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COMBINATIONAL LOGIC DESIGN 



Boolean Algebra 

 Boolean algebra is the basic mathematics needed for the study of 
the logic design of digital systems    

 Its application to switching circuits is of interest 

 switching devices are essentially two-state devices (such as a 
transistor with high or low output voltage) 

 we study the special case of Boolean algebra in which all of the 
variables assume only one of two values.  

 This two-valued Boolean algebra is often referred to as switching 
algebra.    

 if X is a Boolean (switching) variable, then either X = 0 or X = 1   

 The values ‘0’ & ‘1’ represent two states of a switching circuit  

 In a logic gate circuit, ‘0’ (usually) represents a range of low 
voltages, and ‘1’ represents a range of high voltages. 
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 In a switch circuit, ‘0’ (usually) represents an open switch, and ‘1’ 
represents a closed switch.  

 In general, ‘0’ and ‘1’ can be used to represent the two states in 
any binary-valued system.   

Basic Operations:    

 The basic operations of Boolean algebra are AND, OR, and 
complement (or inverse). 

 The complement of ‘0’ is ‘1’, and the complement of ‘1’ is ‘0’. 
Symbolically, we write 

 0′ = 1 and 1′ = 0 

 where the prime (′) denotes complementation. If X is a switching 
variable, X′ = 1 if X = 0 &  X′ = 0 if X = 1 

 

 

 

Boolean Algebra : Basic Operations 
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Inverter:      

 The electronic circuit which forms the inverse of X is referred to as 
an inverter. 

     Symbol: Inverter                          

                              x          °    x’  (complement of x) 

     where the circle at the output indicates inversion. Inversion is also 
called NOT operation .  x: High implies x’: Low    

    High & Low have to do with voltage levels    

 AND Operation:  ‘.’  (Boolean Multiplication) 

                  Z = X.Y :              When both inputs are ‘1’ (high) the output 

      X     Y     Z    X   Y   Z        is  ‘1’ (high), else the output is ‘0’ (Low)     

      0    0     0     1   0   0       X           

      0    1     0     1   1   1       Y                           Z   

 

Boolean Algebra : Basic Operations 

6 



The OR Operation:  ‘+’  (Boolean Addition) 

Defined as    C = A + B   

    A     B      C    A                      C 

    0      0      0    B                          

    0      1      1    If one of the two inputs A or B is ‘1’ (High)      

    1      0      1    the output is ‘1’ ( High).  

    1      1      1    If both the inputs are ‘1’ (High) the output is ‘1’ 

                           If both inputs are ‘0’ (Low) the output is ‘0’ (Low)   

AND Operation:  Two Switches in Cascade   

                                        X  S₁       Y  S₂          Z    = X.Y        

  OR Operation:   Two Switches in Parallel                                                      

                                                 A                   C = A + B 

                                                  B 

 

Boolean Algebra : Basic Operations 
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Boolean Expression:   

    One or more variables can be combined in a certain way to yield a 
Boolean expression that serves the desired purpose.   

Examples:   

                          A.B’ + C;  (A+D)’.C + B.D.E 

    Generally ‘.’ is not explicit in a term like ABC; it is understood to be 
AND operation; ‘+’ implies OR operation and ‘ implies NOT 
(Inversion/Complementation) operation 

    The Boolean expressions are synthesized using basic gates  like 
AND OR & NOT.  

     NAND Gate is obtained as NOT[AND]        NOT(A.B)       (A.B)  

     NOR Gate is obtained as NOT[OR]        NOT(A+B)         (A+B)   

 

 

 

Boolean Expressions & Truth Tables 

8 



Boolean Expression Realization with Gates:   

Examples:        Y = AB’ + C  in Figure as shown below 

                                                            C                            

                                                                                       Y                                                                                      

                B                  B’                               (OR) 

                       (NOT)   A                     

                                                (AND)   

          Y =  [A(C + D)]′ + BE    in    Figure as shown below          

 

 

 

 

 

 

Boolean Expressions & Truth Tables 
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Truth Table:   

    It specifies the values of a Boolean expression for every possible 
combination of values of its variables.   

Example:  

    Consider a Boolean expression:  F = A’ + B   

    Its Truth Table is shown below:    

 

 

 

 

     

 

 

 

Boolean Expressions & Truth Tables 
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    We will now tabulate Truth table for some functions. We do this 
for n=3; that is we have 3 bits corresponding to 3 variables. 

    The number of combinations = N = 2³ = 8   

    The table is shown below:   

 

 

 

 

 

 

 

 

   The table has functions like NOT OR AND & their combinations 

 

Boolean Expressions & Truth Tables 
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   The following basic laws and theorems of Boolean algebra involve 
only a single variable:    

1. Operations with ‘0’ and ‘1’: 

       X + 0 = X              X . 1  = X      

        X + 1 = 1              X . 0  = 0 

   (OR Function)    (AND Function)   

2.  Idempotent Laws:    

         X + X = X              X . X = X   

3.   Involution Law:   

            (X’)’ = X     

4.  Laws of Complementarities:    

            X + X’ = 1           X . X’ = 0   

 

 

Boolean Algebra Basic Theorems 
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Boolean Algebra Laws 

Commutative Associate and Distributive Laws:    

The commutative laws for AND & OR Gates:   

               XY = YX              X+Y = Y+X 

           (AND Gate)           (OR Gate)   

The associative laws for AND & OR Gates:   

           (XY)Z = X(YZ) = XYZ    (AND GATE) 

         (X + Y) + Z = X + (Y + Z) = X + Y +  Z  (OR Gate) 

    Thus we conclude that while forming the AND (OR) of three 
variables, the result is independent of which pair of variables we 
consider first 
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Distributive Laws:   

                     X(Y + Z) = XY + XZ  ……..  1 

                      X + YZ =  (X + Y)(X + Z)  ………. 2   

Proof for (2):   

      (X + Y)(X + Z) = XX + XZ + YX + YZ   

                              = X  + XZ + XY + YZ  (ANDing of X & X yields X) 

                              = X.1 + XZ + XY +YZ (ANDing of X with 1 = X)  

                              = X(1 + Z + Y) + YZ  (ORing 1 with (Z OR Y) = 1) 

                               = X.1 + YZ               (ANDing X with 1 = X) 

                               = X + YZ 

    This second law is very useful in manipulating Boolean 
expressions. It cannot be factored in ordinary algebra. 

 

 

Boolean Algebra Laws 
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1. XY + XY′ = X    

Proof:    

          XY + XY’ = X(Y + Y’) = X ; as Y OR Y’ = 1   

2. X + XY = X   

Proof:   

              X + XY = X(1 + Y) = X ; as ‘1’ OR ‘Y’ = 1   

3. (X + Y’)Y = XY   

 Proof:   

            (X + Y’) Y = XY + Y’Y = XY ; as Y’ AND Y = 0   

4. (X + Y)(X + Y’) = X   

 Proof:  

     (X + Y)(X + Y’) = XX + XY’ + YX + YY’= X + X(Y’ + Y) = X + X = X 

 

 

Boolean Algebra Simplification Theorems 
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5. X(X + Y) = X   

Proof:   

      X(X + Y) = XX + XY = X + XY = X(1+Y) = X   

6. XY’ + Y = X + Y   

Proof:   

       XY’ + Y = (Y + X)(Y + Y’) = YY + YY’ + XY + XY’   

                                                =  Y + 0 + X(Y + Y’) = Y + X   

Usefulness of Simplification:   

 Consider a function F = A(A’ + B)  

Realization without Simplification:      With Simplification 

                                                               (Reduction in number of Gates) 

                                                                                                   F = AB 

                                                                         

Boolean Algebra Simplification Theorems 
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1. Simplify  

               Z = [A + B’C + D + EF][A + B’C +(D + EF)’]   

First step: Look for similarity of expressions in two factors.  

We observe that we can let 

                       Y = A + B’C     X = D + EF   

                 Z = [Y + X][Y + X’] = YY + YX’ + XY + XX’  

                                                =  Y + YX’ +XY + 0  

                                                =   Y + Y (X + X’) = Y+Y = Y   

Therefore  Z = A + BC’ 

Boolean Expression Simplification Examples 
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2. Simplify:   

                Z = (AB + C)(B’D + C’E’) + (AB + C)’  

We let     Y = (AB + C)’  & X = B’D + C’E’ to get the familiar form  

                 Z = Y’ X + Y  = X + Y   ( by theorem)   

 Therefore,  

                  Z = B’D + C’E’ + (AB + C)’    

               is the simplified version.   

Application of Second Distributive Law for simplifying Product terms:  

  The law is : (X+Y)(X+Z) = X + YZ  

Example:    

      Multiply out (A + BC)(A+D+E) ; Let BC = Y & D+E = Z ; A = X   

                     to get (X + Y)(X + Z) = X +YZ = A + BC(D+E) 

Boolean Expression Simplification Examples 
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Factorization using Second Distributive Law:   

1.   Factorize A + B’CD  (Sum of Products) 

         Let X = A; B’ = Y & CD = Z   

                    A + B’CD = X + Y Z = (X+Y)(X+Z)   

                                    = (A + B’)(A + CD)    

2. Factorize AB’ + C’D  using 2nd distributive law 

          Let AB’ = X & C’ = Y , D = Z   

                      AB’ + C’D = X + YZ = (X+Y)(X+Z)   

                                        = (AB’+ Y)(AB’ + Z)   

                                        = (Y + A)(Y + B’)(A + Z)(Z + B’)   

                                        = (C’ + A)(C’+B’)(A + D)(D+B’)  

     Factorized function is a Product of Sums function                                             

 

 

Boolean Expression Simplification Examples 
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3. Factorize:    

                     C’D + C’E’ + G’ H  (Sum of Products) 

                   = C’(D + E’) + G’H  ; Let G’H = X ; C’ = Y & (D+E’) = Z   

                   =  Y Z + X   

                   = (X + Y) ( X+ Z)   

                   = (G’H + C’)(G’H + (D+E’))   

                   = (C’ + G’)(C’ + H) [(D+E’) + G’][(D+E’) + H] 

                    = (C’ + G’)(C’ + H)(D + E’ + G’)(D + E’ + H)   

    is the factorize form (Product of Sums expression) . 

Boolean Expression Simplification Examples 
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4. Factorize  

                          C′D + C′E′ + G′H  (Sum of products expression) 

                         =   C’(D+E) +G’H   

          Let X = G’H   Y = C’   Z = D+E  

We get the expression in X + YZ form which can be factorized as   

                               (X+Y)(X+Z)   

Therefore,   

                  C’(D+E) +G’H  = (G’H + C’) (G’H + D + E)  

   Now,              (G’H + C’) = (C’ + G’)(C’ + H)  , &  

                      (G’H + D + E) = (D + E + G’)(D+E+H)   

  Therefore,  we get Product of Sums expression               

                    C’(D+E) + G’H = (C’ + G’)(C’ + H) (D + E + G’)(D+E+H)   

 

                 

Boolean Expression Simplification Examples 
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Realization of Functions with Gates 

Sum of Products Expression:    

    It is realizable directly by one or more AND gates feeding a single 
OR gate at the circuit output.   

Product of Sums Expression:      

   It is realizable directly by one or more OR  gates feeding a single 
AND  gate at the circuit output.   

 

 Let F = AB′ + CD′E + AC′E′      Let F = (A +B′)(C+ D′ + E)(A + C′ + E′)   

 

 

                                              F 
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De Morgan’s Laws 

    De Morgan’s laws are applied to determine complement  (inverse) 
of a Boolean function.     

The Law’s state that  (for a 2 variable function)  

     (X + Y)’ = X’ Y’  (complement of sum = product of complements)   

      (XY)’  = X’ + Y’ (complement of product  = sum of complements) 

Extending to ‘N’ number of variables we have,   

      (X₁ + X₂ + X₃  . . . + Xn)′  =  X₁′ X₂′ X₃′ . . . Xn′   

                  (X₁ X₂ X₃ . . . Xn)′ = X₁′ + X₂′ + X₃′  . . . + Xn′ 

Verification using Truth table 
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De Morgan’s Laws: Applications 

Example 1:   

Find the complement of   F =  (A′ + B)C′    

                            F’ = [(A’+B)C’]’ ( this is complement of  products)   

Now according to the Law:   

                     complement of products = sum of complements , &  

                      complement of sums = product of complements  

 Therefore,        F’ =   (A’ + B)’ + (C’)’  

                                =   ( A’)’ (B)’ + (C’)’   

                            F’ =      A B’       +  C   

Example 2:  Find the complement of   (AB′ + C)D′ + E 

                        F’ = [(AB′ + C)D′ + E]′    

                        F’ = [(AB′ + C)D′]’ E’ = [(AB′ + C)′ + D]E′   (Contd...) 
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                          F’ = [(AB′ + C)′ + D]E′    

                              = [(AB′)′C′ + D]E′    

                       F’ = [(A′ + B)C′ + D]E′   

Example 3:    Determine complement of F = A′B  + AB′   

                                   F′ = (A′B + AB′)′   

                                      = (A′B)′(AB′)′   

                                      = (A + B′)(A′ + B)     

                                      = AA′ + AB  + B′A′ + BB′  = A′B′  + AB   

Verification using Truth table:        

 

                                 

De Morgan’s Laws: Applications 
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Dual of a Boolean Expression 

Given a Boolean expression,  

 the dual is formed by replacing  

 AND with OR,OR with AND 

  ‘0’ with ‘1’, and ‘1’ with ‘0’   

 Variables and complements are left unchanged    

 dual of AND is OR and the dual of OR is AND   

                    (XYZ . . .)  ͩ  = X + Y + Z  . . .   ;  superscript ‘d’ implies dual 

                   (X + Y + Z  . . .)  ͩ  =  XYZ . . .     

   The dual of an expression may be found by complementing the 
entire expression and then complementing each individual 
variable.   

             Dual of AB′ +C = (AB′ + C)′ = (AB′)′C′ = (A′ + B)C′,  

             Therefore,  (AB′ + C)  ͩ = (A + B′)C 
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Laws and theorems of Boolean algebra  in dual pairs 
 

Laws and theorems of Boolean algebra  listed in dual pairs 
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(Continued …..) 

Laws and theorems of Boolean algebra  in dual pairs 
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Useful Distributive Law Theorem 

We know two distributive laws as    

                  X(Y + Z) = XY + XZ     ;          (X + Y)(X + Z) =  X + YZ 

    There is another distributive law (theorem) quite useful for 
simplifying expressions. It can be applied when there are  two 
terms, one which contains a variable and another which contains 
its complement.  

                              (X + Y)(X’ + Z)  = XZ + X’Y   ….. (1)     

    We observe  that the variable that is paired with X on one side of 
the equation is paired with X’ on the other side, and vice versa.   

Example: Factorize AB + A’C  

     Since in this expression one term has ‘A’ & other has A΄ we can 
use (1) to factorize it. We get 

             AB + A΄C = (A+C)(A΄+B) 

                   29 



Example 1:    

(Q + AB΄)(C΄D + Q΄) =  QC΄D + Q΄AB΄ 

    In the LHS, we have Q & in the RHS we have Q΄. Therefore Q will 
combine with C΄D & Q΄ will combine with AB΄.    

    Using the theorem It is easier to simplify the expression on the LHS 
than to expand it in Sum of Products form for further 
simplification. It is not easy to simplify a term like AB΄C΄D.    

 Example 2:  

  F = AC + A΄BD΄ + A΄BE + A΄C΄DE   

     = AC + A΄(BD΄ + BE + C΄DE)  ; Apply theorem to get  

     = (A + BD΄ + BE + C΄DE)(C + A΄) = [(A+C΄DE) + B(D΄+E)](C + A΄);    

Let X = A+C΄DE;  Y = B ;  Z = D΄+ E & apply distributive law to get 

  F =  (A+B+C΄DE)(A+C΄DE+D΄+E)(C+A΄)       

                                                                       (continued …) 

 

 

Useful Distributive Law Theorem 
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 F =  (A+B+C΄DE)(A+C΄DE+D΄+E)(C+A΄)       

Let us simplify it term wise:    

(A+B+C΄DE) = (A+B+C΄)(A+B+DE) = (A+B+C΄) (A+B+D)(A+B+E)  … 1  

(A+C΄DE+D΄+E) = (A+E+D΄+C΄)(A+E+D΄+DE)=(A+E+D΄+C΄)(A+D΄+E)..2 

Let A+D΄+E = X 

  (A+E+D΄+C΄)(A+D΄+E) =  (X + C΄)(X) = X.X + C΄.X = X(1+C΄) = X  

                                         = A+D΄+E    ……. 3                                                                 

Therefore from 1 & 3, we have    

     F = (A+B+C΄) (A+B+D)(A+B+E)(A+D΄+E)(C+A΄)     

                              

 

 

 

 

Useful Distributive Law Theorem 
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Minterm (Maxterm)/Standard Product(Sum) 

 A binary variable may appear either in its normal form (X) or in its 
complement form (X΄) 

 Consider two binary variables X and Y combined with an AND 
operation 

 Since each variable may appear in either form, there are four 
possible combinations:  

              X΄ Y΄ , X΄ Y, X Y΄ , and X Y     ….. (1) 

 Each of the terms in (1) is called a  minterm or standard product.  

 n variables can be combined to form 2ᵑ minterms   

    In a similar fashion,  

 n variables forming an OR term, with each variable being primed 
or un-primed 

  provide 2ᵑ possible combinations, called maxterms, or standard 
sums   

 The binary numbers from 0 to 2ᵑ - 1 are listed under the n(=3) variables. 
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 Each minterm is obtained from an AND term of the n variables 

 each variable being primed if the corresponding bit of the binary 
number is a ‘0’ and un-primed if a ‘1’     

 each maxterm is obtained from an OR term of the n variables,  

 each variable being un-primed if the corresponding bit is a ‘0’ and 
primed if a ‘1’    

 each maxterm is the complement of its corresponding minterm 
and vice versa   

        SEE TABLE 1   in the next slide 

Determination of Boolean function from a Truth Table: 

     A Boolean function can be expressed algebraically from a given 
truth table by forming a minterm for each combination of the 
variables that produces a ‘1’ in the function and then taking the 
OR of all those terms  (See Table 2) 

Minterm (Maxterm)/Standard Product(Sum) 
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    The eight minterms/maxterms for three variables, together with 
their symbolic designations, are listed in the Table 1 below 

Minterm (Maxterm)/Standard Product(Sum) 
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Let us consider the table as shown.   Table 2 
 
 
 
                                                                                                                               F₁ = m₁ +m₄+m₇     
                                                                                                                               F₂ = m₃ +m₅ +m₆  
                                                                                                                                                   + m₇ 
                                         
 
 
 
 
 
F 
 
F₁ = 1 for { 001 100 111}  ; F₂ = 1 for { 011 101 110 111}    
Therefore, F₁ = X΄YZ + XY΄Z΄+ XYZ   & F₂ = X΄YZ + XY΄Z + XYZ΄+ XYZ  
F₁ & F₂ are expressed in Sum of Products Form (each product term is a minterm)  
  Thus any Boolean function can be expressed as a sum of minterms                                                                                                      
 

Minterm (Maxterm)/Standard Product(Sum) 
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Now consider the complement of a Boolean function.     

