
PPTS ON
DIGITAL SYSTEM DESIGN

III Semester

Course code AECB07

Academic year 2019-20

Dr. V Vijay
Associate Professor

by

UNIT - I
LOGIC SIMPLIFICATION AND

COMBINATIONAL LOGIC DESIGN

Boolean Algebra

 Boolean algebra is the basic mathematics needed for the study of
the logic design of digital systems

 Its application to switching circuits is of interest

 switching devices are essentially two-state devices (such as a
transistor with high or low output voltage)

 we study the special case of Boolean algebra in which all of the
variables assume only one of two values.

 This two-valued Boolean algebra is often referred to as switching
algebra.

 if X is a Boolean (switching) variable, then either X = 0 or X = 1

 The values ‘0’ & ‘1’ represent two states of a switching circuit

 In a logic gate circuit, ‘0’ (usually) represents a range of low
voltages, and ‘1’ represents a range of high voltages.

4

 In a switch circuit, ‘0’ (usually) represents an open switch, and ‘1’
represents a closed switch.

 In general, ‘0’ and ‘1’ can be used to represent the two states in
any binary-valued system.

Basic Operations:

 The basic operations of Boolean algebra are AND, OR, and
complement (or inverse).

 The complement of ‘0’ is ‘1’, and the complement of ‘1’ is ‘0’.
Symbolically, we write

 0′ = 1 and 1′ = 0

 where the prime (′) denotes complementation. If X is a switching
variable, X′ = 1 if X = 0 & X′ = 0 if X = 1

Boolean Algebra : Basic Operations

5

Inverter:

 The electronic circuit which forms the inverse of X is referred to as
an inverter.

 Symbol: Inverter

 x ° x’ (complement of x)

 where the circle at the output indicates inversion. Inversion is also
called NOT operation . x: High implies x’: Low

 High & Low have to do with voltage levels

 AND Operation: ‘.’ (Boolean Multiplication)

 Z = X.Y : When both inputs are ‘1’ (high) the output

 X Y Z X Y Z is ‘1’ (high), else the output is ‘0’ (Low)

 0 0 0 1 0 0 X

 0 1 0 1 1 1 Y Z

Boolean Algebra : Basic Operations

6

The OR Operation: ‘+’ (Boolean Addition)

Defined as C = A + B

 A B C A C

 0 0 0 B

 0 1 1 If one of the two inputs A or B is ‘1’ (High)

 1 0 1 the output is ‘1’ (High).

 1 1 1 If both the inputs are ‘1’ (High) the output is ‘1’

 If both inputs are ‘0’ (Low) the output is ‘0’ (Low)

AND Operation: Two Switches in Cascade

 X S₁ Y S₂ Z = X.Y

 OR Operation: Two Switches in Parallel

 A C = A + B

 B

Boolean Algebra : Basic Operations

7

Boolean Expression:

 One or more variables can be combined in a certain way to yield a
Boolean expression that serves the desired purpose.

Examples:

 A.B’ + C; (A+D)’.C + B.D.E

 Generally ‘.’ is not explicit in a term like ABC; it is understood to be
AND operation; ‘+’ implies OR operation and ‘ implies NOT
(Inversion/Complementation) operation

 The Boolean expressions are synthesized using basic gates like
AND OR & NOT.

 NAND Gate is obtained as NOT[AND] NOT(A.B) (A.B)

 NOR Gate is obtained as NOT[OR] NOT(A+B) (A+B)

Boolean Expressions & Truth Tables

8

Boolean Expression Realization with Gates:

Examples: Y = AB’ + C in Figure as shown below

 C

 Y

 B B’ (OR)

 (NOT) A

 (AND)

 Y = [A(C + D)]′ + BE in Figure as shown below

Boolean Expressions & Truth Tables

9

Truth Table:

 It specifies the values of a Boolean expression for every possible
combination of values of its variables.

Example:

 Consider a Boolean expression: F = A’ + B

 Its Truth Table is shown below:

Boolean Expressions & Truth Tables

10

 We will now tabulate Truth table for some functions. We do this
for n=3; that is we have 3 bits corresponding to 3 variables.

 The number of combinations = N = 2³ = 8

 The table is shown below:

 The table has functions like NOT OR AND & their combinations

Boolean Expressions & Truth Tables

11

 The following basic laws and theorems of Boolean algebra involve
only a single variable:

1. Operations with ‘0’ and ‘1’:

 X + 0 = X X . 1 = X

 X + 1 = 1 X . 0 = 0

 (OR Function) (AND Function)

2. Idempotent Laws:

 X + X = X X . X = X

3. Involution Law:

 (X’)’ = X

4. Laws of Complementarities:

 X + X’ = 1 X . X’ = 0

Boolean Algebra Basic Theorems

12

Boolean Algebra Laws

Commutative Associate and Distributive Laws:

The commutative laws for AND & OR Gates:

 XY = YX X+Y = Y+X

 (AND Gate) (OR Gate)

The associative laws for AND & OR Gates:

 (XY)Z = X(YZ) = XYZ (AND GATE)

 (X + Y) + Z = X + (Y + Z) = X + Y + Z (OR Gate)

 Thus we conclude that while forming the AND (OR) of three
variables, the result is independent of which pair of variables we
consider first

13

Distributive Laws:

 X(Y + Z) = XY + XZ …….. 1

 X + YZ = (X + Y)(X + Z) ………. 2

Proof for (2):

 (X + Y)(X + Z) = XX + XZ + YX + YZ

 = X + XZ + XY + YZ (ANDing of X & X yields X)

 = X.1 + XZ + XY +YZ (ANDing of X with 1 = X)

 = X(1 + Z + Y) + YZ (ORing 1 with (Z OR Y) = 1)

 = X.1 + YZ (ANDing X with 1 = X)

 = X + YZ

 This second law is very useful in manipulating Boolean
expressions. It cannot be factored in ordinary algebra.

Boolean Algebra Laws

14

1. XY + XY′ = X

Proof:

 XY + XY’ = X(Y + Y’) = X ; as Y OR Y’ = 1

2. X + XY = X

Proof:

 X + XY = X(1 + Y) = X ; as ‘1’ OR ‘Y’ = 1

3. (X + Y’)Y = XY

 Proof:

 (X + Y’) Y = XY + Y’Y = XY ; as Y’ AND Y = 0

4. (X + Y)(X + Y’) = X

 Proof:

 (X + Y)(X + Y’) = XX + XY’ + YX + YY’= X + X(Y’ + Y) = X + X = X

Boolean Algebra Simplification Theorems

15

5. X(X + Y) = X

Proof:

 X(X + Y) = XX + XY = X + XY = X(1+Y) = X

6. XY’ + Y = X + Y

Proof:

 XY’ + Y = (Y + X)(Y + Y’) = YY + YY’ + XY + XY’

 = Y + 0 + X(Y + Y’) = Y + X

Usefulness of Simplification:

 Consider a function F = A(A’ + B)

Realization without Simplification: With Simplification

 (Reduction in number of Gates)

 F = AB

Boolean Algebra Simplification Theorems

16

1. Simplify

 Z = [A + B’C + D + EF][A + B’C +(D + EF)’]

First step: Look for similarity of expressions in two factors.

We observe that we can let

 Y = A + B’C X = D + EF

 Z = [Y + X][Y + X’] = YY + YX’ + XY + XX’

 = Y + YX’ +XY + 0

 = Y + Y (X + X’) = Y+Y = Y

Therefore Z = A + BC’

Boolean Expression Simplification Examples

17

2. Simplify:

 Z = (AB + C)(B’D + C’E’) + (AB + C)’

We let Y = (AB + C)’ & X = B’D + C’E’ to get the familiar form

 Z = Y’ X + Y = X + Y (by theorem)

 Therefore,

 Z = B’D + C’E’ + (AB + C)’

 is the simplified version.

Application of Second Distributive Law for simplifying Product terms:

 The law is : (X+Y)(X+Z) = X + YZ

Example:

 Multiply out (A + BC)(A+D+E) ; Let BC = Y & D+E = Z ; A = X

 to get (X + Y)(X + Z) = X +YZ = A + BC(D+E)

Boolean Expression Simplification Examples

18

Factorization using Second Distributive Law:

1. Factorize A + B’CD (Sum of Products)

 Let X = A; B’ = Y & CD = Z

 A + B’CD = X + Y Z = (X+Y)(X+Z)

 = (A + B’)(A + CD)

2. Factorize AB’ + C’D using 2nd distributive law

 Let AB’ = X & C’ = Y , D = Z

 AB’ + C’D = X + YZ = (X+Y)(X+Z)

 = (AB’+ Y)(AB’ + Z)

 = (Y + A)(Y + B’)(A + Z)(Z + B’)

 = (C’ + A)(C’+B’)(A + D)(D+B’)

 Factorized function is a Product of Sums function

Boolean Expression Simplification Examples

19

3. Factorize:

 C’D + C’E’ + G’ H (Sum of Products)

 = C’(D + E’) + G’H ; Let G’H = X ; C’ = Y & (D+E’) = Z

 = Y Z + X

 = (X + Y) (X+ Z)

 = (G’H + C’)(G’H + (D+E’))

 = (C’ + G’)(C’ + H) [(D+E’) + G’][(D+E’) + H]

 = (C’ + G’)(C’ + H)(D + E’ + G’)(D + E’ + H)

 is the factorize form (Product of Sums expression) .

Boolean Expression Simplification Examples

20

4. Factorize

 C′D + C′E′ + G′H (Sum of products expression)

 = C’(D+E) +G’H

 Let X = G’H Y = C’ Z = D+E

We get the expression in X + YZ form which can be factorized as

 (X+Y)(X+Z)

Therefore,

 C’(D+E) +G’H = (G’H + C’) (G’H + D + E)

 Now, (G’H + C’) = (C’ + G’)(C’ + H) , &

 (G’H + D + E) = (D + E + G’)(D+E+H)

 Therefore, we get Product of Sums expression

 C’(D+E) + G’H = (C’ + G’)(C’ + H) (D + E + G’)(D+E+H)

Boolean Expression Simplification Examples

21

Realization of Functions with Gates

Sum of Products Expression:

 It is realizable directly by one or more AND gates feeding a single
OR gate at the circuit output.

Product of Sums Expression:

 It is realizable directly by one or more OR gates feeding a single
AND gate at the circuit output.

 Let F = AB′ + CD′E + AC′E′ Let F = (A +B′)(C+ D′ + E)(A + C′ + E′)

 F

22

De Morgan’s Laws

 De Morgan’s laws are applied to determine complement (inverse)
of a Boolean function.

The Law’s state that (for a 2 variable function)

 (X + Y)’ = X’ Y’ (complement of sum = product of complements)

 (XY)’ = X’ + Y’ (complement of product = sum of complements)

Extending to ‘N’ number of variables we have,

 (X₁ + X₂ + X₃ . . . + Xn)′ = X₁′ X₂′ X₃′ . . . Xn′

 (X₁ X₂ X₃ . . . Xn)′ = X₁′ + X₂′ + X₃′ . . . + Xn′

Verification using Truth table

 23

De Morgan’s Laws: Applications

Example 1:

Find the complement of F = (A′ + B)C′

 F’ = [(A’+B)C’]’ (this is complement of products)

Now according to the Law:

 complement of products = sum of complements , &

 complement of sums = product of complements

 Therefore, F’ = (A’ + B)’ + (C’)’

 = (A’)’ (B)’ + (C’)’

 F’ = A B’ + C

Example 2: Find the complement of (AB′ + C)D′ + E

 F’ = [(AB′ + C)D′ + E]′

 F’ = [(AB′ + C)D′]’ E’ = [(AB′ + C)′ + D]E′ (Contd...)

24

 F’ = [(AB′ + C)′ + D]E′

 = [(AB′)′C′ + D]E′

 F’ = [(A′ + B)C′ + D]E′

Example 3: Determine complement of F = A′B + AB′

 F′ = (A′B + AB′)′

 = (A′B)′(AB′)′

 = (A + B′)(A′ + B)

 = AA′ + AB + B′A′ + BB′ = A′B′ + AB

Verification using Truth table:

De Morgan’s Laws: Applications

25

Dual of a Boolean Expression

Given a Boolean expression,

 the dual is formed by replacing

 AND with OR,OR with AND

 ‘0’ with ‘1’, and ‘1’ with ‘0’

 Variables and complements are left unchanged

 dual of AND is OR and the dual of OR is AND

 (XYZ . . .) ͩ = X + Y + Z . . . ; superscript ‘d’ implies dual

 (X + Y + Z . . .) ͩ = XYZ . . .

 The dual of an expression may be found by complementing the
entire expression and then complementing each individual
variable.

 Dual of AB′ +C = (AB′ + C)′ = (AB′)′C′ = (A′ + B)C′,

 Therefore, (AB′ + C) ͩ = (A + B′)C
26

Laws and theorems of Boolean algebra in dual pairs

Laws and theorems of Boolean algebra listed in dual pairs

27

(Continued …..)

Laws and theorems of Boolean algebra in dual pairs

28

Useful Distributive Law Theorem

We know two distributive laws as

 X(Y + Z) = XY + XZ ; (X + Y)(X + Z) = X + YZ

 There is another distributive law (theorem) quite useful for
simplifying expressions. It can be applied when there are two
terms, one which contains a variable and another which contains
its complement.

 (X + Y)(X’ + Z) = XZ + X’Y ….. (1)

 We observe that the variable that is paired with X on one side of
the equation is paired with X’ on the other side, and vice versa.

Example: Factorize AB + A’C

 Since in this expression one term has ‘A’ & other has A΄ we can
use (1) to factorize it. We get

 AB + A΄C = (A+C)(A΄+B)

 29

Example 1:

(Q + AB΄)(C΄D + Q΄) = QC΄D + Q΄AB΄

 In the LHS, we have Q & in the RHS we have Q΄. Therefore Q will
combine with C΄D & Q΄ will combine with AB΄.

 Using the theorem It is easier to simplify the expression on the LHS
than to expand it in Sum of Products form for further
simplification. It is not easy to simplify a term like AB΄C΄D.

 Example 2:

 F = AC + A΄BD΄ + A΄BE + A΄C΄DE

 = AC + A΄(BD΄ + BE + C΄DE) ; Apply theorem to get

 = (A + BD΄ + BE + C΄DE)(C + A΄) = [(A+C΄DE) + B(D΄+E)](C + A΄);

Let X = A+C΄DE; Y = B ; Z = D΄+ E & apply distributive law to get

 F = (A+B+C΄DE)(A+C΄DE+D΄+E)(C+A΄)

 (continued …)

Useful Distributive Law Theorem

30

 F = (A+B+C΄DE)(A+C΄DE+D΄+E)(C+A΄)

Let us simplify it term wise:

(A+B+C΄DE) = (A+B+C΄)(A+B+DE) = (A+B+C΄) (A+B+D)(A+B+E) … 1

(A+C΄DE+D΄+E) = (A+E+D΄+C΄)(A+E+D΄+DE)=(A+E+D΄+C΄)(A+D΄+E)..2

Let A+D΄+E = X

 (A+E+D΄+C΄)(A+D΄+E) = (X + C΄)(X) = X.X + C΄.X = X(1+C΄) = X

 = A+D΄+E ……. 3

Therefore from 1 & 3, we have

 F = (A+B+C΄) (A+B+D)(A+B+E)(A+D΄+E)(C+A΄)

Useful Distributive Law Theorem

31

Minterm (Maxterm)/Standard Product(Sum)

 A binary variable may appear either in its normal form (X) or in its
complement form (X΄)

 Consider two binary variables X and Y combined with an AND
operation

 Since each variable may appear in either form, there are four
possible combinations:

 X΄ Y΄ , X΄ Y, X Y΄ , and X Y ….. (1)

 Each of the terms in (1) is called a minterm or standard product.

 n variables can be combined to form 2ᵑ minterms

 In a similar fashion,

 n variables forming an OR term, with each variable being primed
or un-primed

 provide 2ᵑ possible combinations, called maxterms, or standard
sums

 The binary numbers from 0 to 2ᵑ - 1 are listed under the n(=3) variables.
32

 Each minterm is obtained from an AND term of the n variables

 each variable being primed if the corresponding bit of the binary
number is a ‘0’ and un-primed if a ‘1’

 each maxterm is obtained from an OR term of the n variables,

 each variable being un-primed if the corresponding bit is a ‘0’ and
primed if a ‘1’

 each maxterm is the complement of its corresponding minterm
and vice versa

 SEE TABLE 1 in the next slide

Determination of Boolean function from a Truth Table:

 A Boolean function can be expressed algebraically from a given
truth table by forming a minterm for each combination of the
variables that produces a ‘1’ in the function and then taking the
OR of all those terms (See Table 2)

Minterm (Maxterm)/Standard Product(Sum)

33

 The eight minterms/maxterms for three variables, together with
their symbolic designations, are listed in the Table 1 below

Minterm (Maxterm)/Standard Product(Sum)

34

Let us consider the table as shown. Table 2

 F₁ = m₁ +m₄+m₇
 F₂ = m₃ +m₅ +m₆
 + m₇

F

F₁ = 1 for { 001 100 111} ; F₂ = 1 for { 011 101 110 111}
Therefore, F₁ = X΄YZ + XY΄Z΄+ XYZ & F₂ = X΄YZ + XY΄Z + XYZ΄+ XYZ
F₁ & F₂ are expressed in Sum of Products Form (each product term is a minterm)
 Thus any Boolean function can be expressed as a sum of minterms

Minterm (Maxterm)/Standard Product(Sum)

35

Now consider the complement of a Boolean function.

