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Boolean Algebra

* Boolean algebra is the basic mathematics needed for the study of
the logic design of digital systems

* |ts application to switching circuits is of interest

* switching devices are essentially two-state devices (such as a
transistor with high or low output voltage)

* we study the special case of Boolean algebra in which all of the
variables assume only one of two values.

* This two-valued Boolean algebra is often referred to as switching
algebra.

* if X is a Boolean (switching) variable, then either X=0orX=1
® The values ‘0" & ‘1’ represent two states of a switching circuit

* In a logic gate circuit, ‘0’ (usually) represents a range of low
voltages, and ‘1’ represents a range of high voltages.



Boolean Algebra : Basic Operations

® |n a switch circuit, ‘0’ (usually) represents an open switch, and ‘1’
represents a closed switch.

® In general, ‘0" and ‘1’ can be used to represent the two states in
any binary-valued system.

Basic Operations:

* The basic operations of Boolean algebra are AND, OR, and
complement (or inverse).

®* The complement of ‘0’ is ‘1’, and the complement of ‘1’ is ‘0.
Symbolically, we write

*0=1and1'=0

* where the prime (') denotes complementation. If X is a switching
variable, X'=1ifX=0& X'=0ifX=1



Boolean Algebra : Basic Operations

Inverter:

® The electronic circuit which forms the inverse of X is referred to as
an inverter.

Symbol: Inverter
XLy (complement of x)

where the circle at the output indicates inversion. Inversion is also
called NOT operation . x: High implies x": Low

High & Low have to do with voltage levels

AND Operation: “/ (Boolean Multiplication)
Z=XY: When both inputs are ‘1’ (high) the output
Z XY Z is ‘1’ (high), else the output is ‘0’ (Low)




Boolean Algebra : Basic Operations

The OR Operation: ‘+’ (Boolean Addition)
Definedas C=A+B

O 0 O B

O 1 1 IfoneofthetwoinputsAorBis ‘1’ (High)

1 0 1 theoutputis ‘1’ (High).

1 1 1 Ifboththeinputsare ‘1’ (High)the outputis ‘1’

If both inputs are ‘0’ (Low) the output is ‘0’ (Low)
AND Operation: Two Switches in Cascade
XSy Y Sy» Z =XY
OR Operation: Two Switches in Parallel
A __C=A+8B




Boolean Expressions & Truth Tables

Boolean Expression:

One or more variables can be combined in a certain way to yield a
Boolean expression that serves the desired purpose.

Examples:
A.B"+C; (A+D).C+B.D.E

Generally 7 is not explicit in a term like ABC; it is understood to be
AND operation; ‘+’ implies OR operation and “ implies NOT
(Inversion/Complementation) operation

The Boolean expressions are synthesized using basic gates like
AND OR & NOT.

NAND Gate is obtained as NOT[AND] =% NOT(A.B}= (A.B)
NOR Gate is obtained as NOT[OR] = NOT(A+B) =) (A+B)



Boolean Expressions & Truth Tables

Boolean Expression Realization with Gates:
Examples: Y =AB’ + C in Figure as shown below

C

=)
B —1>— p’ } (OR)
(NOT) A~

(AND)
Y= [A(C+D)]'+BE in Figure asshown below

A —

C (C+ D)
A(C+ D) [A(C + D)]
D s [ LTI P
_/} + [A(C+ D))" + BE




Boolean Expressions & Truth Tables

Truth Table:

It specifies the values of a Boolean expression for every possible
combination of values of its variables.

Example:
Consider a Boolean expression: F=A"+B
Its Truth Table is shown below:

A B AT F=A" + B
O O 1 1
o 1 1 1
1T O o O
T 1 o 1




Boolean Expressions & Truth Tables

We will now tabulate Truth table for some functions. We do this
for n=3; that is we have 3 bits corresponding to 3 variables.

The number of combinations=N=23=8
The table is shown below:

ABC B' AB' AB"+C A+C B+C |(A+QB +0)
000 1 0 0 0 1 0
001 1 0 1 1 1 1
010 0 0 0 0 0 0
011 0 0 1 1 1 1
100 1 1 1 1 1 1
101 1 1 1 1 1 1
110 0 0 0 1 0 0
111 0 0 1 1 1 1

The table has functions like NOT OR



Boolean Algebra Basic Theorems

The following basic laws and theorems of Boolean algebra involve
only a single variable:

1. Operations with ‘0" and ‘1”:
X+0=X X.1=X
X+1=1 X.0=0

(OR Function) (AND Function)

2. ldempotent Laws:

X+X=X X. X=X
3. Involution Law:
(X)) =X
4. Laws of Complementarities:

X+X =1 X.X =0




Boolean Algebra Laws

Commutative Associate and Distributive Laws:
The commutative laws for AND & OR Gates:
XY =YX X+Y = Y+X
(AND Gate) (OR Gate)
The associative laws for AND & OR Gates:
(XY)Z = X(YZ) =XYZ (AND GATE)
(X+Y)+Z=X+(Y+Z)=X+Y+ Z (OR Gate)

Thus we conclude that while forming the AND (OR) of three
variables, the result is independent of which pair of variables we
consider first

Oy - AT = -

B— i
(_ —

A+B)+C=A+B+C
(AB) C=ABC



Boolean Algebra Laws

Distributive Laws:
X(Y+Z)=XY+XZ ... 1
X+YZ= (X+Y)(X+2) ... 2
Proof for (2):
(X+Y)(X+Z)=XX+XZ+YX+YZ
=X +XZ + XY + YZ (ANDing of X & X yields X)
= X.1 + XZ + XY +YZ (ANDing of X with 1 = X)
=X(1+Z+Y)+YZ (ORing 1 with (ZORY) =1)
=X.1+YZ (ANDing X with 1 = X)
=X+YZ

This second law is very useful in manipulating Boolean
expressions. It cannot be factored in ordinary algebra.



Boolean Algebra Simplification Theorems

1. XY + XY' =X
Proof:
XY+ XY =X(Y+Y)=X;asYORY =1
2.X+XY=X
Proof:
X+XY=X(1+Y)=X;as1’"ORY' =1
3. (X + Y)Y = XY
Proof:
(X+Y)Y=XY+YY=XY;asY ANDY=0
4. (X+Y)(X+Y')=X
Proof:
(X+Y)(X+Y)=XX+XY' +YX+YY'=X+X(Y +Y




Boolean Algebra Simplification Theorems

5. X(X+Y)=X
Proof:
X(X+Y)=XX+XY=X+XY=X(1+Y)=X
6. XY +Y=X+Y
Proof:
XY +Y=(Y+X)Y+Y') =YY +YY + XY + XY
=Y+0+X(Y+Y)=Y+X
Usefulness of Simplification:
Consider a function F = A(A’ + B)
Realization without Simplification:  With Simplification

(Reduction in number of Gates)
A

}f— F=AB




Boolean Expression Simplification Examples

1. Simplify
Z=[A+B'C+D+EF][A+B'C+(D+EF)’]
First step: Look for similarity of expressions in two factors.
We observe that we can let
Y=A+B'C X=D+EF
Z=[Y+X][Y+X]=YY+YX + XY+ XX
=Y+YX +XY+0
= Y+Y(X+X)=Y+Y =Y

Therefore Z=A + BC’




Boolean Expression Simplification Examples

2. Simplify:
Z=(AB+C)(B'D+C’E’)+ (AB + C)’
Welet Y=(AB+C) & X=B’D+ C’E’ to get the familiar form
Z=Y' X+Y =X+Y (bytheorem)
Therefore,
Z=B'D+C'E'+(AB+C)
is the simplified version.
Application of Second Distributive Law for simplifying Product terms:
The law is : (X+Y)(X+Z) =X + YZ
Example:
Multiply out (A + BC)(A+D+E) ; LetBC=Y & D+E=7; A=X
to get (X + Y)(X + Z) = X +YZ = A + BC(D+E) |



Boolean Expression Simplification Examples

Factorization using Second Distributive Law:
1. Factorize A + B’'CD (Sum of Products)
Let X=A;B' =Y&CD=1Z
A+ B CD=X+YZ=(X+Y)(X+2)

= (A + B’)(A + CD)

2. Factorize AB’ + C'D using 2" distributive law

Let AB'=X&C'=Y,D=Z7
AB’ + C'D = X + YZ = (X+Y)(X+2)

= (AB’+ Y)(AB’ + Z)
=(Y+A)(Y+B’)(A+2Z)(Z+B)
=(C" + A)(C’+B’)(A + D)(D+B’)

Factorized function is a Product of Sums functio




Boolean Expression Simplification Examples

3. Factorize:

C'D+C'E'+ G’ H (Sum of Products)
=C'(D+E)+GH ;LetG'H=X;C =Y & (D+E")=Z
=YZ+X
=(X+Y) (X+2)
=(G’H + C’)(G’H + (D+E’))
=(C'+ G’)(C’ + H) [(D+E’) + G’][(D+E’) + H]
=(C'"+G')(C"+H)(D+E +G’)(D+E +H)

is the factorize form (Product of Sums expression) .




Boolean Expression Simplification Examples

4. Factorize
C'D +C'E'+ G'H (Sum of products expression)
= C’(D+E) +G’H
Let X=G'H Y=C" Z=D+E
We get the expression in X + YZ form which can be factorized as

(X+Y)(X+2)
Therefore,
C’(D+E) +G’'H =(G'H+ C’) (G’'H+ D + E)
Now, (GH+C')=(C"+G’)(C’'+H) , &

(GH+D+E)=(D+E+G’)(D+E+H)
Therefore, we get Product of Sums expression |
C’(D+E)+ G'H=(C’'+ G’)(C’ + H) (D + E +G’)(D+E+H)



Realization of Functions with Gates

Sum of Products Expression:

It is realizable directly by one or more AND gates feeding a single
OR gate at the circuit output.

Product of Sums Expression:

It is realizable directly by one or more OR gates feeding a single
AND gate at the circuit output.

Let F=AB'+ CD'E+ AC'E’ |LetF=(A+B)(C+D'+E)(A+C +E')

A — A
-
B — B’

- . b -
E F E
II-“' : D




De Morgan’s Laws

De Morgan’s laws are applied to determine complement (inverse)

of a Boolean function.
The Law’s state that (for a 2 variable function)

(X+Y) =X"Y" (complement of sum = product of complements)
(XY) =X +Y’ (complement of product =sum of complements)

Extending to ‘N’ number of variables we have,

(X1+X2+X3 ...+Xn)' = X1'X2IX3I..

. Xn'

(X1 Xa Xz ... Xn) =X +X' +X3' ...+ Xn’

Verification using Truth table

XY XY X+Y X+Y)Y XY XY (XyY) X +Y
00 11 0 1 1 0 1 1
01 10 1 0 0 0 1 1
10 01 1 0 0 0 1 1
11 00 1 0 0 1 0 0




De Morgan’s Laws: Applications

Example 1:
Find the complement of F= (A’ + B)C
F'=[(A"+B)C’]’ ( this is complement of products)
Now according to the Law:
complement of products = sum of complements, &
complement of sums = product of complements
Therefore, F= (AN+B)+(CY
= (A) (B) +(C)
F= AB +C
Example 2: Find the complement of (AB'+ C)D' +E
F'=[(AB'+ C)D’ + E]’ .
F=[(AB"+ C)D']’ E' = [(AB’' + C)' + D]JE* (Contd...)



De Morgan’s Laws: Applications

F=[(AB'+ C)' + D]E’
= [(AB’)'C’ + D]E’
F=[(A"+ B)C' + D]E’
Example 3: Determine complement of F=A'B + AB’
F'=(A'B+ AB’)’
= (A'B)'(AB’)’
= (A + B’)(A"+B)
=AA'+ AB +B'A'+ BB’ = A'B’ + AB
Verification using Truth table:

A B A'B AB’ F=AB + AB’ A'B’ AB FF=AB"+ AB
00 0 0 0 1 0 1
01 1 0 1 0 0 0
10 0 1 1 0 0 0
11 0 0 0 0 1 1




Dual of a Boolean Expression

Given a Boolean expression,

® the dual is formed by replacing

* AND with OR,OR with AND

* ‘0’ with ‘1’, and ‘1" with ‘0’

® Variables and complements are left unchanged

® dual of AND is OR and the dual of OR is AND

o (XYZ...)" =X+Y+Z ... ; superscript ‘d’ implies dual
o (X+Y+2Z..)" = XYZ...

The dual of an expression may be found by complementing the
entire expression and then complementing each individual
variable.

Dual of AB’ +C = (AB' + C)' = (AB)'C’ = (A’ + B)C',
Therefore, (AB'+C)° = (A + B’




Laws and theorems of Boolean algebra in dual pairs

Laws and theorems of Boolean algebra listed in dual pairs

Operations with 0 and 1:
1. X+0=X
2. X+1=1

Idempotent laws:
3. X+X=X

Involution law:
4. (XY =X

Laws of complementarity:
5. X+X' =1

Commutative laws:
6. X+ Y=Y+ X

Associative laws:
7. X+Y)+Z=X+ (Y + Z)
= X+Y+Z

1D.
2D.

3D.

5D.

6D.

7D.

X
0

I:II—
I

X -
X -

e
S
[
el

(XY)Z = X(YZ) = XYZ



Laws and theorems of Boolean algebra in dual pairs

(Continued .....)

Distributive laws:

8. X(Y+ Z)=XY + XZ SD. X+ YZ=(X+Y)NX+ Z)
Simplification theorems:

9. XY + XY’ =X 9D. X+ VX +Y)=X

10. X + XY =X 10D. X(X +Y) =X

1. (X + Y)Y =XY I1ID. XYY+ Y=X+Y

DeMorgan’s laws:

2. X+Y+Z+..)Y=XYZ... 12D. (XYZ...)) =X +Y +Z + ...
Duality:

13. (X+Y+Z+..)P=XxyZ... 13D. (XYZ.. )P=X+Y+Z+ ...

Theorem for multiplying out and factoring:
4. X+ Y)NX +Z2)=XZ+X'Y 4D. XY+ XZ=(X+Z)(X"+7Y)

Consensus theorem:
15. XY+ YZ+XZ=XY+XZ I5SD. (X + Y)Y+ Z)X +Z)
=(X+Y)(X" +Z2)




Useful Distributive Law Theorem

We know two distributive laws as
XY+Z)=XY+XZ ; (X+Y)(X+Z)= X+YZ
There is another distributive law (theorem) quite useful for

simplifying expressions. It can be applied when there are two

terms, one which contains a variable and another which contains
its complement.

(X+Y)(X' +2) =XZ+XY ... (1)
We observe that the variable that is paired with X on one side of
the equation is paired with X’ on the other side, and vice versa.
Example: Factorize AB + A’C

Since in this expression one term has ‘A’ & other has A" we can
use (1) to factorize it. We get

AB + A'C=(A+C)(A'+B)



Useful Distributive Law Theorem

Example 1:

(Q+AB)(CD+Q')= QC'D+Q'AB’
In the LHS, we have Q & in the RHS we have Q'. Therefore Q will
combine with C'D & Q" will combine with AB".

Using the theorem It is easier to simplify the expression on the LHS
than to expand it in Sum of Products form for further
simplification. It is not easy to simplify a term like AB'C'D.

Example 2:
F=AC+A'BD + A'BE + A'C'DE
=AC+ A’(BD" + BE + C'DE) ; Apply theorem to get
=(A+BD" +BE+ CDE)(C+A") =[(A+C'DE) + B(D'+E)](C+ A');
Let X=A+C'DE; Y=B; Z=D"+E & apply distributive law to get
F= (A+B+C'DE)(A+C DE+D +E)(C+A")
(continued ...)



Useful Distributive Law Theorem

F= (A+B+C'DE)(A+C DE+D'+E)(C+A")
Let us simplify it term wise:
(A+B+C'DE) = (A+B+C’)(A+B+DE) = (A+B+C’) (A+B+D)(A+B+E) ... 1
(A+C'DE+D’+E) = (A+E+D'+C’)(A+E+D +DE)=(A+E+D"+C’)(A+D +E)..2
Let A+D'+E =X
(A+E+D'+C')(A+D'+E) = (X + C')(X) = XX+ C' . X =X(1+C") =X
=A+D'+E ....... 3
Therefore from 1 & 3, we have
F=(A+B+C’) (A+B+D)(A+B+E)(A+D +E)(C+A")




Minterm (Maxterm)/Standard Product(Sum)

® A binary variable may appear either in its normal form (X) or in its
complement form (X)

® Consider two binary variables X and Y combined with an AND
operation

® Since each variable may appear in either form, there are four
possible combinations:

o XY, X Y, XY ,and XY .. (1)
® Each of the termsin (1) is called a minterm or standard product.
® n variables can be combined to form 2? minterms

In a similar fashion,

® nvariables forming an OR term, with each variable being primed
or un-primed

® provide 2" possible combinations, called maxterms, or standard
sums

* The binary numbers from 0 to 2” - 1 are listed under the n(=3) variables.



Minterm (Maxterm)/Standard Product(Sum)

® Each minterm is obtained from an AND term of the n variables

® each variable being primed if the corresponding bit of the binary
number is a ‘0’ and un-primed if a ‘1’

® each maxterm is obtained from an OR term of the n variables,
® each variable being un-primed if the corresponding bit is a ‘0’ and
primed ifa ‘1’
® each maxterm is the complement of its corresponding minterm
and vice versa
SEE TABLE 1 in the next slide
Determination of Boolean function from a Truth Table:

A Boolean function can be expressed algebraically from a given
truth table by forming a minterm for each combination of the
variables that produces a ‘1’ in the function and then taklng the
OR of all those terms (See Table 2)



Minterm (Maxterm)/Standard Product(Sum)

The eight minterms/maxterms for three variables, together with
their symbolic designations, are listed in the Table 1 below

Minterms and Maxterms for Three Binary Variables

Minterms Maxterms
X y Z Term  Designation Term Designation
0 0 0 x'y'z’ ny x+y+z M,
0 0 I x'y'z my x+y+7 M,
0 I 0 x'yz! Ny x+y' +z M,
0 1 I x'yz n; x+y' +7 M;
l 0 0 xy'z! ny X'+ty+tz M,
I 0 I xXy'z n;s xX'ty+7 M;
l l 0 xyz' Mg X'ty +g Mg
l l I Xyz g X'ty + 7 M,




Minterm (Maxterm)/Standard Product(Sum)

Let us consider the table as shown. Table 2

Functions of Three Variables

X y z Function £ Function £,
0 0 0 0 0
0 0 1 1 0
0 1 0 0 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

—
F1=1for{001100 111} ; F;=1for{011 101 110111}

Therefore, Fi=X'YZ + XY'Z'+ XYZ & F,=X'YZ+ XY'Z+ XYZ'+ XYZ
F1 & F; are expressed in Sum of Products Form (each product ter
Thus any Boolean function can be expressed as

Fi=m;+mg+m;
Fz = M3 +Ms +Mg
+ My




Minterm (Maxterm)/Standard Product(Sum)

Now consider the complement of a Boolean function.

Complement may be read from the truth table by forming a
minterm for each combination that produces a ‘0’ in the function
and then ORing those terms.

Functions of Three Variables

X

14

Z

Function f,

Function f,

_ = = =D D o D

e e = T s T U e S e TR

—_— 0 = O = O = O

0

= o O = O O =

0

—_ == O =D O

Fi'=XYZ+X'YZ'+X'YZ
+ XY'Z + XYZ'
F,' =X YZ'+X'YZ+X'YZ
+XY'Z’
Take complement of F; &
F, (Continued...)




Minterm (Maxterm)/Standard Product(Sum)

Fi' =X'Y'Z'+X'YZ'+ X'YZ+XY'Z+XYZ'

Fo' =XYZ+ X YZ+XYZ'+ XY'Z

Take complement of F1 & F,

Fi=(X+Y+Z)( X+Y +Z)( X+Y'+Z')( X'+Y+Z')( X'+Y +Z) =MM,;M3MsMs
Fu = (X+Y4Z)( X+Y+Z")(X+Y +Z)( X +Y+Z) = MM M2M4

Thus Any Boolean function can be expressed as a product of
maxterms (with “product” meaning the ANDing of terms)

Boolean functions expressed as a sum of minterms or product of
maxterms are said to be in canonical form .




Minterm (Maxterm)/Standard Product(Sum)

Sum of Minterms:

® |t is sometimes convenient to express a Boolean function in its
sum-of-minterms form

® |f the function is not in this form, it can be made so by first
expanding the expression into a sum of AND terms.

® Each term is then inspected to see if it contains all the variables.

* |f it misses one or more variables, it is ANDed with an expression
such as x + x, where x is one of the missing variables.