    Complement may be read from the truth table by forming a 
minterm for each combination that produces a ‘0’ in the function 
and then ORing those terms.    

                                                                              F₁΄ = X΄Y΄Z΄+ X΄YZ΄+ X΄YZ  

                                                                                       + XY΄Z + XYZ΄   

                                                                              F₂΄ = X΄Y΄Z΄+ X΄Y΄Z +X΄YZ΄  

                                                                                                         +XY΄Z΄   

                                                                              Take complement of F₁ &  

                                                                                F₂  (Continued…)   

                                                                          

 

 

 

Minterm (Maxterm)/Standard Product(Sum) 
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F₁΄ = X΄Y΄Z΄+ X΄YZ΄+ X΄YZ + XY΄Z + XYZ΄   

F₂΄ = X΄Y΄Z΄+ X΄Y΄Z +X΄YZ΄+ XY΄Z΄  

Take complement of F₁ & F₂   

F₁ = (X+Y+Z)( X+Y΄+Z)( X+Y΄+Z΄)( X΄+Y+Z΄)( X΄+Y΄+Z) =MₒM₂M₃M₅M₆  

F₂ = (X+Y+Z)( X+Y+Z΄)(X+Y΄+Z)( X΄+Y+Z) = MₒM₁M₂M₄   

    Thus Any Boolean function can be expressed as a product of 
maxterms (with “product” meaning the ANDing of terms)   

    Boolean functions expressed as a sum of minterms or product of 
maxterms are said to be in canonical form . 

 

 

Minterm (Maxterm)/Standard Product(Sum) 
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Sum of Minterms:  

 It is sometimes convenient to express a Boolean function in its 
sum‐of‐minterms form 

 If the function is not in this form, it can be made so by first 
expanding the expression into a sum of AND terms.  

 Each term is then inspected to see if it contains all the variables.  

 If it misses one or more variables, it is ANDed with an expression 
such as x + x, where x is one of the missing variables.     

Example:   

Express the Boolean function F = A + B΄C as a sum of minterms   

 The function has three variables: A, B, and C.  

 The first term A is missing two variables; therefore, 

                                                                          (Continued ..) 

 

 

 

Minterm (Maxterm)/Standard Product(Sum) 
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Minterm (Maxterm)/Standard Product(Sum) 
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Minterm/Maxterm Form & Conversion 

Notation for Sum of Minterm Form:   

    it is sometimes convenient to express the function in the 
following brief notation:  

  

 The summation symbol Σ stands for the ORing of terms;  

 the numbers following it are the indices of the minterms of the 
function.  

 The letters in parentheses following F form a list of the variables 
in the order taken when the minterm is converted to an AND 
term   

For example,   
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    We studied the procedure for determining the minterms of  such a 
Boolean function in which all the terms do not contain all the 
literals. We will now explore an alternative method for doing the 
same.   

     Let us consider the same function ; F = A + B΄C    

Alternative Procedure:   

 Obtain the truth table of the function directly from the algebraic 
expression and  

 then read the minterms from the truth table.    

    We will first form the Truth table for the given function 

                       (continued …) 

Minterm/Maxterm Form & Conversion 
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   From the truth table, we can then read the five minterms of the 
function to be 1, 4, 5, 6, and 7. 

Minterm/Maxterm Form & Conversion 
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Product of Maxterms:   

 To express a Boolean function as a product of maxterms, 

  it must first be brought into a form of OR terms.  

 This may be done by using the distributive law, 

 x + y z = (x + y)(x + z). Then any missing variable x in each OR term 
is ORed with xx΄ 

Example:     

Express the Boolean function F = x y + x΄z as a product of maxterms. 

    First, convert the function into OR terms by using the distributive 
law:  Law used is a + b c = (a + b)(a + c)   

1st step: a=x y b = x΄ c = z;     2nd step: a = x΄& z b = x c = y    (contd ..) 

                                                                                                     

                                                                                                  

 

 

Minterm/Maxterm Form & Conversion 
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   The function, F, has three variables: x, y, and z. Each OR term is 
missing one variable;  

                        F = (x΄ + y)(x + z)(y + z)    

Therefore  we add 

    z z΄   to first factor ; y y΄ to second factor ; x x΄ to third factor  & 
use the law a +b c = (a + b)(a + c) 

       (x΄ + y + z z΄) = (x΄ + y + z)(x΄ + y +  z΄); a = x΄ + y , b = z, c = z΄ 

       (x  + z  + y y΄) = (x  + z  + y) (x  + z  + y΄)    

       (y + z + x x΄)  = (y + z + x ) (y + z + x΄)     

    Combining all the terms and removing those which appear more 
than once, we finally obtain   

        F = (x΄ + y + z) (x΄ + y +  z΄) (x  + z  + y) (x  + z  + y΄)  

      Next we find input combinations for which F = 0  (contd…) 

Minterm/Maxterm Form & Conversion 
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F = (x΄ + y + z) (x΄ + y +  z΄) (x  + z  + y) (x  + z  + y΄)  

For F to attain a ‘0’ value,   

         first term : x = 1 y = 0 z = 0 ;  input sequence:100 (4) 

   second term : x = 1 y = 0 z = 1 ;  input sequence: 101 (5) 

        third term: x = 0 y = 0 z = 0 ;  input sequence: 000 (0)      

     fourth term : x = 0 y = 1 z = 0 ; input sequence: 010 (2)   

Therefore Maxterms are :  Mₒ  M₂  M₄  M₅   

F = Mₒ  M₂  M₄  M₅ = (x  + z  + y) (x  + z  + y΄) (x΄ + y + z) (x΄ + y +  z΄) 

 A convenient way to express this function is as follows:   

 

    The product symbol, ∏, denotes the ANDing of maxterms; the 
numbers are the indices of the maxterms of the function.  

 

 

Minterm/Maxterm Form & Conversion 
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Conversion between Canonical forms:   

   The original function is expressed by those minterms which make 
the function equal to 1, whereas its complement is a 1 for those 
minterms for which the function is a 0.     

     Therefore,   

     The complement of a function expressed as the sum of 
minterms equals the sum of minterms missing from the original 
function.    

     As an example, consider the function  

     This function has a complement that can be expressed as    

 

    Now, if we take the complement of F΄ by De Morgan’s theorem, 
we obtain F in a different form:   

 

 Conversion between Canonical Forms 
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We obtain function F as:    

 

   where mₒ  m₂  m₃ are the product terms (minterms) & therefore  

    Mₒ  M₂  M₃ (maxterms) are sum terms.   

Therefore we can say that      

    

 That is, the maxterm with subscript ‘j ‘is a complement of the 
minterm with the same subscript ‘j ‘and vice versa. 

General conversion procedure:  

    To convert from one canonical form to another, interchange the 
symbols  and  list those numbers missing from the original form. 

    In order to find the missing terms, one must realize that the total 
number of minterms or maxterms is 2n, where n is the number of 
binary variables in the function. 

 

 

 Conversion between Canonical Forms 
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   Conversion of a Boolean algebraic expression to a product of 
maxterms: 

    This is done  by means of a truth table and the canonical 
conversion procedure.   

Example:    

    Consider  the Boolean expression F = x y + x΄z   

Procedure:    

 Derive the truth table of the function 

  The 1’s under F in the table are determined from the combination 
of the variables for which x y = 11 or x z = 01.  

 The minterms of the function are read from the truth table   

 Express function as sum of minterms 

 Conversion between Canonical Forms 



1. Truth table for the given function:    

 

 

 

 

 

 

 

 

2. Minterms ( F = 1) are read from the table to be 1, 3, 6, & 7 

3.  Express F as a sum of minterms, as    

4.                                                                                       (contd..) 

 

 

 Conversion between Canonical Forms 
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• determine the missing terms in the expression for F    

• the missing terms are 0, 2, 4 & 5   

• express the function as product of maxterms   

• the function is    

 

 Conversion between Canonical Forms 
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   We have seen that the canonical forms of Boolean algebra are 
obtained from the truth table. 

    These forms generally do not contain the least number of literals, 
because each minterm or maxterm contains, by definition, all the 
variables, either complemented or un-complemented.   

Standard Form:   

    In this configuration the terms that form the function may 
contain one, two, or any number of literals.  

    There are two types of standard forms:  

 the sum of products   

 products of sums. 

 

 

Realization of Standard Forms 
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Two Level Implementation:   

   In this implementation, 

    It is assumed that the input variables are directly available in  
their complements, so inverters are not included in the diagram. 

 

 

 

 

 

Realization of Standard Forms 
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    A Boolean function may be expressed in a nonstandard form.  

    For example, the function F₃ = AB + C(D + E) is neither in 
sum‐of‐products nor in product‐of‐sums form.     

    It can be changed to a standard form by using the distributive law 
to remove the parentheses: 

                  F3 = AB + C(D + E) = AB + CD + CE      

Implementation: Two & Three Level   

   

 

 

Realization of Standard Forms 

53 



    In general, a two‐level implementation is preferred because it 
produces the least amount of delay through the gates when the 
signal propagates from the inputs to the output. However, the 
number  of inputs to a given gate might not be practical. 

Realization of Standard Forms 
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Positive & Negative Logic 

 The binary signal at the inputs and outputs of any gate has one of two 
values, except during transition.  

 One signal value represents logic ‘1’ and the other logic ‘0’. 
    Since two signal values are assigned to two logic values, there exist two 

different assignments of signal level to logic value as shown.   
The higher signal level is designated by H and  
the lower signal level by L.  
Choosing the high‐level H to represent logic 1 
 defines a positive logic system. 
Choosing the low‐level L to represent logic 1  
defines a negative logic system. 
The terms positive and negative are somewhat  
misleading, since both signals may be positive 
 or both may be negative.  
    It is not the actual values of the signals that determine the type of logic, 

but rather the assignment of logic values to the relative amplitudes of 
the two signal levels. 
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    Hardware digital gates are defined in terms of signal values such 
as H and L. It is up to the user to decide on a positive or negative 
logic polarity.    

Example:  

Suppose we are given a digital gate with 

associated truth table as shown. 

If we associate ‘0’ with ‘L’ & ‘1’ with ‘H’ 

It becomes an AND Gate (positive logic). 

If we associate ‘1’ with ‘L’ & ‘0’ with ‘H’ 

It becomes OR Gate (negative logic). 

Thus, the same physical gate can  

operate either as a positive‐logic AND 

 gate or as a negative‐logic OR gate. 

 

Positive & Negative Logic 
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 The conversion from positive logic to negative logic and vice versa 
is essentially an operation that changes 1’s to 0’s and 0’s to 1’s in 
both the inputs and the output of a gate.  

 Since this operation produces the dual of a function, the change of 
all terminals from one polarity to the other results in taking the 
dual of the function.  

 The upshot is that all AND operations are converted to OR 
operations (or graphic symbols) and vice versa.  

 In addition, one must not forget to include the polarity‐indicator 
triangle in the graphic symbols when negative logic is assumed. 

Positive & Negative Logic 
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UNIT - II 
 MSI DEVICES 



Introduction  

Gate-level minimization:   

    It is the design task of finding an optimal gate-level 
implementation of the Boolean functions describing a digital 
circuit.    

    Logic gates (of different types) combine in a certain way to 
synthesize a Boolean function. 

     The complexity of the digital circuit is directly related to the 
complexity of the algebraic expression that defines a given  
function.   

     The truth table representation of a function is unique, but the 
function itself is representable in  many different, but equivalent, 
forms.   

     For minimizing the number of gates employed to synthesize a 
function, the function representation is simplified to the extent 
possible. 
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 Simplification Methods for Boolean Functions 

    We will discuss two methods which are used for simplification of 
Boolean functions. Before synthesizing a given function with 
gates, it is simplified to minimize requirement of number of gates.  

     The two methods are: 

      Karnaugh Map Method , & 

      Quine- Mc Clusky Method   

      Karnaugh Method (K Method):   

 A K-map is a diagram made up of squares,  

 with each square representing one minterm of the function that 
is to be minimized    

 any Boolean function can be expressed as a sum of minterms 

 K-map is filled with the minterms 

60 



 The simplified expressions produced by the map are always in 
one of the two standard forms:  

 sum of products or product of sums.   

 simplest algebraic expression is defined as the one with a 
minimum number of terms, and  

 with the smallest possible number of literals in each term.   

 simplest expression produces a circuit diagram 

  with a minimum number of gates and  

 the minimum number of inputs to each gate.   

 the simplest expression is not unique       

 It is sometimes possible to find two or more expressions that 
satisfy the minimization criteria.  

 In that case, either solution is satisfactory 

 Simplification Methods for Boolean Functions 
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Two-Variable K-Map:    

1. only two variables x & y form Boolean function: n = 2 

2. number of states:  00   01   10    11   = 2ᵑ  = 2²   

3. number  of squares in K-map = number of states = 4  

4. minterms:  mₒ = 00 = x΄ y΄ m₁ = 01 = x΄ y   m₂ = 10 = x y΄          
  m₃ = 11 = x y  

The Map:   

                                                          Whichever minterms are present 

                                                          in a function their corresponding  

                                                          squares are filled with ‘1’ 

 

 

 

 

 Simplification Methods for Boolean Functions 
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K-map for AND & OR Function:      

The truth tables for AND & OR functions are :   

                       We pick up such minterms for which F = 1 

                          F = x y 

                      AND Gate   

 

                         F = x΄ y + x y΄ + x y 

                          OR Gate 

                         F = x + y 
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Importance of Simplification:     

For OR gate the Boolean function is given by  

                             F = x΄ y + x y΄ + x y   

If we synthesize this function we would need  

                1. 3 AND Gates 

                 2. Either 3 input OR Gate – 1 number, or  

                       2 input OR Gate ( with 2 inputs)  

  We try to simplify F for achieving reduction in number of gates.  

   First we will try to simplify F directly as illustrated:  

   F = x΄ y + x y΄ + x y  = x(y + y΄) + x΄y = x + x΄y= (x + x΄)(x + y) 

                                       F = x + y  

 Synthesizing this function will need 1 OR gate only. Number of gates 
have been reduced. 

 

 

 Simplification Methods for Boolean Functions 
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    Now let us see how using K-map yields reduction in usage of gates 
for synthesizing function F.   

The K-map Is reproduced here:      

 m₂ (1 0) can be combined with m₃ (1 1) 

            x y΄ + x y = x 

 m₃ (1 1) can be combined with m₁ (0 1) 

            x y + x΄y = y  

Therefore, 

                      F = x + y = x OR y  

  Thus we need only one OR gate to synthesize F 

  We see that K-maps help us in achieving maximum simplification 

                                              x               F 

                                              y               

 Simplification Methods for Boolean Functions 
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 Gate Reduction: Karnaugh Map Method 

Three Variable K-Map:   

1. 3 variables : x y z (n=3) 

2. number of minterms = 2³ = 8  

3. minterms: 000  001 010 011 100 101 110 111   

4. minterms (in literals) : x΄y΄z΄(mₒ) x΄y΄z (m₁) x΄y z΄ (m₂) x΄y z (m₃)  
           x y΄z΄(m₄)  x y΄z(m₅)  x y z΄(m₆)΄ x y z(m₇)   

The 3 variable K-map:    

It has 2 rows & 4 columns .   