 Complement may be read from the truth table by forming a
minterm for each combination that produces a ‘0’ in the function
and then ORing those terms.

 F₁΄ = X΄Y΄Z΄+ X΄YZ΄+ X΄YZ

 + XY΄Z + XYZ΄

 F₂΄ = X΄Y΄Z΄+ X΄Y΄Z +X΄YZ΄

 +XY΄Z΄

 Take complement of F₁ &

 F₂ (Continued…)

Minterm (Maxterm)/Standard Product(Sum)

36

F₁΄ = X΄Y΄Z΄+ X΄YZ΄+ X΄YZ + XY΄Z + XYZ΄

F₂΄ = X΄Y΄Z΄+ X΄Y΄Z +X΄YZ΄+ XY΄Z΄

Take complement of F₁ & F₂

F₁ = (X+Y+Z)(X+Y΄+Z)(X+Y΄+Z΄)(X΄+Y+Z΄)(X΄+Y΄+Z) =MₒM₂M₃M₅M₆

F₂ = (X+Y+Z)(X+Y+Z΄)(X+Y΄+Z)(X΄+Y+Z) = MₒM₁M₂M₄

 Thus Any Boolean function can be expressed as a product of
maxterms (with “product” meaning the ANDing of terms)

 Boolean functions expressed as a sum of minterms or product of
maxterms are said to be in canonical form .

Minterm (Maxterm)/Standard Product(Sum)

37

Sum of Minterms:

 It is sometimes convenient to express a Boolean function in its
sum‐of‐minterms form

 If the function is not in this form, it can be made so by first
expanding the expression into a sum of AND terms.

 Each term is then inspected to see if it contains all the variables.

 If it misses one or more variables, it is ANDed with an expression
such as x + x, where x is one of the missing variables.

Example:

Express the Boolean function F = A + B΄C as a sum of minterms

 The function has three variables: A, B, and C.

 The first term A is missing two variables; therefore,

 (Continued ..)

Minterm (Maxterm)/Standard Product(Sum)

38

Minterm (Maxterm)/Standard Product(Sum)

39

Minterm/Maxterm Form & Conversion

Notation for Sum of Minterm Form:

 it is sometimes convenient to express the function in the
following brief notation:

 The summation symbol Σ stands for the ORing of terms;

 the numbers following it are the indices of the minterms of the
function.

 The letters in parentheses following F form a list of the variables
in the order taken when the minterm is converted to an AND
term

For example,

 40

 We studied the procedure for determining the minterms of such a
Boolean function in which all the terms do not contain all the
literals. We will now explore an alternative method for doing the
same.

 Let us consider the same function ; F = A + B΄C

Alternative Procedure:

 Obtain the truth table of the function directly from the algebraic
expression and

 then read the minterms from the truth table.

 We will first form the Truth table for the given function

 (continued …)

Minterm/Maxterm Form & Conversion

41

 From the truth table, we can then read the five minterms of the
function to be 1, 4, 5, 6, and 7.

Minterm/Maxterm Form & Conversion

42

Product of Maxterms:

 To express a Boolean function as a product of maxterms,

 it must first be brought into a form of OR terms.

 This may be done by using the distributive law,

 x + y z = (x + y)(x + z). Then any missing variable x in each OR term
is ORed with xx΄

Example:

Express the Boolean function F = x y + x΄z as a product of maxterms.

 First, convert the function into OR terms by using the distributive
law: Law used is a + b c = (a + b)(a + c)

1st step: a=x y b = x΄ c = z; 2nd step: a = x΄& z b = x c = y (contd ..)

Minterm/Maxterm Form & Conversion

43

 The function, F, has three variables: x, y, and z. Each OR term is
missing one variable;

 F = (x΄ + y)(x + z)(y + z)

Therefore we add

 z z΄ to first factor ; y y΄ to second factor ; x x΄ to third factor &
use the law a +b c = (a + b)(a + c)

 (x΄ + y + z z΄) = (x΄ + y + z)(x΄ + y + z΄); a = x΄ + y , b = z, c = z΄

 (x + z + y y΄) = (x + z + y) (x + z + y΄)

 (y + z + x x΄) = (y + z + x) (y + z + x΄)

 Combining all the terms and removing those which appear more
than once, we finally obtain

 F = (x΄ + y + z) (x΄ + y + z΄) (x + z + y) (x + z + y΄)

 Next we find input combinations for which F = 0 (contd…)

Minterm/Maxterm Form & Conversion

44

F = (x΄ + y + z) (x΄ + y + z΄) (x + z + y) (x + z + y΄)

For F to attain a ‘0’ value,

 first term : x = 1 y = 0 z = 0 ; input sequence:100 (4)

 second term : x = 1 y = 0 z = 1 ; input sequence: 101 (5)

 third term: x = 0 y = 0 z = 0 ; input sequence: 000 (0)

 fourth term : x = 0 y = 1 z = 0 ; input sequence: 010 (2)

Therefore Maxterms are : Mₒ M₂ M₄ M₅

F = Mₒ M₂ M₄ M₅ = (x + z + y) (x + z + y΄) (x΄ + y + z) (x΄ + y + z΄)

 A convenient way to express this function is as follows:

 The product symbol, ∏, denotes the ANDing of maxterms; the
numbers are the indices of the maxterms of the function.

Minterm/Maxterm Form & Conversion

45

Conversion between Canonical forms:

 The original function is expressed by those minterms which make
the function equal to 1, whereas its complement is a 1 for those
minterms for which the function is a 0.

 Therefore,

 The complement of a function expressed as the sum of
minterms equals the sum of minterms missing from the original
function.

 As an example, consider the function

 This function has a complement that can be expressed as

 Now, if we take the complement of F΄ by De Morgan’s theorem,
we obtain F in a different form:

 Conversion between Canonical Forms

46

We obtain function F as:

 where mₒ m₂ m₃ are the product terms (minterms) & therefore

 Mₒ M₂ M₃ (maxterms) are sum terms.

Therefore we can say that

 That is, the maxterm with subscript ‘j ‘is a complement of the
minterm with the same subscript ‘j ‘and vice versa.

General conversion procedure:

 To convert from one canonical form to another, interchange the
symbols and list those numbers missing from the original form.

 In order to find the missing terms, one must realize that the total
number of minterms or maxterms is 2n, where n is the number of
binary variables in the function.

 Conversion between Canonical Forms

47

 Conversion of a Boolean algebraic expression to a product of
maxterms:

 This is done by means of a truth table and the canonical
conversion procedure.

Example:

 Consider the Boolean expression F = x y + x΄z

Procedure:

 Derive the truth table of the function

 The 1’s under F in the table are determined from the combination
of the variables for which x y = 11 or x z = 01.

 The minterms of the function are read from the truth table

 Express function as sum of minterms

 Conversion between Canonical Forms

1. Truth table for the given function:

2. Minterms (F = 1) are read from the table to be 1, 3, 6, & 7

3. Express F as a sum of minterms, as

4. (contd..)

 Conversion between Canonical Forms

49

• determine the missing terms in the expression for F

• the missing terms are 0, 2, 4 & 5

• express the function as product of maxterms

• the function is

 Conversion between Canonical Forms

50

 We have seen that the canonical forms of Boolean algebra are
obtained from the truth table.

 These forms generally do not contain the least number of literals,
because each minterm or maxterm contains, by definition, all the
variables, either complemented or un-complemented.

Standard Form:

 In this configuration the terms that form the function may
contain one, two, or any number of literals.

 There are two types of standard forms:

 the sum of products

 products of sums.

Realization of Standard Forms

51

Two Level Implementation:

 In this implementation,

 It is assumed that the input variables are directly available in
their complements, so inverters are not included in the diagram.

Realization of Standard Forms

52

 A Boolean function may be expressed in a nonstandard form.

 For example, the function F₃ = AB + C(D + E) is neither in
sum‐of‐products nor in product‐of‐sums form.

 It can be changed to a standard form by using the distributive law
to remove the parentheses:

 F3 = AB + C(D + E) = AB + CD + CE

Implementation: Two & Three Level

Realization of Standard Forms

53

 In general, a two‐level implementation is preferred because it
produces the least amount of delay through the gates when the
signal propagates from the inputs to the output. However, the
number of inputs to a given gate might not be practical.

Realization of Standard Forms

54

Positive & Negative Logic

 The binary signal at the inputs and outputs of any gate has one of two
values, except during transition.

 One signal value represents logic ‘1’ and the other logic ‘0’.
 Since two signal values are assigned to two logic values, there exist two

different assignments of signal level to logic value as shown.
The higher signal level is designated by H and
the lower signal level by L.
Choosing the high‐level H to represent logic 1
 defines a positive logic system.
Choosing the low‐level L to represent logic 1
defines a negative logic system.
The terms positive and negative are somewhat
misleading, since both signals may be positive
 or both may be negative.
 It is not the actual values of the signals that determine the type of logic,

but rather the assignment of logic values to the relative amplitudes of
the two signal levels.

55

 Hardware digital gates are defined in terms of signal values such
as H and L. It is up to the user to decide on a positive or negative
logic polarity.

Example:

Suppose we are given a digital gate with

associated truth table as shown.

If we associate ‘0’ with ‘L’ & ‘1’ with ‘H’

It becomes an AND Gate (positive logic).

If we associate ‘1’ with ‘L’ & ‘0’ with ‘H’

It becomes OR Gate (negative logic).

Thus, the same physical gate can

operate either as a positive‐logic AND

 gate or as a negative‐logic OR gate.

Positive & Negative Logic

56

 The conversion from positive logic to negative logic and vice versa
is essentially an operation that changes 1’s to 0’s and 0’s to 1’s in
both the inputs and the output of a gate.

 Since this operation produces the dual of a function, the change of
all terminals from one polarity to the other results in taking the
dual of the function.

 The upshot is that all AND operations are converted to OR
operations (or graphic symbols) and vice versa.

 In addition, one must not forget to include the polarity‐indicator
triangle in the graphic symbols when negative logic is assumed.

Positive & Negative Logic

57

UNIT - II
 MSI DEVICES

Introduction

Gate-level minimization:

 It is the design task of finding an optimal gate-level
implementation of the Boolean functions describing a digital
circuit.

 Logic gates (of different types) combine in a certain way to
synthesize a Boolean function.

 The complexity of the digital circuit is directly related to the
complexity of the algebraic expression that defines a given
function.

 The truth table representation of a function is unique, but the
function itself is representable in many different, but equivalent,
forms.

 For minimizing the number of gates employed to synthesize a
function, the function representation is simplified to the extent
possible.

59

 Simplification Methods for Boolean Functions

 We will discuss two methods which are used for simplification of
Boolean functions. Before synthesizing a given function with
gates, it is simplified to minimize requirement of number of gates.

 The two methods are:

 Karnaugh Map Method , &

 Quine- Mc Clusky Method

 Karnaugh Method (K Method):

 A K-map is a diagram made up of squares,

 with each square representing one minterm of the function that
is to be minimized

 any Boolean function can be expressed as a sum of minterms

 K-map is filled with the minterms

60

 The simplified expressions produced by the map are always in
one of the two standard forms:

 sum of products or product of sums.

 simplest algebraic expression is defined as the one with a
minimum number of terms, and

 with the smallest possible number of literals in each term.

 simplest expression produces a circuit diagram

 with a minimum number of gates and

 the minimum number of inputs to each gate.

 the simplest expression is not unique

 It is sometimes possible to find two or more expressions that
satisfy the minimization criteria.

 In that case, either solution is satisfactory

 Simplification Methods for Boolean Functions

61

Two-Variable K-Map:

1. only two variables x & y form Boolean function: n = 2

2. number of states: 00 01 10 11 = 2ᵑ = 2²

3. number of squares in K-map = number of states = 4

4. minterms: mₒ = 00 = x΄ y΄ m₁ = 01 = x΄ y m₂ = 10 = x y΄
 m₃ = 11 = x y

The Map:

 Whichever minterms are present

 in a function their corresponding

 squares are filled with ‘1’

 Simplification Methods for Boolean Functions

62

K-map for AND & OR Function:

The truth tables for AND & OR functions are :

 We pick up such minterms for which F = 1

 F = x y

 AND Gate

 F = x΄ y + x y΄ + x y

 OR Gate

 F = x + y

 Simplification Methods for Boolean Functions

63

Importance of Simplification:

For OR gate the Boolean function is given by

 F = x΄ y + x y΄ + x y

If we synthesize this function we would need

 1. 3 AND Gates

 2. Either 3 input OR Gate – 1 number, or

 2 input OR Gate (with 2 inputs)

 We try to simplify F for achieving reduction in number of gates.

 First we will try to simplify F directly as illustrated:

 F = x΄ y + x y΄ + x y = x(y + y΄) + x΄y = x + x΄y= (x + x΄)(x + y)

 F = x + y

 Synthesizing this function will need 1 OR gate only. Number of gates
have been reduced.

 Simplification Methods for Boolean Functions

64

 Now let us see how using K-map yields reduction in usage of gates
for synthesizing function F.

The K-map Is reproduced here:

 m₂ (1 0) can be combined with m₃ (1 1)

 x y΄ + x y = x

 m₃ (1 1) can be combined with m₁ (0 1)

 x y + x΄y = y

Therefore,

 F = x + y = x OR y

 Thus we need only one OR gate to synthesize F

 We see that K-maps help us in achieving maximum simplification

 x F

 y

 Simplification Methods for Boolean Functions

65

 Gate Reduction: Karnaugh Map Method

Three Variable K-Map:

1. 3 variables : x y z (n=3)

2. number of minterms = 2³ = 8

3. minterms: 000 001 010 011 100 101 110 111

4. minterms (in literals) : x΄y΄z΄(mₒ) x΄y΄z (m₁) x΄y z΄ (m₂) x΄y z (m₃)
 x y΄z΄(m₄) x y΄z(m₅) x y z΄(m₆)΄ x y z(m₇)

The 3 variable K-map:

It has 2 rows & 4 columns .

2 rows correspond to 2 states of x:(0 1)

4 columns correspond to 4 states that

‘y z’ can assume (2² = 4)

66

3 Variable K-Map:

If we combine 2nd row minterms we get

binary variable ‘x’

If we combine minterms of 2nd & 3rd

columns we get binary variable ‘z’

 If we combine minterms of 3rd & 4th columns we get binary
variable ‘y’

Usefulness of Maps in simplifying Boolean Functions:

The basic property possessed by adjacent squares:

 Any two adjacent squares in the map differ by only one variable,
which is primed in one square and un-primed in the other.

 it follows that the sum of two minterms in adjacent squares can be
simplified to a single product term consisting of only two literals.

 e.g. m₅ + m₄ = x y΄z + x y΄z΄ = x y΄

 Gate Reduction: Karnaugh Map Method

67

 Thus, any two minterms in adjacent squares (vertically or
horizontally, but not diagonally, adjacent) that are ORed together
will cause a removal of the dissimilar variable.

Example1:

Simplify the Boolean Function

Procedure:

Mark each minterm square that represents the function with ‘1’

This is shown in the K-map in which

 the squares for minterms

 010, 011, 100, and 101 are marked

with 1’s.

The next step is to find the possible

adjacent squares. Adjacent squares

 are shown by shaded areas.

 Gate Reduction: Karnaugh Map Method

68

Adding m₄ to m₅ yields x y΄

Adding m₃ to m₂ yields x΄y

 The sum of four minterms can be replaced by a sum of only two
product terms.

 The logical sum of these two product terms gives the simplified

 expression F = x y΄ + x΄y

 In certain cases, two squares in the map are considered to be
adjacent even though they do not touch each other.

