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POTENTIAL FLOW

We can treat external flows around bodies
as :

1. Invicid (i.e. Frictionless)




STREAM FUNCTION

Imagine being on the nks of a shallow river of a constant depth of 1 m at a position
O with a friend directly opposite at A, 40m away.

« The bank can be represented by the OX  axis

. The line joining you to your friend at
A the QY axis in the two-coordinate system



STREAM FUNCTION

Now if the stream speed is 2m/s the amount of water passing between you and

your friend is 40 x 1 x 2 =80 m3 s-1and this is the amount of water flowing past
any point anywhere along the river which could be measured at a weir
downstream.

Suppose you now throw a buoyant rope to your friend who catches the end but
allows the slack to fall in the river and float into a curve as shown. The amount of
water flowing under the line is still 80m3 /s no matter what shape the rope takes,
and is unaffected by the configuration of the rope.

Suppose your friend moves along to a point B somewhere downstream, still
holding his end of the line but with sufficient rope paid out as he goes. The volume
of water passing under the rope is still only 80m3 /s providing he has not stepped
over a tributary stream or an irrigation drain in the bank. It follows that, if no water
can enter or leave the stream, the quantity flowing past the line will be the same

as before and furthermore will be unaffected by the shape of the line between 0




STREAM FUNCTION

® The amount or quantity of fluid passing such a
line per second is called the stream function or
current function and it is denoted by .

Let us study the Mathematically about
Stream Function



STREAM FUNCTION

Let us study the Mathematically about
Stream Function

Consider now a pair of coordinate
axes set in a two-dimensional air
stream that is moving generally from
left to right.

The axes are arbitrary space
references and in no way interrupt the
fluid streaming past.

Similarly the line joining O to a point
P in the flow in no way interrupts the
flow since it is as imaginary as the

reference axes OX and Oy. An
algebraic expression can be found for

=Y




STREAM FUNCTION

1. Let the flow past the line at any point Q on

it be at velocity (J over a small length &s of
line where direction of q makes angle 3 to

_rl P
the tangent of the curve at Q.
2. The component of the velocity ¢ I
perpendicular to the element 6s is gsinp
and therefore, assuming the depth of stream = >~
flow to be unity, the amount of fluid ) Detall ot Q
crossing the element of line 8s is gsinf X
5s x 1 per second. N _ If this quantity of fluid
3. Adding up all such quantities crossing flowing between O and P
similar elements along the line from O to P, remains the same irrespective
the total amount of flow past the line of the path of integration.

(sometimes called flux) is
j which is the line integral of the norm

q SmB ds component from O




STREAM FUNCTION

Sign Convention For Stream Functions

Flow across the path of integration
IS positive if, when looking in the
direction of integration, it crosses
the path from left to right and vice-
versa.




STREAM LINE

A streamline is a line of constant ¢

Suppose there is a point P; close to P T
which has the same value of stream
function as point P . Then the flow across

any line OP, equals that across OP, and the
amount of fluid flowing into area OP P,O
across OP equals the amount flowing out
across OP,. Therefore, no fluid crosses line

PP, and the velocity of flow must be along, —
or tangential to, PP;.

All other points P,, P, etc. which have a stream function equal in value to that of P have,

by definition, the same flow across any lines joining them to O, so by the same argument
the velocity of the flow in the region of P,, P,, P, etc. must be along PP, P,, P, etc., and

PF‘FE

-
&

0

no fluid crosses the line PP, P,,. . .,Pn.

The line P, P, P,, ... P,, etc. is a line of constant




STREAM LINE

Velocity components in terms of y

The stream function p(X,y,t)— in the point P with two
dimensional coordinates (x,y) and as a function of
time t for an incompressible flow.

W= f: (udy — vdx)

o M
dip = — dx -1 — dy,
o YT e
An |_n.f|n|te5|mal shift 5P = (x, Sy) of th_e The flow velocity components
position results, In a stream function shift have to be
OV = udy — véx ----------------- (1)
oy oy
_ _ . _ . U= — and v = —g
Which is an exact differential provided as Oy
du . Jv
follows +—= . .
dx 0y in relation to the strea

This Is the condition of zero divergence resulting
from flow incompressibility. Since



VELOCITY POTENTIAL

In a general two-dimensional fluid flow, consider
any (imaginary) line OP joining the origin of a pair
of axes to the point P(x,y). Again, the axes and this
line do not impede the flow, and are used only to
form a reference datum.

At a point Q on the line let the local velocity
q meet the line OP in B. Then the component
of velocity parallel to ds Is gcosp.

The amount of fluid flowing along ds is qcos36S

The total amount of fluid flowing along the line
towards P is the sum of all such amounts, i.e.

f This function is called the velocity potential of P with respect
g cosP ds
Op to O and is denoted by (I)



VELOCITY POTENTIAL

Now OQP can be any line between O and P
and a necessary condition for gcospos to be
the velocity potential ¢ Is that the value of P
¢ 1S unique for the point P, irrespective of
the path of integration. Then: A

Velocity potential ¢ = | ¢ cosp ds
op




VELOCITY POTENTIAL

The tangential flow along a curve is the product of the local
velocity component and the elementary length of the curve.
Now, If the velocity component is in the direction of
Integration, it Is considered a Increment of the
velocity potential.

This in turn would imply that the fluid
within the circuit possessed vorticity. The d
existence of a velocity potential must
therefore imply zero vorticity in the flow, A
or in other words, a flow without
circulation, I.e. an irrotational flow.