2 rows correspond to 2 states of x:(0 1) 

4 columns correspond to 4 states that 

‘y z’ can assume (2² = 4)     
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3 Variable K-Map:   

If we combine 2nd row minterms we get  

binary variable  ‘x’  

If we combine minterms of 2nd & 3rd  

columns  we get  binary variable ‘z’ 

     If we combine minterms of 3rd & 4th columns we get binary      
variable ‘y’ 

Usefulness of Maps in simplifying Boolean Functions:   

The basic property possessed by adjacent squares: 

 Any two adjacent squares in the map differ by only one variable, 
which is primed in one square and un-primed in the other. 

 it follows that the sum of two minterms in adjacent squares can be 
simplified to a single product term consisting of only two literals. 

   e.g. m₅ + m₄ = x y΄z + x y΄z΄ = x y΄ 

 

 

 Gate Reduction: Karnaugh Map Method 
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    Thus, any two minterms in adjacent squares (vertically or 
horizontally, but not diagonally, adjacent) that are ORed together 
will cause a removal of the dissimilar variable.   

Example1:   

Simplify the Boolean Function  

Procedure:   

Mark each minterm square that represents the function with ‘1’ 

This is shown in the K-map in which 

 the squares for minterms  

 010, 011, 100, and 101 are marked  

with 1’s.  

The next step is to find the possible 

adjacent squares. Adjacent squares 

 are shown by shaded areas. 

 

 

 Gate Reduction: Karnaugh Map Method 
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Adding  m₄  to m₅  yields x y΄  

Adding  m₃  to  m₂   yields x΄y   

   The sum of four minterms can be replaced by a sum of only two 
product terms.  

   The logical sum of these two product terms gives the simplified 

    expression   F = x y΄ + x΄y    

   In certain cases, two squares in the map are considered to be 
adjacent even though they do not touch each other.     

    In the figure mₒ , m₂  & m₄, m₆ are    

    adjacent because their minterms    

     differ by only one variable & can    

     combined for simplification  

      purpose 

 Gate Reduction: Karnaugh Map Method 
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For the Boolean function 

F = A΄C + A΄B + AB΄C + BC 

(a) Express this function as a sum of minterms. 

(b) Find the minimal sum-of-products expression.    

Solution:    

Sum of Minterms:  

    It is a canonical form in which the product terms have all the 
literals corresponding to the number of binary variables.  

     F is in standard form. Conversion to canonical form is as follows.  

    A΄C = A΄BC + A΄B΄C    ;  B + B΄ = 1  

    A΄B = A΄BC + A΄BC΄    ;  C + C΄ = 1   

     BC = ABC + A΄BC       ;   A + A΄ = 1        (contd …)    
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We write F as   

       F = A΄BC + A΄B΄C + A΄BC + A΄BC΄+ ABC + A΄BC + AB΄C     

We see A΄BC repeated in F.  Reducible to one term as shown 

                  A΄BC + A΄BC + A΄BC = A΄BC    (OR operation)   

Therefore, 

     F = A΄BC + A΄B΄C + A΄BC΄+ ABC + AB΄C  is the sum of minterms   

     F = 011   +  001   +  010   + 111  + 101   

     F  =  m₃     +    m₁    +    m₂    +    m₇  +    m₅    

The function, F,  can be expressed in sum-of-minterms form as   

 

 

                   (continued …)                               

 Gate Reduction: Karnaugh Map Method 
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Minimal Sum of Products Expression:   

We make use of K-map to obtain minimal sum of products form.  

Corresponding to minterms of F fill up squares with ‘1’ as shown:    

We can combine:  

     m₁ with m₅ to get B΄C  

     m₃ with m₇ to get BC  

     m₃ with m₂ to get A΄B   

Therefore, 

        F = B΄C + BC + A΄B = C + A΄B 
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Simplify the given function:   

Solution:   

The minterms are : m₁  m₂ m₃  m₄  m₅  m₇  

Fill the K-map as shown:    

Combine : 

  m₄ with m₅  yields x y΄ 

  m₂  with m₃ yields x΄y 

m₁  with m₅ & m₃ with m₇ yields z        

The reduced function is:   

            F = x y΄+ x΄y + z 

    

 

 

 Gate Reduction: Karnaugh Map Method 

73 



4 Variable K-Map:    
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   The combination of adjacent squares that is useful during the 
simplification process is easily determined from inspection of the 
four-variable map:   

•  One square represents one minterm, giving a term with four 
literals. 

 Two adjacent squares represent a term with three literals. 

 Four adjacent squares represent a term with two literals. 

 Eight adjacent squares represent a term with one literal. 

 Sixteen adjacent squares produce a function that is always = to‘1’.   

 No other combination of squares can simplify the function. 

 Gate Reduction: Karnaugh Map Method 
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Example:   

Simplify the function:   

 

1.  Combine 1st column with   

     2nd column to yield y΄  

2.  Combine mₒ  with m₂ to  

      yield w΄x΄z΄ 

3. Combine m₄  with m₆ to  

      yield w΄x z΄ 

    Combine 2 & 3 to get w΄z΄  

4. Combine m₁₂ with m₁₄ to  

      yield w x z΄ 

Combine 4&3 to get x z΄ 

The simplified F = y΄+ w΄z΄+ x z΄ 

 

 

 Gate Reduction: Karnaugh Map Method 
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Simplify the Boolean function                             

F is in standard form  

Convert in to  

canonical form .  

Therefore, 

1st term: 0000+0001   

 i.e. mₒ & m₁                 

2nd term: 0010+1010                   

i.e. m₂ & m₁₆ 

4th term:1000 + 1001 

i.e. m₈ & m₉ 

3rd term: 0110: m₆ 
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Step 1: combine  mₒ   with  m₁  to yield A΄B΄C΄   

Step 2 : combine  m₈   with  m₉  to yield AB΄C΄  

Step 3:  combine 2 & 3 to yield   B΄C΄  

Step 4: combine  mₒ   with  m₂  to yield A΄B΄D΄    

Step 5: combine  m₈   with  m₁ₒ  to yield AB΄D΄     

Step 6: combine  4 & 5 to yield B΄D΄   

 Step 7 : combine  m₆  with  m₂  to yield A΄C D΄   

Therefore the simplified F is given by  

                F = A΄C D΄+ B΄C΄+ B΄D΄ 
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Prime Implicants:    

 In choosing adjacent squares in a map, we must ensure that  

 all the minterms of the function are covered when we combine 
the squares,  

  the number of terms in the expression is minimized, and  

  there are no redundant terms (i.e., minterms already covered by 
other terms)    

    A prime implicant is a product term obtained by combining the 
maximum possible number of adjacent squares in the map.  

    If a minterm in a square is covered by only one prime implicant, 
that prime implicant is said to be essential. 

   The prime implicants of a function can be obtained from the map 
by combining all possible maximum numbers of squares. 
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 The essential prime implicants are found by looking at each 
square marked with a ‘1’ and checking the number of prime 
implicants that cover it.  

 The prime implicant is essential if it is the only prime implicant 
that covers the minterm.     

Example:   

Consider the following four-variable Boolean function:   

 

    For the purpose of explaining  the determination of essential 
prime implicants and the other prime implicants, we  make 2 
partial K-maps for the given F.    

    The maps are shown in the next slide.            

                                                                              (continued ..) 
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LHS Map:   

It does not include minterms m₃ , m₉ & m₁₁   

1. We observe that m₅ , m₇ , m₁₃ and m₁₅ can be combined to get BD 

    m₅ , m₇ , m₁₃ and m₁₅ cannot be combined with any other square 
hence BD is essential prime implicant.                                  

                                                                                             

 Gate Reduction: Karnaugh Map Method 
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2. mₒ , m₂ , m₈ and m₁ₒ  can be combined to get B΄D΄  

   mₒ , m₂ , m₈ and m₁ₒ  cannot be combined with any other square & 
hence B΄D΄ is an essential prime implicant   

RHS Map:    

   We will now investigate in how many ways m₃ , m₉ & m₁₁ can be 
combined with other squares.    

1. We can combine m₁₃ , m₁₅, m₉ & m₁₁  to give AD  

2. We can combine m₃ , m₂, m₁ₒ & m₁₁  to give B΄C  

3. We can combine m₃ , m₇, m₁₅ & m₁₁  to give CD 

4. We can combine m₈ , m₉, m₁ₒ & m₁₁  to give AB΄   

    Now BD & B΄D΄ are essential prime implicants & from the 4 listed 
above we have the choice (ensuring that m₃ , m₉ & m₁₁ are 
included) 
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Therefore, we have the following combinations:   

F = BD + B΄D΄ + AD + B΄C 

F = BD + B΄D΄+ AD + CD 

F = BD + B΄D΄+ AB΄+CD 

F = BD + B΄D΄+AB΄+ B΄C 

    Thus we see there may not be a unique minimum function and 
therefore we are afforded a choice of F for implementation with 
gates. 
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Product of Sums Simplification:    

    Thus far we obtained  minimized Boolean functions  in sum-of-
products form.  

   We will see how to obtain  product-of-sums form for the 
minimized function. 

Procedure:   

    The 1’s placed in the squares of the map represent the minterms 
of the function. 

    The minterms not included in the standard sum-of-products 
form of a function denote the complement of the function.   

    Therefore, the complement of a function is represented in the 
map by the squares not marked by 1’s. 

                                                                                   (continued …) 

 

 Gate Reduction: Karnaugh Map Method 

84 



   To obtain complement of the function , F, we mark empty squares 
in the K-map by 0’s. 

    Complement of the function, F΄, obtained is in sum of products 
form.   

    To obtain the product of sums form, we take complement of  F΄ to 
get back F.   

Example:     

    Simplify the following Boolean function into  

   (a) sum-of-products form, and 

   (b) product-of-sums form 
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The K-map filled with 1’s & 0’s is shown:      

1. The 1’s marked in the map  

    represent all the minterms  

    of the function.  

2. The squares marked with   

    0’s represent the minterms 

    not included in F and  

     therefore denote the   

     complement of F . 

3.  Combining the squares with 1’s gives the simplified function in 
sum-of-products form:    

4.  If the squares marked with 0’s are combined, we get simplified 
complemented function as :    
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In 3 we have   

Realization:  

    mₒ  m₂   m₈  m₁ₒ are adjacent to each other & hence can be 
combined to yield: A΄B΄D΄ + A B΄D΄ = B΄D΄  

    m₁  m₅ can be combined to yield: A΄C΄D   

    mₒ  m₁   m₈  m₉ are adjacent to each other & hence can be 
combined to yield: A΄B΄C΄ + A B΄C΄ = B΄C΄  

    Thus all the minterms have been considered. 

In 4 we have    

Realization:   

    m₃  m₇   m₁₁  m₁₅ are adjacent to each other & hence can be 
combined to yield: A΄C D + A C D = CD 

                                                                  (continued …) 
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    m₁₂  m₁₃   m₁₄  m₁₅ are adjacent to each other & hence can be 
combined to yield: ABC΄ + ABC = AB   

    m₄  m₁₂  m₆   m₁₄ are adjacent to each other & hence can be 
combined to yield: BC΄D΄ + BCD΄ = BD΄   

    Thus all the minterms have been considered.    

    Now, we have 

    To get the product of sum form we take complement of F΄   

                             (F΄)΄ = F = (A΄+ B΄)(C΄+ D΄)(B΄+ D) 
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   We have considered the procedure for obtaining the product of 
sums simplification when the function is originally expressed in 
the sum-of-minterms canonical form. 

    The procedure is also valid when the function is originally 
expressed in the product of maxterms canonical form.   

Suppose the function is expressed as:     

 

 This is product of sums form   

The corresponding sum of products form is  

    which is obtained by using missing minterms in the given product 
of sums form. 

 So we will have corresponding 1’s & 0’s in the K-map. 
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The corresponding  K-map is drawn as     

For the sum of products, we combine 

the 1’s to obtain:    

For the product of sums, we combine  

the 0’s to obtain:   

We take complement of F΄ to get the  

desired product of sum form as    

                        (F΄)΄ = 

Which when expanded yields the original sum of products form. 

 Gate Reduction: Karnaugh Map Method 
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Don’t Care Conditions in Function Reduction 

    In practice, in some applications the function is not specified for 
certain combinations of the variables.   

    For example in BCD code where each decimal digit (0 to 9) is 
represented by 4 binary bits; out of 2⁴ = 16 combinations 6 
combinations ( for decimal numbers between 10 to 15) are not 
used & hence considered to be unspecified. 

    Functions that have unspecified outputs for some input 
combinations are called incompletely specified functions . 

    In most applications, we simply don’t care what value is assumed 
by the function for the unspecified minterms. 

    The unspecified minterms of a function are don’t-care conditions .  

    These don’t-care conditions can be used on a map to provide 
further simplification of the Boolean expression. 
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 A don’t-care minterm is a combination of variables whose logical value is 
not specified. 

 Such a minterm cannot be marked with a ‘1’ in the map, because it 
would require that the function always be a 1 for such a combination.  

 Likewise, putting a ‘0’ on the square requires the function to be 0.  

 To distinguish the don’t-care condition from 1’s and 0’s, an ‘X’  is used 

 Thus, an ‘X’  inside a square in the map indicates that we don’t care 
whether the value of ‘0’ or ‘1’ is assigned to F for the particular minterm.     

 In choosing adjacent squares to simplify the function in a map, the don’t-
care minterms may be assumed to be either 0 or 1.  

 When simplifying the function, we can choose to include each don’t-care 
minterm with either the 1’s or the 0’s, depending on which combination 
gives the simplest expression.   
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Example:   

Simplify the Boolean function   

which has the don’t-care conditions  

    The K-maps are shown for different ways of combining minterms 
with don’t care conditions (realizing two different minimum 
functions for the given Boolean function).   
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Note: 

    The first expression includes minterms 0 and 2 with the 1’s and 
leaves minterm 5 with the 0’s.  

    The second expression includes minterm 5 with the 1’s and 
leaves minterms 0 and 2 with the 0’s.  

    The two expressions represent two functions that are not 
algebraically equal.  

    Both cover the specified minterms of the function, but each 
covers different don’t-care minterms.    

Simplified product-of-sums expression: 

    Combine squares with 0’s in the map with don’t care conditions   
( 0 & 2 can be combined). The reduced function obtained is  

                               (F΄)΄ = z(w ΄+y)  ; F = z(w ΄+y)  
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Quine-Mc Cluskey method 

 In order to find all of the prime implicants, all possible pairs of 
minterms should be compared and combined whenever possible.  

 To reduce the required number of comparisons, the binary 
minterms are sorted into groups according to the number of 1’s in 
each term.     

Given the function: 

    First we make a table wherein we arrange the minterms row wise . 
Starting with row 1 minterms are placed in successive rows 
according to the number of 1’s in each term.  

      1st row : minterm with no 1’s  

      2nd row: minterms with 1 number of 1’s  

      3rd row: minterms with 2 number of 1’s   

      4th row : minterms with 3 number of 1’s , & so on … 
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For the given function we have the following table:     

After formulation of the table, we compare  

The minterm in each group with the minterms  

 In its adjacent group , because two terms can be 

 combined only if they differ in 1 bit. 

 Therefore there is no need to compare group 0 

 with group 2 or 3. 

Group 0 is compared only with group 1;  

group 1 is compared only with group 2 & so on.    

Thus, 

    0000 in group 0 combines with 0001 (1), 0010 (2), & 1000 (8) in 
group 1: to yield 000- , 00-0, -000, respectively. ‘1’ + ‘0’ = ‘-’ 
because  x + x΄= 1; a΄b΄c΄d΄ + a΄b΄c΄d = a΄b΄c΄- = 000- 

 

Quine-Mc Cluskey method 
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    Following the procedure of comparing 2 adjacent groups we get 
the table for determining prime implicants. The table is shown 
below:  We ensure that all the minterms are covered in process.   

Column II lists the combinations   

as obtained by comparing terms 

of the adjacent groups in  

column I.    

Column III lists the combinations   

as obtained by comparing terms 

of the adjacent groups in  

column II.   

Duplicate combinations are  

not considered & hence crossed.  

 

Quine-Mc Cluskey method 
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    While comparing, we tick mark the minterms that have been 
combined (as shown in the table). 

    We have the following observations: 

1. that in column II the terms (1,5) (5,7) (6,7) could not be 
combined while forming column III, and 

2. in column III no further combining of terms in its 2 groups is 
possible 

    The conclusions are: 

1. The un-combined terms are prime implicants, and 

2. Because further combining is not possible, the minimization 
process is completed.   

    Therefore the minimized function consists of the following terms:  

    (1,5), (5,7), (6,7), (0,1,8,9), (0,2,8,10) & (2,6,10,14)  

Quine-Mc Cluskey method 
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Therefore, we write reduced Boolean function as:   

      f = (1,5)   +  (5,7)   + (6,7)    + (0,1,8,9)  + (0,2,8,10) + (2,6,10,14)   

      f = 0–01   +  01–1  +  011–   +   –00–      +    –0–0      +      --10   

    The function f was defined as f(a, b, c, d); therefore we follow the 
same order , i.e., a b c d to assign literals to the reduced function, 
f.  ‘-’ implies that the literal is eliminated. 

 Therefore,    

 

    In this expression, each term has a minimum number of literals, 
but the number of terms is not minimum.  

     So, we make a chart called The Prime Implicant Chart.     

    Making this chart is 2nd step in the minimization method  

Quine-Mc Cluskey method 
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The Prime Implicant Chart:    

A prime implicant chart is made to select a minimum set of prime 
implicants.  

The minterms of the function are listed across the top of the chart 
and 

 the prime implicants are listed down the side. 

A prime implicant = sum of minterms & covers all of them  

    If a prime implicant covers a given minterm, an ‘X’ is placed at the 
intersection of the corresponding row and column.    

    In the Chart all of the prime implicants (terms which have not been 
ticked off in the table) are listed on the left. 