 In the figure mₒ , m₂ & m₄, m₆ are

 adjacent because their minterms

 differ by only one variable & can

 combined for simplification

 purpose

 Gate Reduction: Karnaugh Map Method

69

For the Boolean function

F = A΄C + A΄B + AB΄C + BC

(a) Express this function as a sum of minterms.

(b) Find the minimal sum-of-products expression.

Solution:

Sum of Minterms:

 It is a canonical form in which the product terms have all the
literals corresponding to the number of binary variables.

 F is in standard form. Conversion to canonical form is as follows.

 A΄C = A΄BC + A΄B΄C ; B + B΄ = 1

 A΄B = A΄BC + A΄BC΄ ; C + C΄ = 1

 BC = ABC + A΄BC ; A + A΄ = 1 (contd …)

 Gate Reduction: Karnaugh Map Method

70

We write F as

 F = A΄BC + A΄B΄C + A΄BC + A΄BC΄+ ABC + A΄BC + AB΄C

We see A΄BC repeated in F. Reducible to one term as shown

 A΄BC + A΄BC + A΄BC = A΄BC (OR operation)

Therefore,

 F = A΄BC + A΄B΄C + A΄BC΄+ ABC + AB΄C is the sum of minterms

 F = 011 + 001 + 010 + 111 + 101

 F = m₃ + m₁ + m₂ + m₇ + m₅

The function, F, can be expressed in sum-of-minterms form as

 (continued …)

 Gate Reduction: Karnaugh Map Method

71

Minimal Sum of Products Expression:

We make use of K-map to obtain minimal sum of products form.

Corresponding to minterms of F fill up squares with ‘1’ as shown:

We can combine:

 m₁ with m₅ to get B΄C

 m₃ with m₇ to get BC

 m₃ with m₂ to get A΄B

Therefore,

 F = B΄C + BC + A΄B = C + A΄B

 Gate Reduction: Karnaugh Map Method

72

Simplify the given function:

Solution:

The minterms are : m₁ m₂ m₃ m₄ m₅ m₇

Fill the K-map as shown:

Combine :

 m₄ with m₅ yields x y΄

 m₂ with m₃ yields x΄y

m₁ with m₅ & m₃ with m₇ yields z

The reduced function is:

 F = x y΄+ x΄y + z

 Gate Reduction: Karnaugh Map Method

73

4 Variable K-Map:

 Gate Reduction: Karnaugh Map Method

74

 The combination of adjacent squares that is useful during the
simplification process is easily determined from inspection of the
four-variable map:

• One square represents one minterm, giving a term with four
literals.

 Two adjacent squares represent a term with three literals.

 Four adjacent squares represent a term with two literals.

 Eight adjacent squares represent a term with one literal.

 Sixteen adjacent squares produce a function that is always = to‘1’.

 No other combination of squares can simplify the function.

 Gate Reduction: Karnaugh Map Method

75

Example:

Simplify the function:

1. Combine 1st column with

 2nd column to yield y΄

2. Combine mₒ with m₂ to

 yield w΄x΄z΄

3. Combine m₄ with m₆ to

 yield w΄x z΄

 Combine 2 & 3 to get w΄z΄

4. Combine m₁₂ with m₁₄ to

 yield w x z΄

Combine 4&3 to get x z΄

The simplified F = y΄+ w΄z΄+ x z΄

 Gate Reduction: Karnaugh Map Method

76

Simplify the Boolean function

F is in standard form

Convert in to

canonical form .

Therefore,

1st term: 0000+0001

 i.e. mₒ & m₁

2nd term: 0010+1010

i.e. m₂ & m₁₆

4th term:1000 + 1001

i.e. m₈ & m₉

3rd term: 0110: m₆

 Gate Reduction: Karnaugh Map Method

77

Step 1: combine mₒ with m₁ to yield A΄B΄C΄

Step 2 : combine m₈ with m₉ to yield AB΄C΄

Step 3: combine 2 & 3 to yield B΄C΄

Step 4: combine mₒ with m₂ to yield A΄B΄D΄

Step 5: combine m₈ with m₁ₒ to yield AB΄D΄

Step 6: combine 4 & 5 to yield B΄D΄

 Step 7 : combine m₆ with m₂ to yield A΄C D΄

Therefore the simplified F is given by

 F = A΄C D΄+ B΄C΄+ B΄D΄

 Gate Reduction: Karnaugh Map Method

78

Prime Implicants:

 In choosing adjacent squares in a map, we must ensure that

 all the minterms of the function are covered when we combine
the squares,

 the number of terms in the expression is minimized, and

 there are no redundant terms (i.e., minterms already covered by
other terms)

 A prime implicant is a product term obtained by combining the
maximum possible number of adjacent squares in the map.

 If a minterm in a square is covered by only one prime implicant,
that prime implicant is said to be essential.

 The prime implicants of a function can be obtained from the map
by combining all possible maximum numbers of squares.

 Gate Reduction: Karnaugh Map Method

79

 The essential prime implicants are found by looking at each
square marked with a ‘1’ and checking the number of prime
implicants that cover it.

 The prime implicant is essential if it is the only prime implicant
that covers the minterm.

Example:

Consider the following four-variable Boolean function:

 For the purpose of explaining the determination of essential
prime implicants and the other prime implicants, we make 2
partial K-maps for the given F.

 The maps are shown in the next slide.

 (continued ..)

 Gate Reduction: Karnaugh Map Method

80

LHS Map:

It does not include minterms m₃ , m₉ & m₁₁

1. We observe that m₅ , m₇ , m₁₃ and m₁₅ can be combined to get BD

 m₅ , m₇ , m₁₃ and m₁₅ cannot be combined with any other square
hence BD is essential prime implicant.

 Gate Reduction: Karnaugh Map Method

81

2. mₒ , m₂ , m₈ and m₁ₒ can be combined to get B΄D΄

 mₒ , m₂ , m₈ and m₁ₒ cannot be combined with any other square &
hence B΄D΄ is an essential prime implicant

RHS Map:

 We will now investigate in how many ways m₃ , m₉ & m₁₁ can be
combined with other squares.

1. We can combine m₁₃ , m₁₅, m₉ & m₁₁ to give AD

2. We can combine m₃ , m₂, m₁ₒ & m₁₁ to give B΄C

3. We can combine m₃ , m₇, m₁₅ & m₁₁ to give CD

4. We can combine m₈ , m₉, m₁ₒ & m₁₁ to give AB΄

 Now BD & B΄D΄ are essential prime implicants & from the 4 listed
above we have the choice (ensuring that m₃ , m₉ & m₁₁ are
included)

 Gate Reduction: Karnaugh Map Method

82

Therefore, we have the following combinations:

F = BD + B΄D΄ + AD + B΄C

F = BD + B΄D΄+ AD + CD

F = BD + B΄D΄+ AB΄+CD

F = BD + B΄D΄+AB΄+ B΄C

 Thus we see there may not be a unique minimum function and
therefore we are afforded a choice of F for implementation with
gates.

 Gate Reduction: Karnaugh Map Method

83

Product of Sums Simplification:

 Thus far we obtained minimized Boolean functions in sum-of-
products form.

 We will see how to obtain product-of-sums form for the
minimized function.

Procedure:

 The 1’s placed in the squares of the map represent the minterms
of the function.

 The minterms not included in the standard sum-of-products
form of a function denote the complement of the function.

 Therefore, the complement of a function is represented in the
map by the squares not marked by 1’s.

 (continued …)

 Gate Reduction: Karnaugh Map Method

84

 To obtain complement of the function , F, we mark empty squares
in the K-map by 0’s.

 Complement of the function, F΄, obtained is in sum of products
form.

 To obtain the product of sums form, we take complement of F΄ to
get back F.

Example:

 Simplify the following Boolean function into

 (a) sum-of-products form, and

 (b) product-of-sums form

 Gate Reduction: Karnaugh Map Method

85

The K-map filled with 1’s & 0’s is shown:

1. The 1’s marked in the map

 represent all the minterms

 of the function.

2. The squares marked with

 0’s represent the minterms

 not included in F and

 therefore denote the

 complement of F .

3. Combining the squares with 1’s gives the simplified function in
sum-of-products form:

4. If the squares marked with 0’s are combined, we get simplified
complemented function as :

 Gate Reduction: Karnaugh Map Method

86

In 3 we have

Realization:

 mₒ m₂ m₈ m₁ₒ are adjacent to each other & hence can be
combined to yield: A΄B΄D΄ + A B΄D΄ = B΄D΄

 m₁ m₅ can be combined to yield: A΄C΄D

 mₒ m₁ m₈ m₉ are adjacent to each other & hence can be
combined to yield: A΄B΄C΄ + A B΄C΄ = B΄C΄

 Thus all the minterms have been considered.

In 4 we have

Realization:

 m₃ m₇ m₁₁ m₁₅ are adjacent to each other & hence can be
combined to yield: A΄C D + A C D = CD

 (continued …)

 Gate Reduction: Karnaugh Map Method

87

 m₁₂ m₁₃ m₁₄ m₁₅ are adjacent to each other & hence can be
combined to yield: ABC΄ + ABC = AB

 m₄ m₁₂ m₆ m₁₄ are adjacent to each other & hence can be
combined to yield: BC΄D΄ + BCD΄ = BD΄

 Thus all the minterms have been considered.

 Now, we have

 To get the product of sum form we take complement of F΄

 (F΄)΄ = F = (A΄+ B΄)(C΄+ D΄)(B΄+ D)

 Gate Reduction: Karnaugh Map Method

88

 We have considered the procedure for obtaining the product of
sums simplification when the function is originally expressed in
the sum-of-minterms canonical form.

 The procedure is also valid when the function is originally
expressed in the product of maxterms canonical form.

Suppose the function is expressed as:

 This is product of sums form

The corresponding sum of products form is

 which is obtained by using missing minterms in the given product
of sums form.

 So we will have corresponding 1’s & 0’s in the K-map.

 Gate Reduction: Karnaugh Map Method

89

The corresponding K-map is drawn as

For the sum of products, we combine

the 1’s to obtain:

For the product of sums, we combine

the 0’s to obtain:

We take complement of F΄ to get the

desired product of sum form as

 (F΄)΄ =

Which when expanded yields the original sum of products form.

 Gate Reduction: Karnaugh Map Method

90

Don’t Care Conditions in Function Reduction

 In practice, in some applications the function is not specified for
certain combinations of the variables.

 For example in BCD code where each decimal digit (0 to 9) is
represented by 4 binary bits; out of 2⁴ = 16 combinations 6
combinations (for decimal numbers between 10 to 15) are not
used & hence considered to be unspecified.

 Functions that have unspecified outputs for some input
combinations are called incompletely specified functions .

 In most applications, we simply don’t care what value is assumed
by the function for the unspecified minterms.

 The unspecified minterms of a function are don’t-care conditions .

 These don’t-care conditions can be used on a map to provide
further simplification of the Boolean expression.

91

 A don’t-care minterm is a combination of variables whose logical value is
not specified.

 Such a minterm cannot be marked with a ‘1’ in the map, because it
would require that the function always be a 1 for such a combination.

 Likewise, putting a ‘0’ on the square requires the function to be 0.

 To distinguish the don’t-care condition from 1’s and 0’s, an ‘X’ is used

 Thus, an ‘X’ inside a square in the map indicates that we don’t care
whether the value of ‘0’ or ‘1’ is assigned to F for the particular minterm.

 In choosing adjacent squares to simplify the function in a map, the don’t-
care minterms may be assumed to be either 0 or 1.

 When simplifying the function, we can choose to include each don’t-care
minterm with either the 1’s or the 0’s, depending on which combination
gives the simplest expression.

Don’t Care Conditions in Function Reduction

92

Example:

Simplify the Boolean function

which has the don’t-care conditions

 The K-maps are shown for different ways of combining minterms
with don’t care conditions (realizing two different minimum
functions for the given Boolean function).

Don’t Care Conditions in Function Reduction

93

Note:

 The first expression includes minterms 0 and 2 with the 1’s and
leaves minterm 5 with the 0’s.

 The second expression includes minterm 5 with the 1’s and
leaves minterms 0 and 2 with the 0’s.

 The two expressions represent two functions that are not
algebraically equal.

 Both cover the specified minterms of the function, but each
covers different don’t-care minterms.

Simplified product-of-sums expression:

 Combine squares with 0’s in the map with don’t care conditions
(0 & 2 can be combined). The reduced function obtained is

 (F΄)΄ = z(w ΄+y) ; F = z(w ΄+y)

Don’t Care Conditions in Function Reduction

94

Quine-Mc Cluskey method

 In order to find all of the prime implicants, all possible pairs of
minterms should be compared and combined whenever possible.

 To reduce the required number of comparisons, the binary
minterms are sorted into groups according to the number of 1’s in
each term.

Given the function:

 First we make a table wherein we arrange the minterms row wise .
Starting with row 1 minterms are placed in successive rows
according to the number of 1’s in each term.

 1st row : minterm with no 1’s

 2nd row: minterms with 1 number of 1’s

 3rd row: minterms with 2 number of 1’s

 4th row : minterms with 3 number of 1’s , & so on …

95

For the given function we have the following table:

After formulation of the table, we compare

The minterm in each group with the minterms

 In its adjacent group , because two terms can be

 combined only if they differ in 1 bit.

 Therefore there is no need to compare group 0

 with group 2 or 3.

Group 0 is compared only with group 1;

group 1 is compared only with group 2 & so on.

Thus,

 0000 in group 0 combines with 0001 (1), 0010 (2), & 1000 (8) in
group 1: to yield 000- , 00-0, -000, respectively. ‘1’ + ‘0’ = ‘-’
because x + x΄= 1; a΄b΄c΄d΄ + a΄b΄c΄d = a΄b΄c΄- = 000-

Quine-Mc Cluskey method

96

 Following the procedure of comparing 2 adjacent groups we get
the table for determining prime implicants. The table is shown
below: We ensure that all the minterms are covered in process.

Column II lists the combinations

as obtained by comparing terms

of the adjacent groups in

column I.

Column III lists the combinations

as obtained by comparing terms

of the adjacent groups in

column II.

Duplicate combinations are

not considered & hence crossed.

Quine-Mc Cluskey method

97

 While comparing, we tick mark the minterms that have been
combined (as shown in the table).

 We have the following observations:

1. that in column II the terms (1,5) (5,7) (6,7) could not be
combined while forming column III, and

2. in column III no further combining of terms in its 2 groups is
possible

 The conclusions are:

1. The un-combined terms are prime implicants, and

2. Because further combining is not possible, the minimization
process is completed.

 Therefore the minimized function consists of the following terms:

 (1,5), (5,7), (6,7), (0,1,8,9), (0,2,8,10) & (2,6,10,14)

Quine-Mc Cluskey method

98

Therefore, we write reduced Boolean function as:

 f = (1,5) + (5,7) + (6,7) + (0,1,8,9) + (0,2,8,10) + (2,6,10,14)

 f = 0–01 + 01–1 + 011– + –00– + –0–0 + --10

 The function f was defined as f(a, b, c, d); therefore we follow the
same order , i.e., a b c d to assign literals to the reduced function,
f. ‘-’ implies that the literal is eliminated.

 Therefore,

 In this expression, each term has a minimum number of literals,
but the number of terms is not minimum.

 So, we make a chart called The Prime Implicant Chart.

 Making this chart is 2nd step in the minimization method

Quine-Mc Cluskey method

99

The Prime Implicant Chart:

A prime implicant chart is made to select a minimum set of prime
implicants.

The minterms of the function are listed across the top of the chart
and

 the prime implicants are listed down the side.

A prime implicant = sum of minterms & covers all of them

 If a prime implicant covers a given minterm, an ‘X’ is placed at the
intersection of the corresponding row and column.

 In the Chart all of the prime implicants (terms which have not been
ticked off in the table) are listed on the left.

 This is shown in the next slide

 (continued ….)

Quine-Mc Cluskey method

100

The chart is shown below: prime

 implicants minterms

We put a ‘X’ under the minterm

contained in a prime implicant.

We have six rows corresponding to

six prime implicants.

Minterms corresponding to each prime

Implicant are marked ‘X’.

 If a minterm is covered by only one prime implicant, then that
prime implicant is called an essential prime implicant and must be
included in the minimum sum of products.

 Minterms 9 & 14 are covered by only one prime implicant.

 b΄c΄ for ‘9’ & cd΄ for ‘14’ Therefore b΄c΄ & cd΄are essential.