Example:

Express the Boolean function F=A + B'C as a sum of minterms

® The function has three variables: A, B, and C.

® The first term A is missing two variables; therefore,
(Continued ..)



Minterm (Maxterm)/Standard Product(Sum)

A=AB + B') = AB + AB'

This function 1s still missing one variable, so
A=AB(C+ (C")+ AB'(C + (")

= ABC + ABC" + AB'C + AB'('

The second term B'C is missing one variable; hence.
B'C=B'C(A+A")=AB'C + A'B'C
Combining all terms, we have
F=A+B'C
= ABC + ABC' + AB'C + AB'C' + A'B'C

But AB'C appears twice, and according to theorem 1 (x + x = x), it is possible to

remove one of those occurrences. Rearranging the minterms in ascending order, we
finally obtain

F=A'B'C+ AB'C + AB'C + ABC'" + ABC
:m]+m4+m5‘|‘m6‘|‘m7




Minterm/Maxterm Form & Conversion

Notation for Sum of Minterm Form:

it is sometimes convenient to express the function in the
following brief notation: F(A,B,C) = 3(1,4,5,6,7)

®* The summation symbol Z stands for the ORing of terms;

* the numbers following it are the indices of the minterms of the
function.

* The letters in parentheses following F form a list of the variables
in the order taken when the minterm is converted to an AND
term

For example,
F=A'B'C + AB'C + AB'C + ABC' + ABC

= Ny + 1y -+ s + Hlg + Hl7q



Minterm/Maxterm Form & Conversion

We studied the procedure for determining the minterms of such a
Boolean function in which all the terms do not contain all the

literals. We will now explore an alternative method for doing the
same.

Let us consider the same function ; F=A+B'C
Alternative Procedure:

® Obtain the truth table of the function directly from the algebraic
expression and

® then read the minterms from the truth table.

We will first form the Truth table for the given function
(continued ...)



Minterm/Maxterm Form & Conversion

Truth Table for F = A + B'C

A B C F
0 0 0 0
0 0 1 1
0 | 0 0
0 | 1 0
| 0 0 1
| 0 1 1
| | 0 1
| | 1 1

From the truth table, we can then read the five minterms of the
functiontobe 1, 4, 5, 6, and 7.




Minterm/Maxterm Form & Conversion

Product of Maxterms:

To express a Boolean function as a product of maxtermes,
® it must first be brought into a form of OR terms.

® This may be done by using the distributive law,

® Xx+yz=(x+y)(x+z). Then any missing variable x in each OR term
is ORed with xx’

Example:
Express the Boolean function F=xy + x'z as a product of maxterms.

First, convert the function into OR terms by using the distributive
law: Law usedisa+bc=(a+b)(a+c)

1ststep:a=xyb=x"c=2z;, 2"step:a=x'&zb=xc=y (contd..)
F=xy +x'z=(xy+ x")(xy + 2)
= @+ x)y +xHx + ) + 2)
= (x" + y)(x + )y + 2)



Minterm/Maxterm Form & Conversion

The function, F, has three variables: x, y, and z. Each OR term is
missing one variable;

F= (X +y)x+2)y +2)
Therefore we add

zz tofirst factor;yy’ to second factor; x x" to third factor &
use thelaw a+b c=(a+ b)(a +c)

(X +y+zz)=(x"+y+z)(xX +y+ z');a=x"+y,b=2z,c¢c=2
(X +z +yy)=(x+z +y)(x +z +Vy')
(y+z+xx) =(y+z+x)(y+z+x)

Combining all the terms and removing those which appear more
than once, we finally obtain

F=(x"+y+z)(x +y+ Z)(x +z +y)(x +z +Vy')

Next we find input combinations for which F=0 (contd...)



Minterm/Maxterm Form & Conversion

F=(x"+y+z)(x +y+ Z2)(x +z +y)(x +z +Vy')
For F to attain a ‘0’ value,
firstterm:x=1y=0z=0; input sequence:100 (4)
secondterm:x=1y=0z=1; input sequence: 101 (5)
third term:x=0y=0z=0; input sequence: 000 (0)
fourthterm:x=0y=1z=0; input sequence: 010 (2)
Therefore Maxterms are: M, M, My Ms
F=Mo My Mg Ms=(x +z +y)(x +z +y)(x +y+z)(x +y+ z')
A convenient way to express this function is as follows:
F(x,y.z) =110, 2, 4,5)

The product symbol, TT, denotes the ANDing of maxterms; the
numbers are the indices of the maxterms of the function:"



Conversion between Canonical Forms

Conversion between Canonical forms:

The original function is expressed by those minterms which make
the function equal to 1, whereas its complement is a 1 for those
minterms for which the function is a O.

Therefore,

The complement of a function expressed as the sum of
minterms equals the sum of minterms missing from the original

function. F(A,B,C) = 3(1.4,5.6.7)
As an example, consider the function

This function has a complement that can be expressed as
F'(A,B,C) = 3(0,2,3) = my + m + mx

Now, if we take the complement of F* by De Morgan’s theorem,
we obtain F in a different form:



Conversion between Canonical Forms

We obtain function F as:
F=(my+ my, + ms) = mh-mh-ms = MyM,M; = T1(0, 2, 3)
where m, m; ms are the product terms (minterms) & therefore
Mo, M, Ms (maxterms) are sum terms.
Therefore we can say that

r_

That is, the maxterm with subscript ‘j ‘is a complement of the
minterm with the same subscript ‘j ‘and vice versa.

General conversion procedure:
To convert from one canonical form to another, interchange the
symbols and list those numbers missing from the original form.

In order to find the missing terms, one must realize that the
number of minterms or maxterms is 2n, where n is
binary variables in the function.




Conversion between Canonical Forms

Conversion of a Boolean algebraic expression to a product of
maxterms:

This is done by means of a truth table and the canonical
conversion procedure.

Example:

Consider the Boolean expression F=xy +x'z
Procedure:
® Derive the truth table of the function

® The 1's under F in the table are determined from the combination
of the variables for which xy =11 or x z = 01.

* The minterms of the function are read from the truth table
® Express function as sum of minterms



Conversion between Canonical Forms

1. Truth table for the given function:

Truth Table for F = xy + x'z

b y z F
0 0 0 0 Minterms
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1 Maxterms
1 1 1 1

2. Minterms ( F=1) are read from the tabletobe 1, 3,6, & 7
3. Express F as a sum of minterms, as
4. F(x,y.z) = 2(1,3.6,7)




Conversion between Canonical Forms

determine the missing terms in the expression for F

the missing termsare0, 2,4 &5

express the function as product of maxterms

the function is

Fx,y,z) = 11(0,2,4,5)




Realization of Standard Forms

We have seen that the canonical forms of Boolean algebra are
obtained from the truth table.

These forms generally do not contain the least number of literals,
because each minterm or maxterm contains, by definition, all the
variables, either complemented or un-complemented.

Standard Form:

In this configuration the terms that form the function may
contain one, two, or any number of literals.

There are two types of standard forms:
® the sum of products Fi=vy +xy+ x'yz’
® products of sums. F=x(y'+2)x"+y+ 2"



Realization of Standard Forms

Two Level Implementation:
In this implementation,

It is assumed that the input variables are directly available in
their complements, so inverters are not included in the diagram.

=D DD

HJ 9
.
v

(a) Sum of Products (b) Product of Sums




Realization of Standard Forms

A Boolean function may be expressed in a nonstandard form.

For example, the function Fs = AB + C(D + E) is neither in
sum-of-products nor in product-of-sums form.

It can be changed to a standard form by using the distributive law
to remove the parentheses:

F3=AB+C(D+E)=AB+CD+CE
Implementation: Two & Three Level

)
B—___J

Spa

(a)AB + C(D + E) (b)AB + CD + CE

T

m D
M OO0 W




Realization of Standard Forms

In general, a two-level implementation is preferred because it
produces the least amount of delay through the gates when the
signal propagates from the inputs to the output. However, the
number of inputs to a given gate might not be practical.




Positive & Negative Logic

* The binary signal at the inputs and outputs of any gate has one of two
values, except during transition.

® One signal value represents logic ‘1’ and the other logic ‘O’

Since two signal values are assigned to two logic values, there exist two
different assignments of signal level to logic value as shown.

The higher signal level is designated by H and
the lower signal level by L.
Choosing the high-level H to represent logic 1

Loge Sl Logt Sl
valte value value valte

defines a positive logic system. Lo b
Choosing the low-level L to represent logic 1
defines a negative logic system. — L

The terms positive and negative are somewhat
misleading, since both signals may be positive
or both may be negative.

It is not the actual values of the signals that determine the type. oflogic,
but rather the assighment of logic values to the relative.amplitudes of
the two signal levels.

() Psivelogi b) Negative oge



Positive & Negative Logic

Hardware digital gates are defined in terms of signal values such
as H and L. It is up to the user to decide on a positive or negative

logic polarity.

oy

Example: )
L H
Suppose we are given a digital gate with i L

| Sl S S

1

associated truth table as shown.
If we associate ‘O’ with ‘L' & ‘1’ with ‘H’

It becomes an AND Gate (positive logic) é] r

0
1 0 0

If we associate ‘1’ with ‘L’ & ‘O’ with ‘H’ (;T Lt
positive logic

(a) Truth table
with Hand L

It becomes OR Gate (negative logic).
Thus, the same physical gate can

x ¥

operate either as a positive-logic AND

0
o1
oo )

[ ] g R =

(e) Truth table for
negative logic

gate or as a negative-logic OR gate.

Digital
gate

(b) Gate block diagram

"

=

(d) Positive logic AND gate

¥

x
Z
¥

(f) Negative logic OR gate



Positive & Negative Logic

* The conversion from positive logic to negative logic and vice versa
is essentially an operation that changes 1’s to 0’s and 0’s to 1’s in
both the inputs and the output of a gate.

® Since this operation produces the dual of a function, the change of
all terminals from one polarity to the other results in taking the
dual of the function.

® The upshot is that all AND operations are converted to OR
operations (or graphic symbols) and vice versa.

* |n addition, one must not forget to include the polarity-indicator
triangle in the graphic symbols when negative logic is assumed.



UNIT -1l
MSI DEVICES



Introduction

Gate-level minimization:

It is the design task of finding an optimal gate-level
implementation of the Boolean functions describing a digital
circuit.

Logic gates (of different types) combine in a certain way to
synthesize a Boolean function.

The complexity of the digital circuit is directly related to the
complexity of the algebraic expression that defines a given
function.

The truth table representation of a function is unique, but the
function itself is representable in many different, but equivalent,
forms.

For minimizing the number of gates employed to synthesize a
function, the function representation is simplified to the extent
possible.



Simplification Methods for Boolean Functions

We will discuss two methods which are used for simplification of
Boolean functions. Before synthesizing a given function with
gates, it is simplified to minimize requirement of number of gates.

The two methods are:
Karnaugh Map Method , &
Quine- Mc Clusky Method
Karnaugh Method (K Method):
* A K-map is a diagram made up of squares,

* with each square representing one minterm of the function that
is to be minimized

® any Boolean function can be expressed as a sum of minterms
* K-map is filled with the minterms



Simplification Methods for Boolean Functions

The simplified expressions produced by the map are always in
one of the two standard forms:

sum of products or product of sums.

simplest algebraic expression is defined as the one with a
minimum number of terms, and

with the smallest possible number of literals in each term.
simplest expression produces a circuit diagram

with a minimum number of gates and

the minimum number of inputs to each gate.

the simplest expression is not unique

It is sometimes possible to find two or more expressions that
satisfy the minimization criteria.

In that case, either solution is satisfactory



Simplification Methods for Boolean Functions

Two-Variable K-Map:

1. only two variables x & y form Boolean function: n =2
2. number of states: 00 01 10 11 =27 =22
3. number of squares in K-map = number of states =4
4. minterms: me=00=x"y m=01=x"y my=10=xy’
m3=11=xy
The Map:
v oy Whichever minterms are present
X 0 1

in a function their corresponding
Mo | m Op Xy | Xy squares are filled with ‘1’




Simplification Methods for Boolean Functions

K-map for AND & OR Function:
The truth tables for AND & OR functions are :
r We pick up such minterms for which F=1

Xy

0 0| 0 F=xy ; R

0 1] 0 N0 1

. o o AND Gate T

1 1] 1 0

X V F ] ] m, ms
F=X y+Xy +Xxy M |

0 0] 0

0 11 1 OR Gate ¥

1 0| 1 _ N0 T 1

1 1] 1 F=x+y T y (a) xy




Simplification Methods for Boolean Functions

Importance of Simplification:
For OR gate the Boolean function is given by
F=x"y+xy +xy
If we synthesize this function we would need
1.3 AND Gates
2. Either 3 input OR Gate — 1 number, or
2 input OR Gate ( with 2 inputs)

We try to simplify F for achieving reduction in number of gates.
First we will try to simplify F directly as illustrated:
F=x"y+xy +xy =x(y+y)+xy=x+xy=(x+x)(x+y)

F=x+y

Synthesizing this function will need 1 OR gate only. Number of gates

have been reduced.



Simplification Methods for Boolean Functions

Now let us see how using K-map yields reduction in usage of gates
for synthesizing function F.

The K-map Is reproduced here:

m; (1 0) can be combined with ms (1 1) oo, T
XYy +Xy=X o™ "lllf,,,ff"
ms (1 1) can be combined with m; (0 1) -
Xy+xy=y Y{l 1 I
Therefore, x

(b)x + y

F=x+y=xORy
Thus we need only one OR gate to synthesize F
We see that K-maps help us in achieving maximum simplification

X:DF

Y



Gate Reduction: Karnaugh Map Method

Three Variable K-Map:

1. 3variables:xyz(n=3)

2. number of minterms =23=8

3. minterms: 000 001 010011 100

4. minterms (in literals) : x'y'z'(mo) x'y'z (mq) X'y z' (m3) x'y z (ms3)
Xy'z'(ma)

The 3 variable K-map: y

VI ) A

00 01 11 10
2 rows correspond to 2 states of x:(0 1) U = =
Ofx'y'z' [ x'y'z | x'vz | x'yvZ’

It has 2 rows & 4 columns . N\

4 columns correspond to 4 states that

fﬂd -*Hj fﬂ? H’l&
{ Vi
y z’ can assume (2% = 4) x4 x| oz | oxvz | oxz

S



Gate Reduction: Karnaugh Map Method

3 Variable K-Map: O 00 or 11 10

If we combine 2" row minterms we get
binary variable X’

O|x"y'z' | x'yv'z | x'yvz | x'yz

F.P’l4 F.P’lj Fﬂ? F}‘l&
If we combine minterms of 2nd & 3rd X { I xy'z’ | xv'z | xyz | xyz’
columns we get binary variable ‘7’ - .

If we combine minterms of 3™ & 4t columns we get binary
variable ‘y’

Usefulness of Maps in simplifying Boolean Functions:
The basic property possessed by adjacent squares:

* Any two adjacent squares in the map differ by only one variable,
which is primed in one square and un-primed in the other.

* it follows that the sum of two minterms in adjacent squares can be
simplified to a single product term consisting of only two literals.

e.g. Ms+Ma=XYyzZ+Xyz =XV



Gate Reduction: Karnaugh Map Method

Thus, any two minterms in adjacent squares (vertically or
horizontally, but not diagonally, adjacent) that are ORed together
will cause a removal of the dissimilar variable.

Examplel:

Simplify the Boolean Function F(r.y.z) = S(2. 3. 4. 5)
Procedure:

Mark each minterm square that represents the function with ‘1’

This is shown in the K-map in which ;

the squares for minterms Now oo o /‘ y
010, 011, 100, and 101 are marked , my— m m, -1 m, 1/
with 1’s.

The next step is to find the possible /|, |7, |7 [|"
adjacent squares. Adjacent squares //

are shown by shaded areas. Wy Z



Gate Reduction: Karnaugh Map Method

Adding ms to ms yields x y’
Adding ms to m, vyields x'y

The sum of four minterms can be replaced by a sum of only two
product terms.

The logical sum of these two product terms gives the simplified
expression F=xy +x'y

In certain cases, two squares in the map are considered to be
adjacent even though they do not touch each other.

In the figure my, My & My, mg are

adjacent because their minterms 2 | )
differ by only one variable & can ’ m[,m} m,UIl mg“ mzm
combined for simplification MR Rl R e

fn-__‘ fn-j fn-? fn-&
purpose x4 1| xy'z" | o'zl | xvz | xvz’




Gate Reduction: Karnaugh Map Method

For the Boolean function
F=A'C+A'B+AB'C+BC

(a) Express this function as a sum of minterms.
(b) Find the minimal sum-of-products expression.
Solution:

Sum of Minterms:

It is a canonical form in which the product terms have all the
literals corresponding to the number of binary variables.

F is in standard form. Conversion to canonical form is as follows.
A'C=A'BC+ABC ;B+B =1

A'B=A'BC+ABC" ; C+C =1

BC=ABC+ABC ; A+A'=1 (contd ...)



Gate Reduction: Karnaugh Map Method

We write F as
F=A'BC+A'BC+ABC+A'BC'+ABC+A'BC+AB'C
We see A'BC repeated in F. Reducible to one term as shown
A'BC+A'BC+A'BC=A'BC (OR operation)
Therefore,
F=A'BC+A'B'C+A'BC'+ ABC+ AB'C is the sum of minterms
F=011 + 001 + 010 +111 +101
F=ms + m + m; + my + ms

The function, F, can be expressed in sum-of-minterms form as

F(A.B,C) = 3(1,2,3,5.7)

(continued ...)



Gate Reduction: Karnaugh Map Method

Minimal Sum of Products Expression:

We make use of K-map to obtain minimal sum of products form.
Corresponding to minterms of F fill up squares with ‘1’ as shown:

We can combine:
m1 with ms to get B'C
ms with m5 to get BC
ms with m, to get A'B
Therefore,
F=B'C+BC+A'B=C+A'B

BC

A

0

ot

00

01

‘/

my




Gate Reduction: Karnaugh Map Method

Simplify the given function: F(x.y,z) = (1.2,3,4,5.7)
Solution:

The minterms are : m; m; Mz Mz Ms My

: y
Fill the K-map as shown: Yz L
X 00 01 11 10
Combine: my—my mgIm
_ . , 0| 0 1 1 1 —— Xy
ma with ms vyields xy
. . , i ms - m
m, with msyields x'y x41] 1 1 1 F=
™~
m; with ms & mz with m; yields z <
' Z
Xy Z

The reduced function is:
F=xy+x'y+z




Gate Reduction: Karnaugh Map Method

4 Variable K-Map:

wd

g ny iy iz
Frlg His g Frlg
2 a3 s LS S
g g Frqq o

vz
00 01 11 10

my my 1y my

'DD w:xr.vxzr 1'1“_,|l';r1'-:‘}|l'Z W’IF.VZ WFX’-}-’Z’

Ol | w'xy'z" | wxy'z | wixvz | wixyz’
my; LS k] s Py

11| wxy'z" | wxy'z WXyZ wxyz'
g iy My Mg

10 wx'y'z" | wx'yv'z | wx'yvz | wx'yz’

Z




Gate Reduction: Karnaugh Map Method

The combination of adjacent squares that is useful during the
simplification process is easily determined from inspection of the
four-variable map:

One square represents one minterm, giving a term with four
literals.

Two adjacent squares represent a term with three literals.
Four adjacent squares represent a term with two literals.
Eight adjacent squares represent a term with one literal.

No other combination of squares can simplify the function.