     This is shown in the next slide 

                                                                      (continued ….) 

 

Quine-Mc Cluskey method 
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The chart is shown below:                                prime  

                                                                           implicants         minterms   

We put a ‘X’ under the minterm  

contained in a prime implicant.  

We have six rows corresponding to  

six prime implicants. 

Minterms corresponding to each prime  

Implicant are marked ‘X’.    

    If a minterm is covered by only one prime implicant, then that 
prime implicant is called an essential prime implicant and must be 
included in the minimum sum of products.    

    Minterms 9 & 14 are covered by only one prime implicant.  

     b΄c΄ for ‘9’ & cd΄ for ‘14’  Therefore b΄c΄ & cd΄are essential. 

Quine-Mc Cluskey method 
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    Procedure for picking prime implicants for minimum sum from the 
chart:       

1. Pick up a prime implicant for inclusion in the minimum sum 

2. Cross out its corresponding row (of minterms)  

3. Cross out the columns corresponding to minterms of selected 
prime implicant 

4. While picking up a prime implicant ensure that it combines 
maximum number of minterms.     

 Starting with b΄c΄:  

  Cross out the row (as shown) 

 Minterm ‘0’ & ‘8’ also appear in row 2 

  Cross out columns corresponding to  

 minterms ‘0’ & ‘8’, as shown.                                                                              
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Now we have the chart as:   

Now we need to pick up a prime implicant 

between b΄d΄ & cd΄.  

We see that picking up cd΄ covers more 

 number of minterms than b΄d΄would do.  

Therefore pick up cd΄ 

         Cross out row corresponding to it, and  

          columns corresponding to minterms 2 & 10    

    Between a΄c΄d & a΄bd  

    we choose a΄bd 

    it covers more number of minterms. Cross out the row & columns.  

We see that all the minterms are covered. Therefore the function is   

                                    f = a΄bd + cd΄+ b΄c΄ 

Quine-Mc Cluskey method 
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Quine-Mc Cluskey Method 

Cyclic Prime Implicant Chart:   

    A prime implicant chart which has two or more X’s in every 
column is called a cyclic prime implicant chart.      

Example:      

Consider the function:    

Derivation of Prime Implicants:     

 

 

 

 

 

Now we will draw the Prime Implicant Chart.     

                                                                                     (continued ……) 
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Prime Implicant Chart:                                      Prime 

                                                                            Implicants         Minterms    

All columns have two X’s, so we will 

 proceed by trial and error.                                

Both (0, 1) and (0, 2) cover column 

 0, so we will try (0, 1)  

After crossing out row (0, 1) and columns 0 and 1, 

we examine column 2, which is covered by (0, 2) and (2, 6).  

    The best choice is (2, 6) because it covers two of the remaining 
columns while (0, 2) covers only one of the remaining columns.   

    After crossing out row (2, 6) and columns 2 and 6, we see that  

    (5, 7) covers the remaining columns and completes the solution.   

Therefore, one solution is:  

Quine-Mc Cluskey Method 
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    However, we are not guaranteed that this solution is minimum.  

    Therefore, we must go back & solve the problem over again 
starting with the other prime implicant that covers column 0.    

    Prime Implicant Chart:   

    Instead of (0,1) we now try (0,2)  

     Cross out corresponding row &  

      columns, as shown.   

    Next we pick up (1,5) & cross out 

    corresponding row & columns, as shown.   

    We pick up (6,7) which covers all the remaining minterms.  

     Therefore the reduced function is :   

      Since both ways we get same number of terms & literals, we take 
it as the reduced function.      

 

Quine-Mc Cluskey Method 
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Quine- Mc Cluskey Method (Don’t Care Conditions) 

Simplification of incompletely specified functions:    

    Given an incompletely specified function, the proper assignment 
of values to the don’t-care terms is necessary in order to obtain a 
minimum form for the function.    

    In the process of finding the prime implicants, we will treat the 
don’t-care terms as if they were required minterms.   

    When forming the prime implicant chart, the don’t-cares are not 
listed at the top. This way, when the prime implicant chart is 
solved, all of the required minterms will be covered by one of the 
selected prime implicants.   

    However, the don’t-care terms are not included in the final 
solution unless they have been used in the process of forming one 
of the selected prime implicants. 
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Example:   

The second summation term corresponds to don’t care conditions.  

The Table:   
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Prime Implicant Chart:                               Prime               

                                                                    Implicants          Minterms    

 

Start with (2,3,10,11):  It covers 

 minterms  2,3 & 11 

Next (9,11,13,15): It covers 

minterms 9 & 13 

Minterm 7 is left out therefore we have to pick up (3,7,11,15).  

The reduced function is    
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Realization with NAND & NOR Gates 

    Digital circuits are frequently constructed with NAND or NOR gates 
rather than with AND and OR gates.  

    NAND and NOR gates are easier to fabricate with electronic 
components and are the basic gates used in all IC digital logic 
families.  

    Because of the prominence of NAND and NOR gates in the design 
of digital circuits, rules and procedures have been developed for 
the conversion from Boolean functions given in terms of AND, OR, 
and NOT into equivalent NAND and NOR logic diagrams.   

NAND Circuits:    

    The NAND gate is called universal gate because any logic circuit 
can be implemented with it. 
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Logic operations with NAND gates :   

Implementation of NOT  AND  &   

OR gates is shown using NAND 

 gate.    

 

NOT / INVERTER /COMPLEMENT  

function is synthesized using  

single input  NAND gate.   

Conversion to NAND logic:    

   The conversion of an algebraic expression from AND, OR, and 
complement to NAND can be done by simple circuit manipulation 
techniques that change AND–OR diagrams to NAND diagrams. 
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Two graphic symbols for a three-input NAND gate:   

 

 

Two Level Implementation: 

   The implementation of Boolean functions with NAND gates 
requires that the functions be in sum-of-products form. 

Example 1: Implement the function: F = AB + CD  

 We make use of AND-invert & Invert-OR gates to synthesize given F.   

     

 

 

                                                 

                      (a)                                                       (b)     
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Example 2:    

Implement the following Boolean function with NAND gates:    

 

    The first step is to simplify the function into sum-of-products 
form. This is done by means of the K-map  from which the 
simplified function is obtained:   

Logic Diagram:   
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    Now we list the steps for obtaining the logic diagram from a 
Boolean function.   

 Simplify the function and express it in sum-of-products form. 

  Draw a NAND gate for each product term of the expression that 
has at least two literals 

 The inputs to each NAND gate are the literals of the term.  

 This procedure produces a group of first-level gates. 

 Draw a single gate using the AND-invert or the invert-OR graphic 
symbol in the second level, with inputs coming from outputs of 
first-level gates. 

 A term with a single literal requires an inverter in the first level. 
However, if the single literal is complemented, it can be connected 
directly to an input of the second level NAND gate. 
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Multilevel NAND circuits:   

   The standard form (sum of products) of expressing Boolean 
functions results in a two-level implementation. 

Procedure for design of multilevel circuits: 

    In the design of multilevel circuits a given Boolean function is 
expressed in terms of AND, OR, and complement operations. 
The function is then implemented with AND & OR gates. 

    If necessary, it is then converted into an all-NAND circuit. 

Example:   

Consider the Boolean function:   

    Although it is possible to remove the parentheses and reduce 
the expression into a standard sum-of-products form, for 
illustration purpose we choose to implement it as a multilevel 
circuit .   
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Logic Diagram with AND-OR gates & with NAND gates   
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    Procedure for converting a multilevel AND–OR diagram into an 
all-NAND diagram using mixed notation:   

 Convert all AND gates to NAND gates with AND-invert graphic 
symbols. 

 Convert all OR gates to NAND gates with invert-OR graphic 
symbols. 

 Check all the bubbles in the diagram. For every bubble that is not 
compensated by another small circle along the same line, insert 
an inverter (a one-input NAND gate) or complement the input 
literal.    
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Example:    

Consider the multilevel Boolean function  

Logic Diagram:  Conversion from AND-OR gates to NAND gates   
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UNIT - III 
 SEQUENTIAL LOGIC DESIGN 



Design with NOR Gates 

 The NOR operation is the dual of the NAND operation. Therefore,  

 all procedures and rules for NOR logic are the duals of the 
corresponding procedures and rules developed for NAND logic 

 The NOR gate is another universal gate that can be used to 
implement any Boolean function.      

    Implementation of the complement, OR, &  AND operations with 
NOR gates :     

The complement  

operation is  

obtained from a 

 one input NOR  

gate that behaves 

 exactly like an  

inverter.   
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Two graphic symbols for the NOR gate:    

 

 

 

 The OR-invert symbol defines the NOR operation as an OR 
followed by a complement.  

 The invert-AND symbol complements each input and then 
performs an AND operation.  

 The two symbols designate the same NOR operation and are 
logically identical because of De Morgan’s theorem.   
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Procedure for implementation with NOR gates:    

 A two-level implementation with NOR gates requires that the 
function be simplified into product-of-sums form. 

 We know the simplified product-of-sums expression is obtained 
from the map by combining the 0’s and complementing.  

 A product-of-sums expression is implemented with a first level of 
OR gates that produce the sum terms followed by a second-level 
AND gate to produce the product.   

Conversion from OR – AND gates to NOR gates implementation:    

 It  is achieved by changing the OR gates to NOR gates with        
OR-invert graphic symbols, and  

 the AND gate to a NOR gate with an invert-AND graphic symbol.  

  A single literal term going into the second-level gate must be 
complemented. 

 

Design with NOR Gates 
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Example:    

Given a function in product of sums form:   

NOR Gate based logic diagram:      

 

 

 

 

Example:  
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Implement Exclusive OR with NAND gates:   

The XOR function is    

 

 

 

 

 

 

Exclusive OR (XOR) with NAND Gates 
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AND–OR–INVERT Implementation 

 The two non-degenerate forms, NAND–AND &  AND–NOR, are 
equivalent and can be treated together 

 Both perform the AND–OR–INVERT function 

  The AND–NOR form resembles the AND–OR form, but with an 
inversion done by the bubble in the output of the NOR gate.   

Example:   Implement a function   
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OR–AND–INVERT Implementation 

 The OR–NAND and NOR–OR forms perform the OR–AND–INVERT 
function 

 The OR–NAND form resembles the OR–AND form, except for the 
inversion done by the bubble in the NAND gate.    

 The OR–AND–INVERT implementation requires an expression in 
product-of-sums form.   

 If the complement of the function is simplified into product-of-
sums form, we can implement 

 F with the OR–AND part of the function.   

 When F passes through the INVERT part, we obtain the 
complement of F΄, or F , in the output.    

    It implements the function like: 
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Logic Diagram for    

 

 

 

 

 

 

 

 

 

 

 

  

OR–AND–INVERT Implementation 
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Example:   Given the function  

  Synthesize  AND-OR-INVERT & OR-AND-INVERT implementations 

Solution:   

    AND-OR-INVERT implementation yields AND-OR  & NAND-AND 
configurations. Synthesizes ‘complement of the sum of product 
form’  

    OR-AND-INVERT implementation yields  OR-NAND & NOR-OR 
configurations. Synthesizes ‘complement of product of sum form’  

AND-OR-INVERT Implementation:  

    Since it synthesizes ‘complement of the sum of product form’ , in 
the K-map for the given function we select squares filled with 0s & 
obtain simplified function which is F΄ & is in sum of products form . 
Its complement yields F. 

 

 

AND-OR-INVERT & OR–AND–INVERT Example 
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The K-map:    

Simplifying the function for squares  

filled with 0s, we get  

F΄ is in sum of product form.  

AND-OR-INVERT yields its complement 

 & hence we get F. The logic diagram is:   

 

 

 

AND-OR-INVERT & OR–AND–INVERT Example 
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OR-AND-INVERT implementation:    

 The OR–AND–INVERT forms require a simplified expression of the 
complement of the function in product-of-sums form. 

  To obtain this expression, we first combine the 1’s in the map: 

We get the function    

Then we take the complement of the function, to get:  

  The function F = (F΄)΄ 

 

 

 

  

 

 

 

AND-OR-INVERT & OR–AND–INVERT Example 
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Exclusive OR : An Odd Function 

Odd Function:   

   The exclusive-OR operation with three or more variables can be 
converted into an ordinary Boolean function by expanding it, as 
shown:   

  We observe from the Boolean  

   expression that : 

    the three -variable exclusive-OR function is equal to 1 if only one 
variable is equal to 1 or if all three variables are equal to 1. 

    Contrary to the two-variable case, in which only one variable must 
be equal to 1, in the case of three or more variables the 
requirement is that an odd number of variables be equal to 1. 

    Therefore the multiple-variable exclusive-OR operation is defined 
as an odd function. 

 

 

131 



 The Boolean function derived from the three-variable exclusive-
OR operation is expressed as the logical sum of four minterms 
whose binary numerical values are 001, 010,100, and 111.  

 Each of these binary numbers has an odd number of 1’s.  

 The remaining four minterms not included in the function are 000, 
011, 101, and 110, and they have an even number of 1’s in their 
binary numerical values.  

 In general, an n -variable exclusive-OR function is an odd function 
defined as the logical sum of the 2ᵑ /2 minterms whose binary 
numerical values have an odd number of 1’s.    

    In K-map we fill only those squares with ‘1’ which have odd 
number of 1’s in them. Remaining squares are filled with 0s.  

    If we want to determine complement then we fill ‘1’ in the 
squares that have ‘0’ ( i.e. terms not included in the logic function) 

Exclusive OR : An Odd Function 
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The K-map for 3 input Exclusive –OR function:    

 

 

 

 

 The three-input odd function is implemented by means of two-
input exclusive-OR gates,  

 The complement of an odd function is obtained by replacing the 
output gate with an exclusive-NOR gate. 
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4 variable Exclusive – OR operation:   

The K-maps are shown:   
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Analysis of Clocked Sequential Circuits 
Analysis  of a system/circuit: 

    When we say ‘we want to analyze a system/circuit’ we mean to determine what a 
given system/circuit will do under certain operating conditions.  

The behaviour of a clocked sequential circuit is determined from: 

o the inputs fed to it, 

o  the outputs obtained from it, and 

o  the state of its flip-flops. 

    The outputs and the next state are both a function of the inputs and the present 
state.  

    The analysis of a sequential circuit consists of obtaining a table or a diagram for the 
time sequence of  

o inputs,  

o outputs, and 

o  internal states.  

    It is possible to write Boolean expressions that describe the behaviour of the 
sequential circuit. These expressions must include the necessary time 
sequence, either directly or indirectly.  
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Clocked sequential circuit:  
     A logic diagram is recognized as a clocked sequential circuit if it includes flip-flops 

with clock inputs. 

     The flip-flops may be of any type, and the logic diagram may or may not include 
combinational logic gates. 

     We will study about 

o  how to specify the next-state condition in terms of the present state and inputs, 

 State tables, 

  State diagram to describe the behaviour of the sequential circuit.  
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State Equations 
State Equations: 

     These are algebraic equations which describe behaviour of a clocked sequential 
circuit. 

     A state equation (also called a transition equation ) specifies the next state as a 
function of the present state and inputs. 

Example: 

Consider a sequential circuit shown in the diagram: 

It consists of two D flip-flops A and B, an input x and 

 an output y . Since the D input of a flip-flop 

 determines the value of the next state (i.e., the  

state reached after the clock transition), it is possible  

 to write a set of state equations for the circuit, as: 

  A(t + 1) = A(t) x(t) + B(t) x(t)      .... (1) 

  B(t + 1) = A΄(t) x(t)   ................ (2) 

A(t) & B(t): are ‘present’ states (outputs) of flip flops;  

A(t+1) & B(t+1): are ‘next’ states (outputs) of flip flop .  

 State equations are algebraic equations (1) & (2) .    
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     A state equation is an algebraic expression that specifies the condition for a flip-
flop state transition.  

     Consider Equations (1) & (2):   

                A(t + 1) = A(t) x(t) + B(t) x(t)      .... (1) 

  B(t + 1) = A΄(t) x(t)   ................ (2) 

     The left side of the equation, with (t + 1), denotes the next state of the flip-flop 
one clock edge later.  

     The right side of the equation is a Boolean expression that specifies the present 
state and input conditions that make the next state equal to ‘1’.  

     In more compact representation of the State equations, in the RHS of the state 
equation we omit ‘t’ after each variable for convenience and express the state 
equations in the form where ‘t’ is implicitly present.  

                 A(t + 1) = A x + B x      .... (3) 

  B(t + 1) = A΄ x   ................ (4) 

Next state occurs only at the appearance of a clock pulse.  

 

State Equations 
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     The Boolean expressions for the state equations can be derived directly from 
the gates that form the combinational circuit part of the sequential circuit, since 
the D values of the combinational circuit determine the next state.  

      Similarly, the present-state value of the output can be expressed algebraically 
as:   

                          y(t) = [A(t) + B(t)]x΄(t) 

     By removing the symbol (t) for the present state, we obtain the output Boolean 
equation: 

                                          y = (A + B)x΄   

                                   

State Equations 
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State table:   

     In a state table (transition table)we enumerate the time sequence of inputs, 
outputs, and flip-flop states. The state table for the given circuit is shown: 

 

 

 

 

 

 

 

     The table consists of four variables labelled present state, input, next state, and 
output . The present-state (2 columns) shows the states of flip-flops A and B at 
any given time t.  

     The input column gives a value of x for each possible present state. 

