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We can treat external flows around bodies 

as : 

1.  Invicid (i.e. Frictionless)  

 

 

2. Irrotational (i.e. The Fluid Particles are Not Rotating) 
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Imagine being on the banks of a shallow river of a constant depth of 1 m at a position 

O with a friend directly opposite at A, 40m away.  

o 

x 

Y 
A 

B 

• The bank can be represented by the Ox axis 

• The line joining you to your friend at 

A the Oy axis in the two-coordinate system 
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• Now if the stream speed is 2m/s the amount of water passing between you and 

your friend is 40 x 1 x 2 = 80 m3 s-l and this is the amount of water flowing past 

any point anywhere along the river which could be measured at a weir 
downstream.  

• Suppose you now throw a buoyant rope to your friend who catches the end but 
allows the slack to fall in the river and float into a curve as shown. The amount of 
water flowing under the line is still 80m3 /s no matter what shape the rope takes, 
and is unaffected by the configuration of the rope. 

• Suppose your friend moves along to a point B somewhere downstream, still 
holding his end of the line but with sufficient rope paid out as he goes. The volume 
of water passing under the rope is still only 80m3 /s providing he has not stepped 
over a tributary stream or an irrigation drain in the bank. It follows that, if no water 
can enter or leave the stream, the quantity flowing past the line will be the same 

as before and furthermore will be unaffected by the shape of the line between 0 
and B. 

STREAM FUNCTION 



 The amount or quantity of fluid passing such a 
line per second is called the stream function or 
current function and it is denoted by ψ. 

 

 Let us study the Mathematically about 

Stream Function 
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STREAM FUNCTION 



 Let us study the Mathematically about 

Stream Function 
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STREAM FUNCTION 

1. Consider now a pair of coordinate 

axes set in a two-dimensional air 

stream that is moving generally from 

left to right.  

2. The axes are arbitrary space 

references and in no way interrupt the 

fluid streaming past. 

3.  Similarly the line joining 0 to a point 

P in the flow in no way interrupts the 

flow since it is as imaginary as the 

reference axes Ox and Oy. An 

algebraic expression can be found for 

the line in x and y. 



9 

STREAM FUNCTION 

1. Let the flow past the line at any point Q on 

it be at velocity q over a small length δs of 

line where direction of q makes angle β to 

the tangent of the curve at Q.  
2. The component of the velocity q 

perpendicular to the element δs is qsinβ 

and therefore, assuming the depth of stream 

flow to be unity, the amount of fluid 

crossing the element of line δs is qsinβ x 

δs x 1 per second. 

3.  Adding up all such quantities crossing 

similar elements along the line from 0 to P, 
the total amount of flow past the line 

(sometimes called flux) is  

 q sinβ ds
𝑂𝑝

 
which is the line integral of the normal velocity 

component from o to P. 

If this quantity of fluid 

flowing between O and P 

remains the same irrespective 

of the path of integration. 
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STREAM FUNCTION 

Sign Convention For Stream Functions 

Flow across the path of integration 

is positive if, when looking in the 

direction of integration, it crosses 

the path from left to right and vice-

versa. 
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STREAM LINE 

A streamline is a line of constant ψ  

Suppose there is a point P1 close to P 

which has the same value of stream 

function as point P . Then the flow across 

any line OP1 equals that across OP, and the 

amount of fluid flowing into area OP P1O 

across OP equals the amount flowing out 

across OP1. Therefore, no fluid crosses line 

PP1 and the velocity of flow must be along, 

or tangential to, PP1. 

All other points P2, P3, etc. which have a stream function equal in value to that of P have, 

by definition, the same flow across any lines joining them to 0, so by the same argument 

the velocity of the flow in the region of P1, P2, P3, etc. must be along PP1, P2, P3, etc., and 

no fluid crosses the line PP1, P2,. . .,Pn. 

The line P, P1, P2, . . . Pn, etc. is a line of constant ψ and is called a streamline 
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STREAM LINE 

Velocity components in terms of ψ  

The stream function ψ(x,y,t)– in the point P with two 

dimensional coordinates (x,y) and as a function of 

time t for an incompressible flow.  

This is the condition of zero divergence resulting 

from flow incompressibility. Since 

The flow velocity components  

have to be 

Ψ= (𝑢𝑑𝑦 − 𝑣𝑑𝑥)
𝑃

𝐴
 

An infinitesimal shift 𝛿𝑃 = 𝛿𝑥, 𝛿𝑦  of the 

position results, In a stream function shift  

𝛿Ψ = 𝑢𝛿𝑦 − 𝑣𝛿𝑥 -----------------(1) 

 

Which is an exact differential provided as 

follows  
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0 

in relation to the stream function ψ. 
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In a general two-dimensional fluid flow, consider 

any (imaginary) line OP joining the origin of a pair 

of axes to the point P(x,y). Again, the axes and this 

line do not impede the flow, and are used only to 

form a reference datum. 

At a point Q on the line let the local velocity 

q meet the line OP in β. Then the component 

of velocity parallel to δs is qcosβ. 

The amount of fluid flowing along δs is qcosβδs 

The total amount of fluid flowing along the line 

towards P is the sum of all such amounts, i.e. 

 q cosβ ds
𝑂𝑝

 
This function is called the velocity potential of P with respect 

to O and is denoted by ϕ 
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Now OQP can be any line between O and P 

and a necessary condition for qcosβδs to be 

the velocity potential ϕ is that the value of 

ϕ is unique for the point P, irrespective of 

the path of integration. Then: 

 q cosβ ds
𝑂𝑝

 Velocity potential ϕ = 



VELOCITY POTENTIAL 
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Sign convention for velocity potential 

The tangential flow along a curve is the product of the local 

velocity component and the elementary length of the curve. 

Now, if the velocity component is in the direction of 

integration, it is considered a positive increment of the 

velocity potential. 