Gate Reduction: Karnaugh Map Method

Example:
Simplify the function: Fw,x.y,z) = 2(0,1.2,4,5.6,8,9,12. 13, 14)

. . V
1. Combine 15t column with vz , .
: : "IN 00 00 11 10
2"d column to yield y i
Wwyz \.\ my m, M ity
2. Combine m, with m; to 00 1 1 13\_\\
yield w'x'z’ T "
3. Combine ms with mg to 0 1 l 1
Y|9|d W’X z' r My, My m;s myy -t
Combine 2 & 3to get w'z’ 'z’ A= T w7
. . W S ’
4. Combine mq; with my4 to 0 s 1 Mo 1 My [ Mo
yieldw x z’ -
Combine 4&3 to get x z’ V,/ o
The Slmpllfled F = y’+ W,Z ,+ X Z‘ " Note: H:'}J’z' + H:'}r:’ =w'7'

xy'z' +xyz' = xz’



Gate Reduction: Karnaugh Map Method

Simplify the Boolean function F = A'B'C’' + B'CD’ + A’'BCD' + AB'C’

Fis in standard form A'B'C’
Convert in to oD \ o
i AB 00 01 11 10
canonical form . A'B'CD S —
\{)E}Tl N R
Therefore,
15t term: 0000+0001 o1l 5 ? K A'CD’
|e Mo & M4 My, My, ms my, B
11
2" term: 0010+1010 "
i.e. M- & M6 101 1 B I
th // [~ ™ AB'CD’
4" term:1000 + 1001 AB'C' Dy ~ p \AB:C!
i.e. mg & mg Note: A'B'C'D' + A'B'CD' = A'B'D’
g AB'C'D' + AB'CD' = AB'D'
3"%term: 0110: mg A'B'D' + AB'D’' = B'D’

A'B'C"+ AB'C' = B'(”




Gate Reduction: Karnaugh Map Method

Step 1: combine m, with m; toyield A'B'C’
Step 2 : combine mg with mg to yield AB'C’
Step 3: combine 2 & 3toyield B'C’

Step 4: combine m, with m, toyield A'B'D’
Step 5: combine mg with my, toyield AB'D’
Step 6: combine 4 & 5 to yield B'D’

Step 7 : combine me with m; toyield A'CD’
Therefore the simplified F is given by

F=A'CD'+B'C'+B'D’



Gate Reduction: Karnaugh Map Method

Prime Implicants:

® In choosing adjacent squares in a map, we must ensure that

® all the minterms of the function are covered when we combine
the squares,

* the number of terms in the expression is minimized, and

* there are no redundant terms (i.e., minterms already covered by
other terms)

A prime implicant is a product term obtained by combining the
maximum possible number of adjacent squares in the map.

If a minterm in a square is covered by only one prime implicant,
that prime implicant is said to be essential.

The prime implicants of a function can be obtained from the. map
by combining all possible maximum numbers of squares.



Gate Reduction: Karnaugh Map Method

* The essential prime implicants are found by looking at each
square marked with a ‘1" and checking the number of prime
implicants that cover it.

® The prime implicant is essential if it is the only prime implicant
that covers the minterm.

Example:
Consider the following four-variable Boolean function:
F(A,B,.C,D) = 2(0,2,3,5.7,8,9,10, 11, 13, 15)

For the purpose of explaining the determination of essential
prime implicants and the other prime implicants, we make 2
partial K-maps for the given F.

The maps are shown in the next slide.

(continued)



Gate Reduction: Karnaugh Map Method

F(A,B.C,D) = 2(0,2,3,5.7,8,9, 10, 11, 13, 15)

C

D ’ ’ ) <
AN 00 01 11 10 AP 0 o1 1 10
my my s B // 4 my m ms my
00]~1 1 00| 1 1 1 \
A'B'C'D’ ; T P e D — | | n, g A
BD 01 | 1 1 AD \01 \kﬁ_l
[ m n m m B [ B )B'C
12 13 15 14 L My mMys myy
11 1 1 11 ~ 1 1
A < A < |7
Mg ny myy My Mg 1y my iy /
10 1 1 10 1 1 1 1
P N /
e 4 /
AB'C'D’ D D
AB’
LHS Map:

It does not include minterms ms, mg & My
1. We observe that ms, my, mq3 and mys can be combined to get

ms , My, My3 and mis cannot be combined with an
hence BD is essential prime implicant.




Gate Reduction: Karnaugh Map Method

2. Mo, M2, mgand my, can be combined to get B'D’

Mo, M2, Mg and my, cannot be combined with any other square &
hence B'D’ is an essential prime implicant

RHS Map:

We will now investigate in how many ways ms, mg & my; can be
combined with other squares.

We can combine my3, mis, mg & mq; to give AD
We can combine ms, mz, mi, & my; to give B'C
We can combine ms, mz, mys & my; to give CD

B W

We can combine mg, mg, mio & my; to give AB’

Now BD & B'D’ are essential prime implicants & from the 4 listed

above we have the choice (ensuring that ms, mg & my; are
included)



Gate Reduction: Karnaugh Map Method

Therefore, we have the following combinations:
F=BD+B'D'"+AD+B'C
F=BD+B'D'+AD+CD
F=BD+B'D'+AB'+CD
F=BD+B'D'+AB'+B'C
Thus we see there may not be a unique minimum function and

therefore we are afforded a choice of F for implementation with
gates.




Gate Reduction: Karnaugh Map Method

Product of Sums Simplification:

Thus far we obtained minimized Boolean functions in sum-of-
products form.

We will see how to obtain product-of-sums form for the
minimized function.

Procedure:

The 1’s placed in the squares of the map represent the minterms
of the function.

The minterms not included in the standard sum-of-products
form of a function denote the complement of the function.

Therefore, the complement of a function is represented in the
map by the squares not marked by 1’s.

(continued..)



Gate Reduction: Karnaugh Map Method

To obtain complement of the function, F, we mark empty squares
in the K-map by 0’s.

Complement of the function, F’, obtained is in sum of products
form.

To obtain the product of sums form, we take complement of F’ to
get back F.

Example:
Simplify the following Boolean function into

(a) sum-of-products form, and
(b) product-of-sums form

F(A.B.C.D) = 3(0,1,2.5.8.9. 10)



Gate Reduction: Karnaugh Map Method

The K-map filled with 1’s & O’s is shown:

1. The 1’s marked in the map o ¢
. ABN_ 00 01 1 10
represent all the minterms — T CD
| ]
. 00 1 1 01T 1 '
of the function. | /B
BC'D’ \ m, ms m; g
2. The squares marked with oit~o0 | 1 | o | o
O’s represent the minterms T TN T v
_ _ 1| o 0 0] 0
not included in F and N _
therefore denote the of 1|0 o [ [T

complement of F. 5

3. Combining the squares with 1’s gives the simplified function in
sum-of-products form: F=pg'D’ + B'C' + A'C'D

4. If the squares marked with O’s are combined, we get simplified
complemented functionas: F' = AB + CD + BD'



Gate Reduction: Karnaugh Map Method

In 3 we have F=B'D" + B'C'+ A'C'D

Realization:
Mo M2 Mg My, are adjacent to each other & hence can be
combined to yield: A'B'D"+ AB'D'=B'D’
m1 mMs can be combined to yield: A'C'D
Mo M1 Mg Mg are adjacent to each other & hence can be
combined to yield: A'AB'C'+ AB'C'=B'C’
Thus all the minterms have been considered.

In 4 we have F' = AB + CD + BD'

Realization:

Mms My My Mys are adjacent to each other & hence can be
combined to yield: ACD+ACD=CD

(continued...s)



Gate Reduction: Karnaugh Map Method

M2 M3 Mz Mys are adjacent to each other & hence can be
combined to yield: ABC" + ABC=AB

M4 M2 Mg Mg are adjacent to each other & hence can be
combined to yield: BC'D" + BCD" = BD’

Thus all the minterms have been considered.

Now, we have F o AB - CD 4 BD'
To get the product of sum form we take complement of F’

(F))=F=(A+B’)(C'+D")(B'+ D)

—) > L ]l> D4

L]

(a) F=B'D' + B'C' + A'C'D (b)y F= (A’ + B") (C" + D) (B' + D)



Gate Reduction: Karnaugh Map Method

We have considered the procedure for obtaining the product of
sums simplification when the function is originally expressed in
the sum-of-minterms canonical form.

The procedure is also valid when the function is originally
expressed in the product of maxterms canonical form.

Suppose the function is expressed as:
F(x,y,z) = II(0,2,5.7)
This is product of sums form F(x,y.z) = 2(1,3,4,6)
The corresponding sum of products form is
which is obtained by using missing minterms in the given product
of sums form.
So we will have corresponding 1's & 0’s in the K-map.



Gate Reduction: Karnaugh Map Method

The corresponding K-map is drawn as
For the sum of products, we combine

the 1'sto obtain: F = x'z + xz’

VI
X

0

For the product of sums, we combine x{ 1

the O’s to obtain: F' =
We take complement of F’ to get the

xz +x'z’

desired product of sum form as
(F) = F=&"+ z2)(x + 2)

00

01

m

0

my

1

Which when expanded yields the original sum of products form.



Don’t Care Conditions in Function Reduction

In practice, in some applications the function is not specified for
certain combinations of the variables.

For example in BCD code where each decimal digit (O to 9) is
represented by 4 binary bits; out of 2* = 16 combinations 6
combinations ( for decimal numbers between 10 to 15) are not
used & hence considered to be unspecified.

Functions that have unspecified outputs for some input
combinations are called incompletely specified functions.

In most applications, we simply don’t care what value is assumed
by the function for the unspecified minterms.

The unspecified minterms of a function are don’t-care conditions.

These don’t-care conditions can be used on a map to provide
further simplification of the Boolean expression.



Don’t Care Conditions in Function Reduction

* A don’t-care minterm is a combination of variables whose logical value is
not specified.

® Such a minterm cannot be marked with a ‘1’ in the map, because it
would require that the function always be a 1 for such a combination.

* Likewise, putting a ‘0’ on the square requires the function to be 0.
* To distinguish the don’t-care condition from 1’s and 0’s, an ‘X’ is used

® Thus, an X’ inside a square in the map indicates that we don’t care
whether the value of ‘0O’ or ‘1’ is assigned to F for the particular minterm.

* In choosing adjacent squares to simplify the function in a map, the don’t-
care minterms may be assumed to be either O or 1.

* When simplifying the function, we can choose to include each don’t-care
minterm with either the 1’s or the 0’s, depending on which combination
gives the simplest expression.



Don’t Care Conditions in Function Reduction

Example:
Simplify the Boolean function  F(w.x.y.2) = %(1,3,7, 11, 15)
which has the don’t-care conditions d (w.x.y.z) = 2(0.2.5)

The K-maps are shown for different ways of combining minterms

with don’t care conditions (realizing two different minimum
functions for the given Boolean function).

y

yz " )
e 00 01 11 10 e 00 01 11 10
my ni, ", ", i, [N N N
o] X 1 1 x (8]0] x B 1 1 xX
wix’ — W'z —f—
H’I‘i H’IS H‘I-J, H‘tﬂ ﬂ14 ms m-? .ﬂfé
01 0 X 1 0 01 0 > 1 0
X X
Gl b3 Mgz s i iz s mys ey
11 1] 0 1 0 11 0 0 1 0
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Don’t Care Conditions in Function Reduction

Note:

The first expression includes minterms 0 and 2 with the 1’s and
leaves minterm 5 with the O’s.

The second expression includes minterm 5 with the 1’s and
leaves minterms 0 and 2 with the O’s.

The two expressions represent two functions that are not
algebraically equal.

Both cover the specified minterms of the function, but each
covers different don’t-care minterms.

Simplified product-of-sums expression:

Combine squares with 0’s in the map with don’t care conditions
(0 & 2 can be combined). The reduced function obtained is

Fr=2z"+wy (F') =z(w "+y) ; F=z(w "+y)



Quine-Mc Cluskey method

* In order to find all of the prime implicants, all possible pairs of
minterms should be compared and combined whenever possible.

* To reduce the required number of comparisons, the binary
minterms are sorted into groups according to the number of 1’s in

each term.
Given the function: fla.b.c.d) =2m(0,1,2,5,6,7.8.9, 10, 14)

First we make a table wherein we arrange the minterms row wise .
Starting with row 1 minterms are placed in successive rows
according to the number of 1’s in each term.

15t row : minterm with no 1’s

29 row: minterms with 1 number of 1’s

34 row: minterms with 2 number of 1’s

4™ row : minterms with 3 number of 1’s , & so on ...



Quine-Mc Cluskey method

For the given function we have the following table:

After formulation of the table, we compare group 0
The minterm in each group with the minterms group 1 1
In its adjacent group , because two terms can be

combined only if they differ in 1 bit. group 2 -
Therefore there is no need to compare group 0O

with group 2 or 3. group 3 |

Group 0 is compared only with group 1;
group 1 is compared only with group 2 & so on.
Thus,

0 0000

I 0001
2 0010
8§ 1000
5 0101
6 0110
9 1001
10 1010
7 0111
14 1110

0000 in group 0 combines with 0001 (1), 0010 (2), & 1000 (8) in

group 1: to yield 000-, 00-0, -000, respectively. ‘1" + ‘0’ = ‘-

because x+x'=1;a’'b'c’'d +a'b'c’d=a’b’'c’'- =000-

’



Quine-Mc Cluskey method

Following the procedure of comparing 2 adjacent groups we get
the table for determining prime implicants. The table is shown
below: We ensure that all the minterms are covered in process.

Column Il lists the combinations Column| Column Column

as obtained by comparing terms ~ gow0 0 00/ 0,1 000-/ 0,183 -00-

10000/ 0,2 000/ 02810 00
of the adjacent groups in group | 2 0010/ 0,8 000/ 6896
column I. 8 1000/ 15 M o200
50101/ 1,9 001/ 2,610,14 --10
Column Il lists the combinations oup 6 0110 / 26 0-10/ 26—
as obtained by comparing terms 910010/ 210 -010/
, , 0 1010/ 89 100-
of the adjacent groups in 70N/ 810 100/
column 11 IR 0y 57 o
Duplicate combinations are 66'11 OEW

not considered & hence crossed. 1014 1-10 /



Quine-Mc Cluskey method

While comparing, we tick mark the minterms that have been
combined (as shown in the table).

We have the following observations:

1. thatin column Il the terms (1,5) (5,7) (6,7) could not be
combined while forming column lll, and

2. incolumn lll no further combining of terms in its 2 groups is
possible

The conclusions are:
1. The un-combined terms are prime implicants, and

2. Because further combining is not possible, the minimization
process is completed.

Therefore the minimized function consists of the following terms:
(115)1 (517)1 (617)1 (011)819)1 (01218110) & (216110114)



Quine-Mc Cluskey method

Therefore, we write reduced Boolean function as:
f=(1,5) + (57) +(6,7) +(0,1,8,9) +(0,2,8,10) +(2,6,10,14)
f=0-01 + 01-1 + 0112- + -00- + -0-0 + --10

The function f was defined as f(a, b, ¢, d); therefore we follow the
same order, i.e., a b c d to assign literals to the reduced function,
f. *“"implies that the literal is eliminated.

Therefore,
f=a'c'd +abd + a'bc + b'c" + b'd" + cd'
In this expression, each term has a minimum number of literals,
but the number of terms is not minimum.

So, we make a chart called The Prime Implicant Chart.
Making this chart is 2"9 step in the minimization method



Quine-Mc Cluskey method

The Prime Implicant Chart:

A prime implicant chart is made to select a minimum set of prime
implicants.

The minterms of the function are listed across the top of the chart
and

the prime implicants are listed down the side.
A prime implicant = sum of minterms & covers all of them

If a prime implicant covers a given minterm, an ‘X’ is placed at the
intersection of the corresponding row and column.

In the Chart all of the prime implicants (terms which have not been
ticked off in the table) are listed on the left.

This is shown in the next slide
(continued ....)



Quine-Mc Cluskey method

The chart is shown below:

We put a ‘X’ under the minterm
contained in a prime implicant.

We have six rows corresponding to

six prime implicants.

Minterms corresponding to each prime
Implicant are marked X’.

prime
implicants minterms
012567891014
(0,1,89 b¢ X X X ®
(0,2,810) bd X X X X
(2,6,10,14) X X X ®
(1,5 a'dd X X
5,7 abd X X
(6,7) a'bc X X

If a minterm is covered by only one prime implicant, then that
prime implicant is called an essential prime implicant and must be
included in the minimum sum of products.

Minterms 9 & 14 are covered by only one prime implicant.
b'c’ for ‘9’ & cd’ for ‘14’ Therefore b'c’ & cd’are essential.



Quine-Mc Cluskey method

Procedure for picking prime implicants for minimum sum from the

chart:

1. Pick up a prime implicant for inclusion in the minimum sum

2. Cross out its corresponding row (of minterms)

3. Cross out the columns corresponding to minterms of selected

prime implicant

4. While picking up a prime implicant ensure that it combines

maximum number of minterms.
Starting with b'c’:

012567891014

0,1,8,9)
Cross out the row (as shown) 028 10)
Minterm ‘0" & ‘8" also appear in row 2 (2'6*12'11‘51;
Cross out columns corresponding to 5,7)

(6,7
minterms ‘0’ & ‘8’, as shown.

b'c
b'd
o
a'c'd
a'bd
a'bc




Quine-Mc Cluskey method

Now we have the chart as:

01125

BT8I101

Now we need to pick up a prime implicant 0189
between b'd’ & cd’. | &21515:
We see that picking up cd’ covers more ' H
number of minterms than b'd"would do. 67

Therefore pick up cd’
Cross out row corresponding to it, and
columns corresponding to minterms 2 & 10
Betweena'c'd & a’bd

we choose a’'bd

b
b'd
0]
3cd
a'bd
a'be

vl
—

i

y )

Fr

it covers more number of minterms. Cross out the row & columns.

We see that all the minterms are covered. Therefore the function is

f=a'bd+cd'+b'c’



Quine-Mc Cluskey Method

Cyclic Prime Implicant Chart:

A prime implicant chart which has two or more X’s in every
column is called a cyclic prime implicant chart.

Example:
Consider the function: F=2m(0,1,2,5,6,7)
Derivation of Prime Implicants:

D 000 v 0,1 00-
1 001 v 0,2 0-0
2 010 v .S 01
5 101 v 2,6 -10
110 v 5.7 1-1
111 v 6.7 11-

Now we will draw the Prime Implicant Chart.
(continued ......)



Quine-Mc Cluskey Method

Minterms

0125867

Prime Implicant Chart: Prime
Implicants
All columns have two X’s, so we will 5 SO0 b
proceed by trial and error. E? g Eifé’
Both (0, 1) and (0, 2) cover column @ — (2,6) bc
. ® — (5,7) ac
0, so we will try (0, 1) (6,7) ab

After crossing out row (0, 1) and columns 0 and 1,

TILI;I

we examine column 2, which is covered by (0, 2) and (2, 6).

The best choice is (2, 6) because it covers two of the remaining
columns while (0, 2) covers only one of the remaining columns.

After crossing out row (2, 6) and columns 2 and 6, we see that

(5, 7) covers the remaining columns and completes the solutions

Therefore, one solution is: F=ab' + bc' + ac.



Quine-Mc Cluskey Method

However, we are not guaranteed that this solution is minimum.

Therefore, we must go back & solve the problem over again
starting with the other prime implicant that covers column O.

Prime Implicant Chart:

0

12567

Instead of (0,1) we now try (0,2) B ©

Cross out corresponding row & ﬁz E?
3 '

columns, as shown. Py 2,
Ps (5,

Next we pick up (1,5) & cross out s (6,

corresponding row & columns, as shown.

. 1)

2)
5)
6)
7)
7)

a'b’

L

a'c
b'c
bc’
ac
ab

p

P

i,

We pick up (6,7) which covers all the remaining minterms.

Therefore the reduced functionis: F=a'c’ + b'c + ab.

Since both ways we get same number of terms & literals, we take

it as the reduced function.



Quine- Mc Cluskey Method (Don’t Care Conditions)

% \J
% ron "

Simplification of incompletely specified functions:

Given an incompletely specified function, the proper assignment
of values to the don’t-care terms is necessary in order to obtain a
minimum form for the function.

In the process of finding the prime implicants, we will treat the
don’t-care terms as if they were required minterms.

When forming the prime implicant chart, the don’t-cares are not
listed at the top. This way, when the prime implicant chart is
solved, all of the required minterms will be covered by one of the
selected prime implicants.

However, the don’t-care terms are not included in the final
solution unless they have been used in the process of forming one
of the selected prime implicants.



Quine- Mc Cluskey Method (Don’t Care Conditions)

Example:

The Table:

% IARE ¢
“ ~
q -

Q

7 \J
% ron v®

F(A,B.C.D) =3m(2,3,7,9,11,13) + 3 d(1, 10, 15)
The second summation term corresponds to don’t care conditions.

0001 v
0010 v

oot e

10

0011 v
1001 v
1010 v

11
13

0111 v
1011 v
1101 v

15

111 v

(1.3)
(1,9)
(2.3)
(2.10)

00-1 v
—001 v
001-v
—010 v

(3.7)
(3,11)
(9,11)
(9.13)

(10,11)

0-11 v
011 v
10-1 v
1-01 v/
101-v

(7,15)
(11,15)
(13,15)

—111 v/
I-11 v

(1.3,9.11) —0-1
(2,3,10,11) —01-
(3.7.11,15) --11
(9,11,13,15) 1--1




Quine- Mc Cluskey Method (Don’t Care Conditions)

Prime Implicant Chart: Prime

Implicants Minterms

237 91113
Start with (2,3,10,11): It covers (1,3,9 11)
minterms 2,3 & 11 (2 '3’ 0,11) | %
*3,7,11,15) X

Next (9,11,13,15): It covers %9 11,13, 15) 3
minterms 9 & 13 *indicates an essential prime implicant.