Y

0 X

Velocity potential ¢ in a close path = f g cosP ds =0



VELOCITY POTENTIAL

The equipotential

Consider a point P having a velocity potential ¢
(¢ is the integral of the flow component along
OP) and let another point P, close to P have the
same velocity potential ¢. This then means that
the integral of flow along OP, equals the integral
of flow along OP. But by definition OPP, is 0 x
another path of integration from

O to P,. Therefore

Velocity potential ¢ = | ¢ cosp ds =j q cospds = f q cosP ds
Op Op, Opp1l

Similarly for other points such as P,, P, having the same

velocity potential, there can be no flow along the line

joining P, to P,,.




VELOCITY POTENTIAL

The Equipotential Characteristics
The line joining P, P, P,, P5 Is a line joining points having the
same velocity potential and is called an equipotential or a line
of constant velocity potential, i.e. a line of constant ¢ .

The significant characteristic of an equipotential is that there is no flow
along such a line. Notice the correspondence between an equipotential and
a streamline that is a line across which there is no flow.

The flow in the region of points P and P, should be investigated more closely. From
the above there can be no flow along the line PP, but there is fluid flowing in this
region so it must be flowing in such a way that there is no component of velocity in
the direction PP,. So the flow can only be at right-angles to PP, that is the flow in
the region PP, must be normal to PP,. Now the streamline in this region, the line to

which the flow is tangential, must also be at right-angles to PP, which is itself the
local equipotential.



VELOCITY POTENTIAL

VELOCITY COMPONENTS IN TERMS OF @

Let a point P(X, y) be on an equipotential ® and a N ¢+8¢
neighbouring point Q(x+dx, y+dy) be on the ’[ ¢ St BryiBy)
equipotential @ + 6¢. Then by definition the increase in Y S
velocity potential from P to Q is the line integral of the == P RO+8, )

u

tangential velocity component along any path between P
and Q. Taking PRQ as the most convenient path where =3 -
the local velocity components are u and v: / /

3¢ = USX + vdy




LAPLACE EQUATION

+—=0 (D

The equation of vorticity oV — = (2)

The stream function (incompressible flow) .V, describes a continuous flow in
two dimensions where the velocity at any point is given by
0 9,
u=Y=0andv=—22 (3)
dy dx
The stream function (incompressible flow) .¢, describes a continuous flow in
two dimensions where the velocity at any point is given by

u=2®_—ogandv=2% (4)

dx dy




LAPLACE EQUATION

Substituti i : L Aanti o’y A%y _
ubstituting (3) in (1) gives the identity oxdy ey - 0

which demonstrates the validity of (3), while substituting (4) in (2) gives the identity

%9 3*0 _
dx0y axay_

demonstrating the validity of (4), i.e. a flow described by a
unique velocity potential must be irrotational.

Alternatively substituting (3) in (2) and (4) in (1) the criteria
for irrotational continuous flow are that

0%p %0 _ ~ ]
9x2 = 9y2 0
o2y oty — 4m Laplace Equation
0 2 + 2 =
X oy v2:

Also written as
Vip=V?y =0

where
62 2




VELOCITY POTENTIAL

Relation between w and ¢
We know that

o Uy = _%
oy o 5 oy
£
and 3¢. »
_w vy =7 L,
Uy = or 31.‘ _— = -
dx dy
Y m,-m, = -1
Slope of the velocity potential as dy/dx slope.=in;
= ulv
Slope of the velocity stream function as slope = m,
dy/dx = ulv ot
Multiply both the slop we get =-1

Two lines with slopes that are negative reciprocals
of each other are perpendicular to each other.




FLOW SINGULARITIES




UNIFORM FLOW

Flow of a fluid properties (Temperature, pressure,

density) in which each particle moves along its line

of flow with constant speed and in which the cross
section of each stream tube remains unchanged.

https://www.youtube.com/watch?v=A0hCGkK-hoA Curl in Hindi



https://www.youtube.com/watch?v=AQhCGkK-hoA
https://www.youtube.com/watch?v=AQhCGkK-hoA
https://www.youtube.com/watch?v=AQhCGkK-hoA

UNIFORM FLOW

Flow of constant velocity parallel to Ox axis y
from left to right

Flow of constant velocity parallel to Oy - —
axis 0 T(x,0) Y
Flow of constant velocity in any v| *V '

direction

/ @ ol X
e //{' \T[Jr,O)
A 8
0




UNIFORM FLOW

Flow Of Constant Velocity Parallel To Ox Axis From Left To Right

Consider flow streaming past the coordinate axes Ox, Oy

at velocity U parallel to Ox.
By definition the stream function y at a point P(X, y) in the flow is given

by the amount of fluid crossing any line between O and P. For
convenience the contour OTP is taken where T is on the Ox axis x along
from O, i.e. point T is given by (X, 0).

4
Then Plx,y)
v = flow across line OTP e
= flow across line OT plus flow across line TP S Ry S ——
=0+Uxlength TP =0 + uy . -
Therefor; v = UY 5 o) -

The streamlines (lines of constant ) are given by drawing
the curves
v = constant = Uy




UNIFORM FLOW

Therefore; y = \V = constant on streamlines
The lines v = constant are all straight lines parallel to Ox.