Quine-Mc Cluskey method

101

 Procedure for picking prime implicants for minimum sum from the
chart:

1. Pick up a prime implicant for inclusion in the minimum sum

2. Cross out its corresponding row (of minterms)

3. Cross out the columns corresponding to minterms of selected
prime implicant

4. While picking up a prime implicant ensure that it combines
maximum number of minterms.

 Starting with b΄c΄:

 Cross out the row (as shown)

 Minterm ‘0’ & ‘8’ also appear in row 2

 Cross out columns corresponding to

 minterms ‘0’ & ‘8’, as shown.

Quine-Mc Cluskey method

102

Now we have the chart as:

Now we need to pick up a prime implicant

between b΄d΄ & cd΄.

We see that picking up cd΄ covers more

 number of minterms than b΄d΄would do.

Therefore pick up cd΄

 Cross out row corresponding to it, and

 columns corresponding to minterms 2 & 10

 Between a΄c΄d & a΄bd

 we choose a΄bd

 it covers more number of minterms. Cross out the row & columns.

We see that all the minterms are covered. Therefore the function is

 f = a΄bd + cd΄+ b΄c΄

Quine-Mc Cluskey method

103

Quine-Mc Cluskey Method

Cyclic Prime Implicant Chart:

 A prime implicant chart which has two or more X’s in every
column is called a cyclic prime implicant chart.

Example:

Consider the function:

Derivation of Prime Implicants:

Now we will draw the Prime Implicant Chart.

 (continued ……)

104

Prime Implicant Chart: Prime

 Implicants Minterms

All columns have two X’s, so we will

 proceed by trial and error.

Both (0, 1) and (0, 2) cover column

 0, so we will try (0, 1)

After crossing out row (0, 1) and columns 0 and 1,

we examine column 2, which is covered by (0, 2) and (2, 6).

 The best choice is (2, 6) because it covers two of the remaining
columns while (0, 2) covers only one of the remaining columns.

 After crossing out row (2, 6) and columns 2 and 6, we see that

 (5, 7) covers the remaining columns and completes the solution.

Therefore, one solution is:

Quine-Mc Cluskey Method

105

 However, we are not guaranteed that this solution is minimum.

 Therefore, we must go back & solve the problem over again
starting with the other prime implicant that covers column 0.

 Prime Implicant Chart:

 Instead of (0,1) we now try (0,2)

 Cross out corresponding row &

 columns, as shown.

 Next we pick up (1,5) & cross out

 corresponding row & columns, as shown.

 We pick up (6,7) which covers all the remaining minterms.

 Therefore the reduced function is :

 Since both ways we get same number of terms & literals, we take
it as the reduced function.

Quine-Mc Cluskey Method

106

Quine- Mc Cluskey Method (Don’t Care Conditions)

Simplification of incompletely specified functions:

 Given an incompletely specified function, the proper assignment
of values to the don’t-care terms is necessary in order to obtain a
minimum form for the function.

 In the process of finding the prime implicants, we will treat the
don’t-care terms as if they were required minterms.

 When forming the prime implicant chart, the don’t-cares are not
listed at the top. This way, when the prime implicant chart is
solved, all of the required minterms will be covered by one of the
selected prime implicants.

 However, the don’t-care terms are not included in the final
solution unless they have been used in the process of forming one
of the selected prime implicants.

107

Example:

The second summation term corresponds to don’t care conditions.

The Table:

Quine- Mc Cluskey Method (Don’t Care Conditions)

108

Prime Implicant Chart: Prime

 Implicants Minterms

Start with (2,3,10,11): It covers

 minterms 2,3 & 11

Next (9,11,13,15): It covers

minterms 9 & 13

Minterm 7 is left out therefore we have to pick up (3,7,11,15).

The reduced function is

Quine- Mc Cluskey Method (Don’t Care Conditions)

109

Realization with NAND & NOR Gates

 Digital circuits are frequently constructed with NAND or NOR gates
rather than with AND and OR gates.

 NAND and NOR gates are easier to fabricate with electronic
components and are the basic gates used in all IC digital logic
families.

 Because of the prominence of NAND and NOR gates in the design
of digital circuits, rules and procedures have been developed for
the conversion from Boolean functions given in terms of AND, OR,
and NOT into equivalent NAND and NOR logic diagrams.

NAND Circuits:

 The NAND gate is called universal gate because any logic circuit
can be implemented with it.

110

Logic operations with NAND gates :

Implementation of NOT AND &

OR gates is shown using NAND

 gate.

NOT / INVERTER /COMPLEMENT

function is synthesized using

single input NAND gate.

Conversion to NAND logic:

 The conversion of an algebraic expression from AND, OR, and
complement to NAND can be done by simple circuit manipulation
techniques that change AND–OR diagrams to NAND diagrams.

Realization with NAND & NOR Gates

111

Two graphic symbols for a three-input NAND gate:

Two Level Implementation:

 The implementation of Boolean functions with NAND gates
requires that the functions be in sum-of-products form.

Example 1: Implement the function: F = AB + CD

 We make use of AND-invert & Invert-OR gates to synthesize given F.

 (a) (b)

Realization with NAND & NOR Gates

112

Example 2:

Implement the following Boolean function with NAND gates:

 The first step is to simplify the function into sum-of-products
form. This is done by means of the K-map from which the
simplified function is obtained:

Logic Diagram:

Realization with NAND & NOR Gates

113

 Now we list the steps for obtaining the logic diagram from a
Boolean function.

 Simplify the function and express it in sum-of-products form.

 Draw a NAND gate for each product term of the expression that
has at least two literals

 The inputs to each NAND gate are the literals of the term.

 This procedure produces a group of first-level gates.

 Draw a single gate using the AND-invert or the invert-OR graphic
symbol in the second level, with inputs coming from outputs of
first-level gates.

 A term with a single literal requires an inverter in the first level.
However, if the single literal is complemented, it can be connected
directly to an input of the second level NAND gate.

Realization with NAND & NOR Gates

114

Multilevel NAND circuits:

 The standard form (sum of products) of expressing Boolean
functions results in a two-level implementation.

Procedure for design of multilevel circuits:

 In the design of multilevel circuits a given Boolean function is
expressed in terms of AND, OR, and complement operations.
The function is then implemented with AND & OR gates.

 If necessary, it is then converted into an all-NAND circuit.

Example:

Consider the Boolean function:

 Although it is possible to remove the parentheses and reduce
the expression into a standard sum-of-products form, for
illustration purpose we choose to implement it as a multilevel
circuit .

Realization with NAND & NOR Gates

115

Logic Diagram with AND-OR gates & with NAND gates

Realization with NAND & NOR Gates

116

 Procedure for converting a multilevel AND–OR diagram into an
all-NAND diagram using mixed notation:

 Convert all AND gates to NAND gates with AND-invert graphic
symbols.

 Convert all OR gates to NAND gates with invert-OR graphic
symbols.

 Check all the bubbles in the diagram. For every bubble that is not
compensated by another small circle along the same line, insert
an inverter (a one-input NAND gate) or complement the input
literal.

Realization with NAND & NOR Gates

117

Example:

Consider the multilevel Boolean function

Logic Diagram: Conversion from AND-OR gates to NAND gates

Realization with NAND & NOR Gates

118

UNIT - III
 SEQUENTIAL LOGIC DESIGN

Design with NOR Gates

 The NOR operation is the dual of the NAND operation. Therefore,

 all procedures and rules for NOR logic are the duals of the
corresponding procedures and rules developed for NAND logic

 The NOR gate is another universal gate that can be used to
implement any Boolean function.

 Implementation of the complement, OR, & AND operations with
NOR gates :

The complement

operation is

obtained from a

 one input NOR

gate that behaves

 exactly like an

inverter.

120

Two graphic symbols for the NOR gate:

 The OR-invert symbol defines the NOR operation as an OR
followed by a complement.

 The invert-AND symbol complements each input and then
performs an AND operation.

 The two symbols designate the same NOR operation and are
logically identical because of De Morgan’s theorem.

Design with NOR Gates

121

Procedure for implementation with NOR gates:

 A two-level implementation with NOR gates requires that the
function be simplified into product-of-sums form.

 We know the simplified product-of-sums expression is obtained
from the map by combining the 0’s and complementing.

 A product-of-sums expression is implemented with a first level of
OR gates that produce the sum terms followed by a second-level
AND gate to produce the product.

Conversion from OR – AND gates to NOR gates implementation:

 It is achieved by changing the OR gates to NOR gates with
OR-invert graphic symbols, and

 the AND gate to a NOR gate with an invert-AND graphic symbol.

 A single literal term going into the second-level gate must be
complemented.

Design with NOR Gates

122

Example:

Given a function in product of sums form:

NOR Gate based logic diagram:

Example:

Design with NOR Gates

123

Implement Exclusive OR with NAND gates:

The XOR function is

Exclusive OR (XOR) with NAND Gates

124

AND–OR–INVERT Implementation

 The two non-degenerate forms, NAND–AND & AND–NOR, are
equivalent and can be treated together

 Both perform the AND–OR–INVERT function

 The AND–NOR form resembles the AND–OR form, but with an
inversion done by the bubble in the output of the NOR gate.

Example: Implement a function

125

OR–AND–INVERT Implementation

 The OR–NAND and NOR–OR forms perform the OR–AND–INVERT
function

 The OR–NAND form resembles the OR–AND form, except for the
inversion done by the bubble in the NAND gate.

 The OR–AND–INVERT implementation requires an expression in
product-of-sums form.

 If the complement of the function is simplified into product-of-
sums form, we can implement

 F with the OR–AND part of the function.

 When F passes through the INVERT part, we obtain the
complement of F΄, or F , in the output.

 It implements the function like:

126

Logic Diagram for

OR–AND–INVERT Implementation

127

Example: Given the function

 Synthesize AND-OR-INVERT & OR-AND-INVERT implementations

Solution:

 AND-OR-INVERT implementation yields AND-OR & NAND-AND
configurations. Synthesizes ‘complement of the sum of product
form’

 OR-AND-INVERT implementation yields OR-NAND & NOR-OR
configurations. Synthesizes ‘complement of product of sum form’

AND-OR-INVERT Implementation:

 Since it synthesizes ‘complement of the sum of product form’ , in
the K-map for the given function we select squares filled with 0s &
obtain simplified function which is F΄ & is in sum of products form .
Its complement yields F.

AND-OR-INVERT & OR–AND–INVERT Example

128

The K-map:

Simplifying the function for squares

filled with 0s, we get

F΄ is in sum of product form.

AND-OR-INVERT yields its complement

 & hence we get F. The logic diagram is:

AND-OR-INVERT & OR–AND–INVERT Example

129

OR-AND-INVERT implementation:

 The OR–AND–INVERT forms require a simplified expression of the
complement of the function in product-of-sums form.

 To obtain this expression, we first combine the 1’s in the map:

We get the function

Then we take the complement of the function, to get:

 The function F = (F΄)΄

AND-OR-INVERT & OR–AND–INVERT Example

130

Exclusive OR : An Odd Function

Odd Function:

 The exclusive-OR operation with three or more variables can be
converted into an ordinary Boolean function by expanding it, as
shown:

 We observe from the Boolean

 expression that :

 the three -variable exclusive-OR function is equal to 1 if only one
variable is equal to 1 or if all three variables are equal to 1.

 Contrary to the two-variable case, in which only one variable must
be equal to 1, in the case of three or more variables the
requirement is that an odd number of variables be equal to 1.

 Therefore the multiple-variable exclusive-OR operation is defined
as an odd function.

131

 The Boolean function derived from the three-variable exclusive-
OR operation is expressed as the logical sum of four minterms
whose binary numerical values are 001, 010,100, and 111.

 Each of these binary numbers has an odd number of 1’s.

 The remaining four minterms not included in the function are 000,
011, 101, and 110, and they have an even number of 1’s in their
binary numerical values.

 In general, an n -variable exclusive-OR function is an odd function
defined as the logical sum of the 2ᵑ /2 minterms whose binary
numerical values have an odd number of 1’s.

 In K-map we fill only those squares with ‘1’ which have odd
number of 1’s in them. Remaining squares are filled with 0s.

 If we want to determine complement then we fill ‘1’ in the
squares that have ‘0’ (i.e. terms not included in the logic function)

Exclusive OR : An Odd Function

132

The K-map for 3 input Exclusive –OR function:

 The three-input odd function is implemented by means of two-
input exclusive-OR gates,

 The complement of an odd function is obtained by replacing the
output gate with an exclusive-NOR gate.

Exclusive OR : An Odd Function

133

4 variable Exclusive – OR operation:

The K-maps are shown:

Exclusive OR : An Odd Function

134

Analysis of Clocked Sequential Circuits
Analysis of a system/circuit:

 When we say ‘we want to analyze a system/circuit’ we mean to determine what a
given system/circuit will do under certain operating conditions.

The behaviour of a clocked sequential circuit is determined from:

o the inputs fed to it,

o the outputs obtained from it, and

o the state of its flip-flops.

 The outputs and the next state are both a function of the inputs and the present
state.

 The analysis of a sequential circuit consists of obtaining a table or a diagram for the
time sequence of

o inputs,

o outputs, and

o internal states.

 It is possible to write Boolean expressions that describe the behaviour of the
sequential circuit. These expressions must include the necessary time
sequence, either directly or indirectly.

135

Clocked sequential circuit:
 A logic diagram is recognized as a clocked sequential circuit if it includes flip-flops

with clock inputs.

 The flip-flops may be of any type, and the logic diagram may or may not include
combinational logic gates.

 We will study about

o how to specify the next-state condition in terms of the present state and inputs,

 State tables,

 State diagram to describe the behaviour of the sequential circuit.

Analysis of Clocked Sequential Circuits

136

State Equations
State Equations:

 These are algebraic equations which describe behaviour of a clocked sequential
circuit.

 A state equation (also called a transition equation) specifies the next state as a
function of the present state and inputs.

Example:

Consider a sequential circuit shown in the diagram:

It consists of two D flip-flops A and B, an input x and

 an output y . Since the D input of a flip-flop

 determines the value of the next state (i.e., the

state reached after the clock transition), it is possible

 to write a set of state equations for the circuit, as:

 A(t + 1) = A(t) x(t) + B(t) x(t) (1)

 B(t + 1) = A΄(t) x(t) (2)

A(t) & B(t): are ‘present’ states (outputs) of flip flops;

A(t+1) & B(t+1): are ‘next’ states (outputs) of flip flop .

 State equations are algebraic equations (1) & (2) .

137

 A state equation is an algebraic expression that specifies the condition for a flip-
flop state transition.

 Consider Equations (1) & (2):

 A(t + 1) = A(t) x(t) + B(t) x(t) (1)

 B(t + 1) = A΄(t) x(t) (2)

 The left side of the equation, with (t + 1), denotes the next state of the flip-flop
one clock edge later.

 The right side of the equation is a Boolean expression that specifies the present
state and input conditions that make the next state equal to ‘1’.

 In more compact representation of the State equations, in the RHS of the state
equation we omit ‘t’ after each variable for convenience and express the state
equations in the form where ‘t’ is implicitly present.

 A(t + 1) = A x + B x (3)

 B(t + 1) = A΄ x (4)

Next state occurs only at the appearance of a clock pulse.

State Equations

138

 The Boolean expressions for the state equations can be derived directly from
the gates that form the combinational circuit part of the sequential circuit, since
the D values of the combinational circuit determine the next state.

 Similarly, the present-state value of the output can be expressed algebraically
as:

 y(t) = [A(t) + B(t)]x΄(t)

 By removing the symbol (t) for the present state, we obtain the output Boolean
equation:

 y = (A + B)x΄

State Equations

139

State table:

 In a state table (transition table)we enumerate the time sequence of inputs,
outputs, and flip-flop states. The state table for the given circuit is shown:

 The table consists of four variables labelled present state, input, next state, and
output . The present-state (2 columns) shows the states of flip-flops A and B at
any given time t.

 The input column gives a value of x for each possible present state.

 The next-state column shows the states of the flip-flops one clock cycle later, at
time t + 1. The output column gives the value of y at time t for each present state
and input condition.

State Table

140

Derivation of a state table:

 The derivation of a state table requires listing all possible binary combinations of
present states and inputs.

 In the diagram we have 2 flip flops & hence we have 2 states (A & B). Each one
can assume a value ‘0’ or ‘1’. (AB) : (00 01 10 11)

We have an input ‘x’ which can be ‘0’ or ‘1’.

Therefore, from the table we see that for

each possible combination of ‘A’ &’B’ we have

assigned ‘x’ a value ‘0’ & ‘1’.