Minterm 7 is left out therefore we have to pick up (3,7,11,15).
The reduced functionis F=B'C+ CD + AD

L x*
% IARE ¢
" o



Realization with NAND & NOR Gates

Digital circuits are frequently constructed with NAND or NOR gates
rather than with AND and OR gates.

NAND and NOR gates are easier to fabricate with electronic
components and are the basic gates used in all IC digital logic
families.

Because of the prominence of NAND and NOR gates in the design
of digital circuits, rules and procedures have been developed for
the conversion from Boolean functions given in terms of AND, OR,
and NOT into equivalent NAND and NOR logic diagrams.

NAND Circuits:

The NAND gate is called universal gate because any logic circuit
can be implemented with it.



Realization with NAND & NOR Gates

Logic operations with NAND gates :
Implementation of NOT AND &

Inverter x

OR gates is shown using NAND

o
gate. [ ) wo ] )
P>
Ds

Xy

X

NOT / INVERTER /COMPLEMENT
function is synthesized using

>
} (x'y) =x+y

OR

y

single input NAND gate.
Conversion to NAND logic:

The conversion of an algebraic expression from AND, OR, and
complement to NAND can be done by simple circuit manipulation
techniques that change AND—OR diagrams to NAND diagrames.



Realization with NAND & NOR Gates

Two graphic symbols for a three-input NAND gate:

X —— X
y —— (xyz)' y x'+y 4+ =(xyz)
7 — Z

(a) AND-invert (b) Invert-OR

Two Level Implementation:

The implementation of Boolean functions with NAND gates
requires that the functions be in sum-of-products form.

Example 1: Implement the function: F = AB + CD
We make use of AND-invert & Invert-OR gates to synthesize given F.

e D=
—

C — O

D—




Realization with NAND & NOR Gates

Example 2:
Implement the following Boolean function with NAND gates:
F(x.y,z) = (1,2,3,4.5.7)
The first step is to simplify the function into sum-of-products

form. This is done by means of the K-map from which the
simplified function is obtained: F=xy’ +x'y + z

Logic Diagram:

. _} ' _} N0 0110
my m hy ]
V' — ) — 0] 0| 1|1 | 14—

I — iy s iy g
f . f 4l 1 | | F=xy'+x'v+z
) — | y )




Realization with NAND & NOR Gates

Now we list the steps for obtaining the logic diagram from a
Boolean function.

* Simplify the function and express it in sum-of-products form.

®* Draw a NAND gate for each product term of the expression that
has at least two literals

® The inputs to each NAND gate are the literals of the term.
® This procedure produces a group of first-level gates.

® Draw a single gate using the AND-invert or the invert-OR graphic
symbol in the second level, with inputs coming from outputs of
first-level gates.

* Aterm with a single literal requires an inverter in the first level.
However, if the single literal is complemented, it can be connected
directly to an input of the second level NAND gate.



Realization with NAND & NOR Gates

Multilevel NAND circuits:

The standard form (sum of products) of expressing Boolean
functions results in a two-level implementation.

Procedure for design of multilevel circuits:

In the design of multilevel circuits a given Boolean function is
expressed in terms of AND, OR, and complement operations.
The function is then implemented with AND & OR gates.

[f necessary, it is then converted into an all-NAND circuit.
Example:
Consider the Boolean function: = A(CD + B) + BC

Although it is possible to remove the parentheses and reduce
the expression into a standard sum-of-products form, for
illustration purpose we choose to implement it.as@multilevel
circuit .



Realization with NAND & NOR Gates

Logic Diagram with AND-OR gates & with NAND gates

T ~~ T S - E s B
_ ;

.

(a) AND-OR gates

(b) NAND gates




Realization with NAND & NOR Gates

Procedure for converting a multilevel AND—OR diagram into an
all-NAND diagram using mixed notation:

® Convert all AND gates to NAND gates with AND-invert graphic
symbols.

® Convert all OR gates to NAND gates with invert-OR graphic
symbols.

® Check all the bubbles in the diagram. For every bubble that is not
compensated by another small circle along the same line, insert
an inverter (a one-input NAND gate) or complement the input
literal.



Realization with NAND & NOR Gates

Example:
Consider the multilevel Boolean function 7= (4B’ + A'B)(C + D’)
Logic Diagram: Conversion from AND-OR gates to NAND gates

TN BN

(a) AND—OR gates

S0 ® A W

(b)) NAND gates
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Design with NOR Gates

®* The NOR operation is the dual of the NAND operation. Therefore,

* all procedures and rules for NOR logic are the duals of the
corresponding procedures and rules developed for NAND logic

®* The NOR gate is another universal gate that can be used to
implement any Boolean function.

Implementation of the complement, OR, & AND operations with

NOR gates :
The complement
operation is
obtained from a

one input NOR
gate that behaves
exactly like an
inverter.

Inverter x {>0

OR

AND

= >

Dc x+y

>

] De—werw




Design with NOR Gates

Two graphic symbols for the NOR gate:

x X—0
y (x+y+2z) y—o0 x'y'z'=(x+y+2z)
4 z—0

(a) OR-invert (b) Invert-AND

® The OR-invert symbol defines the NOR operation as an OR
followed by a complement.

® The invert-AND symbol complements each input and then
performs an AND operation.

* The two symbols designhate the same NOR operation and are
logically identical because of De Morgan’s theorem.



Design with NOR Gates

Procedure for implementation with NOR gates:

* Atwo-level implementation with NOR gates requires that the
function be simplified into product-of-sums form.

* We know the simplified product-of-sums expression is obtained
from the map by combining the 0’s and complementing.

* A product-of-sums expression is implemented with a first level of
OR gates that produce the sum terms followed by a second-level
AND gate to produce the product.

Conversion from OR — AND gates to NOR gates implementation:

® It is achieved by changing the OR gates to NOR gates with
OR-invert graphic symbols, and

® the AND gate to a NOR gate with an invert-AND graphic symbol.

* Asingle literal term going into the second-level gate must be
complemented.



Design with NOR Gates

Example:

Given a function in product of sums form: F = (A + B)(C + D)E

NOR Gate based logic diagram: 4
s ) >
C —0
) > )
e

Example: F= (AB' + A’B)(C + D")

AF G

B —0C




Exclusive OR (XOR) with NAND Gates

Implement Exclusive OR with NAND gates:
The XOR function is x®y =xy +x'y

.
—

Xy

3

(a) Exclusive-OR with AND—-OR-NOT gates

)FI@}’

B

(b)| Exclusive-OR with NAND gates

7y




AND-OR-INVERT Implementation

* The two non-degenerate forms, NAND—-AND & AND-NOR, are
equivalent and can be treated together

* Both perform the AND—OR-INVERT function

® The AND—NOR form resembles the AND—OR form, but with an
inversion done by the bubble in the output of the NOR gate.

Example: Implement a function F= (4B + €D + E)’
miDs | ) Ba
ol o | ] )

(a) AND-NOR (b) AND-NOR (c) NAND-AND



OR—-AND-INVERT Implementation

® The OR-NAND and NOR-OR forms perform the OR—AND—-INVERT
function

® The OR—NAND form resembles the OR—AND form, except for the
inversion done by the bubble in the NAND gate.

®* The OR—AND-INVERT implementation requires an expression in
product-of-sums form.

* |f the complement of the function is simplified into product-of-
sums form, we can implement

* F with the OR—-AND part of the function.

®* When F passes through the INVERT part, we obtain the
complement of F', or F, in the output.

It implements the function like: F = [(A + B)(C + D)E]



OR—-AND-INVERT Implementation

Logic Diagram for F = [(A + B)(C + D)E]

DY
D= DD

(a) OR-NAND (b) OR-NAND




AND-OR-INVERT & OR—AND-INVERT Example

Example: Given the function  F=xy'z' +xyz’
Synthesize AND-OR-INVERT & OR-AND-INVERT implementations
Solution:

AND-OR-INVERT implementation yields AND-OR & NAND-AND

configurations. Synthesizes ‘complement of the sum of product
form’

OR-AND-INVERT implementation yields OR-NAND & NOR-OR
configurations. Synthesizes ‘complement of product of sum form’

AND-OR-INVERT Implementation:

Since it synthesizes ‘complement of the sum of product form’, in
the K-map for the given function we select squares filled with 0s &
obtain simplified function which is F* & is in sum of products form .
Its complement yields F.



AND-OR-INVERT & OR—-AND-INVERT Example

The K-map: F
¥ _
Simplifying the function for squares N0 011
. . i i My 1 F:errzr +X}-‘:’.,
fllled Wlth OS; We gEt F=xy+xy+z ww,xfg*” .] ! ! ! F’:XJ’}’+,¥,L"‘+2
Fl is in Sum Of product form. Y{l m,;[] mj[] m?[] ﬂfﬁl//xyzr

AND-OR-INVERT yields its complement
& hence we get F. The logic diagram is:

x’ X
o D B .
‘.!'_,: }_.:

AND-NOR
(b) F= (x'y + xy" + z)’

NAND-AND



AND-OR-INVERT & OR—AND-INVERT Example

OR-AND-INVERT implementation:

® The OR—AND-INVERT forms require a simplified expression of the
complement of the function in product-of-sums form.

* To obtain this expression, we first combine the 1’s in the map:
We get the function F = x"y'z" + xyz’
Then we take the complement of the function, to get:

The function F = (F')’ e emym eyt )

=D =D
SR

-

1

B
x'

OR-NAND NOR_OR
(c) F = [(T +y+ ) (x" + ‘-}_u‘ + z}]r

,t.f

L



Exclusive OR : An Odd Function

Odd Function:
The exclusive-OR operation with three or more variables can be

converted into an ordinary Boolean function by expanding it, as

shown:
A®B®C = (AB' + A'B)C' + (AB + A'B")C
We observe from the Boolean AR - ATBC - ABC - A'BIC
=3(1,2.4.7)

expression that :
the three -variable exclusive-OR function is equal to 1 if only one

variable is equal to 1 or if all three variables are equal to 1.

Contrary to the two-variable case, in which only one variable must
be equal to 1, in the case of three or more variables the
requirement is that an odd number of variables be equal to 1.

Therefore the multiple-variable exclusive-OR operation is deflned
as an odd function.



Exclusive OR : An Odd Function

® The Boolean function derived from the three-variable exclusive-
OR operation is expressed as the logical sum of four minterms
whose binary numerical values are 001, 010,100, and 111.

® Each of these binary numbers has an odd number of 1’s.

® The remaining four minterms not included in the function are 000,
011, 101, and 110, and they have an even number of 1’s in their
binary numerical values.

® |In general, an n -variable exclusive-OR function is an odd function
defined as the logical sum of the 2? /2 minterms whose binary
numerical values have an odd number of 1’s.

In K-map we fill only those squares with ‘1’ which have odd
number of 1’s in them. Remaining squares are filled with Os.

If we want to determine complement then we fill ‘1" in the
squares that have ‘0’ (i.e. terms not included in the logic function)



Exclusive OR : An Odd Function

The K-map for 3 input Exclusive —OR function:

BC , B 1 BC B
A 00 01 11 10 A 00 01 11 10
my, nt, 11, my i, ) s ",
0 1 1 0 1 1
iy s ", g ~ " ms iy g
A1 1 1 A51 1 1
C C
(a) Odd function F= AL BEH C (b) Even function F= (A& B & C)'

® The three-input odd function is implemented by means of two-
input exclusive-OR gates,

* The complement of an odd function is obtained by replacing the
output gate with an exclusive-NOR gate.

1D =D =

C C
(a) 3-input odd function (b) 3-input even function




Exclusive OR : An Odd Function

4 variable Exclusive — OR operation:
The K-maps are shown:

C C
cD . A . CD . A
ABN_ 00 01 1110 AB 00 01 11 10
m, m, m, m, iy ny 1y 1y
00 1 1 00 1 1
ny ms my myg .I my ms my my
01 1 1 01 1 1
My, myy s My B ‘ my; My, mys my, (B
11 1 1 11 1 1
A my my myy my A iy ity my my
10 1 1 10 1 1
D D

(a) Odd function F=ASBDCDD (b) Even function F = (A S BS CD D)’




Analysis of Clocked Sequential Circuits

Al \/ O \/ C U

When we say ‘we want to analyze a system/circuit’ we mean to determine what a
given system/circuit will do under certain operating conditions.

The behaviour of a clocked sequential circuit is determined from:
- the inputs fed to it,
- the outputs obtained from it, and
- the state of its flip-flops.

The outputs and the next state are both a function of the inputs and the present
state.

The analysis of a sequential circuit consists of obtaining a table or a diagram for the
time sequence of

o inputs,
- outputs, and
o internal states.

It is possible to write Boolean expressions that describe the behaviour of the
sequential circuit. These expressions must include the necessary time
sequence, either directly or indirectly. |



Analysis of Clocked Sequential Circuits

Clocked sequential circuit:

A logic diagram is recognized as a clocked sequential circuit if it includes flip-flops
with clock inputs.

The flip-flops may be of any type, and the logic diagram may or may not include
combinational logic gates.

We will study about

o how to specify the next-state condition in terms of the present state and inputs,
* State tables,
* State diagram to describe the behaviour of the sequential circuit.




State Equations

These are algebraic equations which describe behaviour of a clocked sequential
circuit.

A state equation (also called a transition equation ) specifies the next state as a
function of the present state and inputs.

Example:

Consider a sequential circuit shown in the diagram:
It consists of two D flip-flops A and B, an input x and r
an output y . Since the D input of a flip-flop ; ?
determines the value of the next state (i.e., the I ?@*” =4

state reached after the clock transition), it is possible .

At + 1) = A(t) x(t) + B(t) x(t) ... (1)
B(t+1)=A"(t) x(t) ...vvvrnnnnn.. (2) | | o
A(t) & B(t): are ‘present’ states (outputs) of flip flops;

A(t+1) & B(t+1): are ‘next’ states (outputs) of flip flop E} ?’_—TD },
State equations are algebraic equations (1) & (2) .

to write a set of state equations for the circuit, as:




State Equations

A state equation is an algebraic expression that specifies the condition for a flip-
flop state transition.

Consider Equations (1) & (2):
At + 1) = A(t) x(t) + B(t) x(t) ... (1)
B(t+1)=A"(t) x(t) ..ovvvvrnnnnnn. (2)

The left side of the equation, with (t + 1), denotes the next state of the flip-flop
one clock edge later.

The right side of the equation is a Boolean expression that specifies the present
state and input conditions that make the next state equal to ‘1".

In more compact representation of the State equations, in the RHS of the state
equation we omit ‘t” after each variable for convenience and express the state
equations in the form where ‘t’ is implicitly present.

Alt+1)=Ax+Bx ... (3)
B(t+1)=A"X .rerrrrrrnnnnn (4)
Next state occurs only at the appearance of a clock pulse.



State Equations

The Boolean expressions for the state equations can be derived directly from
the gates that form the combinational circuit part of the sequential circuit, since
the D values of the combinational circuit determine the next state.

Similarly, the present-state value of the output can be expressed algebraically
as:

y(t) = [A(t) + B(t)]x'(t)

By removing the symbol (t) for the present state, we obtain the output Boolean
equation:

y = (A +B)x’



State Table
State table:

In a state table (transition table)we enumerate the time sequence of inputs,
outputs, and flip-flop states. The state table for the given circuit is shown:

—

__ Present Next
) ¥ State Input State Output
I T -\-""\-\. —
— L A B x A B v
i F — P
O O 0O O O O
. (] 0 1 (] 1 O
— 0 1 0 0 0 1
“;: - 0 1 1 1 1 O
jrom 1 (] 0 (] O 1
| J S— o 1 O 1 1 0 O
: — . 1 1 0O (] O 1
1 5
" — 1 1 1 1 O O

The table consists of four variables labelled present state, input, next state, and

output . The present-state (2 columns) shows the states of flip-flops A and B at
any given time t.

The input column gives a value of x for each possible present state.

The next-state column shows the states of the flip-flops one clock cycle later, at

time t + 1. The output column gives the value of y at time t for each present state
and input condition.



State Table

Derivation of a state table:

The derivation of a state table requires listing all possible binary combinations of
present states and inputs.

In the diagram we have 2 flip flops & hence we have 2 states (A & B). Each one
can assume a value ‘0’ or ‘1’. (AB) : (0001 10 11)

We have an input x” which can be ‘0" or ‘1" -

Present Next
Therefore, from the table we see that for State Input State Output
each possible combination of ‘A’ & B we have _ A B X A B y
assigned ‘x’ a value ‘0’ & ‘1. o0 U 0 0

0 0 1 0 1 0
So we have eight binary combinations from 0 1 0. 0 0 1
000 to 111 for the sequence (A B x). 0 1 1 (I 0
The next-state values are then determined i 8 ? ? g é
from the logic diagram or from the state | 0 0 0 )
equations [A(t+1) =Ax+Bx & B(t+1)=A"x]. 1 1 1 10 0

The output column is derived from the output equation y = (A + B) x’



State Table

General Remark:

In general, a sequential circuit with m flip flops and n inputs needs 2™ rows in
the state table. present example: m =2 & n=1

The binary numbers from ‘0’ through 2™ - 1 (= 7) are listed under the present-
state and input columns.

The next-state section has m (= 2) columns, one for each flip-flop.

The binary values for the next state are derived directly from the state equations.
The output section has as many columns as there are output variables. Its binary
value is derived from the circuit or from the Boolean function in the same

manner as in a truth table.
Second Form of the State Table

State table in another form:

. . . Next State Output

In this form, the input conditions are Present

] State x=0 x=1 x=0 x=1
listed under the next-state and output

| A B A B A B y y
coimns. 0 0 0 0 0 1 0 0
0 1 0o 0 1 1 1 0
10 0 0 1 0 1 0
1 1 0 0 1 0 1 0




State Diagram

State diagram:
It is a graphical representation for a given state table. The information available
in a state table can be represented graphically in the form of a state diagram.

In this type of diagram, a state is represented by a circle, and the (clock-
triggered) transitions between states are indicated by directed lines connecting
the circles.

. / ) ™ 4 '\,I
Example. Present Next State Output ol ) o _____; 10
The State Table & its State.  x=0 x=1  x=0 x=1 \ @
State Diagramisshown. A 8 A B A By RN

: . 0 0 00 0 1 0 0 10| Lo/1 N 0/1 1/0
States: (A B): (0001 10 11) D - o ] \\
Each state is depicted bya | 000 1 0 [0 \\
circle. L 00 10 L0 01 ga ~-(11)

We have 4 combinations and hence we have 4 circles.

Each link (branch) connecting the circles shows the transition from one state to
another ( in the direction of arrow) at the occurrence of clock pulse. Each link is
labeled with input/output tag like 1/0; implying thatinput = 1 & output =0



State Diagram

How to read a State diagram:

o, Aself loop implies no transition. The system continues to remain in its

]

O : previous state (00). ‘0/0’ (in/out) implies that input (x) & output (y) = 0.
@ System input (X) is different from input to a flip flop.
"x x:implies that the links do not exist

The output, v, is givenas: y=Ax" +BXx’
() X
It is important to remember that the bit value listed for the output along the

directed line occurs during the present state and with the indicated input, and
has nothing to do with the transition to the next state.

For example, the directed line from state ‘00’ to 01’ is labelled 1/0, meaning that
when the sequential circuit is in the present state ‘00’ and the input is ‘1’, the
output is ‘O’. After the next clock cycle, the circuit goes to the next state, '01’.

If the input changes to ‘0’, then the output becomes ‘1’, but if the input remains
at ‘1’, the output stays at ‘0. |

Thus, while system output may change (while systemvis in particular state)
depending upon input, the state transition occurs only if clock pulse occurs.



State Diagram

We summarize as under:

Start from Circuit / system diagram L @ @
Determine system equations

Formulate State table, & then
Draw the State diagram @ " —®

There is no difference between a state table and a state diagram, except in the
manner of representation.

The state table is easier to derive from a given logic diagram and the state
equation.

The state diagram follows directly from the state table.

The state diagram gives a pictorial view of state transitions and is the form more
suitable for human interpretation of the circuit’s operation .

For example, the state diagram clearly shows that, starting from state '00’, the
output is ‘0O’ as long as the input stays at ‘1’. The first ‘O’ input after a string of 1’s
gives an output of 1 and transfers the circuit back to the initial state, '00’.

The machine represented by this state diagram acts to detect a zero in the bit
stream of data because output becomes ‘1* only for input bit = 0.



