TT 11	m• 1 .	ът
Hall	Ticket	INO

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Four Year B.Tech III Semester End Examinations (Regular) - November, 2019

Regulation: IARE – R18

ELECTROMAGNETIC FIELDS

Time: 3 Hours

(EEE)

Max Marks: 70

[7M]

[7M]

[7M]

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a) State Co	ulombs law	and obtain	expressions	for force	between	the two	charges.	[7M]
	(1) A 1	0 00 0		D(c(c))	1 1	0	F0 0.	1 / 1	$(\mathbf{D}(\mathbf{r} \circ \mathbf{o}))$

- (b) A charge Q_1 =-20µC is located at P(-6,4,6), and a charge Q_2 =50µC is located at R(5,8,-2), in a free space . Find the force exerted on Q_2 by Q_1 in vector form. [7M]
- 2. (a) State Gauss law. What are applications of Gauss law?
 - (b) Calculate the field intensity at a point 2m from the origin, if a positive charge of 10 μ C is placed at the origin. [7M]

$\mathbf{UNIT}-\mathbf{II}$

- 3. (a) What are boundary conditions for perfect dielectric materials? Elucidate conduction and convection currents. [7M]
 - (b) A conducting wire of diameter 1mm and conductivity 5×10^7 S/m, has 1029 free electrons/ m^3 when an electric field of 10mV/m is applied. Determine
 - (i) The charge density of free electrons
 - (ii) The current density
 - (iii) The current in the wire
- 4. (a) Obtain the expression for a capacitance of a coaxial cable.
 - (b) Find the permitivity and capacitance of a parallel plate capacitor, if the plates are of area $1.5m^2$, the distance between the plates is 2mm, potential gradient is 105V/m and flux density on the plates is 2.5 μ C/m² [7M]

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) With help of Bio-Savart's law find the expression for magnetic field intensity at any point on the axis of a circular current carrying coil. [7M]
 - (b) A uniform solenoid 100mm in diameter and 400mm long has 100 turns of wire and a current of I=3A. find the magnetic field on the axis of the solenoid
 - i) At the center
 - ii) At one end
 - iii) Half the way.

[7M]

- 6. (a) Use Ampere's circuital law to obtain the expression for magnetic field intensity due to infinite sheet of charge. [7M]
 - (b) Calculate the magnetic flux density at the center of a current carrying loop when the radius of loop is 2cm, loop current in 1A and loop is placed in air. [7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Obtain the expression for vector magnetic potential and write are it's properties. [7M]
 - (b) What is the maximum torque on a square loop of 100 turns in a field of uniform flux density $B = 1 \text{wb}/m^2$. The loop has 10cm side and carries a current of 3A. What is the magnetic moment of the loop? [7M]
- 8. (a) Define self inductance and mutual inductance. Obtain self inductance expression for solenoid.
 - (b) Two coils A and B with 800 turns and 1200 turns respectively, have a common magnetic circuit. A current of 0.5A in A will produce a flux of 3mwb and 80% of the flux links with coil B. Calculate self inductance of each coil and mutual inductance. [7M]

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Write and explain differential and integral form of Maxwell's equation for fields varying harmonically with time. [7M]
 - (b) A conductor of length 100cm moves at right angles to a uniform field of strength 10000 lines per cm^2 , with a velocity of 50 meters/sec. Calculate the emf induced in it. Compute also the value of the induced emf when the conductor moves at an angle of 30 degrees to the direction of the field. [7M]
- 10. (a) Illustrate Faradays law of electromagnetic induction. Deduce the expression for Maxwells form of Faraday's Law. [7M]
 - (b) In a material for which $\sigma = 5.0(m)^{-1}$ and $\sigma_r = 1$ the electric field intensity is $E = 250 \sin (1010t)$ V/m. Calculate the conduction and displacement current densities and the frequency at which they have equal magnitudes. [7M]

[7M]