So we have eight binary combinations from

 000 to 111 for the sequence (A B x).

The next-state values are then determined

 from the logic diagram or from the state

 equations [A(t+1) = A x + B x & B(t+1) = A΄ x].

The output column is derived from the output equation y = (A + B) x΄

State Table

141

General Remark:

 In general, a sequential circuit with m flip flops and n inputs needs 2m+n rows in
the state table. present example: m = 2 & n=1

 The binary numbers from ‘0’ through 2m+n - 1 (= 7) are listed under the present-
state and input columns.

 The next-state section has m (= 2) columns, one for each flip-flop.

 The binary values for the next state are derived directly from the state equations.
The output section has as many columns as there are output variables. Its binary
value is derived from the circuit or from the Boolean function in the same
manner as in a truth table.

State table in another form:

In this form, the input conditions are

listed under the next-state and output

columns.

State Table

142

State Diagram
State diagram:

 It is a graphical representation for a given state table. The information available
in a state table can be represented graphically in the form of a state diagram.

 In this type of diagram, a state is represented by a circle, and the (clock-
triggered) transitions between states are indicated by directed lines connecting
the circles.

Example:

The State Table & its

State Diagram is shown.

States: (A B): (00 01 10 11)

Each state is depicted by a

circle.

We have 4 combinations and hence we have 4 circles.

 Each link (branch) connecting the circles shows the transition from one state to
another (in the direction of arrow) at the occurrence of clock pulse. Each link is
labeled with input/output tag like 1/0; implying that input = 1 & output = 0

143

How to read a State diagram:

 : A self loop implies no transition. The system continues to remain in its

 : previous state (00). ‘0/0’ (in/out) implies that input (x) & output (y) = 0.

 System input (X) is different from input to a flip flop.

 x: implies that the links do not exist

 The output, y, is given as: y = A x΄ + B x΄

 It is important to remember that the bit value listed for the output along the
directed line occurs during the present state and with the indicated input, and
has nothing to do with the transition to the next state.

 For example, the directed line from state ’00’ to ’01’ is labelled 1/0, meaning that
when the sequential circuit is in the present state ’00’ and the input is ‘1’, the
output is ‘0’. After the next clock cycle, the circuit goes to the next state, ’01’.

 If the input changes to ‘0’, then the output becomes ‘1’, but if the input remains
at ‘1’, the output stays at ‘0’.

 Thus, while system output may change (while system is in particular state)
depending upon input, the state transition occurs only if clock pulse occurs.

State Diagram

x

x

x

144

We summarize as under:

• Start from Circuit / system diagram

• Determine system equations

• Formulate State table, & then

• Draw the State diagram

 There is no difference between a state table and a state diagram, except in the
manner of representation.

 The state table is easier to derive from a given logic diagram and the state
equation.

 The state diagram follows directly from the state table.

 The state diagram gives a pictorial view of state transitions and is the form more
suitable for human interpretation of the circuit’s operation .

 For example, the state diagram clearly shows that, starting from state ’00’, the
output is ‘0’ as long as the input stays at ‘1’. The first ‘0’ input after a string of 1’s
gives an output of 1 and transfers the circuit back to the initial state, ’00’.

 The machine represented by this state diagram acts to detect a zero in the bit
stream of data because output becomes ‘1’ only for input bit = 0.

State Diagram

145

Flip – Flop Input Equations

Excitation Equations:

 Flip flop input equations are also known as excitation equations.

 The part of the circuit that generates the inputs to flip-flops is described
algebraically by a set of Boolean functions called flip-flop input equations.

Convention used for input (excitation) equations:

 We will adopt the convention of using the flip-flop input symbol to denote the
input equation variable and a subscript to designate the name of the flip-flop
output.

Example:

 Consider the input equation: DQ = x + y.

 It specifies an OR gate with inputs x and y

 connected to the D input of a flip-flop whose output

 is labelled with the symbol Q.

For the shown diagram we write input equations as:

 DA = A x + B x & DB = A΄ x

 The output equation as : y = (A + B)x΄

146

DA = A x + B x & DB = A΄ x; y = (A + B)x΄

 The three equations, as reproduced above, provide the necessary information
for drawing the logic diagram of the sequential circuit.

 The symbol DA specifies a D flip-flop labelled A . DB specifies a second D flip-flop
labelled B.

 The Boolean expressions associated with DA & DB and the expression for output
y specify the combinational circuit part of the sequential circuit because these
equations can be simulated using logic gates.

Note:

 Note that the expression for the input equation for a D flip-flop is identical to the
expression for the corresponding state equation. This is because of the
characteristic equation that equates the next state to the value of the D input:
Q(t + 1) = DQ.

Flip – Flop Input Equations

147

Analysis using Flip - Flops
Analysis with D Flip-Flops:
The circuit diagram to be analyzed is shown:

XOR gates are at the input.

The input (excitation)equation:

For the D Flip flop is given by:

State Equation:

Since the next state of D flip flop is

equal to the D input (1 or 0), the state equation for the flip flop is :

State table:

 It will have 4 columns: 2 corresponding to inputs x & y and the other 2 to
present & next state, A. Next state is a function of x, y & ‘A’ value when clock
pulse occurs.

 The pair (x y) combinations:(00 01 10 11); A : (0 1)

 For each combination of (x y), A can take a value ‘0’ or ‘1’ (continued….)

148

State table is determinable from the state equation, given as:

 (next state) (present state)

Let Z = ;

 Z = x y΄ + x΄y ……………. 1

 A(t + 1) = A Z΄ + A΄Z …………… 2

In the table we have for all the combinations of input pair (x y) &

present state ‘A’ value = ‘0’ & ‘1’ tabulated.

Determination of Next state:

 Making use of Eqs. 1 & 2, we determine the next state, for each & every row in
the table. For example:

 1st Row: A = 0, x=0, y=0; therefore, x΄ = y΄= A΄=1

 Therefore, Z = (0) (1) + (1) (0) = 0; Z΄= 1.

 Hence, next state = A(t + 1) = A (in the table) = (0) (1) + (1) (0) = 0

Similarly we can determine next state for the rows in the table, using Eqs. 1 & 2.

Analysis using Flip - Flops

149

Analysis with J-K Flip Flops:
We know that,

 A state table consists of four sections: present state, inputs, next state, and
outputs.

 The first two (present state & inputs) are obtained by listing all binary
combinations.

 The output column is determined from the output equations.

 The next-state values are evaluated from the state equations.

 We also know that for a D -type flip-flop, the state equation is the same as the
input equation.

 When a flip-flop other than the D type is used, such as JK or T, it is necessary to
refer to the corresponding characteristic table or characteristic equation to
obtain the next state values.

Procedure for determining next state: (2 methods)

 by using the characteristic (state) table and

 by using the characteristic equation.

Analysis using Flip - Flops

150

Steps for determining next state using JK or T flip flop:

 Determine the flip-flop input equations in terms of the present state and input
variables.

 List the binary values of each input equation.

 Use the corresponding flip-flop characteristic table to determine the next-state
values in the state table.

Example using JK flip flop:

 Consider the sequential circuit with two JK flip-flops A and B and one input x, as
shown in the Fig.

The circuit has no outputs; therefore, the

state table does not need an output column.

(The outputs of the flip-flops may be

considered as the outputs in this case.)

The flip flop input equations are written as:

 JA = B & KA = B x΄

 JB = x΄ & KB = A΄x + A x΄ = A x

Analysis using Flip - Flops

151

State table:

 The state table of the sequential circuit is shown in the Table.

 The present-state and input columns list the eight binary combinations.

 The binary values listed under the columns labelled flip-flop inputs are not part
of the state table, but they are needed for the purpose of evaluating the next
state as specified in step 2 of the procedure.

 These binary values are obtained directly from the four input equations in a
manner similar to that for obtaining a truth table from a Boolean expression.

From the table we see that the present states of

flip flops A & B are defined for every possible

value (0 or 1) of input x. So we get 8 possible

Combinations of A, B & x.

The columns under ‘Flip-Flop Inputs’ are filled

using flip flop input equations,

 JA = B & KA = B x΄

 JB = x΄ & KB = A΄x + A x΄ = A x

Where, present states of A & B are substituted. We have completed 2 steps.

Analysis using Flip - Flops

152

Determination of next state of flip flops:

 The next state of each flip-flop is evaluated from the corresponding J and K
inputs and the characteristic table of the JK flip-flop listed in the Table.

There are four cases to consider (as seen from the table).

 When J = 1 and K = 0, the next state is 1.

 When J = 0 and K = 1, the next state is 0.

 When J = K = 0, there is no change of state and the next-state value is the same
as that of the present state.

 When J = K = 1, the next-state bit is the complement of the present-state bit.

So we need to fill up columns related to ‘Next State’

A flip-flop: Present State : PS NO Change : NC

1st Row: PS = 0; JA & KA = 0 therefore next state A = 0: NC

2nd Row: PS = 0; JA & KA = 0 therefore next state A = 0: NC

3rd Row: PS = 0; JA & KA = 1 therefore next state A = A΄= 1

4th Row: PS = 0; JA =1 & KA = 0 therefore next state A = 1

5th Row: PS = 1; JA & KA =0 therefore next state A = 1: NC (contd. ….)

Analysis using Flip - Flops

153

6th Row: PS = 1; JA & KA = 0 therefore next state A = 1: NC

7th Row: PS = 1; JA & KA = 1 therefore next state A = A΄= 0

8th Row: PS = 1; JA = 1 & KA = 0 therefore next state A = 1

B flip flop: Present State : PS NO Change : NC

1st Row: PS = 0; JB = 1 & KB = 0 therefore next state B = 1

2nd Row: PS = 0; JB = 0 & KB = 1 therefore next state B = 0

3rd Row: PS = 1; JB =1 & KB = 0 therefore next state B =1

4th Row: PS = 1; JB = 0 & KB = 1 therefore next state B = 0

5th Row: PS = 0; JB & KB = 1 therefore next state B = B΄=1

6th Row: PS = 0; JB & KB = 0 therefore next state B = 0: NC

7th Row: PS = 1; JB & KB = 1 therefore next state B = B΄= 0

8th Row: PS = 1; JB & KB = 0 therefore next state B = 1: NC

Thus we have completed the State table by filling up next state values based on

the present state & flip-flop inputs.

Analysis using Flip - Flops

154

Determination of next state values using Characteristic Equation:

The characteristic equation for JK flip flop is given by:

 Q(t + 1) = J Q΄ + K΄ Q

For each flip flop ‘A’ & ‘B’, we write the respective

Characteristic equations as:

 A(t + 1) = J A΄ + K΄ A

 B(t + 1) = J B΄ + K΄ B (J-K Flip Flop)

 Since the output states in our circuit are designated as ‘A’ & ‘B’ instead of ‘Q’.

 Substituting the values of J = JA and K = KA from the input equations, JA = B &
KA = B x΄, we obtain the state equation for A :

 A(t + 1) = BA΄ + (Bx΄)΄A

 or, A = A΄B + AB΄ + Ax 1

The state equation provides the bit values for the

 column headed “Next State” for A in the state table.

Therefore by using Eq. 1 we can fill up the ‘Next State’

column corresponding to ‘A’

Analysis using Flip - Flops

155

 Similarly, the state equation for flip-flop B can be derived from the characteristic
equation by substituting the values of JB and KB:

 B(t + 1) = J B΄ + K΄ B ;

 where, J = JB = x΄ & K = KB = A΄x + A x΄ = A x

 We get the state equation for B as:

 B(t+1) = x΄B΄ + (A x)΄B = B΄x΄ + AB x + A΄B x΄;

 (A x)΄ = A x + A΄x΄

 or, B = B΄x΄ + AB x + A΄B x΄ …………….. 2

 The state equation provides the bit values for the column headed ‘Next State’ for
B in the state table. Therefore making use of Eq. 2 we fill up the ‘Next State’
column corresponding to ‘B’.

 Note: The State table obtained using State equations does not have columns
corresponding to “Flip-Flop Inputs” because in the obtained state equations the
‘J’ & ‘K’ inputs are implicit.

 (contd. ….)

Analysis using Flip - Flops

156

State Diagram:

 Next we draw the state diagram for the given circuit. There is no specified output
for the given circuit & therefore in the state diagram the ‘links’/’branches’ do not
indicate output of the system for a given (present) state.

In absence of any specified output we may choose the flip

flop state itself as the system output.

From the state table we see that the system has 4 states

namely : 00 01 10 11. & input can be ‘0’ or ‘1’.

We know that transition takes place at the occurrence of

clock pulse.

So, transition from ‘00’ to ‘01’ takes place while x =0 and

stays at ‘00’ while x = 1.

Similarly we see for transitions from ‘01’ ‘10’ & ‘11’

and also note down the input value to draw the state

diagram as shown.

The directive links do not show any output value because it is

not specified.

Analysis using Flip - Flops

157

Analysis using T Flip Flops:
 The analysis of a sequential circuit with T flip-flops follows the same procedure

outlined for JK flip-flops.

 The next-state values in the state table can be obtained by using

• either the characteristic table as listed , or

• the characteristic equation given by

 Q(t + 1) = T Q = T΄Q + TQ΄ ….. 1

This equation is easily derivable from the following state table

 of T flip flop. We observe that ‘next state’ is XOR of present

state , Q and the T value. Therefore the characteristic equation

is given by Eq. 1

Example: State Table

We will consider a circuit having 2 T flip flops.

Analysis using Flip - Flops

158

Example: y

Consider the sequential circuit as shown. It has

• two T flip flops A and B,

• one input x, and

• one output y

It can be described algebraically by two input

 equations: TA = B x ; TB = x , and

 an output equation: y =AB

The characteristic equations are:

 A(t+1) = T΄A A + A΄ TA ;

 A = (B x)΄ A + A΄ (B x) = AB΄ + Ax΄ + A΄ B x

 B(t+1) = T΄B B + B΄ TB

 B = x΄ B + B΄ x = x B

The next-state values for A and B in the state table

 are obtained from the expressions of the two state

 equations. This is characteristic equation method.

Analysis using Flip - Flops

159

Characteristic (State) Table Method:
 In this method we draw the state table which includes flip flop input values

(based on present state & input value), in addition to columns for ‘present state’,
‘input’ & ‘next state’.

The state table is as shown.

Flip flop inputs are determined from their

Input equations.

Based on TA & TB values, the ‘next state’

is determined from the ‘present state’ , as

 explained in the earlier example.

State Diagram:

From the state table, states are 00 01 10 11

Input & output values are given.

Transition takes place at the occurrence of clock pulse.

The state diagram is shown in the next slide

Analysis using Flip - Flops

160

State Diagram:

Analysis using Flip - Flops

161

State Reduction
Analysis & Design of Sequential Circuits:
Analysis:

 The analysis of sequential circuits starts from a circuit (logic) diagram and
culminates in a state table or diagram.

Design:

 The design (synthesis) of a sequential circuit starts from a set of specifications
and culminates in a logic (circuit) diagram.

State Reduction: Its requirement

 Two sequential circuits may exhibit the same input–output behaviour, but have
a different number of internal states in their state diagram.

 We will discusses certain properties of sequential circuits that may simplify a
design by reducing the number of gates and flip-flops it uses.

 In general, reducing the number of flip-flops reduces the cost of a circuit.

 So the purpose behind achieving reduction in number of states defining a
sequential circuit is to reduce the complexity of hardware design.

162

State Reduction:
 The state reduction problem is about reducing the number of flip-flops in a

sequential circuit. Lesser the number of states lesser the number of flip-flops.

 While trying to achieve reduction, it is ensured that the input-output
requirements remain unaltered.

 Since m flip-flops produce 2m states, a reduction in the number of states may
(or may not) result in a reduction in the number of flip-flops.

 For example, if m = 3; number of states = 8. We may be able to reduce number
of states to 6, but that does not change number of flip-flops because for ‘6’
states ‘m’ has to be ‘3’.

 An unpredictable effect in reducing the number of flip-flops is that sometimes
the equivalent circuit (with fewer flip-flops) may require more combinational
gates to realize its next state and output logic.

 The procedure for achieving state reduction is illustrated with the help of
examples.

State Reduction

163

Example:

 For achieving reduction in the number of states, the starting point is ‘state
diagram’. A typical state diagram is shown in the figure.

Since only input-output sequences are important, for

that reason, the states marked inside the circles are

denoted by letter symbols instead of their binary

values. This is in contrast to a binary counter, wherein

 the binary value sequence of the states themselves is

 taken as the outputs.

There are an infinite number of input sequences

that may be applied to the circuit; each results

in a unique output sequence.