This in turn would imply that the fluid 

within the circuit possessed vorticity. The 

existence of a velocity potential must 

therefore imply zero vorticity in the flow, 

or in other words, a flow without 

circulation, i.e. an irrotational flow. 

 q cosβ ds =0 Velocity potential ϕ in a close path = 



VELOCITY POTENTIAL 
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The equipotential 

Consider a point P having a velocity potential ϕ 

(ϕ is the integral of the flow component along 

OP) and let another point PI close to P have the 

same velocity potential ϕ. This then means that 

the integral of flow along OP1 equals the integral 

of flow along OP. But by definition OPPl  is 

another path of integration from 

O to PI. Therefore 

 q cosβ ds
𝑂𝑝

 Velocity potential ϕ = =  q cosβ ds
𝑂𝑝

1

 =  q cosβ ds
𝑂𝑝𝑝1

 

Similarly for other points such as P2, P3, having the same 

velocity potential, there can be no flow along the line 

joining PI to P2. 



VELOCITY POTENTIAL 
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The Equipotential Characteristics 

The line joining P, P1, P2, P3 is a line joining points having the 

same velocity potential and is called an equipotential or a line 

of constant velocity potential, i.e. a line of constant ϕ .  

The significant characteristic of an equipotential is that there is no flow 

along such a line. Notice the correspondence between an equipotential and 

a streamline that is a line across which there is no flow. 

The flow in the region of points P and P1 should be investigated more closely. From 

the above there can be no flow along the line PP1, but there is fluid flowing in this 

region so it must be flowing in such a way that there is no component of velocity in 

the direction PP1. So the flow can only be at right-angles to PP1, that is the flow in 

the region PP1 must be normal to PP1. Now the streamline in this region, the line to 

which the flow is tangential, must also be at right-angles to PP1 which is itself the 

local equipotential. 
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VELOCITY COMPONENTS IN TERMS OF Φ  

Let a point P(x, y) be on an equipotential Φ and a 

neighbouring point Q(x+δx, y+δy) be on the 

equipotential Φ + δϕ. Then by definition the increase in 

velocity potential from P to Q is the line integral of the 

tangential velocity component along any path between P 

and Q. Taking PRQ as the most convenient path where 

the local velocity components are u and v: 

δϕ = uδx + vδy 
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The equation of continuity in two dimensions (incompressible flow) 

𝜕𝑢

𝜕𝑥
+ 
𝜕𝑣

𝜕𝑦
= 0 1  

The equation of vorticity 
𝜕𝑣

𝜕𝑥
− 
𝜕𝑢

𝜕𝑦
= ζ 2  

The stream function (incompressible flow) .Ψ, describes a continuous flow in 

two dimensions where the velocity at any point is given by 

u = 
𝜕ψ

𝜕𝑦
= 0 and v =−

𝜕ψ

𝜕𝑥
  3  

The stream function (incompressible flow) .ϕ, describes a continuous flow in 

two dimensions where the velocity at any point is given by 

u = 
𝜕ϕ

𝜕𝑥
= 0 and v = 

𝜕ϕ

𝜕𝑦
  4  
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Substituting (3) in (1) gives the identity 
𝜕2ψ

𝜕𝑥𝜕𝑦
 −

𝜕2ψ

𝜕𝑥𝜕𝑦
 = 0 

which demonstrates the validity of (3), while substituting (4) in (2) gives the identity 

𝜕2∅

𝜕𝑥𝜕𝑦
 −

𝜕2∅

𝜕𝑥𝜕𝑦
 = 0 

demonstrating the validity of (4), i.e. a flow described by a 

unique velocity potential must be irrotational. 

Alternatively substituting (3) in (2) and (4) in (1) the criteria 

for irrotational continuous flow are that 

𝜕2∅

𝜕𝑥2
+
𝜕2∅

𝜕𝑦2
 = 0 

𝜕2ψ

𝜕𝑥2
+
𝜕2ψ

𝜕𝑦2
 = 0 

Also written as 

∇2ϕ= ∇2ψ = 0 

∇2= 
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
 

where Laplace Equation 

Laplace Equation 
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Relation between ψ and ϕ  

Two lines with slopes that are negative reciprocals 

of each other are perpendicular to each other. 

Type equation here. 

We know that   

and  

Slope of the velocity potential as dy/dx 

= u/v 
Slope of the velocity stream function as 

dy/dx = u/v 
Multiply both the slop we get =-1 
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Flow of a fluid properties (Temperature, pressure, 

density) in which each particle moves along its line 

of flow with constant speed and in which the cross 

section of each stream tube remains unchanged. 

UNIFORM FLOW 
   

https://www.youtube.com/watch?v=AQhCGkK-hoA Curl in Hindi 

https://www.youtube.com/watch?v=AQhCGkK-hoA
https://www.youtube.com/watch?v=AQhCGkK-hoA
https://www.youtube.com/watch?v=AQhCGkK-hoA


UNIFORM FLOW 
   

24 

Flow of constant velocity parallel to Ox axis 

from left to right 

Flow of constant velocity parallel to 0 y 

axis 

Flow of constant velocity parallel to Oy 

axis 

Flow of constant velocity in any 

direction 
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Flow Of Constant Velocity Parallel To Ox Axis From Left To Right 

UNIFORM FLOW 

Consider flow streaming past the coordinate axes Ox, Oy 

at velocity U parallel to Ox. 
By definition the stream function ψ at a point P(x, y) in the flow is given 

by the amount of fluid crossing any line between O and P. For 

convenience the contour OTP is taken where T is on the Ox axis x along 

from O, i.e. point T is given by (x, 0). 

Then 

ψ = flow across line OTP 

= flow across line OT plus flow across line TP 

= O + U x length TP =o + uy 
Therefor;  ψ = UY 

The streamlines (lines of constant ψ) are given by drawing 

the curves 

ψ = constant = Uy 
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Therefore; y = 
ψ
𝑈

 = constant on streamlines 

The lines ψ = constant are all straight lines parallel to Ox. 

