHDL,	R2:7.1 to 7.7
51-55	Understand Data types and objects, Dataflow, Behavioral and Structural	T2:5.1 to 5.4
	Modeling,	R1:4.1 to 4.8
56-60	Analyze Synthesis and Simulation VHDL constructs and codes for	T1:2.8
	combinational and sequential circuits.	R2:3.3 to 3.7

XVII. GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

S. No	Description	Proposed Actions	Relevance with POs
1	Gate level Minimization.	Seminars / NPTEL	PO 1, PO 2, PO 4
2	Design of combinational circuits using universal gates.	Seminars / Guest Lectures / NPTEL	PO 2, PO 3, PO 4
3	Verilog programming for combinational and sequential circuits.	Laboratory Practices	PO 1, PO 3, PO 4

Prepared By: Dr. V Vijay, Associate Professor

HOD, ECE