Hall Ticket	No											Question Paper Code: AEE005
INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)												

B.Tech III Semester End Examinations (Regular) - December, 2017 Regulation: IARE – R16 NETWORK ANALYSIS

(Electrical and Electronics Engineering)

Time: 3 Hours

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT}-\mathbf{I}$

- 1. (a) Derive the equation for the voltage and current in star system. [7M]
 - (b) A symmetrical three phase, three wire 440 V supply is connected to a star connected load. The impedance in each branch are $Z_R = 2+j3 \Omega$, $Z_Y = 1-j2 \Omega$ and $Z_B = 3+j4 \Omega$. Find its equivalent delta connected load. The phase sequence is RYB? [7M]
- 2. (a) The readings of the two wattmeters used to measure power in a capacitive load are -3000 W and 8000 W respectively. Calculate [7M]
 - i. the input power,
 - ii. the power factor at the load. Assume RYB sequence.
 - (b) A 400 V, three phase supply feeds an unbalanced three-wire, star connected load. The branch impedances of the load are $Z_R = 4+j8 \ \Omega$; $Z_Y = 3+j4 \ \Omega$ and $Z_B = 15+j20 \ \Omega$. Find the line currents and voltage across each phase impedance. Assume RYB phase sequence. [7M]

$\mathbf{UNIT}-\mathbf{II}$

3. (a) In the circuit shown in Figure 1, determine the complete solution for the current, when switch S is closed at t=0. Applied voltage is $v(t) = 100 \cos (10^3 t + \pi/2)$. Resistance $R = 20 \Omega$ and inductance L = 0.1 H. [7M]

Figure 1

(b) A series RC circuit consists of a resistor of 10 Ω and a capacitor of 0.1 F as shown in Figure 2. A constant voltage of 20 V is applied to the circuit at t = 0. Obtain the current equation. Determine the voltages across the resistor and the capacitor. [7M]

Figure 2

4. (a) A series RLC circuit shown in Figure 3, comprising $R = 10 \Omega$, L = 0.5 H and $C = 1\mu F$ is excited by a constant voltage source of 100 V. Obtain the expression for the current. Assume that the circuit is relaxed initially. [7M]

Figure 3

(b) The circuit shown in Figure 4, consists of series RL elements with $R = 150 \Omega$ and L = 0.5 H. the switch is closed when $\phi = 30^{\circ}$. Determine the resultant current when voltage $V = 50 \cos (100t + \phi)$ is applied to the circuit at $\phi = 30^{\circ}$? [7M]

$\mathbf{UNIT} - \mathbf{III}$

5. (a) For the circuit shown in Figure 5 plot the locus of the current, mark the range of I for maximum and minimum values of R, and the maximum power consumed in the circuit. Assume $X_L = 25$ Ω and R = 50 Ω . The voltage is 200 V, 50 Hz. [6M]

Figure 5

(b) Obtain the transform impedance of the network shown in Figure 6.

Figure 6

- 6. (a) List out the necessary conditions for a driving point function. [7M]
 - (b) Plot the current locus for the circuit with R = 50 Ohms and $X_l = 25$ Ohms variable V = 200 V, 50 Hz. Find the power consumed. [7M]
 - $\mathbf{UNIT} \mathbf{IV}$
- 7. (a) Determine Y parameters in terms of Z parameters.
 - (b) Find the Z parameters for the network shown in Figure 7. [7M]

Figure 7

- 8. (a) Determine the interrelationship between ABCD parameters and Z parameters. [7M]
 - (b) Determine ABCD parameters for the following network shown in Figure 8. [7M]

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) What are the classifications of filter? Discuss them briefly. [7M]
 (b) Design a low pass filter (both π and T section) having a cut off frequency of 2 kHz to operate with a terminated load resistance of 500 Ω. [7M]
 10. (a) Explain briefly about Band Elimination Filter. [7M]
 - (b) Design a band-elimination filter having a design impedance of 600 Ω and cut-off frequencies $f_1 = 2 \text{ kHz}$ and $f_2 = 6 \text{ kHz}$.

$$-\circ\circ\bigcirc\circ\circ-$$

[8M]

[7M]