ϕ = flow along contour OTP 

= flow along OT  + flow along TP 

= ux+0 

Therefore; ϕ = ux  

The lines of constant ϕ , the equipotentials, are given by Ux = 

constant, and since the velocity is constant the equipotentials must be 

lines of constant x, or lines parallel to Oy that are everywhere normal 

to the streamlines. 

UNIFORM FLOW 
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A source (sink) of strength 

m(-m) is a point at, which 

fluid is appearing (or 

disappearing) at a uniform 

rate of m(-m)m2 s-1. 
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SOURCE 

Stream Function Ψ of a Source 

Place the source for convenience at the origin 

of a system of axes, to which the point 

P has ordinates (x, y) and (r, 𝜽) 

Putting the line along the x-axis as Ψ = 0 

and taking the most convenient contour for 

integration as OQP where QP is an arc of a 

circle of radius r, then 

Ψ = flow across OQ + flow across QP 

    = velocity across OQ*OQ + velocity across QP * QP 

Ψ = 0 +
𝑚

2𝜋𝑟
∗ 𝑟𝜃 =  

𝑚𝜃

2𝜋
  

or putting 𝜃 = tan-1 (y/x) Ψ = 
𝑚𝜃

2𝜋
 𝑡𝑎𝑛

− 1 (𝑦/𝑥) 
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SOURCE 

Velocity Potential 𝝋 of a Source 

Place the source for convenience at the origin 

of a system of axes, to which the point 

P has ordinates (x, y) and (r, 𝜽) 

The velocity everywhere in the field is radial, i.e. the velocity 

at any point P(r, 𝜽) is given by 

Q= 𝒒𝒏
𝟐 + 𝒒𝒕

𝟐, here Q= qnsince qt = 0. Integrating round 

OQP where Q is point (r,0 ) 

But knt, 

where ro is the radius of the equipotential 𝝋= 0. 

In cartesian 

Coordinate 
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A SOURCE IN A UNIFORM HORIZONTAL STREAM 

Let a source of strength m be situated at 

the origin with a uniform stream of -U 

moving from right to left 

Ψ =
𝑚𝜃

2𝜋
− 𝑈𝑦 

Then Ψ = stream function of Source +  

               Stream Function of Uniform Flow 

Ψ = 
𝑚

2𝜋
tan−1

𝑦

𝑥
− 𝑈𝑦 

∅ =
𝑚

2𝜋
𝑙𝑛
𝑟

𝑟0
− 𝑈𝑥 

∅ =
𝑚

2𝜋
𝑙𝑛
𝑟

𝑟0
− 𝑈𝑟𝑐𝑜𝑠𝜃 

m 

m 

-U 

-U 

sourceand uniform flow.mp4
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A SOURCE IN A UNIFORM HORIZONTAL STREAM 

Ψ = 
𝑚

2𝜋
tan−1

𝑦

𝑥
− 𝑈𝑦 

Let us differentiate the above 

equation w.r t. x we get, 

𝜕Ψ
𝜕𝑥

= 
𝑚

2𝜋
. 
𝜕𝑡𝑎𝑛

−1(
𝑦
𝑥
)

𝜕(
𝑦

𝑥
)

 
𝜕(
𝑦

𝑥
)

𝜕𝑥
 

If Ψ = 0 is replaced by a solid boundary 

The vertical velocity component at any point in 

the flow is given by - 
𝜕Ψ
𝜕𝑥
. 

Solve the differential equation and we get , 𝜕Ψ

𝜕𝑥
=
𝑚

2𝜋

1

1 +
𝑦
𝑥

2

−𝑦

𝑥2
 

v=
𝑚

2𝜋

𝑦

𝑥2+ 𝑦 2  Let us analyse now for Stagnation point !!! 
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The position of the stagnation point and local velocity 

A SOURCE IN A UNIFORM HORIZONTAL STREAM 

A stagnation point is given by u = 0, v = 0 

From Eqn v = 0 when y = 0, and 

substituting infirst  Eqn when y = 0 

and x = xo 

xo = m/2𝝅U 

From the above two equation 

we can get local velocity u, v 
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A SOURCE IN A UNIFORM HORIZONTAL STREAM 

Height of Cliff h 

The ultimate thickness, 2h (or 

height of cliff h) of the shape 

given by Ψ = 0 for this 

combination is found by putting 

y = h and  𝜃 = 𝜋 in the general 

expression, we get, 

Therefore,  h = m/2U 
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Source-sink Pair 

SOURCE-SINK PAIR 

c c 

m 

-m 

This is a combination of a source 

and sink of equal (but opposite) 

strengths situated a distance 2c 

apart. 

Let ± m be the strengths of a source and sink 

situated at points A (c,0) and B (-c, 0), that is 

at a distance of c m on either side of the origin. 

0,0 

P(x,y) 

𝜃1 𝜃2 

𝛽 
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The stream function at a point P(x, y), (r, 𝜽) 

due to the combination is 

Transposing the equation 

to Cartesian coordinates 
And  

Therefore 

And Substituting 𝛽 in above Eqn. we get 

SOURCE-SINK PAIR 
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SOURCE-SINK PAIR  

To find the shape of the streamlines associated with this combination it is 

necessary to investigate Eqn .  

By Rearranging we get, 

Which is the Equation of a Circle of Radius 

and 

Therefore, streamlines for this combination consist of a series of circles 

with centres on the Oy axis and intersecting in the source and sink 
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SOURCE-SINK PAIR 

Consider the velocity potential at any point 

P(r, O)(x, y). 

c c 
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SOURCE-SINK PAIR IN UNIFORM FLOW 

The stream function due to this 

combination is: 

The velocity potential at any 

point in the flow due to this 

combination is given by: 
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DOUBLET 

A doublet is a source and sink combination, as described 

above, but with the separation infinitely small. A doublet 

is considered to be at a point. 