     The next-state column shows the states of the flip-flops one clock cycle later, at 
time t + 1. The output column gives the value of y at time t for each present state 
and input condition. 
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Derivation of a state table:  

    The derivation of a state table requires listing all possible binary combinations of 
present states and inputs.  

     In the diagram we have 2 flip flops & hence we have 2 states (A & B). Each one 
can assume a value ‘0’ or ‘1’.   (AB) : (00 01 10 11) 

We have an input ‘x’ which can be ‘0’ or ‘1’. 

Therefore, from the table we see that for  

each possible combination of ‘A’ &’B’ we have 

assigned ‘x’ a value ‘0’ & ‘1’.     

So we have eight binary combinations from 

 000 to 111 for the sequence (A B x).  

The next-state values are then determined 

 from the logic diagram or from the state 

 equations [A(t+1) = A x + B x & B(t+1) = A΄ x]. 

The output column is derived from the output equation y = (A + B) x΄ 
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General Remark:   

     In general, a sequential circuit with m flip flops and n inputs needs 2m+n rows in 
the state table. present example: m = 2 & n=1  

    The binary numbers from ‘0’ through 2m+n  - 1 (= 7) are listed under the present-
state and input columns.  

     The next-state section has m (= 2) columns, one for each flip-flop.  

     The binary values for the next state are derived directly from the state equations. 
The output section has as many columns as there are output variables. Its binary 
value is derived from the circuit or from the Boolean function in the same 
manner as in a truth table. 

State table in another form: 

In this form, the input conditions are 

listed under the next-state and output 

columns.  
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State Diagram 
State diagram: 

     It is a graphical representation for a given state table. The information available 
in a state table can be represented graphically in the form of a state diagram.  

     In this type of diagram, a state is represented by a circle, and the (clock-
triggered) transitions between states are indicated by directed lines connecting 
the circles. 

Example:  

The State Table & its  

State Diagram is shown. 

States: (A B): (00 01 10 11)  

Each state is depicted by a  

circle.  

We have 4 combinations and hence we have 4 circles. 

     Each link (branch) connecting the circles shows the transition from one state to 
another ( in the direction of arrow) at the occurrence of clock pulse. Each link is 
labeled with input/output tag like 1/0; implying that input = 1 & output = 0 
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How to read a State diagram:   

             : A self loop implies no transition. The system continues to remain in its  

             : previous state (00). ‘0/0’ (in/out) implies that input (x) & output (y) = 0.  

                 System input (X) is different from input to a flip flop.  

                x: implies that the links do not exist 

                  The output, y, is given as: y = A x΄  + B x΄    

 

     It is important to remember that the bit value listed for the output along the 
directed line occurs during the present state and with the indicated input, and 
has nothing to do with the transition to the next state.     

     For example, the directed line from state ’00’ to ’01’ is labelled 1/0, meaning that 
when the sequential circuit is in the present state ’00’ and the input is ‘1’, the 
output is ‘0’. After the next clock cycle, the circuit goes to the next state, ’01’.  

    If the input changes to ‘0’, then the output becomes ‘1’, but if the input remains 
at ‘1’, the output stays at ‘0’.  

     Thus, while system output may change (while system is in particular state) 
depending upon input, the state transition occurs only if clock pulse occurs.        

State Diagram 

x 

x 

x 
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We summarize as under:  

• Start from Circuit / system diagram 

• Determine system equations  

• Formulate State table, & then  

• Draw the State diagram 

    There is no difference between a state table and a state diagram, except in the 
manner of representation.  

    The state table is easier to derive from a given logic diagram and the state 
equation.  

    The state diagram follows directly from the state table.  

    The state diagram gives a pictorial view of state transitions and is the form more 
suitable for human interpretation of the circuit’s operation . 

     For example, the state diagram clearly shows that, starting from state ’00’, the 
output is ‘0’ as long as the input stays at ‘1’. The first ‘0’ input after a string of 1’s 
gives an output of 1 and transfers the circuit back to the initial state, ’00’.  

     The machine represented by this state diagram acts to detect a zero in the bit 
stream of data because output becomes ‘1’ only for input bit = 0. 

State Diagram 
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Flip – Flop Input Equations 

Excitation Equations:     

     Flip flop input equations are also known as excitation equations. 

     The part of the circuit that generates the inputs to flip-flops is described 
algebraically by a set of Boolean functions called flip-flop input equations.   

Convention used for input (excitation) equations: 

     We will adopt the convention of using the flip-flop input symbol to denote the 
input equation variable and a subscript to designate the name of the flip-flop 
output. 

Example:   

 Consider the input equation: DQ = x + y. 

 It specifies an OR gate with inputs x and y 

 connected to the D input of a flip-flop whose output 

 is labelled with the symbol Q.  

For the shown diagram we write input equations as: 

 DA = A x + B x & DB = A΄ x 

 The output equation as : y = (A + B)x΄ 
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DA = A x + B x & DB = A΄ x;  y = (A + B)x΄ 

     The three equations, as reproduced above,  provide the necessary information 
for drawing the logic diagram of the sequential circuit. 

     The symbol DA specifies a D flip-flop labelled A . DB specifies a second D flip-flop 
labelled B. 

     The Boolean expressions associated with DA & DB  and the expression for output 
y specify the combinational circuit part of the sequential circuit because these 
equations can be simulated using logic gates.   

Note:   

     Note that the expression for the input equation for a D flip-flop is identical to the 
expression for the corresponding state equation. This is because of the 
characteristic equation that equates the next state to the value of the D input: 
Q(t + 1) = DQ.     
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Analysis using Flip - Flops 
Analysis with D Flip-Flops:        
The circuit diagram to be analyzed is shown:   

XOR gates are at the input.  

The input (excitation)equation: 

For the D Flip flop is given by: 

                                             

State Equation: 

Since the next state of D flip flop is 

equal to the D input (1 or 0), the state equation for the flip flop is : 

                                          

State table:  

     It will have 4 columns: 2 corresponding to inputs x & y and the other 2 to 
present & next state, A. Next state is a function of x, y & ‘A’ value when clock 
pulse occurs.   

     The pair (x y) combinations:(00 01 10 11); A : (0 1) 

      For each combination of (x y), A can take a value ‘0’ or ‘1’  (continued….) 
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State table is determinable from the state equation, given as: 

 

                (next state)                                         (present state)      

Let   Z   =              ;                                              

                                     Z = x y΄ + x΄y          ……………. 1 

                          A(t + 1) = A Z΄ + A΄Z         …………… 2   

In the table we have for all the combinations of input pair (x y) & 

present state ‘A’ value = ‘0’ & ‘1’ tabulated.  

Determination of Next state:  

     Making use of Eqs. 1 & 2, we determine the next state, for each & every row in 
the table. For example: 

     1st Row:   A = 0, x=0, y=0;  therefore, x΄ = y΄= A΄=1 

      Therefore, Z = (0) (1) + (1) (0) = 0; Z΄= 1.  

      Hence,  next state = A(t + 1) = A ( in the table) =  (0) (1) + (1) (0) = 0       

Similarly we can determine next state for the rows in the table, using Eqs. 1 & 2. 
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Analysis with J-K Flip Flops:  
We know that,  

 A state table consists of four sections: present state, inputs, next state, and 
outputs.  

 The first two (present state & inputs) are obtained by listing all binary 
combinations.  

 The output column is determined from the output equations. 

  The next-state values are evaluated from the state equations.   

     We also know that for a D -type flip-flop, the state equation is the same as the 
input equation.  

     When a flip-flop other than the D type is used, such as JK or T, it is necessary to 
refer to the corresponding characteristic table or characteristic equation to 
obtain the next state values. 

Procedure for determining next state:  ( 2 methods) 

 by using the characteristic (state) table and 

 by using the characteristic equation.  
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Steps for determining next state using JK or T flip flop:   

 Determine the flip-flop input equations in terms of the present state and input 
variables. 

 List the binary values of each input equation. 

 Use the corresponding flip-flop characteristic table to determine the next-state 
values in the state table. 

Example using JK flip flop:  

    Consider the sequential circuit with two JK flip-flops A and B and one input x, as 
shown in  the Fig.  

The circuit has no outputs; therefore, the  

state table does not need an output column. 

(The outputs of the flip-flops may be  

considered as the outputs in this case.) 

The flip flop input equations are written as: 

 JA = B   &  KA = B x΄ 

 JB = x΄    &  KB = A΄x + A x΄ = A     x 
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State table:  

    The state table of the sequential circuit is shown in the Table. 

     The present-state and input columns list the eight binary combinations. 

     The binary values listed under the columns labelled flip-flop inputs are not part 
of the state table, but they are needed for the purpose of evaluating the next 
state as specified in step 2 of the procedure.  

     These binary values are obtained directly from the four input equations in a 
manner similar to that for obtaining a truth table from a Boolean expression. 

From the table we see that the present states of 

flip flops A & B are defined for every possible 

value (0 or 1) of input x. So we get 8 possible  

Combinations of A, B & x.  

The columns under ‘Flip-Flop Inputs’ are filled  

using flip flop input equations, 

 JA = B   &  KA = B x΄ 

 JB = x΄    &  KB = A΄x + A x΄ = A     x   

Where, present states of A & B are substituted. We have completed 2 steps.      
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Determination of next state of flip flops:  

    The next state of each flip-flop is evaluated from the corresponding J and K 
inputs and the characteristic table of the JK flip-flop listed in the Table. 

There are four cases to consider (as seen from the table). 

  When J = 1 and K = 0, the next state is 1. 

  When J = 0 and K = 1, the next state is 0. 

  When J = K = 0, there is no change of state and the next-state value is the same 
as that of the present state.  

 When J = K = 1, the next-state bit is the complement of the present-state bit. 

So we need to fill up columns related to ‘Next State’  

A flip-flop:  Present State : PS  NO Change : NC 

1st Row:  PS = 0; JA & KA = 0 therefore next state A = 0: NC 

2nd Row: PS = 0; JA & KA = 0 therefore next state A = 0: NC 

3rd Row: PS = 0; JA & KA = 1 therefore next state A = A΄= 1 

4th Row: PS = 0; JA =1 & KA = 0 therefore next state A = 1  

5th Row: PS = 1; JA & KA =0 therefore next state A = 1: NC   (contd. ….)      

 

Analysis using Flip - Flops 

153 



6th  Row: PS = 1; JA & KA = 0 therefore next state A = 1: NC  

7th Row: PS = 1; JA & KA = 1 therefore next state A = A΄= 0 

8th Row: PS = 1; JA = 1 & KA = 0 therefore next state A = 1   

 

B flip flop:   Present State : PS  NO Change : NC 

 

1st Row:  PS = 0; JB = 1 & KB = 0        therefore next state B = 1 

2nd Row: PS = 0; JB  = 0 & KB = 1       therefore next state B = 0  

3rd Row: PS = 1; JB =1 & KB = 0          therefore next state B =1 

4th Row: PS = 1; JB = 0 & KB = 1         therefore next state B = 0  

5th Row: PS = 0; JB & KB = 1               therefore next state B = B΄=1 

6th  Row: PS = 0; JB & KB = 0              therefore next state B = 0: NC  

7th Row: PS = 1; JB & KB = 1               therefore next state B = B΄= 0 

8th Row: PS = 1; JB & KB = 0                therefore next state B = 1: NC   

Thus we have completed the State table by filling up next state values based on   

the present state  & flip-flop inputs.  
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Determination of next state values using Characteristic Equation:    

The characteristic equation for JK flip flop is given by:  

                      Q(t + 1) = J Q΄ + K΄ Q   

For each flip flop ‘A’ & ‘B’, we write the respective 

Characteristic equations as: 

                          A(t + 1) = J A΄ + K΄ A   

                          B(t + 1) = J B΄ + K΄ B                                                  (J-K Flip Flop)   

     Since the output states in our circuit are designated as ‘A’ & ‘B’ instead of ‘Q’. 

     Substituting the values of  J = JA and K = KA from the input equations, JA = B   &  
KA = B x΄, we obtain the state equation for A : 

                       A(t + 1) = BA΄ + (Bx΄)΄A 

                    or,         A = A΄B + AB΄ + Ax   ........... 1  

The state equation provides the bit values for the 

 column headed “Next State” for A in the state table.  

Therefore by using Eq. 1 we can fill up the ‘Next State’   

column corresponding to ‘A’    
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     Similarly, the state equation for flip-flop B can be derived from the characteristic 
equation by substituting the values of JB and KB:  

                   B(t + 1) = J B΄ + K΄ B ;  

      where,   J = JB = x΄    &  K = KB = A΄x + A x΄ = A     x    

      We get the state equation for B  as: 

          B(t+1) = x΄B΄ + (A     x)΄B = B΄x΄ + AB x + A΄B x΄;  

        (A     x)΄ = A x + A΄x΄   

   or,           B = B΄x΄ + AB x + A΄B x΄ …………….. 2 

     The state equation provides the bit values for the column headed ‘Next State’ for 
B in the state table. Therefore making use of Eq. 2 we fill up the ‘Next State’ 
column corresponding to ‘B’. 

     Note: The State table obtained  using State equations does not have columns 
corresponding to   “Flip-Flop Inputs” because in the obtained state equations the 
‘J’ & ‘K’ inputs are implicit.  

                                                                                              (contd. ….)                                                                                                         
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State Diagram:   

     Next we draw the state diagram for the given circuit. There is no specified output 
for the given circuit & therefore in the state diagram the ‘links’/’branches’ do not 
indicate output of the system for a given (present) state.  

In absence of any specified output we may choose the flip 

flop state itself as the system output. 

From the state table we see that the system has 4 states 

namely : 00 01 10 11. & input can be ‘0’ or ‘1’.  

We know that transition takes place at the occurrence of  

clock pulse. 

So, transition from ‘00’ to ‘01’ takes place while x =0 and  

stays at ‘00’ while x = 1. 

Similarly we see for transitions from ‘01’ ‘10’ & ‘11’ 

and also note down the input value to draw the state  

diagram as shown. 

The directive links do not show any output value because it is                             

not specified. 
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Analysis using T Flip Flops:  
     The analysis of a sequential circuit with T flip-flops follows the same procedure 

outlined for JK flip-flops. 

     The next-state values in the state table can be obtained by using 

• either the characteristic table as listed , or 

• the characteristic equation given by 

                                   Q(t + 1) = T     Q = T΄Q + TQ΄    ….. 1 

This equation is easily derivable from the following state table 

 of  T flip flop. We observe that ‘next state’ is XOR of present 

state , Q and the T value. Therefore the characteristic equation 

is given by Eq. 1  

Example:                                                                                                         State Table 

We will consider a circuit having 2 T flip flops.                                                                                                                
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Example:                                                                                                            y 

Consider the sequential circuit as shown. It has 

•  two T flip flops A and B,  

• one input x, and 

•  one output y 

It can be described algebraically by two input 

 equations: TA = B x ; TB = x , and  

 an output equation: y =AB 

The characteristic equations are: 

     A(t+1) =  T΄A A + A΄ TA ;  

             A = (B x)΄ A + A΄ (B x) = AB΄ + Ax΄ + A΄ B x 

      B(t+1) =  T΄B B + B΄ TB  

               B = x΄ B + B΄ x = x     B  

The next-state values for A and B in the state table 

 are obtained from the expressions of the two state 

 equations. This is characteristic equation method. 
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Characteristic  (State) Table Method: 
     In this method we draw the state table which includes flip flop input values 

(based on present state & input value), in addition to columns for ‘present state’, 
‘input’ & ‘next state’.    

The state table is as shown. 

Flip flop inputs are determined from  their  

Input equations. 

Based on TA  & TB values, the ‘next state’  

is determined from the ‘present state’ , as 

 explained in the earlier example.                                                  

State Diagram: 

From the state table, states are 00 01 10 11 

Input & output values are given.  

Transition takes place at the occurrence of clock pulse.  

The state diagram is shown in the next slide 
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State Diagram: 
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State Reduction  
Analysis & Design of Sequential Circuits: 
Analysis: 

     The analysis of sequential circuits starts from a circuit (logic) diagram and 
culminates in a state table or diagram. 

Design:  

     The design (synthesis) of a sequential circuit starts from a set of specifications 
and culminates in a logic (circuit) diagram.  

State Reduction: Its requirement 

     Two sequential circuits may exhibit the same input–output behaviour, but have 
a different number of internal states in their state diagram. 

     We will discusses certain properties of sequential circuits that may simplify a 
design by reducing the number of gates and flip-flops it uses. 

     In general, reducing the number of flip-flops reduces the cost of a circuit.  

     So the purpose behind achieving reduction in number of states defining a 
sequential circuit is to reduce the complexity of hardware design. 
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State Reduction:   
     The state reduction problem is about reducing the number of flip-flops in a 

sequential circuit. Lesser the number of states lesser the number of flip-flops. 

     While trying to achieve reduction, it is ensured that the input-output 
requirements remain unaltered.   

     Since m flip-flops produce 2m states, a reduction in the number of states may 
(or may not) result in a reduction in the number of flip-flops.  

     For example, if m = 3; number of states = 8. We may be able to reduce number 
of states to 6, but that does not change number of flip-flops because for ‘6’ 
states ‘m’ has to be ‘3’. 

      An unpredictable effect in reducing the number of flip-flops is that sometimes 
the equivalent circuit (with fewer flip-flops) may require more combinational 
gates to realize its next state and output logic. 

     The procedure for achieving state reduction is illustrated with the help of 
examples.  
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Example:   

     For achieving reduction in the number of states, the starting point is ‘state 
diagram’. A typical state diagram is shown in the figure. 