¢ = flow along contour OTP

= flow along OT + flow along TP

= ux+0

Therefore; ¢ = ux

The lines of constant ¢ , the equipotentials, are given by Ux =
constant, and since the velocity is constant the equipotentials must be
lines of constant x, or lines parallel to Oy that are everywhere normal
to the streamlines.




SOURCE

A source (sink) of strength

% m(-m) is a point at, which

W31} fluid is appearing (or

i/}/}/] disappearing) at a uniform
/4 rate of m(-m)m?2 s,




SOURCE

Stream Function ¥ of a Source

Place the source for convenience at the origin

) . P{r,8),(x, )
of a system of axes, to which the point ~

P has ordinates (X, y) and (r, 8)

Putting the line along the x-axisas ¥ =0
and taking the most convenient contour for
Integration as OQP where QP Is an arc of a
circle of radius r, then

Y = flow across OQ + flow across QP

= velocity across OQ*OQ + velocity across QP * QP

v,
P=0+—xrf = —
2TTTr 2T

or putting 6 = tan'! (y/x) ) W= ?—j tan 1 (y/x)



SOURCE

Velocity Potential ¢ of a Source

Place the source for convenience at the origin
of a system of axes, to which the point
P has ordinates (X, y) and (r, 9)

The velocity everywhere in the field is radial, i.e. the velocity
at any point P(r, ) is given by

P(r,8),(x, )
”~

Q=_|q3 + q%, here Q= g,since g, = 0. Integrating round

OQP where Q is point (r,0)
¢ = j{;ﬂ gcos Gds + fqp gcos Jds where I is the radius of the equipotential ¢9= 0.

In cartesian & __ hxz
= '/;Q gudr + qutr.ﬁﬂ= /mg.,dr+{} Coordinae @ = 2-18( + )

Butknt, ¢u = EEE) = j Edr——ln_



A SOURCE IN A UNIFORM HORIZONTAL STREAI\/I%%%;

Let a source of strength m be situated at
the origin with a uniform stream of -U
moving from right to left

¥

+—-—

+ p

-+-|—-—l—

m

Then ¥ = stream function of Source +
Stream Function of Uniform Flow

mo m r
:;—Uy (Z)=2nlnrO—Ux

_1X
X

_m _ -
‘P—Zntan Uy ¢ =


sourceand uniform flow.mp4

2 000

A SOURCE IN A UNIFORM HORIZONTAL STREAM@%g

- M 1Y
\P—Zntan Uy

Let us differentiate the above
equation w.r t. X we get,

—1X
o¥_ m dtan *& 6(%)
ox 21 9  ox

IfVY =0is replaced by a solid boundary

The vertical velocity component at any point in
. oY

the flow is given by - -

oY m 1 —y

ox 2m y
1+ (2

Let us analyse now for Stagnation point.!

Solve the differential equation and we get

_m y
21 x*+(y)*?




A SOURCE IN A UNIFORM HORIZONTAL STREAI\/I%%%%?

The position of the stagnation point and local velocity

A stagnation pointis givenbyu=0,v=0

w=2_o-m_ X __y VL
dy 27 x* + y? o N\ g
— yA—
=P — .
R ) S
From Egnv =0wheny =0, and e

substituting infirst Eqn wheny =0

and X = X,
U » X, = m/2mU

From the above two equation
we can get local velocity u, v




A SOURCE IN A UNIFORM HORIZONTAL STREAI\/I%%%;

Height of Cliff h

The ultimate thickness, 2h (or M

height of cliff h) of the shape
given by ¥ = 0 for this
combination is found by putting
y =hand 6 = m in the general

expression, we get,

Fr
="~ Uh=0

Therefore, H=m/2U




SOURCE-SINK PAIR

Source-sink Pair P(X,y)

R

This Is a combination of a source
and sink of equal (but opposite)
strengths situated a distance 2c
apart.

Let + m be the strengths of a source and sink
situated at points A (c,0) and B (-c, 0), that Is
at a distance of ¢ m on either side of the origin.




SOURCE-SINK PAIR

The stream function at a point P(X, y), (r, 8) P(x, y)
due to the combination is

mfy, mb, m

wz-ir_lr {El_eﬂ An 'ﬂ.-

m
Y= E'B
Transposing the equation  tan #, = And tan @, — y
to Cartesian coordinates *—C x+c
And Substituting S in above Egn. we get
B L
tan(g, — 6y) = 2nfi —@anb, 5= " 2ey

b 1y g

Therefore B=8, — 6 =tan™! .




SOURCE-SINK PAIR

To find the shape of the streamlines associated with this combination it is
necessary to investigate Eqn .

. 27 2cy
By Rearrangmg we get, taﬂ _ﬂ’) —
m

—> x? + ) — ¢t =
Y tan(%"ﬁ)
2
mm) 2 4yl —chﬂt%y—cz=0
Which is the Equation of a Circle of Radius

cy/cot? (2myp/m)+ 1 and ccot (2mp/m)

Therefore, streamlines for this comblnatlon consist
with centres on the Oy axis and |




SOURCE-SINK PAIR

Consider the velocity potential at any point
P(r, O)(X, Y).