DOUBLET 
   

40 
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DOUBLET 

For the source and sink, we the stream function as below: 

By constructing the perpendicular of length p from the source to the 

line joining the sink and P it can be seen that as the source and sink 

approach 

p -> 2csinθ and also p -> rβ Therefore in the limit 

2csinθ = rβ  β = 
2csinθ
𝑟

 ψ =
𝑚

2𝜋
= 

2csinθ

𝑟
 

Equation of a Circle 
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DOUBLET 

Consider again a source and sink set a 

very small distance, 2c, apart 

where ±𝑚 is the strength of the 

source and sink respectively. Then 
From the Above Figure 
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DOUBLET IN UNIFORM FLOW 

The stream function due to this combination is: 

Converted to rectangular coordinates gives us:  

By substituting the value in the above Eqn of sinθ and r we get, 

ψ =  

For the streamline ψ = 0; 

This shows the streamline ψ=0, to consist of the Ox 

together with a circle, of radius 𝜇 2𝜋𝑈    = a (say). 
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DOUBLET IN UNIFORM FLOW 

The velocity potential due to this 

combination is that corresponding 

to a uniform stream flowing 

parallel to the Ox axis, 

superimposed on that of a doublet 

at the origin. Putting x = r cosθ: 

where a = 𝜇 2𝜋𝑈      
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DOUBLET IN UNIFORM FLOW 

In Polar Coordinates Stream Function can be written as :  

Differentiating this partially with respect to r and θ in turn will 

give expressions for the velocity 

Putting r = a, we get qn=0 and qt = 2Usinθ 

Therefore the velocity on the surface is 2Usin θ 

and it is important to note that the velocity at the 

surface is independent of the radius of the cylinder. 
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THE PRESSURE DISTRIBUTION AROUND A 

CYLINDER 

If a long circular cylinder is set in a uniform flow the motion around it will, 

ideally, be given by the expression,                                           and the velocity the 

anywhere on surface by 

the formula q = 2Usinθ 

By the use of Bernoulli's equation, the pressure p acting on the surface of the 

cylinder where the velocity is q can be found. If po is the static pressure of the 

free stream where the velocity is U then by Bernoulli's equation: 

Substitute the Value of q from above 

equation; we get 
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A SPINNING CYLINDER IN A UNIFORM FLOW 

This is given by the stream function due to a doublet, in a uniform horizontal flow, 

with a line vortex superimposed at the origin. 

Converting to homogeneous coordinates 

𝑊𝐾𝑇 𝜇 2𝜋𝑈    = a; If r0=a we get,  

and differentiating partially with respect to r and θ the velocity components of the 

flow anywhere on or outside the cylinder become, respectively 

On the surface of the spinning cylinder r = a. 

Therefore,  
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A SPINNING CYLINDER IN A UNIFORM FLOW 

and applying Bernoulli’s equation between a point a long way upstream and a 

point on the cylinder where the static pressure is p 
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A SPINNING CYLINDER IN A UNIFORM FLOW 

This flow is that associated with a straight line vortex. A line vortex 

can best be described as a string of rotating particles. A chain of fluid 

particles are spinning on their common axis and carrying around with 

them a swirl of fluid particles which flow around in circles. A cross-

section of such a string of particles and its associated flow shows a 

spinning point outside of which is streamline flow in concentric 

circles 

Line (point) vortex 
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A SPINNING CYLINDER IN A UNIFORM FLOW 

Consider a vortex located at the origin of a polar system 

of coordinates. But the flow is irrotational, so the vorticity 

everywhere is zero. Recalling that the streamlines are 

concentric circles, centred on the origin, so that qθ = 0, it 

therefore; 

By integrating we  get 

Integration Result equivalent to  

In the present example, 𝑞 . 𝑡  = qt and ds = rθ, let us put the values 

in the integration, then integration value we get, 
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A SPINNING CYLINDER IN A UNIFORM FLOW 

Thus we the integration constant as 

Integrating along the boundary from radius ro to P(r, θ) 

the flow due to a line vortex gives streamlines that are concentric 

circles, the equipotential, shown to be always normal to the 

streamlines, must be radial lines emanating from the vortex, 
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A SPINNING CYLINDER IN A UNIFORM FLOW 
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A SPINNING CYLINDER IN A UNIFORM FLOW 



VORTEX 
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VORTEX 
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VORTEX 
   



KUTTA-JOUKOWSKI THEOREM 
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Circulation and lift  

Lift force per unit span l = ρUЃ 

The lift per unit span in N is equal to the product of density ρ, the 

linear velocity U, and the circulation Г. 

This expression is the algebraic form of the Kutta-Zhukovsky 

theorem 
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2.1 Aerofoil Nomenclature 

2.2 Aerodynamic Characteristics 

2.3 Centre of Pressure and Aerodynamic Centre 

2.4 Wing of Infinite Aspect Ratio 

2.5 Cl-α- Diagram for a Wing of Infinite Aspect Ratio 

2.6 Generation of Lift 

2.7 Starting Vortex 

2.8 Kutta’s Trailing Edge Condition 

2.9 Thin Aerofoil Theory 

2.10 Elements of Panel Method 

2.11 High Lift Aerofoils 

2.12 High Lift Devices 

THIN AEROFOIL THEORY 
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Aerofoil Nomenclature 
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Aerofoil Nomenclature 

Leading Edge: The forward section of the airfoil is named the leading edge   

Trailing  Edge: The rear section of the airfoil is named the Trailing edge   

Upper Surface Upper surface is the surface of an aerofoil between  

                             the leading and trailing edges, on the upper surface 

Chord is a distance between the leading and trailing edges measured along the 

chord line; 

Chord line is a straight line joining the leading and trailing edges of an aerofoil; 

Lower surface is the surface of an aerofoil between the leading and trailing edges, on 

the lower surface; 

Mean camber line is a line joining the leading and trailing edges of an aerofoil, 

equidistant from the upper and lower surfaces; 