Since only input-output sequences are important, for 

that reason, the states marked inside the circles are 

denoted by letter symbols instead of their binary 

values. This is in contrast to a binary counter, wherein 

 the binary value sequence of the states themselves is 

 taken as the outputs.  

There are an infinite number of input sequences 

that may be applied to the circuit; each results 

in a unique output sequence. 

     We see from the diagram that each input of ‘0’ or ‘1’ produces an output of ‘0’ or 
‘1’ and causes the circuit to go to next state. 

     Consider  an  input sequence 01010110100 starting from the initial state ‘a’ and 
extending up to state ‘g’. We could have considered just any other sequence.   
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Determination of Output & State sequence:  

From the state diagram, we obtain the output and  

state sequence for the given input sequence as follows: 

With the circuit in initial state ‘a’, an input of ‘0’  

produces an output of ‘0’ and the circuit remains in  

state ‘a’ .  

With present state ‘a’ and an input of ‘1’, the output is 

 ‘0’ and the next state is ‘b’ .  

With present state ‘b’ and an input of ‘0’, the output is ‘0’ and the next state is ‘c' . 
Continuing this process, we find the complete sequence to be as follows: 

 

 

 

     The       indicates the transition from one state to another. Column at beginning 
end of the      denote input/output values for which a transition occurs/does not 
occur. While tracing the diagram we have followed input sequence bit pattern. 
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     We reassert that in this circuit the states themselves are of secondary 
importance, because we are interested only in output sequences caused by 
input sequences.  

 Equivalent Sequential Circuits:   

     Two sequential circuits are equivalent if their respective output sequences 
match  (are identical) for a defined set of (identical) input sequences; while the 
number of states in each one of them may be different (less or more w.r.t each 
other) 

    Therefore the  problem of state reduction is to find ways of reducing the number 
of states in a sequential circuit without altering the input–output relationships. 

 Procedure for State Reduction:    

     It is more convenient to apply procedures for state reduction with the use of a 
table rather than a diagram. The state table of the circuit is listed  in next slide 
and is obtained directly from the state diagram. 
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Equivalence of States: 

The equivalence of states is given by the  

following  algorithm: 

“Two states are said to be equivalent if,  

for each member of the set of inputs, they 

give exactly the same output and send the  

circuit either to the same state or to an 

equivalent state.” 

When two states are equivalent, one of them 

can be removed without altering the  

input–output relationships.  

We will apply the above algorithm to our state 

table for the purpose of achieving reduction. 

 

 

 

 

State Reduction  

167 



The state table is reproduced.  

The procedure is that in the state table we look   

 for two present states that go to the same next  

 state and have the same output for both input  

combinations.   

From the table we see that two such states are  

‘g’ & ‘e’. They both go to states ‘a’ and ‘f’ and 

 have outputs of ‘0’ and ‘1’ for x = ‘0’ and x = ‘1’, 

respectively.  

     Therefore, states ‘g’ and ‘e’ are equivalent and one of these states can be  
removed.    

     The procedure for removal is that we remove ‘g’ under column ‘present state’ 
from the table & replace ‘g’ by ‘e’ in the columns under ‘next state’ wherever it 
appears.  

      So we have a reduced table in which the row corresponding to ‘g’ does not 
exist. The reduced table is shown in the next slide. 
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The reduced state table is shown.  

Again in the reduced state table we look for two   

present states that go to the same next state and 

have same outputs for both input combinations.   

From the table we see that two such states are  

‘d’ & ‘f’. They both go to states ‘e’ and ‘f’ and 

 have outputs of ‘0’ and ‘1’ for x = ‘0’ and x = ‘1’, 

respectively.  

     Therefore, states ‘d’ and ‘f’ are equivalent and 

      one of these states can be  removed.    

     The procedure for removal is that we remove ‘f’ under column ‘present state’ 
from the table & replace ‘f’ by ‘d’ in the columns under ‘next state’ wherever it 
appears.  

      So we have a further reduced table in which the row corresponding to ‘f’ does 
not exist. The reduced table is shown in the next slide. 

 

 

    

State Reduction  

169 



The further reduced state table is shown.  

Again in the reduced state table we look for two   

present states that go to the same next state and 

have same outputs for both input combinations.   

From the table we see that there are no two such  

 states. Therefore further reduction of states is not 

 possible. 

The reduced state diagram is as shown. 

The sequential circuit of this example was reduced from  

seven to five states. In general, reducing the number of 

 states in a state table may result in a circuit with less  

equipment. However, the fact that a state table has 

 been reduced to fewer states does not guarantee a  

saving in the number of flip-flops or the number of  

gates. In actual practice designers may skip this step 

 because target devices are rich in resources. 
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State Reduction using Implication Table:  

     As we know reduction is the problem of determining state equivalence so that 
redundant states can be deleted to achieve reduction in number of states. 

 The implication table method of determining state equivalence is as follows: 

1.     Construct a chart which contains a square for each pair of states. 

2. Compare each pair of rows in the state table. If the outputs associated with 
states ‘I’ and ‘j’ are different, place an X in square i-j to indicate that          If 
the outputs are the same, place the implied pairs in square i-j. (If the next 
states of i and j are m and n for some input x, then m-n is an implied pair.) If 
the outputs and next states are the same (or if i-j only implies itself), place a 
check (√) in square i-j to indicate that 

3. Go through the table square-by-square. If square i-j contains the implied pair 
m-n, and square m-n contains an X, then        , and an X should be placed in 
square i-j.  

4. If any X’s were added in step 3, repeat step 3 until no more X’s are added. 

5. For each square i-j which does not contain an X,             

      If desired, row matching can be used to partially reduce the state table before 
constructing the implication table. 
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Example:  

The state table is given. First step is to construct a chart containing squares. 

Rows of the chart:  

 Exclude row corresponding to state ‘a’. That means we exclude 1st state from rows. 

Columns of the chart:  

Exclude row corresponding to state ‘h’; exclude the ‘last’ state from the columns.     

 

 

 

 

 

 

 

     In this method each row of the table is compared with remaining rows to 
determine such rows which have the same output; e.g. row ‘a’ is compared with 
rows ‘b’ to ‘h’ to find out that outputs of ‘a’, ‘b’, ‘d’, & ‘g’ are same.   
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     Next ‘b’ is compared with ‘c’ to ‘h’; ‘c’ is compared with ‘d’ to ‘h’; ‘d’ is compared 
with ‘e’ to ‘h’ & so on.  

     So we get pairs like (a b) (ac) (ad) ….. (ah) ; (b c) (b d) (b e) …. (b h); & so on for 
all the rows in the given table.  

     The chart represents these pairs (pair of states). We are interested in pair of 
states because we want to know whether they are equivalent or not.  

     1st row : (a b) ;  

     2nd row : (a c :1st square) & (b c: 2nd square)  

      3rd row: (a d) (b d) (c d); & so on. Thus we say, 

A square in column i and row j corresponds to state 

 pair i-j. Thus, the squares in the first column 

 correspond to state pairs a-b, a-c, etc.  

Note that the squares above the diagonal are not  included in the chart because if                                      
 &   j Ξ i , and only one of the state pairs i-j and j-i is needed.  

Also, squares corresponding to pairs a-a, b-b, etc., are omitted. 
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To fill in the first column of the chart, 
 We compare row ‘a’ of the Table with each of the other rows. Because the 
output for row ‘a’ is different than the output for row ‘c’, we place an X in the a-c 
square of the chart to indicate that        .  

     Similarly, we place X’s in squares a-e, a-f, and a-h to indicate that                     
         because of output differences.  

     States a and b have the same outputs, 

     and thus,   

    To indicate this, we place the implied pairs, d-f and 

      c-h, in the a-b square.  

     Similarly, because a and d have the same outputs,  

     we place a-d and c-e in the a-d square to indicate 

     that 

     The entries b-d and c-h in the a-g square 

     indicate that: 

                                                                                                   (contd.  ….) 
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Next, row ‘b’ of the state table is compared with 

 each of the remaining rows of the table, and column 

 ‘b’ of the implication chart is filled in.  

 Similarly, the remaining columns in the chart are 

 filled in to complete the chart.  

Self-implied pairs are redundant, so a-d can be  

eliminated from square a-d, and c-e from square c-e.  

Now, each square in the implication table has either 

been filled in with an X to indicate that the 

     corresponding state pair is not  equivalent (because the outputs are different) or 
filled in with implied pairs.   

Check each implied pair: 

    We now check each implied pair. If one of the implied pairs in square i-j is not 
equivalent, then              

The a-b square has 2 implied pairs: d-f & c-h; but d-f square in chart is marked X 
therefore             . Hence we put a X on a-b square. 
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It is shown in the chart. 

 

 

 

 

 

 

 

 

b-d, c-h & c-e squares do not   We see square a-f has X &   square b-g has implied  

have a X therefore move to       hence we put a X on b-d      pair b-f, but square b-f  

 next column ‘b’.                          square.                                    has X in it therefore b-g  

                                                                                                         square is crossed.  
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Move on to column c: explanation for putting X is similar as discussed for ‘a’ & ‘b’  

 

 

 

 

 

 

 

 

b-d square has X                       Square a-b is crossed &    Square a-b is crossed and  

hence c-f square is crossed.   hence square d-g is            square e-f is crossed. 

Nothing can be said about      crossed.                               Move on to column f. 

squares c-h & c-e, so move    Now, move on  to   

 on to column d.                       column e. 
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Move on to column f:   

 

 

 

 

 

 

 

 

 

Square b-g has X in it, hence  Since square b-d is crossed    Square d-g is crossed 

 square f-h is crossed.              we cross square a-g.                We cross square c-h. 

Square h-g has X in it. We       Move on to column c.             Move on to column e. 

have completed one round, 

we again start from column 

‘a’. 
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Move on to column e: 

                                                     The equivalent states are            and 

                                                    Therefore we can eliminate 2 states if we replace 

                                                     d with a & e with c.    

                                                    The reduced state table is reproduced below: 

                       

 

 

 

 

Square a-g is crossed and 

hence we cross square e-h.   

No more squares to be  

considered for elimination. 

The process of finding  

Equivalent states has ended. 
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State Reduction & Assignment 

Partition Method:  (Moore Reduction Procedure) 
     States Si and Sj of machine M are said to be equivalent If and only if, for every 

possible input sequence, the same output sequence will be produced 
regardless of whether Si or Sj is the initial state.   

     Two states, Si and Sj, of machine M are distinguishable if and only if there exists 
at least one finite input sequence which, when applied to M, causes different 
output sequences depending on whether Si or Sj is the initial state. 

     The sequence which distinguishes these states is called a distinguishing 
sequence of the pair (Si , Sj)   

     If there exists for pair (Si , Sj) a distinguishing sequence of length k, the states in 
(Si , Sj) are said to be k-distinguishable . 

     States that are not k-distinguishable are said to be k-equivalent 
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    We seek to partition the states of  machine M such that two equivalent states are 
in the same block.  

    P0 corresponds to 0-distinguishablity (includes all states of machine M) 

    P1 is obtained simply by inspecting the table and placing those states having the 
same outputs , under all inputs, in the same block. 

    P1 establishes the sets of states which are 1-equivalent   

    P2 partition is carried out by splitting blocks of P1,whenever their successors are 
not contained in a common block of P1 

    Iterate process of splitting blocks 

    If for some k, Pk+1 = Pk , the process terminates and Pk defines the sets of 
equivalent states of the machine. 

     Pk is thus called the equivalence partition  The equivalence partition is unique.   

      We will consider the same example that was solved using Implication method. 
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Example:   
Consider the state table:   

PS: present state;   NS: next state  

P0 partition:  = (ABCDEFGH) 

P1 partition is obtained by splitting states 

 having different outputs. Therefore, we have 

            P1 =(ABDG)(CEFH) 

We define  

         Block 1 = ABDG, Block 2 = CEFH 

Obtain P2:  (Consider Block 1 states) 

 

 

                                                         The      indicate transition from one state to another. 

                                                          The numeral in () denotes the Block number. Like, D  

                                                           belongs to Block 1 & C to Block 2. 

                                                                                                                               (contd.  ....) 

State Reduction & Assignment 

182 



Obtain P2:   

Consider Block 2 states (CEFH).   

 

 

 

 

 

 

 

 

     For the states A B D & G in block 1, we observe that state B does not follow 
transition pattern of states A D & G; because B makes transition to states of block 
2 only whereas A D & G make transition to their respective states in both the 
blocks. So, we split B out of block 1. B is “2 distinguishable” from A, D and G, 
because it belongs neither to Block 1 nor Block 2.  That is, it is distinguishable 
from these two blocks. 
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     No states of block 2 are “2 distinguishable” 

     Therefore, we factorize and obtain P2 as: 

                         P2 = (ADG)(B)(CEFH)   

     We have removed B from Block 1. We redefine blocks as: 

                         Block 1 = ADG 

                         Block 2 = B 

                         Block 3 = CEFH   

Obtain P3:   

Once again we transitions of states, now that we have 

3 blocks.   

 

 

 

                                                                   

                                                                  We observe that G & F are 3 distinguishable.     
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Obtain P3 (contd.):  

 Split G from block 1;  G is 3-distinguishable from A and D 

 Split F from block 3; F is 3-distinguishable from C, E and H 

 Therefore, factorize P3 as: 

                          P3 = (AD)(G)(B)(CEH)(F) 

  Redefine the blocks as: 

                         block 1 = AD, block 2 = G, block 3 = B, 

                         block 4 = CEH and block 5 = F                 

Obtain P4:  

Redefine state transitions for blocks 1 & 4 as shown.  

 

 

 

                                                   From block 4, split H because it is 4 distinguishable. 

                                                               P4 =  (AD)(G)(B)(CE)(H)(F) 
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P4 = (AD)(G)(B)(CE)(H)(F)   

block 1 = AD, block 2 = G, block 3 = B, 

block 4 = CE, block 5 = H and block 6 = F 

Obtain P5:  

 In view of the changed number of blocks we  

redefine the transitions in block 1 & 4 as shown in 

the figure.  

No state is split-table from block 1 & 4 because in  

Each block the states make transitions to such other  

states which lie in the same block.  

 Since there is no splitting, therefore: 

                               P5 = P4  

Hence the factorization process stops at this stage. 

Therefore A Ξ D & C Ξ E 

The minimized state function has the states 

           A B C F G & H ; reduction from 8 to 6 states 
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UNIT – IV 
 LOGIC FAMILIES AND SEMICONDUCTOR MEMORIES 



State Assignment: 

     Before designing  a sequential circuit with physical components, we assign 
unique coded binary values to the states.  

     For a circuit with m states, the codes must contain n bits, where 2n ≥ m. The 
equality (=) sign will hold if reduction in number of states is not possible else, 
greater than (>) sign holds.  

     For example, with three bits, it is possible to assign codes to eight states, 
denoted by binary numbers 000 through 111.   

 

                                                                                  If we have this state table & we have   

                                                                                  3 bits available for coding of states;  

                                                                                   the state ‘g’ will be left unused.  

 

 

 

                               Table 1                                                                     
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     On the other hand if we use reduced version of the Table 1, we have the state 
table as Table 2.   

In this case we have only 5 states  and  

since 3 bits are required for coding, we are   

left with 3 unused states. 

Unused states are treated as don’t-care 

 conditions during the design. 

 Since don’t-care conditions usually help in                                Table 2 

     obtaining a simpler circuit, it is more likely but not certain that the circuit with 
five states will require fewer combinational gates than the one with seven 
states.  

     We can assign different types of codes to the states of a sequential circuit. Like, 
we assign binary code or Gray code or 1 Hot code to the states. The simplest 
way to code five states is to use the first five integers in binary counting order 

     Another similar assignment is the Gray code. Here, only one bit in the code 
group changes when going from one number to the next. This code makes it 
easier for the Boolean functions to be placed in the map for simplification.   
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      Another possible assignment is ‘one-hot’ assignment. This configuration uses as 
many bits as there are states in the circuit. At any given time, only one bit is 
equal to ‘1’ while all others are kept at ‘0’. This type of assignment uses one flip-
flop per state, which is not an issue for register-rich field-programmable gate 
arrays. 

      Table 3 shows all the three types of assignments.    

 

 

 

 

 

 

                                                                                                       

                                                                               Table 3  

     Having decided upon the type of assignment, we fill up the state table with the 
chosen code. 
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     The Table 4 shows the state table filled up with chosen set of codes. We know that 
during state minimization we designate states of a circuit using alphabets. The 
process of assignment assigns a code to each state (named as an alphabet).   

 

 

 

 

 

 

 

 

    Reduced State Table      (Table 4)       Reduced State (Transition) Table with Binary   
       Assignment 

     A different assignment will result in a state table with different binary values for 
the states. The binary form of the state table is used to derive the next state and 
output-forming combinational logic part of the sequential circuit. The complexity 
of the combinational circuit depends on the binary state assignment chosen.                                                           
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Mealy & Moore Models 
Introduction:  
     A sequential circuit has inputs, outputs, and internal states. The sequential 

circuits are classified as:  

 Moore model.  

 Mealy model 

     They differ only in the way the output is generated.  

Mealy Model:  

     In this model, the output is a function of both the present state and the input.  

Moore Model:  

     In this model, the output is a function of only the present state.  

     A circuit may have both types of outputs.  

     The two models of a sequential circuit are commonly referred to as a finite state 
machine (FSM).  