¥ m rz m r
v ¢ =— ln n— n—
| Yo 2 ro T

E %:é/ﬁg)ﬁfi—rz—(x—c) Py =X+ P+ P —2xc

- c R=(x+c)+y=x+y" +F+2xc

p=p Lty e —2xe
 4r nx2+y2+r:3+2xc




SOURCE-SINK PAIR IN UNIFORM FLOW

The stream function due to this
combination is:

The velocity potential at any
point in the flow due to this

combination is given by: — s
¢:=Elnr—'—Ursinﬂ p— 7
2'“- rI —-D—G:

m x*+y*+c? - 2xe 00

¢

= 4r

R N




DOUBLET

A doublet is a source and sink combination, as described
above, but with the separation infinitely small. A doublet
IS considered to be at a point.

'«I!=C1

P(r,0)
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DOUBLET

For the source and sink, we the stream function as below:

v = (m/2r7)3

By constructing the perpendicular of length p from the source to the
line joining the sink and P it can be seen that as the source and sink
approach

p -> 2csind and also p -> rf Therefore in the limit
7esind m  2csin0
U= S

r

2CSINO = 1f} ) B =

A r




DOUBLET

Consider again a source and sink set a
very small distance, 2c, apart

.:p——ln 111E /:/A i

ro 211' S O] So
-~ 20 —>
- X —

From the Above Figure

rf=x*+y* —2xc+ ¢

where +m is the strength of the
source and sink respectively. Then

ri
¢—E1ﬂ——ﬁlﬂg R=x+y 42+

m ., x*+y*—2xc+c? _m . 4xc
¢=7-In ‘ ¢ 41:-111(1 x2 + y2 4 ¢2 4 2xc

xz +y2_|_".|'-v-ﬂ_Lﬁ2




DOUBLET IN UNIFORM FLOW

The stream function due to this combination Is: ¢=%Sin9 — Uy

By substituting the value in the above Eqgn of sin6 and r we get,

r=+x2+y%,  sinf= ——

Converted to rectangular coordinates gives us:

‘u -}r _ 'u B \ > J
Al P e R v ”(zﬂ{mf} ”) .

For the streamline y = 0; :"(zﬂxz“.i. 7~ U) =0

. _ M
y=0 or xz+y1 Sl

This shows the streamline yw=0, to consist of the Ox
together with a circle, of radius+/u/2nU = a (say).




The velocity potential due to this
combination is that corresponding
to a uniform stream flowing
parallel to the Ox axis,
superimposed on that of a doublet
at the origin. Putting X =r cos0:

¢ =—Urcosé +icnsﬂ'

2mr

O = —Ucusﬂ(r +E§)

where a = \/u/2nU




DOUBLET IN UNIFORM FLOW

In Polar Coordinates Stream Function can be written as :

[ R rreinaf M A fa
Y = ~—sinf# — Ursin § o) w_Usmﬂ(ZWU r)‘ -;p_.[fmnﬂ(?_r)

2mr

Differentiating this partially with respect to r and 0 in turn will
give expressions for the velocity

189 &
dn _Fﬁ = Ul:ﬂsﬂ(r—:— ].)

oy . (d
l}‘t——E—USlﬂﬂ(ﬁﬂ—l)

Putting r = a, we get g,=0 and ¢,= 2Usin0

Therefore the velocity on the surface is 2Usin 6
and it is important to note that the velocity at the
surface is independent of the radius of the cylinder.




2 000

THE PRESSURE DISTRIBUTION AROUND A Sk

m =
2 |AREI§
), <

CYLINDER

If a long circular cylinder is set in a uniform flow the motion around it will,
ideally, be given by the expression, g, = _%‘f = Usinﬂ(§+ 1) and the velocity the
anywhere on surface by

the formula g = 2Usin@

By the use of Bernoulli's equation, the pressure p acting on the surface of the
cylinder where the velocity is q can be found. If p, is the static pressure of the

free stream where the velocity is U then by Bernoulli's equation:

| I 1 Substitute the Value of g from above
Fﬂ+§ v =F+E,0E2 equation; we get

=p+%p{2U5inE}1 \ /\ /
1 2 - 2 )| » ! ‘;°° 270° 360°
p—po=pU%1 —4sin’ g




2 000

A SPINNING CYLINDER IN A UNIFORM FLOW%

This is given by the stream function due to a doublet, in a uniform horizontal flow,
with a line vortex superimposed at the origin.

Converting to homogeneous coordinates 4 = Ur sin f{ ——— 5 r2U 1) 7 I
WKT \Ju/2rU = a; If r,=a we get, 2
Y= Ursinﬂ(ﬁ— 1) _E]n
and differentiating partially with respect to r and 0 the velocity components of the
flow anywhere on or outside the cylinder become, respectively

U e( +1) r 1=V
@ r T On the surface of the spinning cylinder r = a.
Therefore, =0




2 00D

A SPINNING CYLINDER IN A UNIFORM FLOW%

r
= 2Usinf@ + —
Gy sinf + Ima

: r
q=q —2U51nﬂ+m

and applying Bernoulli’s equation between a point a long way upstream and a
point on the cylinder where the static pressure is p

et %/r§\§
] )\ B

P~ Po =12pU1[1 - (2Ei]19+—

2xUa




A SPINNING CYLINDER IN A UNIFORM FLOW. s

Line (point) vortex

This flow is that associated with a straight line vortex. A line vortex
can best be described as a string of rotating particles. A chain of fluid
particles are spinning on their common axis and carrying around with
them a swirl of fluid particles which flow around in circles. A cross-
section of such a string of particles and its associated flow shows a
spinning point outside of which is streamline flow in concentric
circles i

