Hall	Ticket	No

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

B.Tech IV Semester End Examinations(Regular) - May, 2018 **Regulation: IARE – R16 CONTROL SYSTEMS**

Time: 3 Hours

(Common to ECE | EEE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a) Classify different types of control systems with examples?	[7M]
	(b) Derive the transfer function of the network given in Figure 1.	[7M]

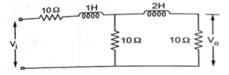


Figure 1

- 2. (a) What are the basic elements of translational and rotational mechanical systems and also write the required mathematical equations. [7M]
 - (b) For the rotational mechanical system given in Figure 2, write the equilibrium equations and draw an equivalent diagram based on torque-current analogy. [7M]

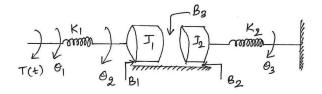
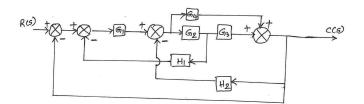



Figure 2

$\mathbf{UNIT}-\mathbf{II}$

3. (a) Reduce the block diagram given in Figure 3 by block diagram reduction technique and determine the transfer function. [7M]

(b) Find C(s)/R(s) of the signal flow graph given in Figure 4 by Manson's gain formula. [7M]

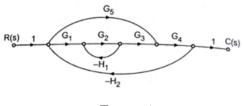


Figure 4

4. (a) Derive the unit step response of the second order system for underdamped case? [7M]

(b) Find K_p , K_v , K_a and steady state error for a system with open loop function as $G(s) H(s) = \frac{10(S+2)(S+3)}{S(S+1)(S+5)}$; where input is $3 + t + t^2$. [7M]

$$UNIT - III$$

- 5. (a) What is BIBO system? Explain with example.
 - (b) The open loop transfer function of the feedback system is $G(s) H(s) = \frac{K(S+5)}{S(1+TS)(1+2S)}$; Parameters K and T represents on a plane with K on x axis and T on y axis. Determine region in which a closed loop system is stable. [7M]
- 6. (a) Determine the stability of following cases, which represent characteristic equations of two different control system.

i.
$$S^5 + S^4 + 2S^3 + 2S^2 + 3S + 5 = 0$$

ii. $S^6 + 2S^5 + 8S^4 + 12S^3 + 20S^2 + 16S + 16 = 0$

- (b) A positional servome chanism is characterized by an open loop transfer function $\rm G(s)H(s)=\rm K(S+2)$ / S(S-1).
 - i. The value of the gain K when ζ of the closed loop system is equal to 0.707.
 - ii. The value of the gain K when the closed loop system has two roots on the jw-axis.

[7M]

[7M]

[7M]

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a) Explain what are the advantages and limitations of frequency domain approach?	[7M]
	(b) The open loop transfer function of the feedback system is given by $G(s) H(s) =$	$\frac{K(1+S)}{(1-S)}$;
	Comment on stability by using Nyquist plot?	[7M]
8.	(a) Differentiate between time domain and frequency domain.	[7M]

(b) Sketch the nature of Nyquist plot for the system with G(s)H(s) = 1 / S(1+2S)(1+S). Determine gain margin and phase margin. [7M]

9. (a) A linear dynamic time invariant system is represented by A X(t)+BU(t); Where

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} \text{ find the system is completely controllable.}$$
[7M]

[7M]

(b) With a neat block diagram and equation, explain

i. Lead compensator

- ii. Lag compensator
- 10. (a) Consider the transfer function $\frac{Y(s)}{U(s)} = \frac{2S^2 + 2S + 5}{S^3 + 6S^2 + 11S + 4}$; Obtain the state equation by direct decomposition method. [7M]
 - (b) The vector matrix differential equation describes the dynamics of the system as

• $X = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix} X + \begin{bmatrix} 0 \\ 1 \end{bmatrix} U$ and $y = \begin{bmatrix} 5 & 0 \end{bmatrix} X$. Determines the state transition matrix and transfer function of the system. [7M]

 $-\circ\circ\bigcirc\circ\circ-$