     The Mealy model of a sequential circuit is referred to as a Mealy FSM or Mealy 
machine. The Moore model is referred to as a Moore FSM or Moore machine. 
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Mealy and Moore machines are shown in the figures.  

 

 

 

 

 

 

 

 

 

 

 

 

   

We observe the difference in the output dependence of the two machines.  
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Example of Mealy Machine:   

The output  

functions are  

defined; so the 

directing links   

carry information 

about input/output. 

                                                       Machine                                                State Diagram 

Example of Moore Machine:   

The output 

function is not                                                

Defined; so the  

States of  

flip-flops are  

equivalent  

 outputs.                               Machine                                                        State  Diagram                               
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Another Example of Moore Machine:   

 

 

 

 

 

 

 

 

     In comparison to previous example, in this machine the output is obtained by 
ANDing the outputs of 2 flip-flops. The output is a function of present state only. 
The directive links in the state diagram show only input values, whereas the 
outputs for different combinations of flip-flop states are depicted inside the 
circles (depicting states).  

      We see that the output shall be ‘1’ iff states of both the flip-flops are =1. 
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Mealy Vs. Moore Machine: 

                      Mealy                                          Moore      
Output is a function of both the present    Output is a function of present state 

 state and the input.                                        Only.   

Output may change if the input changes  The outputs of the sequential circuit                                                                                                                                
during clock cycle.                                     are synchronized with the clock,                                                                               
                                                            because they depend only on flip-flop    
                                                            outputs that are synchronized with the   
                  clock.   
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Concerns related to Mealy machine:   

     The outputs may have momentary false values because of the delay 
encountered from the time that the inputs change and the time that the 
flip-flop outputs change.  

     In order to synchronize a Mealy-type circuit, the inputs of the sequential 
circuit must be synchronized with the clock and the outputs must be 
sampled immediately before the clock edge.  

     The inputs are changed at the inactive edge of the clock to ensure that the 
inputs to the flip-flops stabilize before the active edge of the clock occurs. 
Thus, the output of the Mealy machine is the value that is present 
immediately before the active edge of the clock. 
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Equivalent Sequential Circuits 
Definition:  
     Sequential circuit N1 is equivalent to sequential circuit N2 if for each state ‘p’ in 

N1, there is a state ‘q’ in N2 such that p Ξ q, and conversely, for each state ‘s’ in 
N2, there is a state ‘t’ in N1 such that s Ξ t.    

     Simply said: two sequential circuits are equivalent if they are capable of doing 
the same work.   

 Explanation:   

     Thus if                  for every starting state ‘p’ in N1, we can find a corresponding 
starting state ‘q’ such that                                      for all input sequences X (i.e., the 
output sequences are the same for the same input sequence).        

     Then, we can replace N1 with its equivalent circuit N2.   

     If both N1 and N2 have a minimum number of states and N1 Ξ N2, then N1 and N2 
must have the same number of states. Otherwise, one circuit would have a state 
left over which was not equivalent to any state in the other circuit 
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Example:  (Inspection Method) 
    Figure shows two reduced state tables and their corresponding state graphs.   

By inspecting the state graphs, it appears  

that if the circuits are equivalent, we must 

have A equivalent to either S2 or S3  

because these are the only states in N2 

with self-loops; but the outputs of A match  

only with S2 & hence A Ξ S2.  

If we assume that A Ξ S2, this implies that 

we must have B Ξ S0 which in turn implies  

that we must have D Ξ S1 and C Ξ S3.  

Using the state tables, we can verify that 

     these assumptions are correct because for every pair of assumed equivalent 
states, the next states are equivalent and the outputs are equal when X = 0 and 
also when X = 1. This verifies that N1 Ξ N2.   
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Implication table Method:   
     When machines have large number of states their equivalence can be 

determined using Implication table.  

Procedure: 

     Because the states of one circuit must be checked for equivalence against states 
of the other circuit, an implication chart is constructed with rows corresponding 
to states of one circuit and columns corresponding to states of the other.  

      The implication table is shown in the figure:   

The first column of Figure is filled in by comparing row A of 

 the state table in the Figure (a) with each of the rows in  

Figure (b). Because states A and S0 have different outputs, 

an X is placed in the A-S0 square. Because states A and S1 

 have the same outputs, the implied next-state pairs 

 (B-S3 and A-S0) are placed in the A-S1 square, etc.  

Similarly we can fill up the remainder of the table. 
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The next step is:  

Squares corresponding to additional non-equivalent state pairs are crossed out.  

Same procedure is adopted as in the state reduction where 

we were interested in determining equivalent states. 

This is shown in the figure (b). Fig(a) is 

reproduced from previous slide. 

In Fig (b); 

 square A-S1 is crossed because  

A-S0 square in (a) has X in it; square  

B-S3 is crossed becauseD-S3 square 

in Fig (a) has X in it. 

We continue with this procedure                           (a)                                        (b)  

 until no square is left to be crossed.  

Therefore, the state equivalence is found out to be as: 

       C - S3;  D - S1;     A - S2;          
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State Reduction  
Merger Graph Method:   
     In this as a first step, we define the Merger Graph & explain the procedure for 

drawing it.   

    Merger graph of an n-state machine M is an undirected graph defined as 
follows: 

1. It consists of n vertices, each of which corresponds to a state of M 

2. For each pair of states (Si,Sj) in M, whose next-state and output entries are not 
conflicting , an undirected arc is drawn between vertices Si and Sj  

     ‘not conflicting’: it means that both the states make transition to a same state & 
the outputs too are same. If ‘p’ & ‘q’ are 2 states then both make transition to a 
state ‘r’ & their outputs also same , i.e. either ‘0’ or ‘1’. We have compatible pair 

3. If, for a pair of states (Si,Sj), the corresponding output symbols under all input 
symbols are not conflicting, but the successors ( respective states they make 
transition to) are not the same (conflicting), an interrupted arc is drawn 
between Si and Sj, and the implied pairs are entered in the space.  

     Two states are ‘implied pairs’ if their outputs are same but they make transition 
to different states.  
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Example:   

     With the help of an example we will explain the process of reduction using 
Merger Graph. 

The state table for a machine is shown: 

 PS: Present State ; NS: Next State 

 I1 I2 I3 I4 : Inputs  ; z : output 

In the table, 

the entry ‘ –’ denote unspecified state & output. 

C, - : indicate unspecified output; state is specified as C 

Compatible pair:  

     When for an input, the state and/or  output are not specified then both the 
state & output can assume any value. In view of this, A & C  is defined as 
compatible pair. In the graph we draw a line connecting node A with node C. No 
other pair is compatible.  

Implied Compatible pair:   

      For an input the outputs are same, but successor states are different. BC, BD, 
BE & so on. We draw a broken line between two state nodes & marked  
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Conflicting pair:   

For an input, the outputs are different.  Pair: AB.  

Conflicting states are not connected through a link.   

The Merger Graph:   

The graph along with the state table is shown.   

1. Nodes represent states of a machine, as shown in the  

graph.  

2. Starting with state A, its outputs, for different inputs, 

are compared with outputs of states from B to E to  

determine 1) compatible 2) implied compatible & 3) 

conflicting, pairs.  

We find that:  

A & C are compatible because undefined state & output          

can assume any value. A direct link between A & C. 

A & B are conflicting because outputs do not match.  

Hence no connectivity between A & B     

 

State Reduction  

Merger Graph 
204 



Between A & D:  

For input I3, the states do not match. A makes transition 

 to E & D makes transition to B; (BE) is implied compatible 

pair.  Hence an interrupted link is drawn between A & D 

is drawn with (BE) indicated.  

Between A & E:   

Same as between A & D. The pair is (EC). So an interrupted 

Link between A & E with (CE) shown. 

Similarly we draw for B & C; B& D; B&E: 

All are interrupted links with implied compatible pairs  

shown as (AD) (AE) & (BC).  

For C&D ; C&E:  

 Interrupted links with implied compatible pairs shown 

as (DE)  for C&D; { (BC) (AB)} for C&E.  

For D&E: 

Interrupted link with implied compatible pair (BC) 
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Now we examine the graph to find out which nodes are  

not connected (conflicting states).  

A & B: not connected : conflicting states. 

Find out in which interrupted link (AB) appears, strike out 

that link. So, we see ‘X’ on E-C link. 

Thus E-C no longer exits.  

Therefore A-E ceases to exist (because of EC). 

So cross out A-E link. 

Thus A-E no longer exits. Hence (DB) ceases to exit. 

(DB) is not appearing anywhere as implied compatible  

Pair. So crossing out links stops at this point. 

Therefore , Compatible pairs are: 

                (AC) (CD) (DE) (BC) (AD) (BE) 

Having found compatible pairs we develop ‘Compatibility 

Graph’ to achieve reduction in states. 
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Compatibility graph: 
      A directed graph whose vertices correspond to all compatible pairs, and an arc 

leads from (Si,Sj) to (Sp,Sq) if and only if (Si,Sj) implies (Sp,Sq). 

      That is, if we have two compatible states Si &Sj and correspondingly we have Sp 
& Sq as implied compatibles, then in compatible graph: 

     (Si,Sj) becomes a node & (Sp,Sq) becomes another node which are connected 
through a directed link.    

                               (state pair)                    (implied pair) 

 

 

                         (Si,Sj) are compatible if (Sp,Sq) are compatible. 
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Procedure to develop Compatibility Graph from Merger Graph:   

The compatible pairs are: 

                 (AC) (CD) (DE) (BC) (AD) (BE) 

We have the Merger Graph:  

Each compatible pair is a node. Hence we have 6 nodes. 

Node A: 

pair (AC): 

No outgoing arm from (AC) because between A & C we 

have uninterrupted link. No dependence on other pair for 

compatibility. 

pair (AD): 

There is an interrupting pair (BE); hence a branch will be 

 shown from AD to BE in the compatibility graph.   

Node B:    

     We have 2 interrupted links, BE (BC) & BC (AD), from node B. Hence a branch is 
shown from BE to BC & from BC to AD in the compatibility graph. 
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Procedure to develop Compatibility Graph from Merger Graph:   

Node C: 

CA & CB are already covered. CE is crossed. So, the  

remaining interrupted link is CD (DE).  

We draw a directed link from CD to DE in the compatibility 

graph.  

Node D:   

All the interrupted links from this node have been   

considered except CD(DE).   

A directed link from CD to DE is drawn in the compatibility 

graph.    

Node E:   

All interrupted links have been considered & hence no more 

additions to the compatibility graph. 
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We need to understand what is Closed Sub Graph of a compatibility graph.   

Closed Sub Graph:   

     A set of compatibles for machine M is said to be closed if: for every compatible 
contained in the set, all its implied compatibles are also contained in the set 

     A closed set of compatibles, which contains all states of M, is called a closed 
covering.   

For example, if we choose  (BE) then (BC) too should be  

chosen because (BC) is implied compatible of (BE). So, 

having chosen (BC) we need to choose (AD) because (AD) 

is implied compatible of (BC). Since we started with (BE)  

so implied compatible of (AD) is already chosen.  

Therefore, closed set of compatibles is given as: 

                                      { BE  AD  BC} 

Second choice:  

If we take (AC) it has no implied compatible. Then we may choose (AD) (BE) & (BC) 

So , closed set of compatibles is: {AC AD BE BC} 
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Third Choice:   

We can start with (CD) & go on to form a closed set of 

 compatibles, as: 

                                   {CD DE BC AD BE}  

There can be many closed set of compatibles.  

Now, we define closed covering. 

Closed Covering:   

     A closed covering set is one amongst the closed set of compatibles. If a given 
closed set of compatibles contains all the vertices (nodes) of a Merger Graph 
then it constitutes a closed covering.  

     All the closed set of compatibles as obtained for this machine contain all the 
nodes of the Merger Graph & hence all are closed covering. 

     From the available ones we choose a set with minimum number of compatible 
states. Closed covering with minimum number of compatibles is called Minimum 
Closed Covering . So we get a closed covering with minimum number of 
compatibles as : { BE  AD  BC} 

     Thus, a closed covering with minimum  compatibles defines a minimal machine 
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Minimal State Machine:    

     Each compatible in minimal closed covering is defined as a state of the minimal 
machine. We have: { BE  AD  BC}   

     We define AD as α ;  BC as β ; & BE as  ϒ     

A state table is drawn with newly defined states as shown:   

The original state table is reproduced.  

From the original state table we see that under the column    

PS: transition from A to D implies don’t care for I1; D to E  

for I2;  A to E & D to B for I3;  A & D to don’t care for I4 

 (BE) forms a compatible which Is defined as state ϒ  

for minimal machine.  

So, in the state  table for minimal machine 

 we replace E & B by ϒ.  

 

                                                                                

                                                                                                        (MINIMAL MACHINE) 
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Minimal State Machine:    

 (BC) : β 

From the old table we see that in transition from  

B to C: For I1, B to C & C to C (β); For I2, B to A 

 & C to D (α); For I3, B to B & C to don’t care  (β/ϒ),  

because B is in both β & ϒ; Any one from β & ϒ can be  

chosen as the state for minimal machine.  

For I4, B to don’t care & C to A (α). 

(BE) : ϒ 

 From the old table we see that in transition from  

B to E: For I1, B to C & E to B (β); For I2, B to A & E to 

don’t care (α); For I3, B to B  (β/ϒ), because B is in 

 both β & ϒ; For I4, B to don’t care & E to B: β/ϒ   

Any one from β & ϒ can be chosen as the state for 

 minimal machine.                                                                            (MINIMAL MACHINE) 
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Design of Clocked Sequential Circuits 
Design Procedure:  
     From a given set of specifications a logic diagram  is generated; or,  a list of 

Boolean functions are generated from which the logic diagram can be obtained. 

     Whereas a combinational circuit is completely defined by its Truth Table, the 
sequential circuit requires a state table for specifications. 

     The procedure is listed:   

     1. From the word description and specifications of the desired operation, derive           
a state diagram/ state table for the circuit. 

     2. Reduce the number of states if necessary. 

     3. Assign binary values to the states. 

     4. Obtain the binary-coded state table. 

     5. Choose the type of flip-flops to be used. 

     6. Derive the simplified flip-flop input equations and output equations. 

     7. Draw the logic diagram. 

          All the above steps have been studied in somewhat detail. 
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     For designing a sequential circuit, we need to derive a state diagram/ state table 
from the word description and specifications of the desired operation. This is the 
most critical step in the design process because if a state diagram/table is 
wrongly drawn, the designed sequential circuit will serve no purpose. 

We will explain design procedure with the help of an example.    

Example:    

     Let us design a circuit that detects a sequence of three or more consecutive 1’s 
in a string of bits coming through an input line (i.e., the input is a serial bit 
stream ). The output = 1: iff 3 or more number of consecutive 1s are detected; 
else it is = 0.    

Solution:  

     We will design a Moore model sequential circuit. In Moore sequential circuit, the 
output is a function of ‘states only’ & not a function of ‘states and input’ 

     1st step is to obtain state diagram or state table.  

     Each time ‘1’ appears in the input sequence, state transition takes place during 
clock time. Whenever ‘0’ appears in the input stream, the system goes to reset 
(initial) state. 
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State Diagram:  

The state diagram for this type of circuit is shown in the Fig. 

S0 (reset / initial state) ;S1  S2 S3 are states of the system. 

It is derived by starting with state S0, the reset state.  

If the input is ‘0’, the circuit stays in S0, but 

if the input is ‘1’, it goes to state S1 to indicate that a ‘1’  

was detected.  

If the next input is ‘1’, the change is to state S2 to indicate  

the arrival of two consecutive 1’s, but  

if the input is ‘0’, the state goes back to S0. 

The third consecutive 1 sends the circuit to state S3. If  

more 1’s are detected, the circuit stays in S3. 

 Any ‘0’ input sends the circuit back to S0.  

      In this way, the circuit stays in S3 as long as there are three or more consecutive 
1’s received. 

     This is a Moore model sequential circuit, since the output is ‘1’ when the circuit 
is in state S3 and is ‘0’ otherwise. 
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    Next we need to assign binary codes to the states and list the state table. This is 
shown in the Table.   

The table is derived from the state 

diagram (drawn earlier) with a  

sequential binary assignment. 

S0: (00);  S1: (01);   S2: (10): S3: (11)   

We can now synthesize a circuit using any flip-flop. 

 Design using D flip-flop:  

 Required number of flip-flops: 

    We will need two D flip-flops to represent the four states (0 to 3). Label their 
outputs as ‘A’ and ‘B’.  

     Number of inputs = 1 ; Number of outputs = 1 

Characteristic equation:  

                                 Q(t + 1) = DQ  

     It means that the next-state values in the state table specify the D input 
condition for the flip-flop.  
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    The flip-flop input equations are obtained directly from the next-state columns of 
A and B and expressed in sum-of-minterms form.  

We have two flip-flops.   

To write an equation for each  

flip-flop, we look for Next State  

(NS)= 1 in the table.  

A flip-flop:   

NS = 1 for minterms: m3, m5 & m7. 

Therefore, DA = m3 + m5 + m7. 

We simplify this input using K-map,  

 as shown : DA = A x + B x 

B flip-flop:   

NS = 1 for minterms: m1, m5 & m7. 

Therefore, DB = m1 + m5 + m7. 

We simplify this input using K-map 

 diagram. DB = A x + B΄x 
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 The output, y:   

     From the state table we see that it is governed by minterms m6 & m7. Simplified 
expression for y is obtained using K-map, as shown.  