-
-

e LN,
.,,}.4'1 "l}.h U
_ﬁfﬁ' Cross-section showing

f;:?;ih' line a few of the associated
streamlines




A SPINNING CYLINDER IN A UNIFORM FLOW. s

Consider a vortex located at the origin of a polar system
of coordinates. But the flow Is irrotational, so the vorticity
everywhere Is zero. Recalling that the streamlines are
concentric circles, centred on the origin, so that g8 =0, it
therefore;

1d
FE[-“G’:) =0 By integrating we get rg; =C

Integration Result equivalentto T = j{ g-rds

In the present example, G. £ = g,and ds = r@, let us put the values
In the Integration, then integration value we get,

I' =2arg; = 2nC
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A SPINNING CYLINDER IN A UNIFORM FLOW%

Thus we the integration constantas ¢ = I'/(2x)

Integrating along the boundary from radius r, to P(r, )

r P
__/ Edr ¢=—{£lnr} =—£lﬂi

29 "o 2qr

the flow due to a line vortex gives streamlines that are concentric
circles, the equipotential, shown to be always normal to the
streamlines, must be radial lines emanating from the vortex,




A SPINNING CYLINDER IN A UNIFORM FLOW,rens




A SPINNING CYLINDER IN A UNIFORM FLOW, ez s
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KUTTA-JOUKOWSKI THEOREM

Circulation and lift
Lift force per unit span | = pUI

The lift per unit span in N is equal to the product of density p, the
linear velocity U, and the circulation I

This expression is the algebraic form of the Kutta-Zhukovsky
theorem
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Aerofoil Nomenclature

® ® 6

LEADING LOCATION OF [ MAXIMUM THICKNERS

nnnl UM Urren s . uuuul.muun

THICKN
MAXIMUM
e —— _ e

l-ll-llmﬂ | @ J TRAILING

CHOAD J EDGE

e LOCATION OFF saair
MAXIMUM CAMBER

AIRFOIL TERMINDLOQY




Aerofoil Nomenclature

Leading Edge: The forward section of the airfoil is named the leading edge
Trailing Edge: The rear section of the airfoil is named the Trailing edge

Upper Surface Upper surface is the surface of an aerofoil between
the leading and trailing edges, on the upper surface

Chord is a distance between the leading and trailing edges measured along the
chord line;

Chord line is a straight line joining the leading and trailing edges of an aerofoil;

Lower surface is the surface of an aerofoil between the leading and trailing edges, on
the lower surface;

Mean camber line is a line joining the leading and trailing edges of an aerofoil,

equidistant from the upper and lower surfaces;

Maximum camber is the maximum distance of the mean camber line fro

line;



NACA Aerofoil Nomenclature

Family Advantages Disadvantages Applications
1. Good stall characteristics 1. Low maximum lift coefficient 1. General aviation
2. Horizontal tails
2. Smal center of pressure movement actoss large speed g er hioh drag
range
4-Digit Symmetrical:
3. Roughness has little effect 3. High pitching moment
NACA AEROFOIL.XIsX 3. Supersonic jets
4. Helicopter blades
5. Shrouds
6. Missile/rocket fins.
1. Higher maximum lift coefficient 1. Poor stall behavior 1. General aviation
2. Piston-powered bombers, transports
5.Digit X
2. Low pitching moment 2. Relatively high drag 3. Commuters
4. Business jets
3. Roughness has little effect
1. Avoids low pressure peaks 1. Aircraft propellers
16-Series 1. Relatively low lift 2. Ship propellers
2. Low drag at high speed
1. High maximum lift coefficient 1. High drag outside of the optimum range of operating conditions 1. Piston-powered fighters
2. Business jets
6-Series " . y " "
2. Very low drag over a small range of operating conditions 2. High pitching moment 3. Jet trainers
4. Supersonic jets
3. Optimized for high speed 3. Poor stall behavior
4. Very susceptible to roughness
1. Very low drag over a small range of operating conditions 1. Reduced maximum lift coefficient
2. Low pitching moment 2. High drag outside of the optimum range of operating conditions
|7-Series Seldom used
3. Poor stall behavior
4. Very susceptible to roughness
8-Series Unknown Unknown Very seldom used
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NACA Four-Digit Series:

The first family of airfoils designed using this approach became known as the
NACA Four-Digit Series. The first digit specifies the maximum camber (m) in
percentage of the chord (airfoil length), the second indicates the position of the
maximum camber (p) in tenths of chord, and the last two numbers provide the
maximum thickness (t) of the airfoil in percentage of chord. For example,

the airfoil has a maximum thickness of 15% with a camber of 2%
located 40% back from the airfoil leading edge (or 0.4c).


http://www.aerospaceweb.org/question/airfoils/naca-airfoil/n2415.gif

NACA Five-Digit Series:The NACA Five-Digit Series uses the same thickness
forms as the Four-Digit Series but the mean camber line is defined differently and
the naming convention is a bit more complex. The first digit, when multiplied by 3/2,
yields the design lift coefficient (c|) in tenths. The next two digits, when divided by 2,
give the position of the maximum camber (p) in tenths of chord. The final two digits
again indicate the maximum thickness (t) in percentage of chord. For example,

the has a maximum thickness of 12%, a design lift coefficient of 0.3,
and a maximum camber located 15% back from the leading edge.


http://www.aerospaceweb.org/question/airfoils/naca-airfoil/n23012.gif

NACA 6-Series:

Although NACA experimented with approximate theoretical methods that produced the
2-Series through the 5-Series, none of these approaches was found to accurately produce
the desired airfoil behavior. The 6-Series was derived using an improved theoretical
method that, like the 1-Series, relied on specifying the desired pressure distribution and
employed advanced mathematics to derive the required geometrical shape. The goal of
this approach was to design airfoils that maximized the region over which the airflow
remains laminar. In so doing, the drag over a small range of lift coefficients can be
substantially reduced. The naming convention of the 6-Series is by far the most confusing
of any of the families discussed thus far, especially since many different variations exist.
One of the more common examples is the , a=0.6.