Maximum camber is the maximum distance of the mean camber line from the chord 

line; 

Maximum thickness is the maximum distance of the lower surface from the upper 

surface. 
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NACA Aerofoil Nomenclature 

Family Advantages Disadvantages Applications 

4-Digit 

1. Good stall characteristics 1. Low maximum lift coefficient 1. General aviation 

    2. Horizontal tails 

2. Small center of pressure movement across large speed 

range 
2. Relatively high drag   

    Symmetrical: 

3. Roughness has little effect 3. High pitching moment   

 NACA AEROFOIL.xlsx   3. Supersonic jets 

    4. Helicopter blades 

    5. Shrouds 

    6. Missile/rocket fins 

5-Digit 

1. Higher maximum lift coefficient 1. Poor stall behavior 1. General aviation 

    2. Piston-powered bombers, transports 

2. Low pitching moment 2. Relatively high drag 3. Commuters 

    4. Business jets 

3. Roughness has little effect     

16-Series 

1. Avoids low pressure peaks 

1. Relatively low lift 

1. Aircraft propellers 

  2. Ship propellers 

2. Low drag at high speed   

6-Series 

1. High maximum lift coefficient 1. High drag outside of the optimum range of operating conditions 1. Piston-powered fighters 

    2. Business jets 

2. Very low drag over a small range of operating conditions 2. High pitching moment 3. Jet trainers 

    4. Supersonic jets 

3. Optimized for high speed 3. Poor stall behavior   

      

  4. Very susceptible to roughness   

7-Series 

1. Very low drag over a small range of operating conditions 1. Reduced maximum lift coefficient 

Seldom used 

    

2. Low pitching moment 2. High drag outside of the optimum range of operating conditions 

    

  3. Poor stall behavior 

    

  4. Very susceptible to roughness 

8-Series Unknown Unknown Very seldom used 

NACA AEROFOIL.xlsx
NACA AEROFOIL.xlsx
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NACA Four-Digit Series: 

The first family of airfoils designed using this approach became known as the 

NACA Four-Digit Series. The first digit specifies the maximum camber (m) in 

percentage of the chord (airfoil length), the second indicates the position of the 

maximum camber (p) in tenths of chord, and the last two numbers provide the 

maximum thickness (t) of the airfoil in percentage of chord. For example, 

the NACA 2415 airfoil has a maximum thickness of 15% with a camber of 2% 

located 40% back from the airfoil leading edge (or 0.4c).  

http://www.aerospaceweb.org/question/airfoils/naca-airfoil/n2415.gif
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NACA Five-Digit Series:The NACA Five-Digit Series uses the same thickness 

forms as the Four-Digit Series but the mean camber line is defined differently and 

the naming convention is a bit more complex. The first digit, when multiplied by 3/2, 

yields the design lift coefficient (cl) in tenths. The next two digits, when divided by 2, 

give the position of the maximum camber (p) in tenths of chord. The final two digits 

again indicate the maximum thickness (t) in percentage of chord. For example, 

the NACA 23012 has a maximum thickness of 12%, a design lift coefficient of 0.3, 

and a maximum camber located 15% back from the leading edge.  

http://www.aerospaceweb.org/question/airfoils/naca-airfoil/n23012.gif
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NACA 6-Series: 

Although NACA experimented with approximate theoretical methods that produced the 

2-Series through the 5-Series, none of these approaches was found to accurately produce 

the desired airfoil behavior. The 6-Series was derived using an improved theoretical 

method that, like the 1-Series, relied on specifying the desired pressure distribution and 

employed advanced mathematics to derive the required geometrical shape. The goal of 

this approach was to design airfoils that maximized the region over which the airflow 

remains laminar. In so doing, the drag over a small range of lift coefficients can be 

substantially reduced. The naming convention of the 6-Series is by far the most confusing 

of any of the families discussed thus far, especially since many different variations exist. 

One of the more common examples is the NACA 641-212, a=0.6. 

In this example, 6 denotes the series and indicates that this family is designed for greater 

laminar flow than the Four- or Five-Digit Series. The second digit, 4, is the location of the 

minimum pressure in tenths of chord (0.4c). The subscript 1 indicates that low drag is 

maintained at lift coefficients 0.1 above and below the design lift coefficient (0.2) specified by 

the first digit after the dash in tenths. The final two digits specify the thickness in percentage of 

chord, 12%. The fraction specified by a=___ indicates the percentage of the airfoil chord over 

which the pressure distribution on the airfoil is uniform, 60% chord in this case. If not specified, 

the quantity is assumed to be 1, or the distribution is constant over the entire airfoil. 

http://www.aerospaceweb.org/question/airfoils/naca-airfoil/n64212.gif
http://www.aerospaceweb.org/question/airfoils/naca-airfoil/n64212.gif
http://www.aerospaceweb.org/question/airfoils/naca-airfoil/n64212.gif
http://www.aerospaceweb.org/question/airfoils/naca-airfoil/n64212.gif
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NACA 7-Series: 

The 7-Series was a further attempt to maximize the regions of laminar flow over an 

airfoil differentiating the locations of the minimum pressure on the upper and lower 

surfaces. An example is the NACA 747A315. The 7 denotes the series, the 4 provides 

the location of the minimum pressure on the upper surface in tenths of chord (40%), 

and the 7 provides the location of the minimum pressure on the lower surface in tenths 

of chord (70%). The fourth character, a letter, indicates the thickness distribution and 

mean line forms used. A series of standaradized forms derived from earlier families are 

designated by different letters. Again, the fifth digit incidates the design lift coefficient in 

tenths (0.3) and the final two integers are the airfoil thickness in perecentage of chord 

(15%) 

http://www.aerospaceweb.org/question/airfoils/naca-airfoil/n747a315.gif
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NACA 8-Series: 