     The simplified form for output , y is : y = AB                  

Mathematically in closed form, we write the flip-flop input  

Equations & the output equation as:    

 

 

 

 

     Where A and B are the present-state values of flip-flops A and B, x is the input, 
and DA and DB are the input equations.  

     The minterms for output y are obtained from the output column in the state 
table. 

     The advantage of designing with D flip-flops is that the Boolean equations describing 
the inputs to the flip-flops can be obtained directly from the state table. 
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The schematic for the design is given as: 
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Design using other flip-flops:   

     When D -type flip-flops are used, the input equations are obtained directly 
from the next state.  

     This is not the case for the JK and T types of flip-flops. In order to 
determine the input equations for these flip-flops, it is necessary to derive 
a functional relationship between the state table and the input equations; 
thereby making the design process complicated. 

Excitation Table:  

    The flip-flop characteristic tables presented in the Tables below provide the 
value of the next state when the inputs and the present state are known. 
These tables are useful for analyzing sequential circuits and for defining the 
operation of the flip-flops. 
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Excitation Table:   

     During the design process, we usually know the transition from the present 
state to the next state and wish to find the flip-flop input conditions that will 
cause the required transition.  

     For this reason, we need a table that lists the required inputs for a given change 
of state. Such a table is called an excitation table. 

    The excitation tables for JK flip-flop is shown below: 

When both present state and next state are ‘0’,   

the ‘J’ input must remain at ‘0’ and the ‘K’ input  

can be either ‘0’ or ‘1’. 

Similarly, when both present state and next state  

are ‘1’, the ‘K’ input must remain at ‘0’, while the 

‘J’ input can be ‘0’ or ‘1’. 
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If the flip-flop is to have a transition from the  

0-state to the 1-state,  

J must be =1, since the J input sets the flip-flop. 

However, input K may be either 0 or 1. If K = 0, the  

 J = 1 condition sets the flip-flop as required; 

 if K = 1 and J = 1, the flip-flop is complemented and 

 goes from the 0-state to the 1-state as required. 

Therefore, the K input is marked with a don’t-care 

 condition for the 0-to-1 transition. 

For a transition from the 1-state to the 0-state, we  

must have K = 1, since the K input clears the flip-flop. 

However, the J input may be either 0 or 1, since J = 0 has no effect and 

J = 1 together with K = 1 complements the flip-flop with a resultant 

 transition from the 1-state to the 0-state.    

    Therefore, the J input is marked with a don’t-care  condition for the 1-to-0 
transition. 
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Excitation Table for T Flip-Flop:      

The excitation table for the T flip-flop is shown in (b).  

From the characteristic table, we find that when input 

T = 1, the state of the flip-flop is complemented, and  

when T = 0, the state of the flip-flop remains  

unchanged. 

Therefore, when the state of the flip-flop  must 

remain the same, the requirement is that T = 0.  

When the state of the flip-flop has to be                                      Excitation Table 

complemented, T must equal 1. 

 

 

 

 

                                                                                                      Characteristic Table 
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Synthesis using JK Flip Flops:    

The synthesis procedure for sequential circuits with JK 

 flip-flops is the same as with D flip-flops. 

The only difference being that the input equations for 

 the flip-flop  are evaluated from the present state to the 

 next-state transition. Input equations are derived from 

 the excitation table of the flip-flop.                                                      Excitation Table 

Example:                                                                                                

We will synthesize a sequential circuit for which the  

state table is as shown:   

We have 2 flip flops A & B. The inputs are designated  

as : JA & KA ; JB  & KB.  

1st row:  

Transition for both the flip flops is from ‘0’ to ‘0’. From 

The excitation table we see that   

JA  = 0 & KA = X; JB = 0 & KB= X  
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Synthesis using JK Flip Flops:    

2nd  row:  

‘A’ makes a transition from ‘0’ to ‘0’: JA  = 0 & KA = X 

‘B’ makes a transition from ‘0’ to ‘1’: JB  = 1 & KB = X 

3rd  row:  

‘A’ makes a transition from ‘0’ to ‘1’: JA  = 1 & KA = X 

‘B’ makes a transition from ‘1’ to ‘0’: JB  = X & KB = 1 

4th  row:  

‘A’ makes a transition from ‘0’ to ‘0’: JA  = 0 & KA = X 

‘B’ makes a transition from ‘1’ to ‘1’: JB  = X & KB = 0 

5th  row:  

‘A’ makes a transition from ‘1’ to ‘1’: JA  = X & KA = 0 

‘B’ makes a transition from ‘0’ to ‘0’: JB  = 0 & KB = X 

6th  row:  

‘A’ makes a transition from ‘1’ to ‘1’: JA  = X & KA = 0 

‘B’ makes a transition from ‘0’ to ‘1’: JB  = 1 & KB = X 
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Synthesis using JK Flip Flops:    

7th  row:  

‘A’ makes a transition from ‘1’ to ‘1’: JA  = X & KA = 0 

‘B’ makes a transition from ‘1’ to ‘1’: JB  = X & KB = 0 

8th  row:  

‘A’ makes a transition from ‘1’ to ‘0’: JA  = X & KA =1 

‘B’ makes a transition from ‘1’ to ‘0’: JB  = X & KB = 1 

Flip-Flop Input Table: 

Having determined the flip-flop inputs we make a 

 table.   
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Now we make a complete table that includes state table & flip-flop input table.   

The flip-flop inputs in the Table specify the  

truth table for the input equations as a function 

of present state A, present state B, and input x .  

The next-state values are not used during the 

 simplification. 

Representation of Flip-Flop Inputs in Sum of 

product form:  

In each column in the table corresponding to  

inputs JA & KA ; JB  & KB; respectively; we look for 

the presence of ‘1’ & their corresponding 

minterms. We make use of don’t care condition 

‘X’ to simplify the input equation. 

                                                      

                                                                       (contd.  …)                                    
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JA =  A΄B x΄ = m2;  

Simplify using K-map & ‘X’ conditions: JA =  BX΄ 

KA =  A B x = m7; 

Simplify using K-map & ‘X’ conditions: KA =  B x 

JB =  A΄B΄ x + A B΄ x = m1 + m5; 

Simplify using K-map & ‘X’ conditions: JB =  x 

 

 

 

 

 

 

 

KB =  A΄B x΄ + A B x = m2 + m7; 

Simplify using K-map & ‘X’ conditions:                           = A x + A΄ x΄     
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Logic diagram of the sequential circuit:   

Advantage of using JK -type flip-flops: 

When sequential circuits are designed  

manually, using JK flip flops is an advantage. 

The fact that there are so many don’t-care 

 entries indicates that the combinational  

circuit for the input equations is likely to be  

simpler, because don’t-care minterms usually  

help in obtaining simpler expressions.  

If there are unused states in the state table,  

there will be additional don’t-care  

conditions in the map. 

However, D-type flip-flops are more amenable  

to an automated design flow. 
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Synthesis using T Flip-Flops:    

We will explain the procedure with the help of an example. 

Example:  

Using T flip-flops  design a sequential circuit for a 3-bit binary counter.  

     An n -bit binary counter consists of n flip-flops that can count in binary from ‘0’ 
to 2n - 1. A three-bit counter will have, accordingly, 3 flip-flops.  

State diagram of a three-bit counter: 

We see from the binary states indicated inside the circles 

 that, the flip-flop outputs repeat the binary count   

sequence with a return to ‘000’ after ‘111’. 

We know that state transitions in clocked sequential circuits  

 are initiated by a clock edge; therefore, the flip-flops 

 remain in their present states if no clock is applied. 

The only input to the circuit is the clock, and the outputs 

 are specified by the present state of the flip-flops. 

The next state of a counter depends entirely on its present state,  

and the state transition occurs every time the clock goes through a transition. 
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State Table:   

The state table for a 3-bit binary counter is shown.   

The three flip-flops are symbolized by A2, A1, and A0. 

 Binary counters are constructed most efficiently with  

T flip-flops because of their complement property.  

The flip-flop excitation for the T inputs is derived from  

 the excitation table of the T flip-flop and by 

 inspection of the state transition of the present 

 state to the next state.  

Input equations for flip-flops:   

 TA2 = A΄2 A1 A0 + A2 A1 A0  = m3 + m7;  

 TA1 = A΄2 A΄1 A0 + A΄2 A1 A0 + A2 A΄1 A0 + A2 A1 A0  

        = m1 + m3 + m5 + m7;  

 TA0 = sum of all minterms = 1 

Minimization of input equations is done using K-map. 
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Minimization:  
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Logic diagram:    

 

 

 

 

 

 

 

 

 

    For simplicity, the reset signal is not shown, but be aware that every design 
should include a reset signal.  
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UNIT – V 
 SUB SYSTEM DESIGN 



Shift Registers: 
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 A register consists of a group of flip-flops with a common 
clock input.  

 Registers are commonly used to store and shift binary data. 

 Example: Counters 

Fig. 4-bit D register 



Registers: Types 
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 Buffer Register.  

Fig. 1. 4-bit Buffer register 

Fig. 2. 4-bit Controlled buffer register 



Shift Registers: 
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 A shift register is a register in which binary data can be 

stored, and this data can be shifted to the left or right when 

a shift signal is applied. 



Shift Register: Types 
   

239 

1. Serial In Serial Out 
Shift Register 

1. Serial In Parallel Out Shift 
Register 

1. Parallel In Serial Out 
Shift Register 

1. Parallel In Parallel 
Out Shift Register 



1. Serial In Serial Out Shift Register 
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Fig. 4-bit serial-in serial-out shift register 



1. Serial In Serial Out Shift Register 
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Fig. 2.  4-bit serial in serial out shift register using JK Flip-Flop 

Fig. 1. JK Flip-flop converted into D-Flip-Flop 



1. Serial In Serial Out Shift Register 
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Fig. 1. A 4-bit shift register operation 



Right-Shift Register 
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Fig. 2. Timing diagram 

Fig. 1. Flip-flop connections 



2. Serial In Parallel Out Shift Register 
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Fig. 4-bit serial-in parallel-out shift register 



2. Serial In Parallel Out Shift Register 
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Fig. 4-bit serial-in parallel-out shift register 



3. Parallel In Serial Out Shift Register 
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4. Parallel In Parallel Out Shift Register 
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Fig. 4-bit parallel-in parallel-out shift register 



CARRY LOOK AHEAD ADDER 
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A simple one-bit full adder 

 It takes A, B, and Cin as input and generates S and Cout in 2 
gate delays (SOP) 



4-bit RCA 
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•Work from lowest bit to highest bit sequentially. 
• With A0, B0, and C0, the lowest bit adder generates S0 and 
C1 in 2 gate delay. 
• With A1, B1, and C1 ready, the second bit adder generates S1 
and C2 in 2 gate   delay. 
• Each bit adder has to wait for the lower bit adder to 
propagate the carry. 



Observations 
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 The critical component each bit adder waits for is the carry 

input. 

 Instead of generating and propagating carry bit-by-bit, can 

we generate all of them in parallel and break the sequential 

chain? 

 This is exactly the idea of CLA (carry look-ahead adder). 



Carry Look Ahead Logic 
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 Now even before the carry in (Cin) is available, based on the 

inputs (A,B) only, can we say anything about the carry out? 

 Under what condition will the bit propagate an outgoing 

carry (Cout), if there is an incoming carry (Cin)? 

 Under what condition will the bit generate an outgoing carry 

(Cout), regardless of whether there is an incoming carry 

(Cin)? 



1-bit CLA adder 
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• Instead of Cout, an 1-bit CLA adder block takes A, B inputs and 
generates p,g 
• p=propagator =>I will propagate the Cin to the next bit.     p = A+B 
  (If either A or B is 1, Cin=1 causes Cout=1) 
• g=generator =>I will generate a Cout independent of what Cin is.   g 
= AB (If both A and B are 1, Cout=1 for sure) 
• p,g are generated in 1 gate delay after we have A,B. Note that Cin is 
not needed to generate p,g. 
• S is generated in 2 gate delay after we get Cin (SOP). 



4-bit CLA 
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• The CLL takes p,g from all 4 bits and C0 as input to generate all Cs in 
2 gate delay. 
• C1=g0+p0C0, 
• C2=g1+p1g0+p1p0C0, 
• C3=g2+p2g1+p2p1g0+p2p1p0c0, 
• C4=g3+p3g2+p3p2g1+p3p2p1g0+p3p2p1p0c0 (Note: this C4 is too 
complicated to generate in 2-level SOP representation) 



4-bit CLA 
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Given A,B’s, all p,g’s are generated in 1 gate delay in parallel. 
 Given all p,g’s, all C’s are generated in 2 gate delay in parallel. 
Given all C’s, all S’s are generated in 2 gate delay in parallel. 
 Key virtue of CLA: sequential operation in RCA is broken into 
parallel operation 



ALU function table 
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• This table shows a sample 
function table for an ALU. 

• All of the arithmetic operations 
have S3=0, and all of the logical 
operations have S3=1. 

• These are the same functions 
we saw when we built our 
arithmetic and logic units a few 
minutes ago. 

• Since our ALU only has 4 logical 
operations, we don’t need S2.  
The operation done by the logic 
unit depends only on S1 and S0. 

 

S3 S2 S1 S0 Operation 

0 0 0 0 G = X 

0 0 0 1 G = X + 1 

0 0 1 0 G = X + Y 

0 0 1 1 G = X + Y + 1 

0 1 0 0 G = X + Y’ 

0 1 0 1 G = X + Y’ + 1 

0 1 1 0 G = X – 1 

0 1 1 1 G = X 

1 x 0 0 G = X and Y 

1 x 0 1 G = X or Y 

1 x 1 0 G = X  Y 

1 x 1 1 G = X’ 
 



A complete ALU circuit 
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 4 

 4 

 4 

 4 4 

G is the final ALU 
output. 

•When S3 = 0, the 
final output comes 
from the 
arithmetic unit. 

•When S3 = 1, the 
output comes from 
the logic unit. 

Cout should be 
ignored when 
logic operations 
are performed 
(when S3=1). 

The arithmetic and logic units share 
the select inputs S1 and S0, but only 
the arithmetic unit uses S2. 

The / and 4 on a line indicate that it’s actually four lines. 



Multiplier Design: Basic Building Blocks 
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 Datapath 

 Execution units 

 Adder, multiplier, divider, shifter, etc. 

 Register file and pipeline registers 

 Multiplexers, decoders 

 Control 

 Finite state machines (PLA, ROM, random logic) 

 Interconnect 

 Switches, arbiters, buses 

 Memory 

 Caches (SRAMs), TLBs, DRAMs, buffers 



The Binary Multiplication 
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x

+

Partial products

Multiplicand

Multiplier

Result

1   0   1   0   1   0

1   0   1   0   1   0

1   0   1   0   1   0

1   1   1   0   0   1   1   1   0

0   0   0   0   0   0

1   0   1   0   1   0

1   0   1   1



The Array Multiplier: 
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Y0

Y1

X3 X2 X1 X0

X3

HA

X2

FA

X1

FA

X0

HA

Y2X3

FA

X2

FA

X1

FA

X0

HA

Z1

Z3Z6Z7 Z5 Z4

Y3X3

FA

X2

FA

X1

FA

X0

HA

Z2

Z0



Parity Generator / Checker 
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 Electrical noise in the transmission of binary information can 
cause errors. Parity can detect these types of errors. 

 Parity systems 

 Odd parity 

 Even parity 

 Adds a bit to the binary information 



Parity Generator / Checker 
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Four-bit even- and odd-parity generators 
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Comparator: 
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 A comparator is a precision instrument employed to compare 
the dimension of a given component with a working 
standard (usually slip gauges). 

 It thus does not measure the actual dimension but indicate 
how much it differs from the basic dimension.  



Magnitude Comparator  
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Ring Counter 
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Ring Counter 
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Ring Counter 
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Ring Counter 
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Johnson Counter 
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 Also known as the twisted-ring counter. 

 Same as the ring counter except that the inverted output of 

the last FF is connected to the input of the first FF. 

 Counting sequence: 

 000100110111011001000 



Johnson Counter 
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Johnson Counter 
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Sequential Circuits 
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 Latches and flip-flops (FFs) are the basic building blocks of 
sequential circuits. 

 latch: bistable memory device with level sensitive triggering 
(no clock), watches all of its inputs continuously and changes 
its outputs at any time, independent of a clocking signal. 

 flip-flop: bistable memory device with edge-triggering (with 
clock), samples its inputs, and changes its output only at 
times determined by a clocking signal. 



Sequential Circuits 
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SR Latch 
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D latch 
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D flip-flop 
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Flip-Flop Vs. Latch 
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 The primary difference between a D flip-flop and D latch is 
the EN/CLOCK input. 

 The flip-flop’s CLOCK input is edge sensitive, meaning the 
flip-flop’s output changes on the edge (rising or falling) of the 
CLOCK input. 

 The latch’s EN input is level sensitive, meaning the latch’s 
output changes on the level (high or low) of the EN input 



Read-Only Memory (ROM) 
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The inputs are called Address inputs and are traditionally 
named A0, A1, …An-1 
The outputs are called Data outputs and are typically named 
D0, D1, …Db-1 



Logic Diagram of simple 8x4 diode ROM 
   

279 



Internal ROM structure, showing use of control inputs 
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ROM timing 
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Static-RAM Internal Structure 
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Static RAM cell 

Each SRAM cell has the same functional behavior in the 
SRAM circuit.  
The storage device in each cell is a D-latch. 



SRAM read timing 
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SRAM write timing 
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