In this example, 6 denotes the series and indicates that this family is designed for greater
laminar flow than the Four- or Five-Digit Series. The second digit, 4, is the location of the
minimum pressure in tenths of chord (0.4c). The subscript 1 indicates that low drag is
maintained at lift coefficients 0.1 above and below the design lift coefficient (0.2) specified by
the first digit after the dash in tenths. The final two digits specify the thickness in percentage of
chord, 12%. The fraction specified by a=____indicates the percentage of the airfoil chord over
which the pressure distribution on the airfoil is uniform, 60% cherd in this case. If not specified,
the guantity is assumed to be 1, or the distribution is constant over the entire airfolil.


http://www.aerospaceweb.org/question/airfoils/naca-airfoil/n64212.gif
http://www.aerospaceweb.org/question/airfoils/naca-airfoil/n64212.gif
http://www.aerospaceweb.org/question/airfoils/naca-airfoil/n64212.gif
http://www.aerospaceweb.org/question/airfoils/naca-airfoil/n64212.gif

NACA 7-Series:

The 7-Series was a further attempt to maximize the regions of laminar flow over an
airfoil differentiating the locations of the minimum pressure on the upper and lower
surfaces. An example is the . The 7 denotes the series, the 4 provides
the location of the minimum pressure on the upper surface in tenths of chord (40%),
and the 7 provides the location of the minimum pressure on the lower surface in tenths
of chord (70%). The fourth character, a letter, indicates the thickness distribution and
mean line forms used. A series of standaradized forms derived from earlier families are
designated by different letters. Again, the fifth digit incidates the design lift coefficient in
tenths (0.3) and the final two integers are the airfoil thickness in perecentage of chord
(15%)


http://www.aerospaceweb.org/question/airfoils/naca-airfoil/n747a315.gif

NACA 8-Series:

A final variation on the 6- and 7-Series methodology was the NACA 8-Series
designed for flight at supercritical speeds. Like the earlier airfoils, the goal was to
maximize the extent of laminar flow on the upper and lower surfaces
independently. The naming convention is very similar to the 7-Series, an example
being the . The 8 designates the series, 3 is the location of
minimum pressure on the upper surface in tenths of chord (0.3c), 5 is the location
of minimum pressure on the lower surface in tenths of chord (50%), the letter A
distinguishes airfoils having different camber or thickness forms, 2 denotes the
design lift coefficient in tenths (0.2), and 16 provides the airfoil thickness in
percentage of chord (16%).


http://www.aerospaceweb.org/question/airfoils/naca-airfoil/n835a216.gif

Aerodynamic Characteristics

Aerodynamic centre
Centre of Pressure
Pitching moment




Centre of Pressure

Centre of pressure

The aerodynamic forces on an aerofoil section may be represented by a lift, a
drag, and a pitching moment. At each value of the lift coefficient there will be
found to be one particular point about which the pitching moment coefficient is

zero, and the aerodynamic effects ON the aerofoil section may be represented by

the lift and the drag alone acting at that point. This special point is termed the
centre of pressure.




Aerodynamic Centre

Aerodynamic centre

If the pitching moment coefficient at each point along the chord is
calculated for each of several values of CL, one very special point is found
for which CM is virtually constant, independent of the lift coefficient. This

point is the aerodynamic centre.

FOr incidences up to 10 degrees or SO it is a fixed point close to, but not in general
on, the chord line, between 23% and 25% of the chord behind the leading edge.




Wing of Infinite Aspect Ratio

Aspect ratio
The aspect ratio is a measure of the narrowness of the wing planform. It is denoted by
A, or sometimes by (AR), and is given by AR=span/SMC=Db/c

If both top and bottom of this expression are multiplied by the wing span, by it
becomes

b’  (span)’

bcarea

A=

a form which is often more convenient.
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Cl-a- Diagram for a Wing of Infinite Aspect Ratiw%%m%g

Finite and Infinite Wing

You are partially correct. As you surmised, the difference between a
finite wing and an infinite wing is in that a finite wing has tips. As a
result, the higher pressure air from beneath the wing tries to move
around the tips towards the lower pressure above the wing. This
motion creates a swirling vortex of air from each tip that trails behind
the wing. For that reason, we call these vortices trailing vortices.

C $ 3 F ¢ % F*FD

> )




2 000

Cl-a- Diagram for a Wing of Infinite Aspect Ratic%-«%

You can see the effect of aspect ratio on the lift produced by a wing quite
clearly in the following graph.