A final variation on the 6- and 7-Series methodology was the NACA 8-Series 

designed for flight at supercritical speeds. Like the earlier airfoils, the goal was to 

maximize the extent of laminar flow on the upper and lower surfaces 

independently. The naming convention is very similar to the 7-Series, an example 

being the NACA 835A216. The 8 designates the series, 3 is the location of 

minimum pressure on the upper surface in tenths of chord (0.3c), 5 is the location 

of minimum pressure on the lower surface in tenths of chord (50%), the letter A 

distinguishes airfoils having different camber or thickness forms, 2 denotes the 

design lift coefficient in tenths (0.2), and 16 provides the airfoil thickness in 

percentage of chord (16%). 

http://www.aerospaceweb.org/question/airfoils/naca-airfoil/n835a216.gif


Aerodynamic Characteristics 
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Aerodynamic centre 

Centre of Pressure 

Pitching moment 



Centre of Pressure 
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Centre of pressure 

The aerodynamic forces on an aerofoil section may be represented by a lift, a 

drag, and a pitching moment. At each value of the lift coefficient there will be 

found to be one particular point about which the pitching moment coefficient is 

zero, and the aerodynamic effects on the aerofoil section may be represented by 

the lift and the drag alone acting at that point. This special point is termed the 

centre of pressure. 



Aerodynamic Centre   
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Aerodynamic centre 

If the pitching moment coefficient at each point along the chord is 

calculated for each of several values of CL, one very special point is found 

for which CM is virtually constant, independent of the lift coefficient. This 

point is the aerodynamic centre. 

For incidences up to 10 degrees or so it is a fixed point close to, but not in general 

on, the chord line, between 23% and 25% of the chord behind the leading edge. 



Wing of Infinite Aspect Ratio 
   

70 

Aspect ratio 

The aspect ratio is a measure of the narrowness of the wing planform. It is denoted by 

A, or sometimes by (AR), and is given by AR=span/SMC=b/c 

If both top and bottom of this expression are multiplied by the wing span, by it 
becomes 

a form which is often more convenient. 



Cl-α- Diagram for a Wing of Infinite Aspect Ratio 
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Finite and Infinite Wing 

You are partially correct. As you surmised, the difference between a 

finite wing and an infinite wing is in that a finite wing has tips. As a 

result, the higher pressure air from beneath the wing tries to move 

around the tips towards the lower pressure above the wing. This 

motion creates a swirling vortex of air from each tip that trails behind 

the wing. For that reason, we call these vortices trailing vortices.  
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You can see the effect of aspect ratio on the lift produced by a wing quite 

clearly in the following graph. 

Cl-α- Diagram for a Wing of Infinite Aspect Ratio 



Generation of Lift 
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Lift occurs when a moving flow of gas is turned by a solid object. 

The flow is turned in one direction, and the lift is generated in the 

opposite direction, according to Newton's Third Law of action and 

reaction. Because air is a gas and the molecules are free to move 

about, any solid surface can deflect a flow. 



Starting Vortex 
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The starting vortex which forms in the air adjacent to the 

trailing edge of an airfoil as it is accelerated from rest in a 

fluid. It leaves the airfoil (which now has an equal but opposite 

"bound vortex" around it), and remains (nearly) stationary in the 

flow. It rapidly decays through the action of viscosity. 

The starting vortex is significant to an understanding of 

the Kutta condition and its role in the circulation around any 

airfoil generating lift. 

../Airfoil starting vortex.mp4
../Airfoil starting vortex.mp4
../Airfoil starting vortex.mp4
../Airfoil starting vortex.mp4


Kutta’s Trailing Edge Condition 
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 A body with a sharp trailing edge which is moving through a 

fluid will create about itself a circulation of sufficient strength 

to hold the rear stagnation point at the trailing edge. In fluid 

flow around a body with a sharp corner, the Kutta condition 

refers to the flow pattern in which fluid approaches the corner 

from both directions, meets at the corner, and then flows away 

from the body. None of the fluid flows around the sharp 

corner. 



 In words: Camber line is a streamline 

 Written at a given point x on the chord line 

 dz/dx is evaluated at that point x 

 Variable x is a dummy variable of integration 

which varies from 0 to c along the chord line 

 Vortex strength g=g (x) is a variable along the 

chord line and is in units of  

 In transformed coordinates, equation is written at a 

point, q0. q is the dummy variable of integration 

 At leading edge, x = 0, q = 0 

 At trailed edge, x = c, q =p 

 The central problem of thin airfoil theory is to 

solve the fundamental equation for g (x) subject to 

the Kutta condition, g(c)=0 

 The central problem of thin airfoil theory is to 

solve the fundamental equation for g (q) subject to 

the Kutta condition, g(p)=0 
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• Fundamental equation of thin airfoil theory for 

a symmetric airfoil (dz/dx=0) written in 

transformed coordinates 

 

• Solution 

– “A rigorous solution for () can be 

obtained from the mathematical theory of 

integral equations, which is beyond the 

scope of this book.” (page 324, Anderson) 

• Solution must satisfy Kutta condition ()=0 at 

trailing edge to be consistent with experimental 

results 

• Direct evaluation gives an indeterminant form, 

but can use L’Hospital’s rule to show that Kutta 

condition does hold. 

SUMMARY: SYMMETRIC AIRFOILS 



 Total circulation, G, around the airfoil 

(around the vortex sheet described by ()) 

 Transform coordinates and integrate 

 Simple expression for total circulation 

 Apply Kutta-Joukowski theorem (see 

§3.16), “although the result [L’=∞V ∞
2G] 

was derived for a circular cylinder, it 

applies in general to cylindrical bodies of 

arbitrary cross section.” 

 Lift coefficient is linearly proportional to 

angle of attack 

 Lift slope is 2/rad or 0.11/deg 
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SUMMARY: SYMMETRIC AIRFOILS 



  Panel methods are techniques for solving incompressible 
potential flow over thick 2-D and 3-D geometries.  