 We see from the diagram that each input of ‘0’ or ‘1’ produces an output of ‘0’ or
‘1’ and causes the circuit to go to next state.

 Consider an input sequence 01010110100 starting from the initial state ‘a’ and
extending up to state ‘g’. We could have considered just any other sequence.

State Reduction

164

Determination of Output & State sequence:

From the state diagram, we obtain the output and

state sequence for the given input sequence as follows:

With the circuit in initial state ‘a’, an input of ‘0’

produces an output of ‘0’ and the circuit remains in

state ‘a’ .

With present state ‘a’ and an input of ‘1’, the output is

 ‘0’ and the next state is ‘b’ .

With present state ‘b’ and an input of ‘0’, the output is ‘0’ and the next state is ‘c' .
Continuing this process, we find the complete sequence to be as follows:

 The indicates the transition from one state to another. Column at beginning
end of the denote input/output values for which a transition occurs/does not
occur. While tracing the diagram we have followed input sequence bit pattern.

State Reduction

165

 We reassert that in this circuit the states themselves are of secondary
importance, because we are interested only in output sequences caused by
input sequences.

 Equivalent Sequential Circuits:

 Two sequential circuits are equivalent if their respective output sequences
match (are identical) for a defined set of (identical) input sequences; while the
number of states in each one of them may be different (less or more w.r.t each
other)

 Therefore the problem of state reduction is to find ways of reducing the number
of states in a sequential circuit without altering the input–output relationships.

 Procedure for State Reduction:

 It is more convenient to apply procedures for state reduction with the use of a
table rather than a diagram. The state table of the circuit is listed in next slide
and is obtained directly from the state diagram.

State Reduction

166

Equivalence of States:

The equivalence of states is given by the

following algorithm:

“Two states are said to be equivalent if,

for each member of the set of inputs, they

give exactly the same output and send the

circuit either to the same state or to an

equivalent state.”

When two states are equivalent, one of them

can be removed without altering the

input–output relationships.

We will apply the above algorithm to our state

table for the purpose of achieving reduction.

State Reduction

167

The state table is reproduced.

The procedure is that in the state table we look

 for two present states that go to the same next

 state and have the same output for both input

combinations.

From the table we see that two such states are

‘g’ & ‘e’. They both go to states ‘a’ and ‘f’ and

 have outputs of ‘0’ and ‘1’ for x = ‘0’ and x = ‘1’,

respectively.

 Therefore, states ‘g’ and ‘e’ are equivalent and one of these states can be
removed.

 The procedure for removal is that we remove ‘g’ under column ‘present state’
from the table & replace ‘g’ by ‘e’ in the columns under ‘next state’ wherever it
appears.

 So we have a reduced table in which the row corresponding to ‘g’ does not
exist. The reduced table is shown in the next slide.

State Reduction

168

The reduced state table is shown.

Again in the reduced state table we look for two

present states that go to the same next state and

have same outputs for both input combinations.

From the table we see that two such states are

‘d’ & ‘f’. They both go to states ‘e’ and ‘f’ and

 have outputs of ‘0’ and ‘1’ for x = ‘0’ and x = ‘1’,

respectively.

 Therefore, states ‘d’ and ‘f’ are equivalent and

 one of these states can be removed.

 The procedure for removal is that we remove ‘f’ under column ‘present state’
from the table & replace ‘f’ by ‘d’ in the columns under ‘next state’ wherever it
appears.

 So we have a further reduced table in which the row corresponding to ‘f’ does
not exist. The reduced table is shown in the next slide.

State Reduction

169

The further reduced state table is shown.

Again in the reduced state table we look for two

present states that go to the same next state and

have same outputs for both input combinations.

From the table we see that there are no two such

 states. Therefore further reduction of states is not

 possible.

The reduced state diagram is as shown.

The sequential circuit of this example was reduced from

seven to five states. In general, reducing the number of

 states in a state table may result in a circuit with less

equipment. However, the fact that a state table has

 been reduced to fewer states does not guarantee a

saving in the number of flip-flops or the number of

gates. In actual practice designers may skip this step

 because target devices are rich in resources.

State Reduction

170

State Reduction using Implication Table:

 As we know reduction is the problem of determining state equivalence so that
redundant states can be deleted to achieve reduction in number of states.

 The implication table method of determining state equivalence is as follows:

1. Construct a chart which contains a square for each pair of states.

2. Compare each pair of rows in the state table. If the outputs associated with
states ‘I’ and ‘j’ are different, place an X in square i-j to indicate that If
the outputs are the same, place the implied pairs in square i-j. (If the next
states of i and j are m and n for some input x, then m-n is an implied pair.) If
the outputs and next states are the same (or if i-j only implies itself), place a
check (√) in square i-j to indicate that

3. Go through the table square-by-square. If square i-j contains the implied pair
m-n, and square m-n contains an X, then , and an X should be placed in
square i-j.

4. If any X’s were added in step 3, repeat step 3 until no more X’s are added.

5. For each square i-j which does not contain an X,

 If desired, row matching can be used to partially reduce the state table before
constructing the implication table.

State Reduction

171

Example:

The state table is given. First step is to construct a chart containing squares.

Rows of the chart:

 Exclude row corresponding to state ‘a’. That means we exclude 1st state from rows.

Columns of the chart:

Exclude row corresponding to state ‘h’; exclude the ‘last’ state from the columns.

 In this method each row of the table is compared with remaining rows to
determine such rows which have the same output; e.g. row ‘a’ is compared with
rows ‘b’ to ‘h’ to find out that outputs of ‘a’, ‘b’, ‘d’, & ‘g’ are same.

State Reduction

172

 Next ‘b’ is compared with ‘c’ to ‘h’; ‘c’ is compared with ‘d’ to ‘h’; ‘d’ is compared
with ‘e’ to ‘h’ & so on.

 So we get pairs like (a b) (ac) (ad) ….. (ah) ; (b c) (b d) (b e) …. (b h); & so on for
all the rows in the given table.

 The chart represents these pairs (pair of states). We are interested in pair of
states because we want to know whether they are equivalent or not.

 1st row : (a b) ;

 2nd row : (a c :1st square) & (b c: 2nd square)

 3rd row: (a d) (b d) (c d); & so on. Thus we say,

A square in column i and row j corresponds to state

 pair i-j. Thus, the squares in the first column

 correspond to state pairs a-b, a-c, etc.

Note that the squares above the diagonal are not included in the chart because if
 & j Ξ i , and only one of the state pairs i-j and j-i is needed.

Also, squares corresponding to pairs a-a, b-b, etc., are omitted.

State Reduction

173

To fill in the first column of the chart,
 We compare row ‘a’ of the Table with each of the other rows. Because the
output for row ‘a’ is different than the output for row ‘c’, we place an X in the a-c
square of the chart to indicate that .

 Similarly, we place X’s in squares a-e, a-f, and a-h to indicate that
 because of output differences.

 States a and b have the same outputs,

 and thus,

 To indicate this, we place the implied pairs, d-f and

 c-h, in the a-b square.

 Similarly, because a and d have the same outputs,

 we place a-d and c-e in the a-d square to indicate

 that

 The entries b-d and c-h in the a-g square

 indicate that:

 (contd. ….)

State Reduction

174

Next, row ‘b’ of the state table is compared with

 each of the remaining rows of the table, and column

 ‘b’ of the implication chart is filled in.

 Similarly, the remaining columns in the chart are

 filled in to complete the chart.

Self-implied pairs are redundant, so a-d can be

eliminated from square a-d, and c-e from square c-e.

Now, each square in the implication table has either

been filled in with an X to indicate that the

 corresponding state pair is not equivalent (because the outputs are different) or
filled in with implied pairs.

Check each implied pair:

 We now check each implied pair. If one of the implied pairs in square i-j is not
equivalent, then

The a-b square has 2 implied pairs: d-f & c-h; but d-f square in chart is marked X
therefore . Hence we put a X on a-b square.

State Reduction

175

It is shown in the chart.

b-d, c-h & c-e squares do not We see square a-f has X & square b-g has implied

have a X therefore move to hence we put a X on b-d pair b-f, but square b-f

 next column ‘b’. square. has X in it therefore b-g

 square is crossed.

State Reduction

176

Move on to column c: explanation for putting X is similar as discussed for ‘a’ & ‘b’

b-d square has X Square a-b is crossed & Square a-b is crossed and

hence c-f square is crossed. hence square d-g is square e-f is crossed.

Nothing can be said about crossed. Move on to column f.

squares c-h & c-e, so move Now, move on to

 on to column d. column e.

State Reduction

177

Move on to column f:

Square b-g has X in it, hence Since square b-d is crossed Square d-g is crossed

 square f-h is crossed. we cross square a-g. We cross square c-h.

Square h-g has X in it. We Move on to column c. Move on to column e.

have completed one round,

we again start from column

‘a’.

State Reduction

178

Move on to column e:

 The equivalent states are and

 Therefore we can eliminate 2 states if we replace

 d with a & e with c.

 The reduced state table is reproduced below:

Square a-g is crossed and

hence we cross square e-h.

No more squares to be

considered for elimination.

The process of finding

Equivalent states has ended.

State Reduction

179

State Reduction & Assignment

Partition Method: (Moore Reduction Procedure)
 States Si and Sj of machine M are said to be equivalent If and only if, for every

possible input sequence, the same output sequence will be produced
regardless of whether Si or Sj is the initial state.

 Two states, Si and Sj, of machine M are distinguishable if and only if there exists
at least one finite input sequence which, when applied to M, causes different
output sequences depending on whether Si or Sj is the initial state.

 The sequence which distinguishes these states is called a distinguishing
sequence of the pair (Si , Sj)

 If there exists for pair (Si , Sj) a distinguishing sequence of length k, the states in
(Si , Sj) are said to be k-distinguishable .

 States that are not k-distinguishable are said to be k-equivalent

180

 We seek to partition the states of machine M such that two equivalent states are
in the same block.

 P0 corresponds to 0-distinguishablity (includes all states of machine M)

 P1 is obtained simply by inspecting the table and placing those states having the
same outputs , under all inputs, in the same block.

 P1 establishes the sets of states which are 1-equivalent

 P2 partition is carried out by splitting blocks of P1,whenever their successors are
not contained in a common block of P1

 Iterate process of splitting blocks

 If for some k, Pk+1 = Pk , the process terminates and Pk defines the sets of
equivalent states of the machine.

 Pk is thus called the equivalence partition The equivalence partition is unique.

 We will consider the same example that was solved using Implication method.

State Reduction & Assignment

181

Example:
Consider the state table:

PS: present state; NS: next state

P0 partition: = (ABCDEFGH)

P1 partition is obtained by splitting states

 having different outputs. Therefore, we have

 P1 =(ABDG)(CEFH)

We define

 Block 1 = ABDG, Block 2 = CEFH

Obtain P2: (Consider Block 1 states)

 The indicate transition from one state to another.

 The numeral in () denotes the Block number. Like, D

 belongs to Block 1 & C to Block 2.

 (contd. )

State Reduction & Assignment

182

Obtain P2:

Consider Block 2 states (CEFH).

 For the states A B D & G in block 1, we observe that state B does not follow
transition pattern of states A D & G; because B makes transition to states of block
2 only whereas A D & G make transition to their respective states in both the
blocks. So, we split B out of block 1. B is “2 distinguishable” from A, D and G,
because it belongs neither to Block 1 nor Block 2. That is, it is distinguishable
from these two blocks.

State Reduction & Assignment

183

 No states of block 2 are “2 distinguishable”

 Therefore, we factorize and obtain P2 as:

 P2 = (ADG)(B)(CEFH)

 We have removed B from Block 1. We redefine blocks as:

 Block 1 = ADG

 Block 2 = B

 Block 3 = CEFH

Obtain P3:

Once again we transitions of states, now that we have

3 blocks.

 We observe that G & F are 3 distinguishable.

State Reduction & Assignment

184

Obtain P3 (contd.):

 Split G from block 1; G is 3-distinguishable from A and D

 Split F from block 3; F is 3-distinguishable from C, E and H

 Therefore, factorize P3 as:

 P3 = (AD)(G)(B)(CEH)(F)

 Redefine the blocks as:

 block 1 = AD, block 2 = G, block 3 = B,

 block 4 = CEH and block 5 = F

Obtain P4:

Redefine state transitions for blocks 1 & 4 as shown.

 From block 4, split H because it is 4 distinguishable.

 P4 = (AD)(G)(B)(CE)(H)(F)

State Reduction & Assignment

185

P4 = (AD)(G)(B)(CE)(H)(F)

block 1 = AD, block 2 = G, block 3 = B,

block 4 = CE, block 5 = H and block 6 = F

Obtain P5:

 In view of the changed number of blocks we

redefine the transitions in block 1 & 4 as shown in

the figure.

No state is split-table from block 1 & 4 because in

Each block the states make transitions to such other

states which lie in the same block.

 Since there is no splitting, therefore:

 P5 = P4

Hence the factorization process stops at this stage.

Therefore A Ξ D & C Ξ E

The minimized state function has the states

 A B C F G & H ; reduction from 8 to 6 states

State Reduction & Assignment

186

UNIT – IV
 LOGIC FAMILIES AND SEMICONDUCTOR MEMORIES

State Assignment:

 Before designing a sequential circuit with physical components, we assign
unique coded binary values to the states.

 For a circuit with m states, the codes must contain n bits, where 2n ≥ m. The
equality (=) sign will hold if reduction in number of states is not possible else,
greater than (>) sign holds.

 For example, with three bits, it is possible to assign codes to eight states,
denoted by binary numbers 000 through 111.

 If we have this state table & we have

 3 bits available for coding of states;

 the state ‘g’ will be left unused.

 Table 1

State Assignment

188

 On the other hand if we use reduced version of the Table 1, we have the state
table as Table 2.

In this case we have only 5 states and

since 3 bits are required for coding, we are

left with 3 unused states.

Unused states are treated as don’t-care

 conditions during the design.

 Since don’t-care conditions usually help in Table 2

 obtaining a simpler circuit, it is more likely but not certain that the circuit with
five states will require fewer combinational gates than the one with seven
states.

 We can assign different types of codes to the states of a sequential circuit. Like,
we assign binary code or Gray code or 1 Hot code to the states. The simplest
way to code five states is to use the first five integers in binary counting order

 Another similar assignment is the Gray code. Here, only one bit in the code
group changes when going from one number to the next. This code makes it
easier for the Boolean functions to be placed in the map for simplification.

State Assignment

189

 Another possible assignment is ‘one-hot’ assignment. This configuration uses as
many bits as there are states in the circuit. At any given time, only one bit is
equal to ‘1’ while all others are kept at ‘0’. This type of assignment uses one flip-
flop per state, which is not an issue for register-rich field-programmable gate
arrays.

 Table 3 shows all the three types of assignments.

 Table 3

 Having decided upon the type of assignment, we fill up the state table with the
chosen code.

State Assignment

190

 The Table 4 shows the state table filled up with chosen set of codes. We know that
during state minimization we designate states of a circuit using alphabets. The
process of assignment assigns a code to each state (named as an alphabet).

 Reduced State Table (Table 4) Reduced State (Transition) Table with Binary
 Assignment

 A different assignment will result in a state table with different binary values for
the states. The binary form of the state table is used to derive the next state and
output-forming combinational logic part of the sequential circuit. The complexity
of the combinational circuit depends on the binary state assignment chosen.

State Assignment

191

Mealy & Moore Models
Introduction:
 A sequential circuit has inputs, outputs, and internal states. The sequential

circuits are classified as:

 Moore model.

 Mealy model

 They differ only in the way the output is generated.

Mealy Model:

 In this model, the output is a function of both the present state and the input.

Moore Model:

 In this model, the output is a function of only the present state.

 A circuit may have both types of outputs.

 The two models of a sequential circuit are commonly referred to as a finite state
machine (FSM).

 The Mealy model of a sequential circuit is referred to as a Mealy FSM or Mealy
machine. The Moore model is referred to as a Moore FSM or Moore machine.

192

Mealy and Moore machines are shown in the figures.

We observe the difference in the output dependence of the two machines.

Mealy & Moore Models

193

Example of Mealy Machine:

The output

functions are

defined; so the

directing links

carry information

about input/output.

 Machine State Diagram

Example of Moore Machine:

The output

function is not

Defined; so the

States of

flip-flops are

equivalent

 outputs. Machine State Diagram

Mealy & Moore Models

194

Another Example of Moore Machine:

 In comparison to previous example, in this machine the output is obtained by
ANDing the outputs of 2 flip-flops. The output is a function of present state only.
The directive links in the state diagram show only input values, whereas the
outputs for different combinations of flip-flop states are depicted inside the
circles (depicting states).