Flip — Flop Input Equations

Excitation Equations:
Flip flop input equations are also known as excitation equations.

The part of the circuit that generates the inputs to flip-flops is described
algebraically by a set of Boolean functions called flip-flop input equations.

Convention used for input (excitation) equations:

We will adopt the convention of using the flip-flop input symbol to denote the
input equation variable and a subscript to designate the name of the flio-floo
output. | v

Example: I D_l—DfD b
Dol

Consider the input equation: Dy =x+Y. c

p—e— A’

f) —
D B

—> Clk

It specifies an OR gate with inputs x and y
connected to the D input of a flip-flop whose output | LD
is labelled with the symbol Q.
For the shown diagram we write input equations as: —"

Clock

D,=Ax+Bx&Dg=A"x y
The output equation as : y = (A + B)x’ ﬂi




Flip — Flop Input Equations
D,=Ax+Bx&Dg=A"Xx; y=(A+B)x

The three equations, as reproduced above, provide the necessary information
for drawing the logic diagram of the sequential circuit.

The symbol D, specifies a D flip-flop labelled A . D, specifies a second D flip-flop
labelled B.

The Boolean expressions associated with D, & D, and the expression for output
y specify the combinational circuit part of the sequential circuit because these
equations can be simulated using logic gates.

Note:

Note that the expression for the input equation for a D flip-flop is identical to the
expression for the corresponding state equation. This is because of the
characteristic equation that equates the next state to the value of the D input:

Q(t+1)=D,.



Analysis using Flip - Flops
Analysis with D Flip-Flops:
The circuit diagram to be analyzed is shown:

XOR gates are at the input.

The input (excitation)equation: ,1-_D
For the D Flip flop is given by: y—

Dy=ABdxDy P

State Equation:
Clock

Since the next state of D flip flop is
equal to the D input (1 or 0), the state equation for the flip flop is :

State table: A(t+1) = ADxDy

> Clk

It will have 4 columns: 2 corresponding to inputs x & y and the other 2 to

present & next state, A. Next state is a function of x, y & ‘A’ value when clock

pulse occurs.
The pair (x y) combinations:(00 01 10 11); A: (0 1)

For each combination of (x y), A can take a value ‘0" or 1" (continued....)




Analysis using Flip - Flops

State table is determinable from the state equation, given as:

Present Next
/A‘f + 1) — DxDy state  Inputs state
(next state) (present state) A xy A
let Z =xDy; Al +1)=AD Z 3 3 (ll {l)
=Xy +Xx 0 10 1
Z=XY +XY o, 1 oo rol
Alt+1)=AZ +AZ . 2 1 00 1
In the table we have for all the combinations of input pair (x y) & ji } (11 (l}

present state ‘A’ value = ‘0’ & ‘1’ tabulated.
Determination of Next state:

Making use of Egs. 1 & 2, we determine the next state, for each & every row in
the table. For example:

1st Row: A =0, x=0, y=0; therefore,x’ =y'=A"=1
Therefore, Z=(0) (1) + (1) (0)=0; Z'= 1.
Hence, next state =A(t+ 1) =A (inthe table)= (0) (1) + (1) (0)=0
Similarly we can determine next state for the rows in the table, using Egs. 1 & 2.



Analysis using Flip - Flops

Analysis with J-K Flip Flops:
We know that,

* A state table consists of four sections: present state, inputs, next state, and
outputs.

* The first two (present state & inputs) are obtained by listing all binary
combinations.

* The output column is determined from the output equations.
* The next-state values are evaluated from the state equations.

We also know that for a D -type flip-flop, the state equation is the same as the
input equation.

When a flip-flop other than the D type is used, such as JK or T, it is necessary to
refer to the corresponding characteristic table or characteristic equation to
obtain the next state values.

Procedure for determining next state: ( 2 methods)
* by using the characteristic (state) table and
* by using the characteristic equation.



Analysis using Flip - Flops

Steps for determining next state using JK or T flip flop:

* Determine the flip-flop input equations in terms of the present state and input
variables.

® List the binary values of each input equation.

® Use the corresponding flip-flop characteristic table to determine the next-state
values in the state table.

Example using JK flip flop:
Consider the sequential circuit with two JK flip-flops A and B and one input x, as
shown in the Fig.

The circuit has no outputs; therefore, the J A
state table does not need an output column. o — P
(The outputs of the flip-flops may be -/ :

considered as the outputs in this case.)

The flip flop input equations are written as: - 8
® JA=B &KA=BX' > Cli
° Jo=x & Kg=AX+AXx =A@ x L/j t

Clock



Analysis using Flip - Flops

The state table of the sequential circuit is shown in the Table.
The present-state and input columns list the eight binary combinations.

The binary values listed under the columns labelled flip-flop inputs are not part
of the state table, but they are needed for the purpose of evaluating the next
state as specified in step 2 of the procedure.

These binary values are obtained directly from the four input equationsin a
manner similar to that for obtaining a truth table from a Boolean expression.

From the table we see that the present states of

State Table for Sequential Circuit with [K Flip-Flops

flip flops A & B are defined for every possible Present Next Flip-Flop
tate nput State Inputs
value (0 or 1) of input x. So we get 8 possible A B x A B o K e K

0 0 0 ] 1 ] ] 1 0
Combinations of A, B & x. 0 o i 0 0 0 0 0 1

0 1 0 1 1 1 1 1 0
The columns under ‘Flip-Flop Inputs’ are filled ? {1) {1} : flJ :] 2 rln 1
1 0 1 1 0 0 0 0 0
1 1 0 0 0 1 1 1 1
1 1 1 1 1 1 1] 0 0

using flip flop input equations,

° J,=B & K,=BX

o Jg=x" & Kg=A'X+AX =pD x
Where, present states of A & B are substituted. We have completed 2 steps.




Analysis using Flip - Flops

Determination of next state of flip flops:

The next state of each flip-flop is evaluated from the corresponding J and K
inputs and the characteristic table of the JK flip-flop listed in the Table.

K

Qit+ 1)

There are four cases to consider (as seen from the table).
0

* WhenlJ=1andK=0, the next state is 1. 0

* WhenlJ=0andK =1, the next state is O. 1

0
1
0
1

Qlt) No change

0 Reset

1 Set

Q' Complement

* WhenJ=K=0, there is no change of state and the next-state value is the same

as that of the present state.

* WhenJ =K =1, the next-state bit is the complement of the present -state bit.

So we need to fill up columns related to ‘Next State’

A flip-flop: Present State : PS NO Change : NC nms
1t Row: PS =0;J, & K, = 0 therefore next state A =0: NC ”
2" Row: PS =0; J, & K, = 0 therefore next state A=0:NC .
39 Row: PS=0; J, & K, = 1 therefore next state A=A'=1 |
4t Row: PS =0; J, =1 & K, = 0 therefore next state A=1

1

1

t Flip-Flap

Hex
Input State Ingats
A

B L K & K
1

| 1 1 1

5t Row: PS = 1; J, & K, =0 therefore next state A=1: NC (contd. ....)



Analysis usmg FI|p Flops

OW: F .
7t Row: PS = 1; J, & K, = 1 therefore next state A=A'=0
8t Row: PS =1;J, =1 & K, =0 therefore next state A=1

B flip flop: Present State : PS NO Change : NC

1s*Row: PS=0;J3=1&K;=0  therefore next state B=1
2"dRow: PS=0;J; =0&Kz;=1 therefore next state B=0
3Row: PS=1;J;=1&Kgz=0 therefore next state B =1
Ah Row: PS=1;J=0&Kz=1 therefore next state B=0

5t Row: PS=0; J; & Kz =1 therefore next state B=B'=1

6t Row: PS=0;Jg & Kz=0 therefore next state B = 0: NC
7N Row: PS=1; ), &Kz=1 therefore next state B=B'=0
8t Row: PS=1;J; & Kg=0 therefore next state B=1: NC

Thus we have completed the State table by filling up next state values based on
the present state & flip-flop inputs.



Analysis using Flip - Flops

Determination of next state values using Characteristic Equation:

The characteristic equation for JK flip flop is given by: B
Qt+1)=JQ +K Q J
For each flip flop ‘A’ & ‘B’, we write the respective ! ¢
Characteristic equations as: K_DO_D I O N
Alt+1)=J A +K A T _
B(t+1)=JB +K' B (J-K Flip Flop)

Since the output states in our circuit are designated as ‘A’ & ‘B’ instead of ‘Q’.
Substituting the values of J =J, and K = K, from the input equations, J, =B &

K, = B x’, we obtain the state equation for A : Present Next

, Ny State Input State

A(t+1)=BA" + (Bx')'A © B . A B

or, A=AB+AB +Ax ........... 1 U 0 0 1

0 0 1 0 0

The state equation provides the bit values for the 0 1 0 11

column headed “Next State” for A in the state table. T {1} {1} : ?

Therefore by using Eg. 1 we can fill up the ‘Next State’ : {1’ {1} :] g
column corresponding to ‘A’ . ! 1 1



Analysis using Flip - Flops

Similarly, the state equation for flip-flop B can be derived from the characteristic

equation by substituting the values of Jg and K: Present Next
alte npu ate

B(t+1)=JB +K B; A B ; A B

where, J=Jz=x" & K=Kz=A'X+AXx =A® x o0 0 o
0 0 1 0 0

We get the state equation for B as: 0 1 0 11
0 1 1 1 0

B(t+1) =x'B" +(A® x))B=B'x' + ABx+A'BxX’; 10 0 11

’ o 1 0 1 1 0

(Ae x) =Ax+A'X T 0 0 0
or, B=B'X +ABX+ABX ceeereeenn... 2 Lo ! L

The state equation provides the bit values for the column headed ‘Next State’ for
B in the state table. Therefore making use of Eq. 2 we fill up the ‘Next State’
column corresponding to ‘B’.

Note: The State table obtained using State equations does not have columns
corresponding to “Flip-Flop Inputs” because in the obtained state equations the
V& ‘K’ inputs are implicit.

(contd. ....)



Analysis using Flip - Flops

Next we draw the state diagram for the given circuit. There is no specified output
for the given circuit & therefore in the state diagram the ‘links’/’branches’ do not
indicate output of the system for a given (present) state.

In absence of any specified output we may choose the flip Presene | Next
flop state itself as the system output. A B x A B
From the state table we see that the system has 4 states E E {1} E :]:
namely : 00 01 10 11. & input can be ‘0’ or ‘1". co Lo

1] 1] 1 1

We know that transition takes place at the occurrence of 0 . Lo

[ N = ST,

clock pulse.

So, transition from ‘00’ to ‘01’ takes place while x =0 and
stays at ‘00’ while x = 1. Uy o
Similarly we see for transitions from ‘01’ ‘10’ & ‘11’
and also note down the input value to draw the state )

diagram as shown. |
The directive links do not show any output value because. it is .w B r@&z
not specified.



Analysis using Flip - Flops

Analysis using T Flip Flops:

The analysis of a sequential circuit with T flip-flops follows the same procedure
outlined for JK flip-flops.

The next-state values in the state table can be obtained by using

« either the characteristic table as listed , or T Flip-Flop
- the characteristic equation given by rjoe+1
— - T ' 0 Qi) No change
Qt+1)=TeQ=TQ+TQ" ... 1 1| 0  Copgloment

This equation is easily derivable from the following state table

of T flip flop. We observe that ‘next state’ is XOR of present T e
state, Q and the T value. Therefore the characteristic equation ; ; ;
1 1 1 ] 1
is given by Eq. 1 . X :
Example: State Table

We will consider a circuit having 2 T flip flops.



Analysis using Flip - Flops
Example: T )Y

Consider the sequential circuit as shown. It has
* two T flip flops A and B, ]

* oneinputx, and |

* one outputy T

It can be described algebraically by two input b 1

equations: T, =B x; T =x, and T

an output equation: y =AB L
The characteristic equations are: state Tobl o ,._.'-._-,_.,,,,“,,., " i s
Alt+l) = Ty A+ A’ T, ; ool fate oupnt
A=(Bx)"A+A" (Bx)=AB" +Ax" + A" Bx
B(t+1)= T'; B+B' T,
B=x"B+B x=x® B
The next-state values for A and B in the state table

A

a 1 1]
a 1 ]
a1 ]
10 1]
10 ]
1 1 ]
1

1]

I—ll\_ll—l!_ll—ll\_ll—l!_lH-E

are obtained from the expressions of the two state

equations. This is characteristic equation method.



Analysis using Flip - Flops

Characteristic (State) Table Method:

In this method we draw the state table which includes flip flop input values
(based on present state & input value), in addition to columns for ‘present state’,
‘input’ & ‘next state’.

The state table is as shown. Present State Input Next State Flip-flop Inputs
Flip flop inputs are determined from their % ° X A | B T | T
. 0 0 0 0 0 0 0
Input equations. i N N i i
, , 0 0 1 0 1 0 1
Based on TA & TB values, the ‘next state ) ; ; : ; ;
. . l ’ s A
is determined from the ‘present state’ ,as | | , ) : | o . .
explained in the earlier example. Lo 0 . 0 0 0
State Diagram: 1 | 0 1 1|1 0 1
From the state table, statesare 00011011 !t | ! 0 1 1 0 0
1 1 1 0 0 1 1

Input & output values are given.
Transition takes place at the occurrence of clock pulse.
The state diagram is shown in the next slide



State Diagram:

0 0
1
00/0) -1
A
1 1

11/}4 10/0




State Reduction

Analysis & Design of Sequential Circuits:
Analysis:

The analysis of sequential circuits starts from a circuit (logic) diagram and
culminates in a state table or diagram.

Design:
The design (synthesis) of a sequential circuit starts from a set of specifications
and culminates in a logic (circuit) diagram.

State Reduction: Its requirement

Two sequential circuits may exhibit the same input—output behaviour, but have
a different number of internal states in their state diagram.

We will discusses certain properties of sequential circuits that may simplify a
design by reducing the number of gates and flip-flops it uses.

In general, reducing the number of flip-flops reduces the cost of a circuit.

So the purpose behind achieving reduction in number of states defining a
sequential circuit is to reduce the complexity of hardware design.



State Reduction

State Reduction:

The state reduction problem is about reducing the number of flip-flops in a
sequential circuit. Lesser the number of states lesser the number of flip-flops.

While trying to achieve reduction, it is ensured that the input-output
requirements remain unaltered.

Since m flip-flops produce 2™ states, a reduction in the number of states may
(or may not) result in a reduction in the number of flip-flops.

For example, if m = 3; number of states = 8. We may be able to reduce number
of states to 6, but that does not change number of flip-flops because for ‘6’
states ‘m’ has to be ‘3.

An unpredictable effect in reducing the number of flip-flops is that sometimes
the equivalent circuit (with fewer flip-flops) may require more combinational
gates to realize its next state and output logic.

The procedure for achieving state reduction is illustrated with the help of
examples.



State Reduction

Example:

For achieving reduction in the number of states, the starting point is ‘state
diagram’. A typical state diagram is shown in the figure.

Since only input-output sequences are important, for
that reason, the states marked inside the circles are
denoted by letter symbols instead of their binary
values. This is in contrast to a binary counter, wherein !
the binary value sequence of the states themselves is @

taken as the outputs.
There are an infinite number of input sequences

that may be applied to the circuit; each results
in @ unique output sequence.

We see from the diagram that each input of ‘0’ or ‘1’ produces an output of ‘0’ or
‘1’ and causes the circuit to go to next state.

Consider an input sequence 01010110100 starting from the. initial state a@” and
extending up to state ‘g’. We could have considered just any other sequence.



State Reduction

Determination of Output & State sequence:

From the state diagram, we obtain the output and
state sequence for the given input sequence as follows:
With the circuit in initial state ‘a’, an input of ‘0’
produces an output of ‘0’ and the circuit remains in

state ‘a’.
With present state ‘@’ and an input of ‘1’, the output is
‘0’ and the next state is ‘b’ .

) /1
With present state ‘b’ and an input of ‘0’, the output is ‘0’ and the next state is ‘c'.
Continuing this process, we find the complete sequence to be as follows:

state a a b c d e f f g f g a
input 0/1/0/1/0/1/1/0/1/0/0/
output 0 0 0 0 0 1 1 0 1 0 0

The / indicates the transition from one state to another. Column at beginning

end of the” denote input/output values for which a transition occurs/does not
occur. While tracing the diagram we have follewed input sequence bit pattern.



State Reduction

We reassert that in this circuit the states themselves are of secondary
importance, because we are interested only in output sequences caused by
input sequences.

Equivalent Sequential Circuits:

Two sequential circuits are equivalent if their respective output sequences
match (are identical) for a defined set of (identical) input sequences; while the

number of states in each one of them may be different (less or more w.r.t each
other)

Therefore the problem of state reduction is to find ways of reducing the number
of states in a sequential circuit without altering the input—output relationships.

Procedure for State Reduction:

It is more convenient to apply procedures for state reduction with the use of a
table rather than a diagram. The state table of the circuit is listed in next slide
and is obtained directly from the state diagram.



State Reduction

Equivalence of States: Next State Output

The equivalence of states is given by the Present State x=0 x=1 x=0 x=1

following algorithm:

= =

“Two states are said to be equivalent if,
for each member of the set of inputs, they
give exactly the same output and send the
circuit either to the same state or to an

- R s B e [ s B e [ s B s |

0
0
0
1
1
1
1

o T M DN, Ty

equivalent state.”
When two states are equivalent, one of them
can be removed without altering the

input—output relationshi ' [;(}D
INpUt—output relationsnips. o ‘

We will apply the above algorithm to our state ,
table for the purpose of achieving reduction. (=) — 0/0 }O




State Reduction

The state table is reproduced. Next State Output

The procedure is that in the state table we look Present State x=0 x=1 x=0 x=1
)

o)

for two present states that go to the same next a
state and have the same output for both input
combinations.

From the table we see that two such states are
‘e’ & ‘@’. They both go to states ‘a’ and ‘f’ and

[ R s B e [ s B e [ s B s

0
0
0
I
I
I
I

d
d
f
f
f
/

O S M DN, Oy

have outputs of ‘0’ and ‘1’ for x = ‘0" and x = 1/,
respectively.

Therefore, states ‘g’ and ‘e’ are equivalent and one of these states can be
removed.

The procedure for removal is that we remove ‘g’ under column ‘present state’
from the table & replace ‘g’ by ‘e’ in the columns under ‘next state’ wherever it
appears.

So we have a reduced table in which the row corresponding to ‘g’ does not
exist. The reduced table is shown in the next slide.



State Reduction

The reduced state table is shown.
Again in the reduced state table we look for two Next State Output

present states that go to the same next state and Present State ~ x=0 x=1 x=0 x=1

Reaticing the State Table

have same outputs for both input combinations. 0 0

—

From the table we see that two such states are [
‘d” & ‘f’. They both go to states ‘e’ and ‘f’ and

—

C

Lo

(

e T T =, =

have outputs of ‘0’ and ‘1’ for x = ‘0’ and x = ‘1, i ¢
respectively. ¢ (
Therefore, states ‘d” and ‘f’ are equivalent and f ‘

one of these states can be removed.

The procedure for removal is that we remove ‘f* under column ‘present state’
from the table & replace ‘f’ by ‘d’ in the columns under ‘next state’ wherever it
appears.

So we have a further reduced table in which the row corresponding to ‘f’ does
not exist. The reduced table is shown in the next slide.



State Reduction

The further reduced state table is shown.
Again in the reduced state table we look for two Next State Output

present states that go to the same next state and Present State ~ x=0 x=1 x=0 x=1

Reduiced State Table

have same outputs for both input combinations. 0 ' 0
From the table we see that there are no two such b ¢ 0 0
states. Therefore further reduction of statesisnot ¢ ( d 0
possible. d e 0 1
The reduced state diagram is as shown. ¢ d d U

The sequential circuit of this example was reduced from
seven to five states. In general, reducing the number of
states in a state table may result in a circuit with less

equipment. However, the fact that a state table has T ,«o\x\

o 0/0
been reduced to fewer states does not guarantee a @ ~. ) —FQ
saving in the number of flip-flops or the number of 00N TN / _
: . : : s — @‘i /O
gates. In actual practice designers may skip this step =,
'-x_\ ) /-' 1/1

because target devices are rich in resources.



State Reduction

As we know reduction is the problem of determining state equivalence so that
redundant states can be deleted to achieve reduction in number of states.

The implication table method of determining state equivalence is as follows:
1. Construct a chart which contains a square for each pair of states.

2. Compare each pair of rows in the state table. If the outputs associated with
states ‘I’ and ‘j’ are different, place an X in square i-j to indicate that i=;. If
the outputs are the same, place the implied pairs in square i-j. (If the next
states of i and j are m and n for some input x, then m-n is an implied pair.) If
the outputs and next states are the same (or if i-j only implies itself), place a
check (V) in square i-j to indicate that i=/.