 In 2-D, the airfoil surface is divided into piecewise straight line 
segments or panels or “boundary elements” and vortex sheets of 
strength g are placed on each panel. 

 We use vortex sheets (miniature vortices of strength gds, 
where ds is the length of a panel) since vortices give rise to 
circulation, and hence lift. 

 Vortex sheets mimic the boundary layer around airfoils. 

Elements of Panel Method 



Upper surface boundary layer contains, in general, clockwise rotating vorticity 

 

Lower surface boundary layer contains, in general, counter clockwise vorticity. 

 

Because there is more clockwise vorticity than counter clockwise 

Vorticity, there is net clockwise circulation around the airfoil. 

 

In panel methods, we replace this boundary layer, which has a small but finite 

thickness with a thin sheet of vorticity placed just outside the airfoil. 

 

Elements of Panel Method 



On each panel, there is vortex sheet of strength DG = g0 ds0 

Where ds0 is the panel length. 

 

Each panel is defined by its two end points (panel joints) 

and by the control point, located at the panel center, where we will 

Apply the boundary condition y= Constant=C. 

 

The more the number of panels, the more accurate the solution, 

since we are representing a continuous curve by a series  

of broken straight lines 

Elements of Panel Method 



Boundary Condition 

 We treat the airfoil surface as a streamline. 

 This ensures that the velocity is tangential to the airfoil 

surface, and no fluid can penetrate the surface. 

 We require that at all control points (middle points of 

each panel) y= C  

 The stream function is due to superposition of the 

effects of the free stream and the effects of the vortices 

g0 ds0 on each of the panel.  

Elements of Panel Method 



High Lift Aerofoils 
   

83 



High Lift Devices 
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MODULE -III 
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FINITE WING THEORY 

3.1   Vortex Motions 

3.2   Vortex Line 

3.3   Vortex Tube 

3.4   Vortex Sheet 

3.5   Circulation 

3.6   Kelvin and Helmhotz Theorem 

3.7   Biot-Savart’s Law 

3.8   Applications 

3.9   Rankine’s Vortex 

3.10 Flow Past Finite Wings 

3.11 Vortex Model of The Wing and Bound Vortices 

3.12 Induced Drag 

3.13 Prandtl’s Lifting Line Theory 

3.14 Elliptic Wing 

3.15 Influence of Taper and Twist Applied to Wings 

3.16 Effect of Sweep Back Wings 

3.17 Delta Wings 

3.18 Primary and Secondary Vortex 

3.19 Elements of Lifting Surface Theory 

3.20 Source Panel Vortex Panel and Vortex Lattice 

Methods 



Vortex Motions 
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A vortex is commonly associated with the 

rotating motion of fluid around a common centerline. It is 

defined by the vorticity in the fluid, which measures the rate 

of local fluid rotation. In a free vortex flow total mechanical 

energy remains constant. 



Vortex Line 
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A vortex line is a line whose tangent is 

everywhere parallel to the local vorticity 

vector. The vortex lines drawn through 

each point of a closed curve constitute the 

surface of a vortex tube. Finally, 

a vortex filament is a vortex tube whose 

cross-section is of infinitesimal dimensions 



Vortex Tube 
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Vortex lines can be defined analogously to 

streamlines as lines that are tangential 

to the vorticity vector at all points in the flow 

field. Similarly the concept of the 

vortex tube is analogous to that of stream 

tube. Physically we can think of flow 

structures like vortices as comprising bundles 

of vortex tubes. In many respects 

vorticity and vortex lines are even more 

fundamental to understanding the flow 

physics than are velocity and streamlines. 



Vortex Sheet 
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A vortex sheet is a 

term used in fluid 

mechanics for a 

surface across which 

there is a 

discontinuity in fluid 

velocity, such as in 

slippage of one layer 

of fluid over another. 



Circulation   
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 Circular motion is a movement of an 

object along the circumference of a circle 

or rotation along a circular path. It can be 

uniform, with constant angular rate of 

rotation and constant speed, or non-

uniform with a changing rate of rotation. 

The rotation around a fixed axis of a 

three-dimensional body involves circular 

motion of its parts. The equations of 

motion describe the movement of the 

center of mass of a body. 



Kelvin and Helmhotz Theorem 
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Helmholtz' second vortex theorem, or its 

equivalence Kelvin's theorem, is a 

vorticity-dynamic theorem based on both 

kinetics and kinematics. The generalized 

second vortex theorem states that the 

vorticity strength in the viscous fluid is not 

conserved in time; it diffuses at a 

predictable rate 



Biot-Savart’s Law 
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What is Biot Savart Law 

The Biot Savart Law is an 

equation describing the magnetic 

field generated by a constant 

electric current. It relates the 

magnetic field to the magnitude, 

direction, length, and proximity of 

the electric current. Biot–Savart 

law is consistent with both 

Ampere’s circuital law and 

Gauss’s theorem. The Biot Savart 

law is fundamental to 

magnetostatics, playing a role 

similar to that of Coulomb’s law 

in electrostatics. 

 

 



Applications 
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Biot Savart Law Applications 

This law can be used for calculating magnetic 

reactions even on the level of molecular or atomic. 

It can be used in the theory of aerodynamic for 

determining the velocity encouraged with vortex 

lines. 



Rankine’s Vortex 
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The Rankine vortex is a simple mathematical model of a vortex in 

a viscous fluid. It is named after its discoverer, William John 

Macquorn Rankine. A swirling flow in a viscous fluid can be 

characterized by a central core comprising a forced vortex, 

surrounded by a free vortex. 



Flow Past Finite Wings 
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Vortex Model of The Wing and Bound Vortices 
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Bound Vortex. a vortex that is considered to be 

tightly associated with the body around which a 

liquid or gas flows, and equivalent with respect to 

the magnitude of speed circulation to the real 

vorticity that forms in the boundary layer owing to 

viscosity. 