 We see that the output shall be ‘1’ iff states of both the flip-flops are =1.

Mealy & Moore Models

195

Mealy Vs. Moore Machine:

 Mealy Moore
Output is a function of both the present Output is a function of present state

 state and the input. Only.

Output may change if the input changes The outputs of the sequential circuit
during clock cycle. are synchronized with the clock,
 because they depend only on flip-flop
 outputs that are synchronized with the
 clock.

Mealy & Moore Models

196

Concerns related to Mealy machine:

 The outputs may have momentary false values because of the delay
encountered from the time that the inputs change and the time that the
flip-flop outputs change.

 In order to synchronize a Mealy-type circuit, the inputs of the sequential
circuit must be synchronized with the clock and the outputs must be
sampled immediately before the clock edge.

 The inputs are changed at the inactive edge of the clock to ensure that the
inputs to the flip-flops stabilize before the active edge of the clock occurs.
Thus, the output of the Mealy machine is the value that is present
immediately before the active edge of the clock.

Mealy & Moore Models

197

Equivalent Sequential Circuits
Definition:
 Sequential circuit N1 is equivalent to sequential circuit N2 if for each state ‘p’ in

N1, there is a state ‘q’ in N2 such that p Ξ q, and conversely, for each state ‘s’ in
N2, there is a state ‘t’ in N1 such that s Ξ t.

 Simply said: two sequential circuits are equivalent if they are capable of doing
the same work.

 Explanation:

 Thus if for every starting state ‘p’ in N1, we can find a corresponding
starting state ‘q’ such that for all input sequences X (i.e., the
output sequences are the same for the same input sequence).

 Then, we can replace N1 with its equivalent circuit N2.

 If both N1 and N2 have a minimum number of states and N1 Ξ N2, then N1 and N2
must have the same number of states. Otherwise, one circuit would have a state
left over which was not equivalent to any state in the other circuit

198

Example: (Inspection Method)
 Figure shows two reduced state tables and their corresponding state graphs.

By inspecting the state graphs, it appears

that if the circuits are equivalent, we must

have A equivalent to either S2 or S3

because these are the only states in N2

with self-loops; but the outputs of A match

only with S2 & hence A Ξ S2.

If we assume that A Ξ S2, this implies that

we must have B Ξ S0 which in turn implies

that we must have D Ξ S1 and C Ξ S3.

Using the state tables, we can verify that

 these assumptions are correct because for every pair of assumed equivalent
states, the next states are equivalent and the outputs are equal when X = 0 and
also when X = 1. This verifies that N1 Ξ N2.

Equivalent Sequential Circuits

199

Implication table Method:
 When machines have large number of states their equivalence can be

determined using Implication table.

Procedure:

 Because the states of one circuit must be checked for equivalence against states
of the other circuit, an implication chart is constructed with rows corresponding
to states of one circuit and columns corresponding to states of the other.

 The implication table is shown in the figure:

The first column of Figure is filled in by comparing row A of

 the state table in the Figure (a) with each of the rows in

Figure (b). Because states A and S0 have different outputs,

an X is placed in the A-S0 square. Because states A and S1

 have the same outputs, the implied next-state pairs

 (B-S3 and A-S0) are placed in the A-S1 square, etc.

Similarly we can fill up the remainder of the table.

Equivalent Sequential Circuits

200
200

The next step is:

Squares corresponding to additional non-equivalent state pairs are crossed out.

Same procedure is adopted as in the state reduction where

we were interested in determining equivalent states.

This is shown in the figure (b). Fig(a) is

reproduced from previous slide.

In Fig (b);

 square A-S1 is crossed because

A-S0 square in (a) has X in it; square

B-S3 is crossed becauseD-S3 square

in Fig (a) has X in it.

We continue with this procedure (a) (b)

 until no square is left to be crossed.

Therefore, the state equivalence is found out to be as:

 C - S3; D - S1; A - S2;

Equivalent Sequential Circuits

201

State Reduction
Merger Graph Method:
 In this as a first step, we define the Merger Graph & explain the procedure for

drawing it.

 Merger graph of an n-state machine M is an undirected graph defined as
follows:

1. It consists of n vertices, each of which corresponds to a state of M

2. For each pair of states (Si,Sj) in M, whose next-state and output entries are not
conflicting , an undirected arc is drawn between vertices Si and Sj

 ‘not conflicting’: it means that both the states make transition to a same state &
the outputs too are same. If ‘p’ & ‘q’ are 2 states then both make transition to a
state ‘r’ & their outputs also same , i.e. either ‘0’ or ‘1’. We have compatible pair

3. If, for a pair of states (Si,Sj), the corresponding output symbols under all input
symbols are not conflicting, but the successors (respective states they make
transition to) are not the same (conflicting), an interrupted arc is drawn
between Si and Sj, and the implied pairs are entered in the space.

 Two states are ‘implied pairs’ if their outputs are same but they make transition
to different states.

202

Example:

 With the help of an example we will explain the process of reduction using
Merger Graph.

The state table for a machine is shown:

 PS: Present State ; NS: Next State

 I1 I2 I3 I4 : Inputs ; z : output

In the table,

the entry ‘ –’ denote unspecified state & output.

C, - : indicate unspecified output; state is specified as C

Compatible pair:

 When for an input, the state and/or output are not specified then both the
state & output can assume any value. In view of this, A & C is defined as
compatible pair. In the graph we draw a line connecting node A with node C. No
other pair is compatible.

Implied Compatible pair:

 For an input the outputs are same, but successor states are different. BC, BD,
BE & so on. We draw a broken line between two state nodes & marked

State Reduction

203

Conflicting pair:

For an input, the outputs are different. Pair: AB.

Conflicting states are not connected through a link.

The Merger Graph:

The graph along with the state table is shown.

1. Nodes represent states of a machine, as shown in the

graph.

2. Starting with state A, its outputs, for different inputs,

are compared with outputs of states from B to E to

determine 1) compatible 2) implied compatible & 3)

conflicting, pairs.

We find that:

A & C are compatible because undefined state & output

can assume any value. A direct link between A & C.

A & B are conflicting because outputs do not match.

Hence no connectivity between A & B

State Reduction

Merger Graph
204

Between A & D:

For input I3, the states do not match. A makes transition

 to E & D makes transition to B; (BE) is implied compatible

pair. Hence an interrupted link is drawn between A & D

is drawn with (BE) indicated.

Between A & E:

Same as between A & D. The pair is (EC). So an interrupted

Link between A & E with (CE) shown.

Similarly we draw for B & C; B& D; B&E:

All are interrupted links with implied compatible pairs

shown as (AD) (AE) & (BC).

For C&D ; C&E:

 Interrupted links with implied compatible pairs shown

as (DE) for C&D; { (BC) (AB)} for C&E.

For D&E:

Interrupted link with implied compatible pair (BC)

State Reduction

Merger Graph
205

Now we examine the graph to find out which nodes are

not connected (conflicting states).

A & B: not connected : conflicting states.

Find out in which interrupted link (AB) appears, strike out

that link. So, we see ‘X’ on E-C link.

Thus E-C no longer exits.

Therefore A-E ceases to exist (because of EC).

So cross out A-E link.

Thus A-E no longer exits. Hence (DB) ceases to exit.

(DB) is not appearing anywhere as implied compatible

Pair. So crossing out links stops at this point.

Therefore , Compatible pairs are:

 (AC) (CD) (DE) (BC) (AD) (BE)

Having found compatible pairs we develop ‘Compatibility

Graph’ to achieve reduction in states.

State Reduction

Merger Graph
206

Compatibility graph:
 A directed graph whose vertices correspond to all compatible pairs, and an arc

leads from (Si,Sj) to (Sp,Sq) if and only if (Si,Sj) implies (Sp,Sq).

 That is, if we have two compatible states Si &Sj and correspondingly we have Sp
& Sq as implied compatibles, then in compatible graph:

 (Si,Sj) becomes a node & (Sp,Sq) becomes another node which are connected
through a directed link.

 (state pair) (implied pair)

 (Si,Sj) are compatible if (Sp,Sq) are compatible.

State Reduction

SiSj SpSq

207

Procedure to develop Compatibility Graph from Merger Graph:

The compatible pairs are:

 (AC) (CD) (DE) (BC) (AD) (BE)

We have the Merger Graph:

Each compatible pair is a node. Hence we have 6 nodes.

Node A:

pair (AC):

No outgoing arm from (AC) because between A & C we

have uninterrupted link. No dependence on other pair for

compatibility.

pair (AD):

There is an interrupting pair (BE); hence a branch will be

 shown from AD to BE in the compatibility graph.

Node B:

 We have 2 interrupted links, BE (BC) & BC (AD), from node B. Hence a branch is
shown from BE to BC & from BC to AD in the compatibility graph.

State Reduction

208

Procedure to develop Compatibility Graph from Merger Graph:

Node C:

CA & CB are already covered. CE is crossed. So, the

remaining interrupted link is CD (DE).

We draw a directed link from CD to DE in the compatibility

graph.

Node D:

All the interrupted links from this node have been

considered except CD(DE).

A directed link from CD to DE is drawn in the compatibility

graph.

Node E:

All interrupted links have been considered & hence no more

additions to the compatibility graph.

State Reduction

209

We need to understand what is Closed Sub Graph of a compatibility graph.

Closed Sub Graph:

 A set of compatibles for machine M is said to be closed if: for every compatible
contained in the set, all its implied compatibles are also contained in the set

 A closed set of compatibles, which contains all states of M, is called a closed
covering.

For example, if we choose (BE) then (BC) too should be

chosen because (BC) is implied compatible of (BE). So,

having chosen (BC) we need to choose (AD) because (AD)

is implied compatible of (BC). Since we started with (BE)

so implied compatible of (AD) is already chosen.

Therefore, closed set of compatibles is given as:

 { BE AD BC}

Second choice:

If we take (AC) it has no implied compatible. Then we may choose (AD) (BE) & (BC)

So , closed set of compatibles is: {AC AD BE BC}

State Reduction

210

Third Choice:

We can start with (CD) & go on to form a closed set of

 compatibles, as:

 {CD DE BC AD BE}

There can be many closed set of compatibles.

Now, we define closed covering.

Closed Covering:

 A closed covering set is one amongst the closed set of compatibles. If a given
closed set of compatibles contains all the vertices (nodes) of a Merger Graph
then it constitutes a closed covering.

 All the closed set of compatibles as obtained for this machine contain all the
nodes of the Merger Graph & hence all are closed covering.

 From the available ones we choose a set with minimum number of compatible
states. Closed covering with minimum number of compatibles is called Minimum
Closed Covering . So we get a closed covering with minimum number of
compatibles as : { BE AD BC}

 Thus, a closed covering with minimum compatibles defines a minimal machine

State Reduction

211

Minimal State Machine:

 Each compatible in minimal closed covering is defined as a state of the minimal
machine. We have: { BE AD BC}

 We define AD as α ; BC as β ; & BE as ϒ

A state table is drawn with newly defined states as shown:

The original state table is reproduced.

From the original state table we see that under the column

PS: transition from A to D implies don’t care for I1; D to E

for I2; A to E & D to B for I3; A & D to don’t care for I4

 (BE) forms a compatible which Is defined as state ϒ

for minimal machine.

So, in the state table for minimal machine

 we replace E & B by ϒ.

 (MINIMAL MACHINE)

State Reduction

212

Minimal State Machine:

 (BC) : β

From the old table we see that in transition from

B to C: For I1, B to C & C to C (β); For I2, B to A

 & C to D (α); For I3, B to B & C to don’t care (β/ϒ),

because B is in both β & ϒ; Any one from β & ϒ can be

chosen as the state for minimal machine.

For I4, B to don’t care & C to A (α).

(BE) : ϒ

 From the old table we see that in transition from

B to E: For I1, B to C & E to B (β); For I2, B to A & E to

don’t care (α); For I3, B to B (β/ϒ), because B is in

 both β & ϒ; For I4, B to don’t care & E to B: β/ϒ

Any one from β & ϒ can be chosen as the state for

 minimal machine. (MINIMAL MACHINE)

State Reduction

213

Design of Clocked Sequential Circuits
Design Procedure:
 From a given set of specifications a logic diagram is generated; or, a list of

Boolean functions are generated from which the logic diagram can be obtained.

 Whereas a combinational circuit is completely defined by its Truth Table, the
sequential circuit requires a state table for specifications.

 The procedure is listed:

 1. From the word description and specifications of the desired operation, derive
a state diagram/ state table for the circuit.

 2. Reduce the number of states if necessary.

 3. Assign binary values to the states.

 4. Obtain the binary-coded state table.

 5. Choose the type of flip-flops to be used.

 6. Derive the simplified flip-flop input equations and output equations.

 7. Draw the logic diagram.

 All the above steps have been studied in somewhat detail.

214

 For designing a sequential circuit, we need to derive a state diagram/ state table
from the word description and specifications of the desired operation. This is the
most critical step in the design process because if a state diagram/table is
wrongly drawn, the designed sequential circuit will serve no purpose.

We will explain design procedure with the help of an example.

Example:

 Let us design a circuit that detects a sequence of three or more consecutive 1’s
in a string of bits coming through an input line (i.e., the input is a serial bit
stream). The output = 1: iff 3 or more number of consecutive 1s are detected;
else it is = 0.

Solution:

 We will design a Moore model sequential circuit. In Moore sequential circuit, the
output is a function of ‘states only’ & not a function of ‘states and input’

 1st step is to obtain state diagram or state table.

 Each time ‘1’ appears in the input sequence, state transition takes place during
clock time. Whenever ‘0’ appears in the input stream, the system goes to reset
(initial) state.

Design of Clocked Sequential Circuits

215

State Diagram:

The state diagram for this type of circuit is shown in the Fig.

S0 (reset / initial state) ;S1 S2 S3 are states of the system.

It is derived by starting with state S0, the reset state.

If the input is ‘0’, the circuit stays in S0, but

if the input is ‘1’, it goes to state S1 to indicate that a ‘1’

was detected.

If the next input is ‘1’, the change is to state S2 to indicate

the arrival of two consecutive 1’s, but

if the input is ‘0’, the state goes back to S0.

The third consecutive 1 sends the circuit to state S3. If

more 1’s are detected, the circuit stays in S3.

 Any ‘0’ input sends the circuit back to S0.

 In this way, the circuit stays in S3 as long as there are three or more consecutive
1’s received.

 This is a Moore model sequential circuit, since the output is ‘1’ when the circuit
is in state S3 and is ‘0’ otherwise.

Design of Clocked Sequential Circuits

216

 Next we need to assign binary codes to the states and list the state table. This is
shown in the Table.

The table is derived from the state

diagram (drawn earlier) with a

sequential binary assignment.

S0: (00); S1: (01); S2: (10): S3: (11)

We can now synthesize a circuit using any flip-flop.

 Design using D flip-flop:

 Required number of flip-flops:

 We will need two D flip-flops to represent the four states (0 to 3). Label their
outputs as ‘A’ and ‘B’.

 Number of inputs = 1 ; Number of outputs = 1

Characteristic equation:

 Q(t + 1) = DQ

 It means that the next-state values in the state table specify the D input
condition for the flip-flop.

Design of Clocked Sequential Circuits

217

 The flip-flop input equations are obtained directly from the next-state columns of
A and B and expressed in sum-of-minterms form.

We have two flip-flops.

To write an equation for each

flip-flop, we look for Next State

(NS)= 1 in the table.

A flip-flop:

NS = 1 for minterms: m3, m5 & m7.

Therefore, DA = m3 + m5 + m7.

We simplify this input using K-map,

 as shown : DA = A x + B x

B flip-flop:

NS = 1 for minterms: m1, m5 & m7.

Therefore, DB = m1 + m5 + m7.

We simplify this input using K-map

 diagram. DB = A x + B΄x

Design of Clocked Sequential Circuits

218

 The output, y:

 From the state table we see that it is governed by minterms m6 & m7. Simplified
expression for y is obtained using K-map, as shown.

 The simplified form for output , y is : y = AB

Mathematically in closed form, we write the flip-flop input

Equations & the output equation as:

 Where A and B are the present-state values of flip-flops A and B, x is the input,
and DA and DB are the input equations.

 The minterms for output y are obtained from the output column in the state
table.

 The advantage of designing with D flip-flops is that the Boolean equations describing
the inputs to the flip-flops can be obtained directly from the state table.