3. Go through the table square-by-square. If square i-j contains the implied pair
m-n, and square m-n contains an X, then ;#;, and an X should be placed in
square i-j.

4. If any X’s were added in step 3, repeat step 3 until no more X’s are added.
For each square i-j which does not contain an X, i=.

If desired, row matching can be used to partially reduce the state table before
constructing the implication table.



State Reduction

Example:

The state table is given. First step is to construct a chart containing squares.

Rows of the chart:

Exclude row corresponding to state ‘a’. That means we exclude 15t state from rows.
Columns of the chart:

Exclude row corresponding to state ‘h’; exclude the ‘last’ state from the columns.

Present Next State Present
State X=0 1 Output b
a d ¢ 0 c
b f h 0 d
C e d 1
a
d a e 0
f
e c a 1
f f b 1 9
g b h 0 h
h c g 1 a b C d e f g

In this method each row of the table is compared with remaining rows to
determine such rows which have the same output; e.g. row ‘@’ is compared with
rows ‘b’ to ‘h’ to find out that outputs of ‘a’, ‘b’, ‘d’, & ‘g” are same.



State Reduction

Next ‘b’ is compared with ‘¢’ to ‘h’; ‘c’ is compared with ‘d’ to ‘h’; ‘d’ is compared
with ‘e’ to ‘h’ & so on.

So we get pairs like (a b) (ac) (ad) ..... (ah);(bc)(bd)(be)...(bh); &soonfor
all the rows in the given table.

The chart represents these pairs (pair of states). We are interested in pair of
states because we want to know whether they are equivalent or not.

1strow : (a b); b

2" row : (a ¢ :15t square) & (b c: 2" square)
3" row: (a d) (b d) (c d); & so on. Thus we say,
A square in column i and row j corresponds to state

pair i-j. Thus, the squares in the first column

J I == 0o O 0

correspond to state pairs a-b, a-c, etc. a b ¢ d e f g

Note that the squares above the diagonal are not included in the chart because if
i=j. & j=1i,andonlyone of the state pairs i-j and j-i is needed.

Also, squares corresponding to pairs a-a, b-b, etc., are omitted.
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To fill in the first column of the chart,
We compare row ‘@’ of the Table with each of the other rows. Because the
output for row ‘@’ is different than the output for row ‘c’, we place an X in the a-c

square of the chart to indicate that NESG

Similarly, we place X’s in squares a-e, a-f, and a-h to indicate that
a#e,a#f,and a = h of output differences.

States a and b have the same outputs, -
b| "4 le——a=biffd=fandc=h

and thus, a=b  iff  d=f  and c=h |

. . . . . . c >< >< <—— b = ¢ because the outputs differ
To indicate this, we place the implied pairs, d-f and

w-d. | a—

c-h, in the a-b square. A\ e | en | X
Similarly, because a and d have the same outputs, ¢ X | x| 75| X
we place a-d and c-e in the a-d square to indicate XX | I A
that a=d iff a=d and c=e _ 0
Th b-d and c-h in th e | o X5 X

e entries b-d and c-h in the a-g square .- e -
o XX g | X | ee | 5% | X
indicate that: —

a=g iff b=d and c=h (contd. ....)



State Reduction

Next, row ‘b’ of the state table is compared with | H L a=pita=ranc=

each of the remaining rows of the table, and column 2D 2 ——
‘b’ of the implication chart is filled in. i | o

Similarly, the remaining columns in the chart are Loe | en | X

filled in to complete the chart. o X X e [ X

Self-implied pairs are redundant, so a-d can be XX s X o
eliminated from square a-d, and c-e from square c-e. ¢| " | oy | X | %7 | X | X
Now, each square in the implication table has either /| |/ X | g 51: N

been filled in with an X to indicate that the a b ¢ d e J
corresponding state pair is not equivalent (because the outputs are different) or
filled in with implied pairs.

Check each implied pair:

We now check each implied pair. If one of the implied pairs in square i-j is not
equivalent, theni=j.

The a-b square has 2 implied pairs: d-f & c-h; but d-f square in chart is mérked X
therefore a=0b . Hence we put a X on a-b square.



State Reduction

It is shown in the chart.

b | > I b X

¢ [ X[ ¢ | X[ X ¢ [ XX

d |ce ea_'ri X d |ce K X d |oe| X| X

e | X | X|ad| X o |X|X]2d|X e | X| X|ad| X

e IXIX[EX & F XX ra X o e XXX

o Rl ] o BB s [RXRIXX

o XK DX e <] 0 IXIX[EIX=alsalX] n XIXIGe DX 2 5al X
a b ¢ d e f g a b ¢ d e f g a b ¢ d e f g

b-d, c-h & c-e squares do not| We see square a-f has X &| square b-g has implied
have a X therefore move to | hence we puta X on b-d | pair b-f, but square b-f
next column ‘b’. square. has X in it therefore b-g

square is crossed.




State Reduction

Move on to column c: explanation for putting X is similar as discussed for ‘a’ & ‘b’

b | b | b |

¢ | X|X ¢ | XX ¢ | X|X

d [ XX a [ X[X a [ XX

e | X[ X]2d]X e | X[ X|2d| X e | X[ X]2d]X

XXX o XXX X o XXX S

g [ Ea XX e B R DXX g [ & | XXX XX

h [XXEDK o[ n XX DK e[S 1X] b XX e X 29 5 X
asbiagsiid saeniifoig ashrennid menifing a b ¢ d e f ¢

b-d square has X Square a-b is crossed &| Square a-b is crossed and

hence c-f square is crossed.| hence square d-g is square e-f is crossed.

Nothing can be said about | crossed. Move on to column f.

squares c-h & c-e, so move | Now, move on to
on to column d. column e.




State Reduction
viove on Tto column .

b | X b
¢ | X|X c
d c—e><>< d
e (XXX e
£ IXIXIXPXX f
g |on | X|IXIXIXIX 9
h | XD ge DX e[ X b
a b ¢ d e f g

Square b-g has X in it, hence
square f-h is crossed.
Square h-g has X in it. We
have completed one round,
we again start from column

()

a.

>< b
XX c
e [ X | X d
XXX e
XXX XX f
25 X XXX X g
XX g | X]29] X[ X] h
a b ¢ d e f ¢

Since square b-d is crossed
We Cross square a-g.
Move on to column c.

X

XX

ce | X| X
X< 7 | X
XXX XK
XXX XX
XIXE& K= | XX
aahincsnd e f g

Square d-g is crossed
We cross square c-h.
Move on to column e.



State Reduction

Move on to column e:

The equivalent states are ;=4 and (=¢
b .. )
é 2 Therefore we can eliminate 2 states if we replace
¢ < 7 d with a & e with c.
d
i The reduced state table is reproduced below:
e | X|X]ad| X
XXX
g >< >< >< >< >< >< Present Next State
h ><><><><}€><>< State X=0 1 Output
- JREEE « ORI o - SR, Pl a a ¢ 0
b f h 0
C c a 1
Square a-g is crossed and f f b 1
H h g b h 0
ence we cross square e-h. h c g 1

No more squares to be
considered for elimination.

The process of finding
Equivalent states has ended.



State Reduction & Assighnment

Partition Method: (Moore Reduction Procedure)

States Si and Sj of machine M are said to be equivalent If and only if, for every
possible input sequence, the same output sequence will be produced
regardless of whether Si or Sj is the initial state.

Two states, Si and Sj, of machine M are distinguishable if and only if there exists
at least one finite input sequence which, when applied to M, causes different
output sequences depending on whether Si or Sj is the initial state.

The sequence which distinguishes these states is called a distinguishing
sequence of the pair (Si, Sj)

If there exists for pair (Si, Sj) a distinguishing sequence of length k, the states in
(Si, Sj) are said to be k-distinguishable .

States that are not k-distinguishable are said to be k-equivalent



State Reduction & Assignment

We seek to partition the states of machine M such that two equivalent states are
in the same block.

P, corresponds to O-distinguishablity (includes all states of machine M)

P, is obtained simply by inspecting the table and placing those states having the
same outputs, under all inputs, in the same block.

P, establishes the sets of states which are 1-equivalent

P, partition is carried out by splitting blocks of P,,whenever their successors are
not contained in a common block of P,

Iterate process of splitting blocks

If for some k, P,,, = P, the process terminates and P, defines the sets of
equivalent states of the machine.

P, is thus called the equivalence partition The equivalence partition is unique.
We will consider the same example that was solved using Implication method.



State Reduction & Assighment

Example:
Consider the state table:
PS: present state; NS: next state
P, partition: = (ABCDEFGH)
P, partition is obtained by splitting states
having different outputs. Therefore, we have
P, =(ABDG)(CEFH)
We define
Block 1 = ABDG, Block 2 = CEFH
Obtain P,: (Consider Block 1 states)

A
B
c
D
E
F
G
H

- 0 == - D0 O —-= D0 DM

The/indicate transition from one state to another.
The numeral in () denotes the Block number: Like, D
belongs to Block 1 & C to.Block 2.

(contd. ....)



State Reduction & Assighment

Obtain P,:
Consider Block 2 states (CEFH).

A
B
C
D
-
F
G
H

O @ MmO >» M T O
G I > mMm O IO
- 0 = a0 = DO O N

For the states AB D & G in block 1, we observe that state B does not follow
transition pattern of states A D & G; because B makes transition to states of block
2 only whereas A D & G make transition to their respective states in both the
blocks. So, we split B out of block 1. B is “2 distinguishable” from A, D and G,
because it belongs neither to Block 1 nor Block 2. That is, it is distinguishable
from these two blocks.



State Reduction & Assighment

No states of block 2 are “2 distinguishable”
Therefore, we factorize and obtain P, as:
P, = (ADG)(B)(CEFH)
We have removed B from Block 1. We redefine blocks as:
Block 1 = ADG
Block 2 =B
Block 3 = CEFH
Obtain P;:
Once again we transitions of states, now that we have
3 blocks.

I oG mm o O m >

= DO = a DO = DO O MmN
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Obtain P; (contd.):
Split G from block 1; G is 3-distinguishable from A and D
Split F from block 3; F is 3-distinguishable from C, E and H
Therefore, factorize P; as:
P3 = (AD)(G)(B)(CEH)(F)
Redefine the blocks as:
block 1 = AD, block 2 =G, block 3 =B,
block 4 = CEH and block 5 =F

Obtain P,:
Redefine state transitions for blocks 1 & 4 as shown.

A
B
C
D
E
F
G
H

From block 4, split H because it is 4 distinguishable.
P,= (AD)(G)(B)(CE)(H)(F)




State Reduction & Assighment

block 1 = AD, block 2 = G, block 3 =B,
block 4 = CE, block 5=H and block 6 = F
Obtain Px:

In view of the changed number of blocks we
redefine the transitions in block 1 & 4 as shown in
the figure.

No state is split-table from block 1 & 4 because in
Each block the states make transitions to such other

I ¢ m m O O o X
—_ 0D =i -l DO = 0O O M

states which lie in the same block.
Since there is no splitting, therefore:
P.=P,
Hence the factorization process stops at this stage.
Therefore AZ=D&CZE
The minimized state function has the states
ABCF G &H; reduction from 8 to 6 states
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State Assignment

State Assignment:

Before designing a sequential circuit with physical components, we assign
unique coded binary values to the states.

For a circuit with m states, the codes must contain n bits, where 2" > m. The
equality (=) sign will hold if reduction in number of states is not possible else,
greater than (>) sign holds.

For example, with three bits, it is possible to assign codes to eight states,
denoted by binary numbers 000 through 111.

Next State Output .
Present State 20 221 x=0 x=1 If we have this state table & we have
a a b 0 0 3 bits available for coding of states;
b ¢ d 0 0 ;
. . J 0 0 the state ‘g’ will be left unused.
d e f 0 1
e a f 0 1
f g f 0 1
g a f 0 1

Table 1



State Assignment

On the other hand if we use reduced version of the Table 1, we have the state
table as Table 2.

Next State Output
In this case we have only 5 states and Present State @~ x=0 x=1 =0 x=1
since 3 bits are required for coding, we are a a b 0 0
left with 3 unused states. b ¢ j g 8
Unused states are treated as don’t-care ; j d 0 1
conditions during the design. ¢ a d 0 1
Since don’t-care conditions usually help in Table 2

obtaining a simpler circuit, it is more likely but not certain that the circuit with
five states will require fewer combinational gates than the one with seven
states.

We can assign different types of codes to the states of a sequential circuit. Like,
we assign binary code or Gray code or 1 Hot code to the states. The simplest
way to code five states is to use the first five integers in binary counting order

Another similar assignment is the Gray code. Here, only one bit in the code
group changes when going from one number to the next. This code makes it
easier for the Boolean functions to be placed in the map for simplification.



State Assignment

Another possible assignment is ‘one-hot’ assignment. This configuration uses as
many bits as there are states in the circuit. At any given time, only one bit is
equal to ‘1’ while all others are kept at ‘0’. This type of assignment uses one flip-

flop per state, which is not an issue for register-rich field-programmable gate
arrays.

Table 3 shows all the three types of assignments.

—

Assignment 1, Assignment 2, Assignment 3,

State Binary Gray Code One-Hot
a 000 000 00001
b 001 001 00010
c 010 011 00100
d 011 010 01000
e 100 110 10000
Table 3

Having decided upon the type of assignment, we fill up the state table with the
chosen code.



State Assignment

The Table 4 shows the state table filled up with chosen set of codes. We know that
during state minimization we designate states of a circuit using alphabets. The
process of assighment assigns a code to each state (named as an alphabet).

Next State Output Next State Output
Present State x=0 x=1 Xx=0 x=1 Present State x=0 x=1 x=0 x=1
a a b U 000 000 001 0 0
b ¢ 00 001 010 011 0 0
¢ a d 0 0 010 000 011 0 0
d 0 d 0 | 011 100 011 0 |
¢ a d 0 | 100 000 011 0 |

Reduced State Table (Table 4)  Reduced State (Transition) Table with Binary
Assignment

A different assignment will result in a state table with different binary valu
the states. The binary form of the state table is used to derlve th
output- formmg combmatlonal logic part of the se




Mealy & Moore Models

Introduction:

A sequential circuit has inputs, outputs, and internal states. The sequential
circuits are classified as:

Moore model.
Mealy model
They differ only in the way the output is generated.

Mealy Model:
In this model, the output is a function of both the present state and the input.

Moore Model:
In this model, the output is a function of only the present state.

A circuit may have both types of outputs.

The two models of a sequential circuit are commonly referred to as a finite state
machine (FSM).

The Mealy model of a sequential circuit is referred to as a Mealy FSM or Mealy
machine. The Moore model is referred to as a Moore FSM or Moore machine.
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Mealy and Moore machines are shown in the figures.

Mealy Machine

Inpits ———s= Next State T e

Stat Ouiputs
Combinational ngn:n' —  Combinational { Mealy-type)
— Logtc Logic
Clock
Moore Machine
Inputs s——  Next Siaie Ohuiput
Slaie ) Oputs
Combinational ~ |— Repister +  Combinational | (Moare-iype)

— Logie Loglc i

We observe the difference in the output dependence of t
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Example of Mealy Machine:

P N

functions are —p e |

A

defined; so the |
directing links —Tq : - |
carry information n

about input/output. - E - '

Machine

1/0

Example of Moore Machine:

The output

function is not
Defined; so the -
States of

flip-flops are

v

equivalent




Mealy & Moore Models

Another Example of Moore Machine:

T - ) 0 0
] -
T | = 1 1
=L ¥
"
. Jo TU
lock ] R Ny

In comparison to previous example, in this machine the output is obtained by
ANDing the outputs of 2 flip-flops. The output is a function of present state only.
The directive links in the state diagram show only input values, whereas the
outputs for different combinations of flip-flop states are depicted inside the
circles (depicting states). ‘

We see that the output shall be ‘1’ iff states of both the flip-flops are =1.



Mealy & Moore Models
Mealy Vs. Moore Machine:
Mealy

Moore

Output is a function of both the present
state and the input.

Output may change if the input changes
during clock cycle.

Output is a function of present state
Only.

The outputs of the sequential circuit
are synchronized with the clock,
because they depend only on flip-flop

outputs that are synchronized with the
clock.
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Concerns related to Mealy machine:

The outputs may have momentary false values because of the delay
encountered from the time that the inputs change and the time that the
flip-flop outputs change.

In order to synchronize a Mealy-type circuit, the inputs of the sequential
circuit must be synchronized with the clock and the outputs must be
sampled immediately before the clock edge.

The inputs are changed at the inactive edge of the clock to ensure that the
inputs to the flip-flops stabilize before the active edge of the clock occurs.
Thus, the output of the Mealy machine is the value that is present
immediately before the active edge of the clock.



Equivalent Sequential Circuits
Definition:

Sequential circuit N, is equivalent to sequential circuit N, if for each state ‘p’ in
N,, there is a state ‘q’ in N, such that p = g, and conversely, for each state ‘s’ in
N,, there is a state ‘t" in N; such that s = t.

Simply said: two sequential circuits are equivalent if they are capable of doing
the same work.

Explanation:

Thus if N;=N,, for every starting state ‘p’ in N;, we can find a corresponding
starting state ‘g’ such that Mi(p. X)=\(q. X) for all input sequences X (i.e., the
output sequences are the same for the same input sequence).

Then, we can replace N, with its equivalent circuit N,.

If both N; and N, have a minimum number of states and N, = N,, then N; and N,
must have the same number of states. Otherwise, one circuit would have a state
left over which was not equivalent to any state in the other circuit



Equivalent Sequential Circuits

Example: (Inspection Method)
Figure shows two reduced state tables and their corresponding state graphs.

By inspecting the state graphs, it appears

N N
. . . . X=0 1I X=01 X=0 12 X=0 1
that if the circuits are equivalent, we must .+ o s s s 1 o
. . B C D 0 1 S ) S 0 0
have A equivalent to either S, or S, cl a ¢ | o 1 S| s s | o o
D C B 0 0 S; S, S 0 1

because these are the only states in N,
with self-loops; but the outputs of A match
only with S, & hence A = S,,. ]

If we assume that A = S,, this implies that
we must have B = S, which in turn implies
that we must have D = S1 and C = S3.
Using the state tables, we can verify that

these assumptions are correct because for every pair of assumed equivalent
states, the next states are equivalent and the outputs are equal whenX=0 and
also when X = 1. This verifies that N, = N,.



Equivalent Sequential Circuits

Implication table Method:

When machines have large number of states their equivalence can be
determined using Implication table.

Procedure:

Because the states of one circuit must be checked for equivalence against states
of the other circuit, an implication chart is constructed with rows corresponding

to states of one circuit and columns corresponding to states of the other.
The implication table is shown in the figure:

S | >< C—S_q A —53 ><
The first column of Figure is filled in by comparing row A of D=5, | &5

the state table in the Figure (a) with each of therowsin & i:i; X | X gj;

Figure (b). Because states A and S, have different outputs, _ | 5-s, >< >< C-S,
= B-S,

an Xis placed in the A-S, square. Because states Aand S,
T : 5:1 (=5, | A5, e
have the same outputs, the implied next-state pairs D-S, | C-S,

(B-S; and A-S,) are placed in the A-S; square, etc. A B C D
Similarly we can fill up the remainder of the table.
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The next step is:

Squares corresponding to additional non-equivalent state pairs are crossed out.
Same procedure is adopted as in the state reduction where
we were interested in determining equivalent states.

This is shown in the figure (b). Fig(a) is

reproduced from previous slide. s, >< g:? i‘:ﬁs >< So
| |

In Fig (b); | C-S

e b s|as | XX 5] w5 X X s

square A-S, is crossed because 0 0

: . .| B-S CSo| 5,

A-Sy square in (a) has X in it; square 5| " | > | X ||

B-S; is crossed becauseD-S; square >< C-S, | A-S, >< 5

. . . . . D_SR C_53

in Fig (a) has X in it. ; p
A 3 C .

We continue with this procedure (a) | (b)

5[ X
X

< |2
. $&
28| X
i ra
25| X
BN s
7
X |58
[ =

until no square is left to be crossed.
Therefore, the state equivalence is found out to be as:
C-S;;, D-S;; A-S,;



State Reduction

Merger Graph Method:

In this as a first step, we define the Merger Graph & explain the procedure for
drawing it.

