Hall Ticket	No	Question Paper Code: AEEB03
A LARE OF LARE	NSTITUTE OF AERONAUTICAL ENG (Autonomous)	GINEERING
TION FOR LINES	B.Tech II Semester End Examinations (Regular) - I Regulation: IARE $-$ R18	May, 2019
	ELECTRICAL CIRCUITS	
Time: 3 Hour	s (EEE)	Max Marks: 70
	Answer ONE Question from each Un All Questions Carry Equal Marks All parts of the question must be answered in or	

$\mathbf{UNIT} - \mathbf{I}$

- 1. (a) Classify types of electric circuit elements depending on their characteristics and explain in detail. Differentiate resistor, inductor and capacitor elements using their voltage-current characteristics.
 - (b) Find the drop between the terminals a and b in the network of Figure 1. [7M]

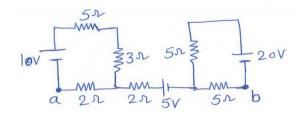


Figure 1

- 2. (a) Define an ideal voltage source and current source. Compare practical sources and ideal sources. With relevant diagrams explain types of dependent sources. [7M]
 - (b) The voltage waveform shown in Figure 2 is applied to a capacitor of 100 μ F. Determine and sketch the capacitor current i(t). [7M]

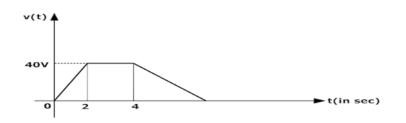


Figure 2

$\mathbf{UNIT}-\mathbf{II}$

3. (a) Define network topology and write its importance in electrical circuits. Give the properties of incidence matrix. For 8 element 5 node graph, determine number of links. [7M]

[7M]

(b) The graph of a network is shown in Figure 3. Write the incidence matrix and f-cut set matrix.

[7M]

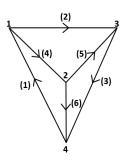


Figure 3

- 4. (a) Define the duality and the dual elements. Write the expressions of star to delta transformation and delta to star transformation. [7M]
 - (b) Draw the dual of the network shown in Figure 4

[7M]

Figure 4

$\mathbf{UNIT}-\mathbf{III}$

- 5. (a) Write the expression for reactance offered by inductor and capacitor. Draw the impedance triangle & power triangle and explain in detail. [7M]
 - (b) A series RLC circuit operates with 100V, 50Hz having circuit parameters R=12 $\Omega,$ L=150mH, C=10µF. Calculate
 - i. Impedance of the circuit
 - ii. Current drown from the supply
 - iii. Power factor
 - iv. Reactive Power

[7M]

6. (a) Define the peak, peak to peak, average, RMS value also peak and form factor of sine function. Explain why average value is defined for half cycle of sine wave. [7M] (b) Determine average and RMS value of sinusoidal waveform shown in Figure 5.

 v_m v_m 0 π 2π 4π ωt

Figure 5

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Bring out the similarities and differences between electric and magnetic circuits. [7M]
 - (b) A three phase balanced delta connected load of (4+j8) ohm is connected across a 400V, $3-\phi$ balanced supply. Determine the phase currents and line currents. Assume the phase of sequence to be RYB. Also calculate the power drawn by load. [7M]
- 8. (a) Show that the power consumed by 3-phase balanced load can be measured using two wattmeters. Also, deduce the expression for power factor in terms two wattmeter readings. [7M]
 - (b) Two wattmeters are used to measure power in a 3-phase three wire load. Determine the total power, power factor and reactive power, if the two wattmeter's read i) 1000W each, both positive ii) 1000W each, but of opposite sign [7M]

$\mathbf{UNIT}-\mathbf{V}$

9.	(a)	What is battery? How it works and write types batteries? Enlist the ideal characteristics	of a
		battery.	7M]
	(b)	Explain the working of a Lead Acid Storage battery with neat diagram. [7]	7M]
10.	(a)	What is switch fuse unit? Write its salient features, operating mechanism and applications?	•
		[7	7M]
	(b)	What are MCB and ELCB and how do they differ? Explain the working and operation of M	ICB
		with a neat diagram.	7M]
		$-\circ\circ\bigcirc\circ\circ-$	

[7M]