Induced Drag 
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In aerodynamics, lift-induced drag, induced drag, vortex 

drag, or sometimes drag due to lift, is an aerodynamic 

drag force that occurs whenever a moving object redirects 

the airflow coming at it. This drag force occurs in airplanes 

due to wings or a lifting body redirecting air to cause lift 

and also in cars with airfoil wings that redirect air to cause a 

downforce.  



Prandtl’s Lifting Line Theory 
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The Prandtl lifting-line theory is a mathematical 

model that predicts lift distribution over a three-

dimensional wing based on its geometry. ... In this 

model, the vortex loses strength along the whole 

wingspan because it is shed as a vortex-sheet from the 

trailing edge, rather than just at the wing-tips. 



Elliptic Wing 
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An elliptical wing is a wing planform whose leading and 

trailing edges each approximate two segments of an ellipse. 

Not to be confused with annular wings, which may be 

elliptically shaped. 
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Influence of Taper and Twist Applied to Wings   

Wing twist is an aerodynamic feature added to 

aircraft wings to adjust lift ... cause the wing itself to be 

deflected and is related to compressibility effects; ... 

Hornet Wing Twist · Applied Aerodynamics: A Digital 

Textbook, Wing Design Parameters.  



Effect of Sweep Back Wings 
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weeping The Wing Back Delays Supersonic Flow 

It delays the start of supersonic flow, by reducing 

the amount of acceleration over the wing. On a 

straight wing airplane, all of the airflow over 

the wing travels parallel to the aircraft's chord line. 



Delta Wings 
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The delta wing is a wing shaped in the form of a triangle. It is 

named for its similarity in shape to the Greek uppercase 

letter delta (Δ). Although long studied, it did not find significant 

applications until the jet age, when it proved suitable for high-

speed subsonic and supersonic flight. 



Primary and Secondary Vortex 
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Vortices that attain their full strength in a single oscillation 

are named “ primary,” whilst those which require more than 

one oscillation for their complete development are termed 

“ secondary ” vortices: in previous papers the latter were 

called “ residual ” vortices. 



Elements of Lifting Surface Theory 
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Source Panel Vortex Panel and Vortex Lattice 
Methods 
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The vortex-panel method is a method for computing ideal 

flows - flows in which the effects of compressibility and 

viscosity are negligible. Ideal flow is often the first type of 

fluid motion that student engineers and scientists study, 

because it is the simplest. 



MODULE -IV 
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FLOW PAST NON-LIFTING BODIES AND INTERFERENCE EFFECTS 

4.1 Flow Past Non-Lifting Bodies 

4.2 Method of Singularities 

4.3 Wing-Body Interference 

4.4 Effect of Propeller on Wings and Bodies and Tail Unit 

4.5 Flow Over Airplane as A Whole 



Flow Past Non-Lifting Bodies 
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Method of Singularities 
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Wing-Body Interference 
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Effect of Propeller on Wings and  
Bodies and Tail Unit 
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Flow Over Airplane as A Whole 
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MODULE -V 
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5.1 Introduction to Boundary Layer 

5.2 Laminar and Turbulent Boundary Layer 

5.3 Transition, Boundary Layer on Flat Plate 

5.4 Displacement Thickness 

5.5 Momentum Thickness 

5.6 Energy Thickness  

5.7 Effect of Curvature 

5.8 Temperature Boundary Layer 

BOUNDARY LAYERTHEORY 



Introduction to Boundary Layer 
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The fundamental concept of the boundary layer was 

suggested by L. Prandtl (1904), it defines the boundary 

layer as a layer of fluid developing in flows with very 

high Reynolds Numbers Re, that is with relatively low 

viscosity as compared with inertia 



Laminar and Turbulent Boundary Layer 
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Transition, Boundary Layer on Flat Plate 
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Displacement Thickness 
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Momentum Thickness 
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Energy Thickness 
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Effect of Curvature 
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Temperature Boundary Layer 
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The thermal boundary layer thickness,  𝜹𝑻, is the distance 

across a boundary layer from the wall to a point where the 

flow temperature has essentially reached the 'free stream' 

temperature,  T0. This distance is defined normal to the wall in 

the  y-direction. The thermal boundary layer thickness is 

customarily defined as the point in the boundary layer, y99, 

where the temperature T(x,y) reaches 99% of the free stream 

value T0     
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Temperature Boundary Layer 
 

Schematic drawing depicting fluid flow over a heated flat plate. 
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Temperature Boundary Layer 
 

at a position x along the wall. In a real fluid, this quantity can 

be estimated by measuring the temperature profile at a 

position x along the wall. The temperature profile is the 

temperature as a function of  y at a fixed x position.  

For laminar flow over a flat plate a zero incidence, the thermal 

boundary layer thickness is given by 
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The thermal boundary layer thickness for turbulent flow does 

not depend on the Prandtl number but instead on 

the Reynolds number. Hence, the turbulent thermal 

boundary layer thickness is given approximately by the 

turbulent velocity boundary layer thickness expression given 

by 

Temperature Boundary Layer 
 



  

The basic assumption of boundary-

layer theory: 

A boundary layer is very thin in 

comparison with the scale of 

the body 

ρ = constant 

μ = constant 

dpe/dx = 0 (because the inviscid flow over a flat plate at α = 0 

BLASIUS’ EQUATION 



Basic Equations for Incompressible Flow 



kinematic viscosity, defined 

as ν ≡ μ/ρ. 

Boundary Layer Equations  



Let us transform the independent 

variables (x, y) to (ξ, η), where 

 

 
Using the chain rule, we obtain the derivatives 

a

n

d  



Let us define a stream 

function ψ such that 

From the definition of the stream function, 

& 

The function f (η) defined has the property that its 

derivative f  gives the x 

component of velocity as 



By substituting into the momentum 

equation, we get 

Simplifying, we obtain 

The first and third terms cancel, and 

Equation becomes 

is called Blasius’ equation 



130 