Merger graph of an n-state machine M is an undirected graph defined as
follows:

1. It consists of n vertices, each of which corresponds to a state of M

2. For each pair of states (Si,Sj) in M, whose next-state and output entries are not
conflicting, an undirected arc is drawn between vertices Si and Sj

‘not conflicting’: it means that both the states make transition to a same state &
the outputs too are same. If ‘p’ & ‘g’ are 2 states then both make transition to a
state ‘r’ & their outputs also same, i.e. either ‘0’ or ‘1’. We have compatible pair

3. If, for a pair of states (Si,Sj), the corresponding output symbols under all input
symbols are not conflicting, but the successors ( respective states they make
transition to) are not the same (conflicting), an interrupted arc is drawn
between Si and Sj, and the implied pairs are entered in the space.

Two states are ‘implied pairs’ if their outputs are same but they make transition
to different states.



State Reduction

Xxample:
With the help of an example we will explain the process of reduction using
Merger Graph. NS -
The state table for a machine is shown: PS| [ L I3 I
PS: Present State ; NS: Next State Al— — E1 —
I, 1,151, : Inputs ; z : output B{C0O Al B
In the table, C{Co D1 A0
the entry ‘= denote unspecified state & output. D E1l B.
C, - : indicate unspecified output; state is specifiedas C | £ | B.0 C~- B0

Compatible pair:

When for an input, the state and/or output are not specified then both the
state & output can assume any value. In view of this, A & C is defined as
compatible pair. In the graph we draw a line connecting node A with node C. No
other pair is compatible.

Implied Compatible pair:

For an input the outputs are same, but successor states are different. BC, BD,
BE & so on. We draw a broken line.between two state nodes & marked



State Reduction
Conflicting pair:

For an input, the outputs are different. Pair: AB. VS >
Conflicting states are not connected through a link. PS| L, L Iy I

The Merger Graph:

[ i

The graph along with the state table is shown. C0 A1 B.0

C.0 D1 A0
— E1 B- —
B.0 (- B0

-

1. Nodes represent states of a machine, as shown in the
graph.

s Pl

2. Starting with state A, its outputs, for different inputs,

are compared with outputs of states from B to E to

A
determine 1) compatible 2) implied compatible & 3) @F{)
conflicting, pairs. Ex— 7\ (BC)

B
We find that: @5]7
A & C are compatible because undefined state & output 1{BC)(BE) (AD)
can assume any value. A direct link between A & C. gg]

A & B are conflicting because outputs do not match. D (DE)
Merger Graph C

Hence no connectivity between A &.B
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Between A & D:

For input |5, the states do not match. A makes transition NS -

to E & D makes transition to B; (BE) is implied compatible | pg L L Iy I
pair. Hence an interrupted link is drawn between A & D Al — — E1 —
is drawn with (BE) indicated. B|1C0 A1 B.0
Between A & E: C1C0 D1 A0
Same as between A & D. The pair is (EC). So an interrupted| [) E.1 B,

Link between A & E with (CE) shown. E | B.0 C- B,0
Similarly we draw for B & C; B& D; B&E: A

All are interrupted links with implied compatible pairs @5)7\

shown as (AD) (AE) & (BC). Ex— (BC)=B
For C&D ; C&E: %]7
Interrupted links with implied compatible pairs shown 1{BC)(BE) (AD)
as (DE) for C&D; { (BC) (AB)} for C&E. b gﬁg

(DE)
Merger Graph C

For D&E:
Interrupted link with implied compatible pair (BC)



State Reduction
NOW we examine e grap O TInd out wnich nodes are

not connected (conflicting states).
A & B: not connected : conflicting states.
Find out in which interrupted link (AB) appears, strike out
that link. So, we see ‘X’ on E-C link.
Thus E-C no longer exits.
Therefore A-E ceases to exist (because of EC).
So cross out A-E link.
Thus A-E no longer exits. Hence (DB) ceases to exit.
(DB) is not appearing anywhere as implied compatible
Pair. So crossing out links stops at this point.
Therefore , Compatible pairs are:
(AC) (CD) (DE) (BC) (AD) (BE)
Having found compatible pairs we develop ‘Compatibility
Graph’ to achieve reduction in states.

NS,z
PS| I L Iz I
Al — — El1 —
B|C0O A1 B.O
C1C.o0 DI A0
D|— El1 B- -—
E | B.0 C~ B0

E BC)-B
(AE)
BC)BE) \ (4D
(DE) %

D

Merger Graph C




State Reduction

Compatibility graph:
A directed graph whose vertices correspond to all compatible pairs, and an arc
leads from (Si,Sj) to (Sp,Sq) if and only if (Si,Sj) implies (Sp,Sq).
That is, if we have two compatible states Si &Sj and correspondingly we have Sp
& Sq as implied compatibles, then in compatible graph:
(Si,Sj) becomes a node & (Sp,Sq) becomes another node which are connected
through a directed link.

(state pair) (implied pair)

SiSj SpSq

(Si,Sj) are compatible if (Sp,Sq) are compatible.



State Reduction
Procedure to develop Compatibility Graph from Merger Graph:

The compatible pairs are: @F{) A

(AC) (CD) (DE) (BC) (AD) (BE) VA (BC)B
We have the Merger Graph: (AE)
Each compatible pair is a node. Hence we have 6 nodes. {BC)(BE) (AD)
Node A: (Eg)
pair (AC): D~ (DE) (AR)
No outgoing arm from (AC) because between A & C we C
have uninterrupted link. No dependence on other pair for (AC)
compatibility.

pair (AD):

There is an interrupting pair (BE); hence a branch will be
shown from AD to BE in the compatibility graph.

Node B:

We have 2 interrupted links, BE (BC) & BC (AD), from node B. Hence a branch is
shown from BE to BC & from BC to AD in the compatibility graph.




State Reduction

Procedure to develop Compatibility Graph from Merger Graph:
Node C:
CA & CB are already covered. CE is crossed. So, the E

remaining interrupted link is CD (DE).

We draw a directed link from CD to DE in the compatibility {BC)(BE)

)
(DE) %

graph.
Node D: D
All the interrupted links from this node have been

A

A

(BC)=B

(AE)

considered except CD(DE).

A directed link from CD to DE is drawn in the compatibility
graph.

Node E:

All interrupted links have been considered & hence no more

additions to the compatibility graph.




State Reduction
Ve neec

Closed Sub Graph:

A set of compatibles for machine M is said to be closed if: for every compatible
contained in the set, all its implied compatibles are also contained in the set

A closed set of compatibles, which contains all states of M, is called a closed
covering.

For example, if we choose (BE) then (BC) too should be
chosen because (BC) is implied compatible of (BE). So,
having chosen (BC) we need to choose (AD) because (AD)
is implied compatible of (BC). Since we started with (BE)

so implied compatible of (AD) is already chosen.

Therefore, closed set of compatibles is given as:
{ BE AD BC}
Second choice:
If we take (AC) it has no implied compatible. Then we may choose (AD) (BE) & (BC)
So, closed set of compatibles is: {AC AD BE BC}



State Reduction

Third Choice:
We can start with (CD) & go on to form a closed set of .

compatibles, as:

{CD DE BC AD BE}
There can be many closed set of compatibles.
Now, we define closed covering.

Closed Covering:

A closed covering set is one amongst the closed set of compatibles. If a given
closed set of compatibles contains all the vertices (nodes) of a Merger Graph
then it constitutes a closed covering.

All the closed set of compatibles as obtained for this machine contain all the
nodes of the Merger Graph & hence all are closed covering.

From the available ones we choose a set with minimum number of compatible
states. Closed covering with minimum number of compatibles is called Minimum
Closed Covering . So we get a closed covering with minimum number of
compatibles as : { BE AD BC}

Thus, a closed covering with minimum-compatibles defines a minimal machine



State Reduction

Minimal State Machine:

Each compatible in minimal closed covering is defined as a state of the minimal
machine. We have: { BE AD BC}

We define ADasa; BCasPB;&BEas Y NS,
A state table is drawn with newly defined states as shown: Pf h b ;*1 Ly
The original state table is reproduced. i (1_” 4_1 B‘H .
From the original state table we see that under the column C [,' [j 'D' | a L0
PS: transition from A to D implies don’t care for I; Dto £ | B qu n. o
forl,;, AtoE&DtoBforl;; A&Dtodon’tcareforl, E | B | (-f‘ B0
(BE) forms a compatible which Is defined as state Y = 5
for minimal machine.
So, in the state table for minimal machine NS,:
PS L L, I Iy
we replace E& B by Y. AD) —a| — 41 1 —
(BC)—= 3| 5,0 a1 /4,0 a0
(BE) —=~ | 5.0 a,1 3,0 3/4,0

(MINIMAL MACHINE)



State Reduction

Minimal State Machine:

(BC): B

From the old table we see that in transition from

NS,z

BtoC:Forl, BtoC& Cto C(B); Forl, Bto A pPS| I I I I

- 1 * 3 4
& Cto D (a); For l;, Bto B & C to don’t care (B/Y), 1| — _2 E1 —
because Bis in both B & Y; Any one from B & Y can be H Co Al B‘H
chosen as the state for minimal machine. C|C0 D1 A0
For I,, Bto don’t care & Cto A (a). D| - E1 B- —
(BE): Y E | B.0 C~ B0
From the old table we see that in transition from
BtoE:Forl,, BtoC&EtoB(B); Forl,, BtoA&Eto NS>
don’t care (a); For I3, Bto B (B/Y), because Bis in (49};5—.» - i Afﬂl AIzl E
both B & Y; For 14, B to don’t care & E to B: B/Y (BC)— 3| 3.0 a1 d_;'"w.u a0
Any one from B & Y can be chosen as the state for |LBe) =100 al 50 5/%0

minimal machine. (MINIMAL MACHINE)



Design of Clocked Sequential Circuits
Design Procedure:

From a given set of specifications a logic diagram is generated; or, a list of
Boolean functions are generated from which the logic diagram can be obtained.

Whereas a combinational circuit is completely defined by its Truth Table, the
sequential circuit requires a state table for specifications.

The procedure is listed:

1. From the word description and specifications of the desired operation, derive
a state diagram/ state table for the circuit.

2. Reduce the number of states if necessary.
3. Assign binary values to the states.
4. Obtain the binary-coded state table.
5. Choose the type of flip-flops to be used.
6. Derive the simplified flip-flop input equations and output equations.
7. Draw the logic diagram.
All the above steps have been studied in somewhat detail.
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For designing a sequential circuit, we need to derive a state diagram/ state table
from the word description and specifications of the desired operation. This is the
most critical step in the design process because if a state diagram/table is
wrongly drawn, the designed sequential circuit will serve no purpose.

We will explain design procedure with the help of an example.

Example:

Let us design a circuit that detects a sequence of three or more consecutive 1’s
in a string of bits coming through an input line (i.e., the input is a serial bit
stream ). The output = 1: iff 3 or more number of consecutive 1s are detected;

elseitis =0.
Solution:
We will design a Moore model sequential circuit. In Moore sequential circuit, the
output is a function of ‘states only’ & not a function of ‘states and input’
15t step is to obtain state diagram or state table.

Each time ‘1’ appears in the input sequence, state transition takes place during
clock time. Whenever ‘0" appears in the input stream, the system goes to reset

(initial) state.
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The state diagram for this type of circuit is shown in the Fig.
S, (reset / initial state) ;S; S, S; are states of the system.

It is derived by starting with state S, the reset state. /[_]\

If the input is ‘0’, the circuit stays in S, but R

if the input is ‘1’, it goes to state S, to indicate that a ‘1’ @f : :Sl/{)
was detected. AN

If the next input is ‘1’, the change is to state S, to indicate \“\i}\x 1
the arrival of two consecutive 1’s, but | \\\ v
if the input is ‘0’, the state goes back to S,,. @* @
The third consecutive 1 sends the circuit to state S;. If ' :

more 1’s are detected, the circuit stays in S;. U/
Any ‘0’ input sends the circuit back to S,,.

In this way, the circuit stays in S; as long as there are three or more consecutive
1’s received.

This is a Moore model sequential circuit, since the output is ‘1” when the circuit
is.in state S; and is ‘0O’ otherwise.
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Next we need to assign binary codes to the states and list the state table. This is

shown in the Table.

The table is derived from the state a

diagram (drawn earlier) with a
sequential binary assignment.
So: (00); S;:(01); S,:(10): S5: (11)

Present

Next

State Input State Owutput

B x A B v

O (8] O (8] O O

O (8] 1 (8] 1 O

O 1 O (8] O O

O 1 1 1 O O

1 O O O O O

1 O 1 1 1 O

1 1 O (8] O 1

1 1 1 1 1 1

We can now synthesize a circuit using any flip-flop.

Design using D flip-flop:
Required number of flip-flops:

We will need two D flip-flops to represent the four states (0 to 3). Label their

outputs as ‘A’ and ‘B’.

Number of inputs = 1 ; Number of outputs =1

Characteristic equation:
Qt+1)=

It means that the next-state values in the state table specify.the D input

condition for the flip-flop.
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e ftlip-tlop input equations are obtained directly from
A and B and expressed in sum-of-minterms form.

We have two flip-flops. Present Next

State Input State Output
To write an equation for each A B x A B y

. o0 8] o0 8] 0 0
flip-flop, we look for Next State 0 0 1 0 1 o
(8] 1 O 0] O O
(NS)=1 in the table. © ! 1 ! 0 o
A flip-flop: o o o o 1
NS = 1 for minterms: m;, mg & m,. - - - - 1 1
Therefore, D, = m3+ mg + m,,. By B By B
. . . . . E ’ q 4 ) "_“—‘\

We simplify this input using K-map, AN\ 00 00 11 10 4 0w 0w
as shown : D, = Ax + B x S L R m m m |
B flip-flop: ” 1 0 'l
NS = 1 for minterms: m,, Mg & m-. m, s 1 N m m m m
Therefore, Dg = m; + mg + m,. Aql L1 441 1|1
We simplify this input using K-map

diagram. Dy = Ax + B'x X
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The output, v:
From the state table we see that it is governed by minterms m6 & m7. Simplified

expression for y is obtained using K-map, as shown.

The simplified form for output, yis:y=AB AB"X o ol 1 d P
Mathematically in closed form, we write the flip-flop input , ST L R
Equations & the output equation as: W e e

A(t + 1) = D(A.B.x) = =(3,5.7) 4! L L
B(t + 1) = Dg(A.B,x) = >2(1.5.7) X

v(A.B.x) = 3(6.7)

Where A and B are the present-state values of flip-flops A and B, x is the input,
and DA and DB are the input equations.
The minterms for output y are obtained from the output column in the state

table.

The advantage of designing with D flip-flops is that the Boolean equations describing
the inputs to the flip-flops can be obtained directly from.the state table.
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The schematic for the design is given as:

[ O
[ D

> Clk

o

Clonck

> Tk

[ Yy
L/




Design of Clocked Sequential Circuits
Design using other Tlip-Tlops:

When D -type flip-flops are used, the input equations are obtained directly
from the next state.

This is not the case for the JK and T types of flip-flops. In order to
determine the input equations for these flip-flops, it is necessary to derive
a functional relationship between the state table and the input equations;
thereby making the design process complicated.

Excitation Table:

The flip-flop characteristic tables presented in the Tables below provide the
value of the next state when the inputs and the present state are known.
These tables are useful for analyzing sequential circuits and for defining the
operation of the flip-flops.

Flip-Flop Characteristic Tables

JK Flip-Flop

J K Q(t + 1)

0 0 Q) MNo change

(0] 1 O Reset

1 0 1 Set

1 1 Q"(r) Complement
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Excitation Table:

During the design process, we usually know the transition from the present
state to the next state and wish to find the flip-flop input conditions that will
cause the required transition.

For this reason, we need a table that lists the required inputs for a given change
of state. Such a table is called an excitation table.

The excitation tables for JK flip-flop is shown below:
When both present state and next state are ‘0’,

the ‘J’ input must remain at ‘0’ and the ‘K’ input Q(t) Qt=1) ] K
can be either ‘0" or ‘1". 0 0 0 X
Similarly, when both present state and next state 0 | | X
are ‘1, the ‘K’ input must remain at ‘0’, while the [ 0 X |
‘) input can be ‘0’ or ‘1", l 1 X 0

(a) JK Flip-Flop
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If the flip-flop is to have a transition from the
O-state to the 1-state, Q(t) t=1 | K
J must be =1, since the J input sets the flip-flop.
However, input K may be either O or 1. If K=0, the 0 0 0 X
J =1 condition sets the flip-flop as required; () ] ] X
if K=1andJ =1, the flip-flop is complemented and
goes from the O-state to the 1-state as required. | X
1 X 0

Therefore, the K input is marked with a don’t-care

condition for the 0-to-1 transition.
For a transition from the 1-state to the O-state, we (El) JK FllpFlOp
must have K = 1, since the K input clears the flip-flop.

However, the J input may be either 0 or 1, since J = 0 has no effect and

J =1 together with K=1 complements the flip-flop with a resultant
transition from the 1-state to the O-state.

Therefore, the J input is marked with a don’t-care conditiemsforthe 1=to-0
transition. |
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Excitation Table for T Flip-Flop:
The excitation table for the T flip-flop is shown in (b). Q(t) Q(t=1)
From the characteristic table, we find that when input 0
T =1, the state of the flip-flop is complemented, and 0
I
I

0
l
when T = 0, the state of the flip-flop remains 0
l

unchanged.

Therefore, when the state of the flip-flop must
remain the same, the requirement is that T = 0. (b) T Flip-Flop
When the state of the flip-flop has to be Excitation Table

complemented, T must equal 1. T Flip-Flop

T | Q(t + 1)
0 Q(r) No change
1 Q'(1) Complement

Characteristic Table
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Synthesis using JK Flip Flops: o Qt=1) K
The synthesis procedure for sequential circuits with JK 0 0 0 X
flip-flops is the same as with D flip-flops. 0 1 | X
The only difference being that the input equations for l 0 X 1
the flip-flop are evaluated from the present state to the | 1 X 0
next-state transition. Input equations are derived from (a) JK Flip-Flop
the excitation table of the flip-flop. Excitation Table
Example:

Present Next
We will synthesize a sequential circuit for which the State Input State
state table is as shown: A B X A B
We have 2 flip flops A & B. The inputs are designated 0 0 0 0 0
as i Jy &Ky ; g &Ky, co
15t row: 0 1 1 0 1
Transition for both the flip flops is from ‘0’ to ‘0". From i g ? i ?
The excitation table we see that 1 1 0 1 1

1 1 1 0 0

L, =0&K,=X; Jo = 0 & Ko= X




Design of Clocked Sequential Circuits
Synthesis using JK Flip Flops:

2" row:

‘A’ makes a transition from ‘0" to ‘0":J, =0 & K, =
‘B’ makes a transition from ‘0" to ‘1": J; =1 & Kg=
3" row:

‘A’ makes a transition from ‘0" to ‘1":J, =1 & K,=X
‘B’ makes a transition from ‘1" to ‘0": J; = X & Kg=
4t row:

‘A’ makes a transition from ‘0" to ‘0":J, =0 & K, =X
‘B’ makes a transition from ‘1" to ‘1": J; =X & Kg=
5% row:

‘A’ makes a transition from ‘1" to ‘1":J, =X & K, =
‘B’ makes a transition from ‘0’ to ‘0": J; =0 & Kg=
6t row:

‘A’ makes a transition from ‘1" to ‘1":J, =X & K,=0

‘B’ makes a transition from ‘0’ to ‘1: Jg =1 & Kz = X |

Qf) Qit=1) ) K
0 0 0 X
0 1 1 X
1 0 X 1
1 1 X 0

(a) JK Flip-Flop

Present Next
State Input State
A B X A B
0 0 0 0 0
0 0 1 0 1
0 | 0 | 0
0 | 1 0 1
1 0 0 1 0
1 0 1 1 1
1 | 0 | 1
1 1 1 0 0




Design of Clocked Sequential Circuits

Synthesis using JK Flip Flops:

Q) Q(t=1) ) K
th :

7" row: 0 0 0 X
‘A’ makes a transition from ‘1" to ‘1":J, =X & K,=0 0 1 1 X
‘B’ makes a transition from ‘1" to ‘1": J; =X & Kg=0 | 0 X 1
8th row: | -1 X 0
‘A’ makes a transition from ‘1" to ‘0":J, =X & K, =1 (a) JK Flip-Flop
‘B’ makes a transition from ‘1" to ‘0": J; =X & Kg=1
Flip-Flop Input Table:

_ _ _ . Present Next
Having determined the flip-flop inputs we make a State Input State
table. Flip-Flop Inputs A B X A B

Ja Ka JB Kg 0 0 0 0 0
0 X 0 X 0 0 1 0 1
0 x 1 X 0 1 0 10
é i i é 0 1 1 0 1
< o o < 1 0 0 :1 0
< 0 ] X 1 0 | | 1
x 0 < 0 1 1 0 1 1
X 1 X 1 I I 1 0 0
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Now we make a complete table that includes state table & flip-flop input table.
The flip-flop inputs in the Table specify the State Table and K Fip-Flop Inputs

truth table for the input equations as a function
Present Next

of present state A, present state B, and input x. e Input ~ State  Flip-Flop Inputs

The next-state values are not used during the

=

B X A B lA KA ’3 KB

simplification.
Representation of Flip-Flop Inputs in Sum of VA
product form:

In each column in the table corresponding to
inputs J, & K, ; Jz & Kg; respectively; we look for
the presence of ‘1’ & their corresponding

minterms. We make use of don’t care condition

_ O O D OO

( 00 0 0
( l 0 1 0 | X
1 ( [0 X 1
1 'l 0 1 0 X 0
( 0 1 0 X 0 X
( l I 1 X | X
1 0 I 1 X X 0
1 l 0 0 X X 1

X’ to simplify the input equation.