Design of Clocked Sequential Circuits

219

The schematic for the design is given as:

Design of Clocked Sequential Circuits

220

Design using other flip-flops:

 When D -type flip-flops are used, the input equations are obtained directly
from the next state.

 This is not the case for the JK and T types of flip-flops. In order to
determine the input equations for these flip-flops, it is necessary to derive
a functional relationship between the state table and the input equations;
thereby making the design process complicated.

Excitation Table:

 The flip-flop characteristic tables presented in the Tables below provide the
value of the next state when the inputs and the present state are known.
These tables are useful for analyzing sequential circuits and for defining the
operation of the flip-flops.

Design of Clocked Sequential Circuits

221

Excitation Table:

 During the design process, we usually know the transition from the present
state to the next state and wish to find the flip-flop input conditions that will
cause the required transition.

 For this reason, we need a table that lists the required inputs for a given change
of state. Such a table is called an excitation table.

 The excitation tables for JK flip-flop is shown below:

When both present state and next state are ‘0’,

the ‘J’ input must remain at ‘0’ and the ‘K’ input

can be either ‘0’ or ‘1’.

Similarly, when both present state and next state

are ‘1’, the ‘K’ input must remain at ‘0’, while the

‘J’ input can be ‘0’ or ‘1’.

Design of Clocked Sequential Circuits

222

If the flip-flop is to have a transition from the

0-state to the 1-state,

J must be =1, since the J input sets the flip-flop.

However, input K may be either 0 or 1. If K = 0, the

 J = 1 condition sets the flip-flop as required;

 if K = 1 and J = 1, the flip-flop is complemented and

 goes from the 0-state to the 1-state as required.

Therefore, the K input is marked with a don’t-care

 condition for the 0-to-1 transition.

For a transition from the 1-state to the 0-state, we

must have K = 1, since the K input clears the flip-flop.

However, the J input may be either 0 or 1, since J = 0 has no effect and

J = 1 together with K = 1 complements the flip-flop with a resultant

 transition from the 1-state to the 0-state.

 Therefore, the J input is marked with a don’t-care condition for the 1-to-0
transition.

Design of Clocked Sequential Circuits

223

Excitation Table for T Flip-Flop:

The excitation table for the T flip-flop is shown in (b).

From the characteristic table, we find that when input

T = 1, the state of the flip-flop is complemented, and

when T = 0, the state of the flip-flop remains

unchanged.

Therefore, when the state of the flip-flop must

remain the same, the requirement is that T = 0.

When the state of the flip-flop has to be Excitation Table

complemented, T must equal 1.

 Characteristic Table

Design of Clocked Sequential Circuits

224

Synthesis using JK Flip Flops:

The synthesis procedure for sequential circuits with JK

 flip-flops is the same as with D flip-flops.

The only difference being that the input equations for

 the flip-flop are evaluated from the present state to the

 next-state transition. Input equations are derived from

 the excitation table of the flip-flop. Excitation Table

Example:

We will synthesize a sequential circuit for which the

state table is as shown:

We have 2 flip flops A & B. The inputs are designated

as : JA & KA ; JB & KB.

1st row:

Transition for both the flip flops is from ‘0’ to ‘0’. From

The excitation table we see that

JA = 0 & KA = X; JB = 0 & KB= X

Design of Clocked Sequential Circuits

225

Synthesis using JK Flip Flops:

2nd row:

‘A’ makes a transition from ‘0’ to ‘0’: JA = 0 & KA = X

‘B’ makes a transition from ‘0’ to ‘1’: JB = 1 & KB = X

3rd row:

‘A’ makes a transition from ‘0’ to ‘1’: JA = 1 & KA = X

‘B’ makes a transition from ‘1’ to ‘0’: JB = X & KB = 1

4th row:

‘A’ makes a transition from ‘0’ to ‘0’: JA = 0 & KA = X

‘B’ makes a transition from ‘1’ to ‘1’: JB = X & KB = 0

5th row:

‘A’ makes a transition from ‘1’ to ‘1’: JA = X & KA = 0

‘B’ makes a transition from ‘0’ to ‘0’: JB = 0 & KB = X

6th row:

‘A’ makes a transition from ‘1’ to ‘1’: JA = X & KA = 0

‘B’ makes a transition from ‘0’ to ‘1’: JB = 1 & KB = X

Design of Clocked Sequential Circuits

226

Synthesis using JK Flip Flops:

7th row:

‘A’ makes a transition from ‘1’ to ‘1’: JA = X & KA = 0

‘B’ makes a transition from ‘1’ to ‘1’: JB = X & KB = 0

8th row:

‘A’ makes a transition from ‘1’ to ‘0’: JA = X & KA =1

‘B’ makes a transition from ‘1’ to ‘0’: JB = X & KB = 1

Flip-Flop Input Table:

Having determined the flip-flop inputs we make a

 table.

Design of Clocked Sequential Circuits

227

Now we make a complete table that includes state table & flip-flop input table.

The flip-flop inputs in the Table specify the

truth table for the input equations as a function

of present state A, present state B, and input x .

The next-state values are not used during the

 simplification.

Representation of Flip-Flop Inputs in Sum of

product form:

In each column in the table corresponding to

inputs JA & KA ; JB & KB; respectively; we look for

the presence of ‘1’ & their corresponding

minterms. We make use of don’t care condition

‘X’ to simplify the input equation.

 (contd. …)

Design of Clocked Sequential Circuits

228

JA = A΄B x΄ = m2;

Simplify using K-map & ‘X’ conditions: JA = BX΄

KA = A B x = m7;

Simplify using K-map & ‘X’ conditions: KA = B x

JB = A΄B΄ x + A B΄ x = m1 + m5;

Simplify using K-map & ‘X’ conditions: JB = x

KB = A΄B x΄ + A B x = m2 + m7;

Simplify using K-map & ‘X’ conditions: = A x + A΄ x΄

Design of Clocked Sequential Circuits

229

Logic diagram of the sequential circuit:

Advantage of using JK -type flip-flops:

When sequential circuits are designed

manually, using JK flip flops is an advantage.

The fact that there are so many don’t-care

 entries indicates that the combinational

circuit for the input equations is likely to be

simpler, because don’t-care minterms usually

help in obtaining simpler expressions.

If there are unused states in the state table,

there will be additional don’t-care

conditions in the map.

However, D-type flip-flops are more amenable

to an automated design flow.

Design of Clocked Sequential Circuits

230

Synthesis using T Flip-Flops:

We will explain the procedure with the help of an example.

Example:

Using T flip-flops design a sequential circuit for a 3-bit binary counter.

 An n -bit binary counter consists of n flip-flops that can count in binary from ‘0’
to 2n - 1. A three-bit counter will have, accordingly, 3 flip-flops.

State diagram of a three-bit counter:

We see from the binary states indicated inside the circles

 that, the flip-flop outputs repeat the binary count

sequence with a return to ‘000’ after ‘111’.

We know that state transitions in clocked sequential circuits

 are initiated by a clock edge; therefore, the flip-flops

 remain in their present states if no clock is applied.

The only input to the circuit is the clock, and the outputs

 are specified by the present state of the flip-flops.

The next state of a counter depends entirely on its present state,

and the state transition occurs every time the clock goes through a transition.

Design of Clocked Sequential Circuits

231

State Table:

The state table for a 3-bit binary counter is shown.

The three flip-flops are symbolized by A2, A1, and A0.

 Binary counters are constructed most efficiently with

T flip-flops because of their complement property.

The flip-flop excitation for the T inputs is derived from

 the excitation table of the T flip-flop and by

 inspection of the state transition of the present

 state to the next state.

Input equations for flip-flops:

 TA2 = A΄2 A1 A0 + A2 A1 A0 = m3 + m7;

 TA1 = A΄2 A΄1 A0 + A΄2 A1 A0 + A2 A΄1 A0 + A2 A1 A0

 = m1 + m3 + m5 + m7;

 TA0 = sum of all minterms = 1

Minimization of input equations is done using K-map.

Design of Clocked Sequential Circuits

0

232

Minimization:

Design of Clocked Sequential Circuits

233

Logic diagram:

 For simplicity, the reset signal is not shown, but be aware that every design
should include a reset signal.

Design of Clocked Sequential Circuits

234

UNIT – V
 SUB SYSTEM DESIGN

Shift Registers:

236

 A register consists of a group of flip-flops with a common
clock input.

 Registers are commonly used to store and shift binary data.

 Example: Counters

Fig. 4-bit D register

Registers: Types

237

 Buffer Register.

Fig. 1. 4-bit Buffer register

Fig. 2. 4-bit Controlled buffer register

Shift Registers:

238

 A shift register is a register in which binary data can be

stored, and this data can be shifted to the left or right when

a shift signal is applied.

Shift Register: Types

239

1. Serial In Serial Out
Shift Register

1. Serial In Parallel Out Shift
Register

1. Parallel In Serial Out
Shift Register

1. Parallel In Parallel
Out Shift Register

1. Serial In Serial Out Shift Register

240

Fig. 4-bit serial-in serial-out shift register

1. Serial In Serial Out Shift Register

241

Fig. 2. 4-bit serial in serial out shift register using JK Flip-Flop

Fig. 1. JK Flip-flop converted into D-Flip-Flop

1. Serial In Serial Out Shift Register

242

Fig. 1. A 4-bit shift register operation

Right-Shift Register

243

Fig. 2. Timing diagram

Fig. 1. Flip-flop connections

2. Serial In Parallel Out Shift Register

244

Fig. 4-bit serial-in parallel-out shift register

2. Serial In Parallel Out Shift Register

245

Fig. 4-bit serial-in parallel-out shift register

3. Parallel In Serial Out Shift Register

246

4. Parallel In Parallel Out Shift Register

247

Fig. 4-bit parallel-in parallel-out shift register

CARRY LOOK AHEAD ADDER

248

A simple one-bit full adder

 It takes A, B, and Cin as input and generates S and Cout in 2
gate delays (SOP)

4-bit RCA

249

•Work from lowest bit to highest bit sequentially.
• With A0, B0, and C0, the lowest bit adder generates S0 and
C1 in 2 gate delay.
• With A1, B1, and C1 ready, the second bit adder generates S1
and C2 in 2 gate delay.
• Each bit adder has to wait for the lower bit adder to
propagate the carry.

Observations

250

 The critical component each bit adder waits for is the carry

input.

 Instead of generating and propagating carry bit-by-bit, can

we generate all of them in parallel and break the sequential

chain?

 This is exactly the idea of CLA (carry look-ahead adder).

Carry Look Ahead Logic

251

 Now even before the carry in (Cin) is available, based on the

inputs (A,B) only, can we say anything about the carry out?

 Under what condition will the bit propagate an outgoing

carry (Cout), if there is an incoming carry (Cin)?

 Under what condition will the bit generate an outgoing carry

(Cout), regardless of whether there is an incoming carry

(Cin)?

1-bit CLA adder

252

• Instead of Cout, an 1-bit CLA adder block takes A, B inputs and
generates p,g
• p=propagator =>I will propagate the Cin to the next bit. p = A+B
 (If either A or B is 1, Cin=1 causes Cout=1)
• g=generator =>I will generate a Cout independent of what Cin is. g
= AB (If both A and B are 1, Cout=1 for sure)
• p,g are generated in 1 gate delay after we have A,B. Note that Cin is
not needed to generate p,g.
• S is generated in 2 gate delay after we get Cin (SOP).

4-bit CLA

253

• The CLL takes p,g from all 4 bits and C0 as input to generate all Cs in
2 gate delay.
• C1=g0+p0C0,
• C2=g1+p1g0+p1p0C0,
• C3=g2+p2g1+p2p1g0+p2p1p0c0,
• C4=g3+p3g2+p3p2g1+p3p2p1g0+p3p2p1p0c0 (Note: this C4 is too
complicated to generate in 2-level SOP representation)

4-bit CLA

254

Given A,B’s, all p,g’s are generated in 1 gate delay in parallel.
 Given all p,g’s, all C’s are generated in 2 gate delay in parallel.
Given all C’s, all S’s are generated in 2 gate delay in parallel.
 Key virtue of CLA: sequential operation in RCA is broken into
parallel operation

ALU function table

255

• This table shows a sample
function table for an ALU.

• All of the arithmetic operations
have S3=0, and all of the logical
operations have S3=1.

• These are the same functions
we saw when we built our
arithmetic and logic units a few
minutes ago.

• Since our ALU only has 4 logical
operations, we don’t need S2.
The operation done by the logic
unit depends only on S1 and S0.

S3 S2 S1 S0 Operation

0 0 0 0 G = X

0 0 0 1 G = X + 1

0 0 1 0 G = X + Y

0 0 1 1 G = X + Y + 1

0 1 0 0 G = X + Y’

0 1 0 1 G = X + Y’ + 1

0 1 1 0 G = X – 1

0 1 1 1 G = X

1 x 0 0 G = X and Y

1 x 0 1 G = X or Y

1 x 1 0 G = X  Y

1 x 1 1 G = X’

A complete ALU circuit

256

 4

 4

 4

 4 4

G is the final ALU
output.

•When S3 = 0, the
final output comes
from the
arithmetic unit.

•When S3 = 1, the
output comes from
the logic unit.

Cout should be
ignored when
logic operations
are performed
(when S3=1).

The arithmetic and logic units share
the select inputs S1 and S0, but only
the arithmetic unit uses S2.

The / and 4 on a line indicate that it’s actually four lines.

Multiplier Design: Basic Building Blocks

257

 Datapath

 Execution units

 Adder, multiplier, divider, shifter, etc.

 Register file and pipeline registers

 Multiplexers, decoders

 Control

 Finite state machines (PLA, ROM, random logic)

 Interconnect

 Switches, arbiters, buses

 Memory

 Caches (SRAMs), TLBs, DRAMs, buffers

The Binary Multiplication

258

x

+

Partial products

Multiplicand

Multiplier

Result

1 0 1 0 1 0

1 0 1 0 1 0

1 0 1 0 1 0

1 1 1 0 0 1 1 1 0

0 0 0 0 0 0

1 0 1 0 1 0

1 0 1 1

The Array Multiplier:

259

Y0

Y1

X3 X2 X1 X0

X3

HA

X2

FA

X1

FA

X0

HA

Y2X3

FA

X2

FA

X1

FA

X0

HA

Z1

Z3Z6Z7 Z5 Z4

Y3X3

FA

X2

FA

X1

FA

X0

HA

Z2

Z0

Parity Generator / Checker

260

 Electrical noise in the transmission of binary information can
cause errors. Parity can detect these types of errors.

 Parity systems

 Odd parity

 Even parity

 Adds a bit to the binary information

Parity Generator / Checker

261

Four-bit even- and odd-parity generators

262

Comparator:

263

 A comparator is a precision instrument employed to compare
the dimension of a given component with a working
standard (usually slip gauges).

 It thus does not measure the actual dimension but indicate
how much it differs from the basic dimension.

Magnitude Comparator

264

Ring Counter

265

Ring Counter

266

Ring Counter

267

Ring Counter

268

Johnson Counter

269

 Also known as the twisted-ring counter.

 Same as the ring counter except that the inverted output of

the last FF is connected to the input of the first FF.

 Counting sequence:

 000100110111011001000

Johnson Counter

270

Johnson Counter

271

Sequential Circuits

272

 Latches and flip-flops (FFs) are the basic building blocks of
sequential circuits.

 latch: bistable memory device with level sensitive triggering
(no clock), watches all of its inputs continuously and changes
its outputs at any time, independent of a clocking signal.

 flip-flop: bistable memory device with edge-triggering (with
clock), samples its inputs, and changes its output only at
times determined by a clocking signal.

Sequential Circuits

273

SR Latch

274

D latch

275

D flip-flop

276

Flip-Flop Vs. Latch

277

 The primary difference between a D flip-flop and D latch is
the EN/CLOCK input.

 The flip-flop’s CLOCK input is edge sensitive, meaning the
flip-flop’s output changes on the edge (rising or falling) of the
CLOCK input.

 The latch’s EN input is level sensitive, meaning the latch’s
output changes on the level (high or low) of the EN input

Read-Only Memory (ROM)

278

The inputs are called Address inputs and are traditionally
named A0, A1, …An-1
The outputs are called Data outputs and are typically named
D0, D1, …Db-1

Logic Diagram of simple 8x4 diode ROM

279

Internal ROM structure, showing use of control inputs

280

ROM timing

281

Static-RAM Internal Structure

282

Static RAM cell

Each SRAM cell has the same functional behavior in the
SRAM circuit.
The storage device in each cell is a D-latch.

SRAM read timing

283

SRAM write timing

284

285