Lift Coefficient vs. Angle of Attack
25 . . .
W Cessna 172 Wind Tunnel
27| eBAC Lightning Yind Tunnel
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Generation of Lift

Lift occurs when a moving flow of gas iIs turned by a solid object.
The flow Is turned in one direction, and the lift is generated in the
opposite direction, according to Newton's Third Law of action and
reaction. Because air Is a gas and the molecules are free to move
about, any solid surface can deflect a flow.
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Starting Vortex

The starting vortex which forms in the air adjacent to the
trailing edge of an airfoil as it is accelerated from rest in a

fluid. It leaves the airfoil (which now has an equal but opposite
"bound vortex" around it), and remains (nearly) stationary in the
flow. It rapidly decays through the action of viscosity.

The starting vortex Is significant to an understanding of
the Kutta condition and its role in the circulation around any
airfoil generating lift.



../Airfoil starting vortex.mp4
../Airfoil starting vortex.mp4
../Airfoil starting vortex.mp4
../Airfoil starting vortex.mp4

Kutta’s Trailing Edge Condition

A body with a sharp trailing edge which is moving through a
fluid will create about itself a circulation of sufficient strength
to hold the rear stagnation point at the trailing edge. In fluid
flow around a body with a sharp corner, the Kutta condition
refers to the flow pattern in which fluid approaches the corner
from both directions, meets at the corner, and then flows away
from the body. None of the fluid flows around the sharp
corner.

FIGURE 2-18. AIRFLOW AROUND AN AIRFOIL.




Thin Aerofoil Theory

Fundamental Equation of
Thin Airfoil Theory :

2;;V(§)d§ _Vw[ de

dx

Coordinate Transformation
£ = %(1—c056?)

d& =sinadé

X = %(1—0036’0)

Transformed Equation

1 T y(@)sined @ _v [ dz
27 3 COSO —cosf, -

®
®
®
®

®

In words: Camber line is a streamline
Written at a given point x on the chord line
dz/dx is evaluated at that point x

Variable x is a dummy variable of integration
which varies from 0 to ¢ along the chord line

\ortex strength g=g (x) is a variable along the
chord line and is in units of

In transformed coordinates, equation is written at a
point, q,. g Is the dummy variable of integration

e Atleadingedge,x=0,q=0

e Attrailededge, x=c,q=p

The central problem of thin airfoil theory is to

solve the fundamental equation for g (x) subject to
the Kutta condition, g(c)=0

The central problem of thin airfoil theory is to
solve the fundamental equation for g (
the Kutta condition, g(p)=0
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SUMMARY: SYMMETRIC AIRFOILS %

—\/ ¢ Fundamental equation of thin airfoil theory for
c0sd —Cosd, * " asymmetric airfoil (dz/dx=0) written in
transformed coordinates

1 Zf;/(ﬁ)sinﬁdé’ B
27T

0

Solution

(1+cosé)

0)=2V
y() & sing

— “Arigorous solution for y(0) can be
obtained from the mathematical theory of
Integral equations, which is beyond the
scope of this book.” (page 324, Anderson)

0 . . L
7/(7[) =N o—  Solution must satisfy Kutta condition y(m)=0 at
trailing edge to be consistent with experimental
results

 Direct evaluation gives an indeterminant form,
but can use L’Hospital’s rule to show t
condition does hold.




SUMMARY: SYMMETRIC AIRFOILS <

I = Iy(ef)dcf ® Total circulation, I', around the airfoil
0 (around the vortex sheet described by y(§))

® Transform coordinates and integrate
Simple expression for total circulation

® Apply Kutta-Joukowski theorem (see
§3.16), “although the result [L’=p,\V .*T]
was derived for a circular cylinder, it
I'=7mocV, applies in general to cylindrical bodies of
arbitrary cross section.”

@ Lift coefficient is linearly proportional to
angle of attack

@ Lift slopeis 2rn/rad or 0.11/deg

O]



Elements of Panel Method

® Panel methods are techniques for solving incompressible
potential flow over thick 2-D and 3-D geometries.

@ In 2-D, the airfoil surface is divided into piecewise straight line
segments or panels or “boundary elements” and vortex sheets of
strength g are placed on each panel.

* We use vortex sheets (miniature vortices of strength gds,
where ds Is the length of a panel) since vortices give rise to
circulation, and hence lift.

» \ortex sheets mimic the boundary layer around airfolils.



= _ Mean Camber Line - EQ

Chord Line prrae. ——r
s Surface “@%
4 :
,/a//
<
FIGURE 3

Upper surface boundary layer contains, in general, clockwise rotating vorticity
Lower surface boundary layer contains, in general, counter clockwise vorticity.

Because there is more clockwise vorticity than counter clockwise
Vorticity, there is net clockwise circulation around the airfoil.

In panel methods, we replace this boundary layer, which has a small but finite
thickness with a thin sheet of vorticity placed just outside the airfoil.



Elements of Panel Method

Alrfot

[ eading Edge Panel Appradimation

Trailing Edige

/

8 FanelJoints o Confol Poirds

Figure 1.Vortex panel approximation to an airfail.

On each panel, there is vortex sheet of strength DG = g, ds,
Where ds, is the panel length.

Each panel is defined by its two end points (panel joints)
and by the control point, located at the panel center, where we will
Apply the boundary condition y= Constant=C.

The more the number of panels, the more accurate the solutio
since we are representing a continuous curve by a
of broken straight lines




Elements of Panel Method

Boundary Condition

® We treat the airfoil surface as a streamline.
» This ensures that the velocity is tangential to the airfoil
surface, and no fluid can penetrate the surface.
® We require that at all control points (middle points of
each panel) y=C

@ The stream function is due to superposition of the
effects of the free stream and the effects of the vortices
d, ds, on each of the panel.