(contd. ...)
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Ja= A'BXx =m,;

Simplify using K-map & ‘X’ conditions: J, = BX’
Ky= ABx=m,;

Simplify using K-map & ‘X’ conditions: K, = B x
Jg= A'B'x+AB x=m;+m;g;

Simplify using K-map & X’ conditions: J; = x

B B
Bx - Bx A
A 00 01 11 10 A 00 01 11 10
my, my my i, m, m, m, m,
0 1 X X 0] X X 1
i ms My mg Fn4 ,tns m? mﬁ

X
Kp=(A®x)

= =
4

JrB:

Kg= A Bx'+ ABx=m,+m,;

B
Bx A
00 01 11 10
m“ ml ml m2
0 1
m, ms m m
1 X X X X
X
J4 = Bx'
B
Bx A
00 01 11 10
ny m, 1y 1,
0 X X X X
m4 fHS m,? mﬁ
1 1
X
KA = BI

Simplify using K-map & ‘X’ conditions: Ag=(A&x) p=AXx+ A" X
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Logic diagram of the sequential circuit:

Advantage of using JK -type flip-flops:

When sequential circuits are designed
manually, using JK flip flops is an advantage.
The fact that there are so many don’t-care
entries indicates that the combinational
circuit for the input equations is likely to be
simpler, because don’t-care minterms usually
help in obtaining simpler expressions.

If there are unused states in the state table,
there will be additional don’t-care

conditions in the map.

However, D-type flip-flops are more amenable
to an automated design flow.

D Clk

Clock

A
p———— A’
B
—— B
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We will explain the procedure with the help of an example.
Example:
Using T flip-flops design a sequential circuit for a 3-bit binary counter.

An n -bit binary counter consists of n flip-flops that can count in binary from ‘0’
to 2" - 1. A three-bit counter will have, accordingly, 3 flip-flops.

State diagram of a three-bit counter:

We see from the binary states indicated inside the circles f- mh@
that, the flip-flop outputs repeat the binary count / ,x
sequence with a return to ‘000’ after ‘111’ -
We know that state transitions in clocked sequential circuits
are initiated by a clock edge; therefore, the flip-flops

\
remain in their present states if no clock is applied. H f@
The only input to the circuit is the clock, and the outputs

are specified by the present state of the flip-flops.

The next state of a counter depends entirely on its present state,

and the state transition occurs every time the clock goes through a transition.
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State Table:

State Table for Three-it Counter

The state table for a 3-bit binary counter is shown.

The three flip-flops are symbolized by A,, A;, and A,,. Present tate

Binary counters are constructed most efficiently with A,

T flip-flops because of their complement property.
The flip-flop excitation for the T inputs is derived from
the excitation table of the T flip-flop and by
inspection of the state transition of the present

state to the next state.

Input equations for flip-flops:

Taa =ALA A +A AL A, = Mg+ my;

Tar =ALA  A+ALA A+HAA A +HAALA,

=m, + Mg+ mg+ms;

Next State ~~ Flip-Fop Inputs

bbb Ak To Ty Ty
b0 0 00 00 1
/. /N /.
/2 | I 00 1
/. L0 0 I 1]
|00 [0 00 1
L0 L1 /.
|10 |1 )0 |
| | 1 b0 0 I 1|

Tpo = sum of all minterms =1
Minimization of input equations is done using K-map.
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Minimization:

A A A A A ) Ay ﬂ
Az 00 01 11 10 Az 00 01 11 10
my, m, m, ., my, m, iy ity
0 1 0 1 1
my s my myg Mg ms my Mg
Ar< 1 1 . A< 1 1. 1
Au Al:l
T = A1Ay a1 = Ag
A1Ap ) A .
A2 00 01 11 10
My m,y iy L
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Logic diagram:

Ay Ag Ag
Clk Clk Clk
A T A r A
Clock l
{ * 1

For simplicity, the reset signal is not shown, but be aware that every design
should include a reset signal.
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Shift Registers:

> Aregister consists of a group of flip-flops with a common
clock input.

> Registers are commonly used to store and shift binary data.
* Example: Counters

Ol
I
Ol
|
Ol
|
£|3I

Clock

Fig. 4-bit D register



Registers: Types

» Buffer Register.

Bs

Clock—

Fig. 1. 4-bit Buffer register

B1 B, Bs

o K, % b

Da
FF3

‘C(L ‘i}E
Qu Q
Fig. 2. 4-bit Controlled buffer register




Shift Registers:

> A shift register is a register in which binary data can be

stored, and this data can be shifted to the left or right when

a shift signal is applied.




Shift Register: Types

Parallel In Serial Out

Serial In Serial Out Shift Register
Shift Register Parallel input

Serial Serail 1 i} f f

Input  ——> —> Output Serial ‘rail
1010 1010 —3 Output
1001
Serial In Parallel Out Shift Parallel In Parallel
Register Out Shift Register
Parallel input
Serial 1 1 0 1
| f
1n0p0u‘| l 'Jr l l
3%

Parallel Output

IR

1 1 0 1
Parallel Output




Clock

Serial

Input —>

1010

in —

1. Serial In Serial Out Shift Register

Ol

Serail

—— Output

1010

Ol

Ol

—out

Fig. 4-bit serial-in serial-out shift register




1. Serial In Serial Out Shift Register

Y >
l_K Q-

Clock

Fig. 1. JK Flip-flop converted into D-Flip-Flop

. J Q J Q J Q J Q (—Out
v P> Y D> D D

ll_K Q- 1|_K QR K Q- K Q-

Clock
FFO FF1 FF2 FF3
oo J Q J Q J Q J Q —Oout
v —p — —>
K Q K Q K Q K Q-

Clock

Fig. 2. 4-bit serial in serial out shift register usi



1. Serial In Serial Out Shift Register

FFO

FFO

FFO

-——1—-———|—— -

FFO

Fig. 1. A 4-bit shift register operation




Right-Shift Register

. | )
Serial in | Serial out
sn ] D; Qs D, @, Dy ¢ Dy Q> (SO)

> > > >
l— CE ’— CE ( CE ’— CE
Shift 3 . )
Clock

Fig. 1. Flip-flop connections

Clock

s K N[N
I\ |\ | \

Qs |

]
RV

e

r's

i s
S
o I

Fig. 2. Timing diagram

>

el
s



2. Serial In Parallel Out Shift Register

Serial
Input —>
1001
Vvl
1 0 0 1
Parallel Output
Oop O1 O O3
in—D QT DQT DQt ID Q—t
D D D
Q- Q- Q- Q-

Clock

Fig. 4-bit serial-in parallel-out shift register




2. Serial In Parallel Out Shift Register

Q3
o FFO FE1 FE2 FE3 J
PCZ= IbPra DPrRQ DPrQ D PrQ
> > > >
CLR(3 CLRa CLRG CLR6
CLk—4 I CLEAR

Fig. 4-bit serial-in parallel-out shift register



3. Parallel In Serial Out Shift Register

Parallel input

LIl

Serail
» Output
1001

Data in
By
SH/LD
Q, —>Data out
Clock— Qo —
Clear

Figure 1 n-bit Parallel-In Senal-Out Right-5Shift Shift Register



4. Parallel In Parallel Out Shift Register

Parallel input

!

1 1 0 1
Parallel Output
Do D D5 D3
1D PrQ _IDPrRQ 1D PrQ IDPrRQ
— — — —
clrQ clrQ clrRQ clrRQ
CLEAR | |
CLK Qo Qq Qo Q3

Fig. 4-bit parallel-in parallel-out shift register



CARRY LOOK AHEAD ADDER

A simple one-bit full adder

Cout Cin

S
* It takes A, B, and Cin as input and generates S and Cout in 2
gate delays (SOP)




4-bit RCA

A3 B3 A2 B2 Al B1 A0 BO

C4

Carry propagation
forms a long sequentia

wait chain, hence RCA

[s slow!! S3 52 S1 S0
e\Work from lowest bit to highest bit sequentially.
e With AQ, BO, and CO, the lowest bit adder generates SO and

Clin 2 gate delay.
e With A1, B1, and C1 ready, the second bit adder generates S1

and C2 in 2 gate delay.
e Each bit adder has to wait for the lower bit adder to

propagate the carry.




Observations

> The critical component each bit adder waits for is the carry
input.

> Instead of generating and propagating carry bit-by-bit, can
we generate all of them in parallel and break the sequential

chain?

> This is exactly the idea of CLA (carry look-ahead adder).



Carry Look Ahead Logic

> Now even before the carry in (Cin) is available, based on the

inputs (A,B) only, can we say anything about the carry out?

» Under what condition will the bit propagate an outgoing

carry (Cout), if there is an incoming carry (Cin)?

» Under what condition will the bit generate an outgoing carry
(Cout), regardless of whether there is an incoming carry

(Cin)?



1-bit CLA adder

Cin

Pl lg

* |Instead of Cout, an 1-bit CLA adder block takes A, B inputs and

generates p,g

e p=propagator =>| will propagate the Cin to the next bit. p=A+B
(If either Aor Bis 1, Cin=1 causes Cout=1)

e g=generator =>| will generate a Cout independent of what Cinis. g

= AB (If both A and B are 1, Cout=1 for sure)

e p,g are generated in 1 gate delay after we have A,B. Note that Cin'is

not needed to generate p,g.

e Sis generated in 2 gate delay after we get Cin (SOP).



4-bit CLA

e The CLL takes p,g from all 4 bits and CO as input to generate all Cs in
2 gate delay.

e C1=g0+p0CO,

e C2=g1+plg0+plp0CO,

o C3=g2+p281+p2p1g0+p2p1p0cO,
e C4=g3+p3g2+p3p2g1l+p3p2plg0+p3p2p1p0cO (Note: thi
complicated to generate in 2-level SOP repre




4-bit CLA

A3 B3 A2 B2 Al BI A0 BO

»Given A,B’s, all p,g’s are generated in 1 gate delay in parallel.

» Given all p,g’s, all C’s are generated in 2 gate delay in parallel.
»Given all C’s, all S’s are generated in 2 gate delay in parallel.

» Key virtue of CLA: sequential operation in RCA is broken into
parallel operation




ALU function table

® This table shows a sample
function table for an ALU.

® All of the arithmetic operations
have S;=0, and all of the logical
operations have S;=1.

® These are the same functions
we saw when we built our
arithmetic and logic units a few
minutes ago.

® Since our ALU only has 4 logical
operations, we don’t need S,.
The operation done by the logic
unit depends only on S, and S,,

S3

S;

S1

So

Operation

_ = =, =k, OO0 000O0O0O0

X X X X L, O00O0O

_ =, OO0, ~, 00+~ 4~=O00

_- OO O —Lr O, O, O~O0

G=X
G=X+1
G=X+Y
G=X+Y+1
G=X+Y
G=X+Y+1
G=X-1
G=X

G =Xand Y
G=XorY
G=XdY
G=X




A complete ALU circuit

The / and 4 on a line indicate that it’s actually four lines.

C,: Should be
ignored when
"y ok logic operations
an . are performed
%0 (when S3=1).

Cuad

Yl 2 o r/—c Gisthe final ALU

o 1, output.

®\When S3 =0, the
final output comes
from the

. , , , arithmetic unit.
The arithmetic and logic units share eWhen S3 = 1. the

the seiect inputs S1 and SO, but oniy
the arithmetic unit uses S2.

4
4 / > Cout

output comes from
the logic unit.



Multiplier Design: Basic Building Blocks

» Datapath

> Execution units

» Adder, multiplier, divider, shifter, etc.
> Register file and pipeline registers

» Multiplexers, decoders

» Control

> Finite state machines (PLA, ROM, random logic)
» Interconnect

> Switches, arbiters, buses

» Memory

>

Caches (SRAMs), TLBs, DRAMs, buffers



The Binary Multiplication

101010 Multiplicand
X 1011

Multiplier
101010\
1 01010
00 0O0O0O O " Partial products
+ 1 01010

111001110 Result




The Array Multiplier:




Parity Generator / Checker

> Electrical noise in the transmission of binary information can
cause errors. Parity can detect these types of errors.

Parity systems

Odd parity

Even parity

Adds a bit to the binary information

YV V V VY




Parity Generator / Checker

Transmitting
device

(Parity bit)

B 0 .
|
L 2
& 0
D |
|

-

b - - - - o

Receiving
device

Error

~ indicator



Four-bit even- and odd-parity generators

________________

The number
of 1's in

the input
‘ | plus parity

i1s odd.

1

Parity bit Parity bit =1
(even) (odd)




Comparator:

> A comparator is a precision instrument employed to compare
the dimension of a given component with a working
standard (usually slip gauges).

> It thus does not measure the actual dimension but indicate
how much it differs from the basic dimension.



Magnitude Comparator

Data inputs
Az A; Ay Ay By B, By By

NI

I 74HC85
Cascading >§ 4-bit
inputs | la<B ™" magnitude
la-p comparator
, Caxg Ou<p On=g 3
Cutputs
TRUTH TABLE
COMPARING INPUTS CASCADING INPUTS QUTPUTS
A3, By AnBy Av By Ao, By Ia-s Ih<s  la-e OCaze Qa<s  On-g
Ay>Bsy X X X X X X H L L
A;<B; X X X X X X L H L
A3—83 Az‘/ 82 X X X X X H L L
A;=By  Ay<B, X X X X X L H L
Aj=B; Az=Bz  A;>By X X X X H i L
As=By A;=By;  Aq<Bj X X X X L H L
A3=By  A;=B,  A;=B;  Ag>By X X X H L L
A;=B; A,=B,  A;=B,  Ay<By X X X L H L
A3_83 AZ_SZ Al_B1 A{)_BU H L L H L L
A=B; A,=B,  A;=B; Ag=B, L H L L H L
A3=83 A2=Bz A|=B1 AOZBO X X H L L H
Ba=Bs AsmBy  Ay=B; Ag=By L L L H H L

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial



Ring Counter

D D D
p al?p QDE o al®dp al”dp QDE D QDE
D D D
[ [t [E [ [B—
CLK|D; D,|D; Ds|Ds| De @
1|1 o|lo 0|0 0O g:} t::s
2|lo 1/0 o]0 o0 000001 w
310 0|1 0]|0 0
4 0 0| 0 1 0 0 000010 001000
s o o/o of1]o0 Q? o 413‘
6 |lo olo o|o01




Ring Counter

-
D Q, D Q, D Q D Qg
> CLK > CLK > CLK > CLK
CLOCK Q, Q, Q, Qg
=1 Tl
1 5 6 8
CLOCK




Ring Counter

D D D
p al?p QDE o al®dp al”dp QDE D QDE
D D D
[ [t [E [ [B—
CLK|D; D,|D; Ds|Ds| De @
1|1 o|lo 0|0 0O g:} t::s
2|lo 1/0 o]0 o0 000001 w
310 0|1 0]|0 0
4 0 0| 0 1 0 0 000010 001000
s o o/o of1]o0 Q? o 413‘
6 |lo olo o|o01




Ring Counter

D 03 F D Qz ); D O] ’; D Qo _}
? CLK PCLK > CLK > CLK
CLOCK Q, Q, Q, Qg
| il
CLOCK
Q; Q, Q; Qp pulse

1 0 010

Gl 1 0|10 1
0|0 110 2
& 28] B i I N 3
1 OG109010 4
0 1 010 5
0|0 110 6
0 8 PRC0 981 91 0 R | % 7

(c)

(d)




Johnson Counter

> Also known as the twisted-ring counter.

> Same as the ring counter except that the inverted output of

the last FF is connected to the input of the first FF.

» Counting sequence:

000->100->110->111->011->001->000



Johnson Counter

-
D 02 —»— D 01 D 00
> CLK > CLK ESOLK
CLOCK Q, Q Qo
=T ERLTE OV
(a)
1 2 3 4 5 6
CLOCK
Q,
Q,
Qo

(b}




Johnson Counter

CLOCK
Q Q Q pulse
M 55 I Y X 0

—_——-0l00 = - a0
2000 =-—20
OO O0O|—=—==-=00
OO WN =

(c)

(d)




Sequential Circuits

>

>

Latches and flip-flops (FFs) are the basic building blocks of
sequential circuits.

latch: bistable memory device with level sensitive triggering
(no clock), watches all of its inputs continuously and changes
its outputs at any time, independent of a clocking signal.
flip-flop: bistable memory device with edge-triggering (with
clock), samples its inputs, and changes its output only at
times determined by a clocking signal.



Sequential Circuits

&

Combinational

*

Logic Gates

Memory Elements
(Flip-Flops)

]— Outputs




SR Latch







D flip-flop




Flip-Flop Vs. Latch

> The primary difference between a D flip-flop and D latch is
the EN/CLOCK input.

> The flip-flop’s CLOCK input is edge sensitive, meaning the
flip-flop’s output changes on the edge (rising or falling) of the
CLOCK input.

» The latch’s EN input is level sensitive, meaning the latch’s
output changes on the level (high or low) of the EN input



Read-Only Memory (ROM)

2" x b ROM
4 A0
— 1Al DO A
— A2 D1 ——
address { . data
inputs . . ) outputs
- -
An-2 Db—1 /
\ - | F.I'I—'I

»The inputs are called Address inputs and are traditionally
named AQ, Al, ...An-1

»The outputs are called Data outputs and are typically named
DO, D1, ...Db-1




Logic Diagram of simple 8x4 diode ROM

+5V
< < R

-E “Z «Z
e el el el
< < < <
<‘>R <> <> = <>
= 74x138
ROWO_L
am Yo ko Lonien B S
ROW1_L
~iolaea il _ H|GH)¢’§§ )f;f )f;f
5
ooyl ROW2L ok R
ROWS3_L
. Ao 1] 4 va lo 2 L HiGH %%%
2
B ROW4_L
:l :; +2 va o L HiGH oA
ROWS_L
vs I L Low X
ROW®e6_L
ve lo® L HiGH YAt
7 ROW7_L HiGH
Y7 1O )E{ 74HC14
HigH DO_L 4 2
U1 4>— Do ©
Uz
D1_L
Low _L s 4 o1
Uz

D2_L
HIGH _ SODB D2 0
Uz

D3 L
HIGH _ QODE; D3 0
Uz




Al O——

- row storage
- decoder array

POWER POWER
Am—1 O—— ON J_qgm
O |‘v’|
POWER
Am O OMN
Am+1 O column
: multiplexer
An—1 O °
CS L . & =
OE L

Db-1  Db-2 Do



ROM timing

ADDR * stable X stable X stable *
a Zhao . e MAX(1 1y o) [
! \
CS L ] \
-I—IIJ'“L‘—I- - Iﬂ iH =
OE L
DATA vald | | x valid | | * vald X:




Static-RAM Internal Structure

» Each SRAM cell has the same functional behavior in the
SRAM circuit.
» The storage device in each cell is a D-latch.

" — 1IN OUT }—
E L 10 Q@ OUT ¢y SEL
SEL L
WR L i@i ’ —Q R

Static RAM cell




SRAM read timing

ADDR sabl X sebl X sebl k
— 2l — e TNK(Ey oLy o) |-
o | |
1 \
Note: WE_L = HIGH a [yog |l |=-
OF L
— = g |= == lop |- —- IW,J"- —=| g L"-

DOUT valid

. —
T p——
s
=
o
=
.
—
=
_
=
—
—_—— =




SRAM write timing

ADDR

CS_ L

WE_L

DIN

(WE-controlled wrte) (CS-controlled wnte)

stable * stable *

- sy —= = s =—losw—=

- I.ﬁk.r‘; —I--I—J'Wl,—l- IM] - -l—!'w[:—l- IJ'\H -

valid valid







