Hall Ticket No				Qu	estion Paper Code: AEEB01
INSTITUTE OF AERONAUTICAL ENGINEERING					
(Autonomous)					
Four Year B.Tech I Semester End Examinations (Regular) - November, 2018 Regulation: IARE – R18 FUNDAMENTALS OF ELECTRICAL ENGINEERING					
Time: 3 Hours		(Common	to CSE 1	IT CE)	Max Marks: 70
Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only					

$\mathbf{UNIT} - \mathbf{I}$

1. (a) Determine the equivalent capacitance between the terminals A and B for Figure 1. [7M]

Figure 1

0.4

(b) Find the currents I_1 , I_2 and I_3 from the given circuit.

ι 25Ω

- 2. (a) State and explain Kirchhoff's laws with example? [7M]
 - (b) Find the equivalent resistance between the terminals A and B for Figure 3. [7M]

15Ω

Figure 3

[7M]

$\mathbf{UNIT}-\mathbf{II}$

3. (a) Find the equivalent resistance between a & b in the network shown in Figure 4 using Delta –Star Transformation. [7M]

(b) Find out V1 and V2 using KVL. Also find power dissipated in 3Ω for Figure 5. [7M]

Figure 5

4. (a) Find the all branch currents and power observed by each resistor for the circuit given in Figure 6. [7M]

Figure 6

(b) Find the 'V' and 'I' from the circuit given in Figure 7 by mesh analysis? [7M]

Figure 7

$\mathbf{UNIT} - \mathbf{III}$

5. (a) Derive impedance equation of parallel RLC circuit for figure 8.

Figure 8

- (b) A wound coil that has an inductance of 180mH and a resistance of 35Ω is connected to a 100V, 50Hz supply. Calculate: [7M]
 - i) The impedance of the coil
 - ii) The current
 - iii) The power factor
 - iv) The apparent power consumed.
- 6. (a) Derive RMS value, average value, form factor, Peak factor of an alternating quantity. [7M][7M]
 - (b) Determine the current in 3 ohm resistance in the circuit for Figure 9.

Figure 9

$\mathbf{UNIT} - \mathbf{IV}$

7. (a) Draw the oriented graph for the bi network shown in Figure 10. Find the tie-set schedule and determine the loop currents. [7M]

Figure 10

[7M]

(b) Construct the dual network for the network given in Figure 11?

Figure 11

- 8. (a) Explain in detail about the concept of dual and duality?
 - (b) For the given network graph given in Figure 12, construct the basic cut set matrix, tracking element 1, 6, 8, 3 as tree branches, Express the link branch voltage in terms of the tree branch voltages.
 [7M]

Figure 12

$\mathbf{UNIT}-\mathbf{V}$

9. (a) Find the value of R in the following circuit in Figure 13. Such that maximum power transfer takes place. What is the amount of this power? [7M]

Figure 13

(b) Find the Thevenin's Equivalent circuit from the given network given in Figure 14 [7M]

Figure 14

10. (a) State millman's theorem, Explain the procedure for solve the problems.[7M](b) State superposition theorem with an example.[7M]

$$-\circ\circ\bigcirc\circ\circ-$$

[7M]

[7M]