High Lift Aerofoils

COMNVENTIONAL AIRFOILS
Tiha following Blustrations depict a selection of designs of ainfiodl
seclicns. These and kisown as comverdional airfosts.

l

Low cambar — low drag — high speed — thin wing secton
Suitabbe for race planes, fighbers, ntercepbors, &ic.

Deap cambear — high Bl — low speed — thick wing seclsan
Sustabéia for transports, fresghters, bomibars, atc.

)

Deap cambeas — high Bl — low speed — thin wing secthan
Suilable as abowve.

)

Laver litt — high drag — raflex irafing edgs wing sactson.
Wary lirthe mosemant of cantra of pressune. Sood stabeity.

Symmatncal (camiered top and bottom) wing seclicens.

GADW-1 abfodl — thicker for better strectuse and lower weigihd
— good siall characterisics — camber s mainfamed farthas fear-
ward which increasaes Efing capabsity owar morna of the akriosl and
decroases drag.



High Lift Devices

Climx ACL, max

a) Grundprofil e 145 -
Normalklappe - 225 080
b) Walbklappen Spaliklappe E 2,60 1,15
m ~- 280 138
e LI 240 095
<) Spreuzklappen
Zap-Klappe m 250 108
d) Doppelfogel (Junkers) W‘\ 225 080
¢) Fowler-Klappen W!h-\ 280 138
f) Vorflugel r . 200 055
;ﬂ.ﬁ'ﬁ::e /m.- 245 100
m‘d (W\.— 2,70 1.25
g) Kombinationen

N, S
Spaliklappe
Fowler-Klappen
mit Vorflogel o P, 300 155

N
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Vortex Motions

Avortex is commonly associated with the
rotating motion of fluid around a common centerline. It is
defined by the vorticity in the fluid, which measures the rate

of local fluid rotation. In a free vortex flow total mechanical
energy remains constant.

Tangential velocity inversely Tangential velocity directly
proportional to radius proportional to radius

N N

Free vortex Forced vortex




Vortex Line

Avortex line is a line whose tangent is
everywhere parallel to the local vorticity
vector. The vortex lines drawn through
each point of a closed curve constitute the
surface of a vortex tube. Finally,

a vortex filament is a vortex tube whose
cross-section is of infinitesimal dimensions



Vortex Tube

Vortex lines can be defined analogously to

streamlines as lines that are tangential

to the vorticity vector at all points in the flow

field. Similarly the concept of the

vortex tube Is analogous to that of stream provelling fow
tube. Physically we can think of flow T

vnﬂnlshut

structures like vortices as comprising bundles ™ " -
of vortex tubes. In many respects ‘?" 7
vorticity and vortex lines are even more A
fundamental to understanding the flow A

physics than are velocity and streamlines.



Vortex Sheet

—
\\ {an
Avortex sheet is a %\'w,p«» b=k %
term used in fluid v\;‘
mechanics for a = %

surface across which
there is a "
discontinuity in fluid
velocity, such as in
slippage of one layer
of fluid over another.




Circulation

Circular motion is a movement of an
object along the circumference of a circle
or rotation along a circular path. It can be
uniform, with constant angular rate of
rotation and constant speed, or non-
uniform with a changing rate of rotation.

The rotation around a fixed axis of a
three-dimensional body involves circular
motion of its parts. The equations of
motion describe the movement of the
center of mass of a body.

a=Qxv



Kelvin and Helmhotz Theorem

Helmholtz' second vortex theorem, or its

equivalence Kelvin's theorem, is a

vorticity-dynamic theorem based on both Vortex filament
kinetics and kinematics. The generalized of strength I’
second vortex theorem states that the

vorticity strength in the viscous fluid is not

conserved in time; it diffuses at a dl
predictable rate




Biot-Savart’s Law

What is Biot Savart Law
The Biot Savart Law is an
equation describing the magnetic

field generated by a constant Biot-Savart Equation
electric current. It relates the

magnetic field to the magnitude, : ot W
direction, length, and proximity of N | Radil

Direction

the electric current. Biot-Savart
law is consistent with both
Ampere’s circuital law and
Gauss’s theorem. The Biot Savart
law is fundamental to
magnetostatics, playing a role
similar to that of Coulomb’s law
In electrostatics.

Distance




Applications

Biot Savart Law Applications

This law can be used for calculating magnetic
reactions even on the level of molecular or atomic.
It can be used in the theory of aerodynamic for
determining the velocity encouraged with vortex
lines.




Rankine’s Vortex

The Rankine vortex is a simple mathematical model of a vortex In
a viscous fluid. It is named after its discoverer, William John
Macquorn Rankine. A swirling flow in a viscous fluid can be
characterized by a central core comprising a forced vortex,
surrounded by a free vortex.

AV

/

L |




Flow Past Finite Wings
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Vortex Model of The Wing and Bound Vortice:g%ﬂ.AREg

Bound Vortex. a vortex that is considered to be
tightly associated with the body around which a
liquid or gas flows, and equivalent with respect to
the magnitude of speed circulation to the real
vorticity that forms In the boundary layer owing to

VISCOSIty.




Induced Drag

In aerodynamics, lift-induced drag, induced drag, vortex
drag, or sometimes drag due to lift, is an aerodynamic
drag force that occurs whenever a moving object redirects
the airflow coming at it. This drag force occurs in airplanes
due to wings or a lifting body redirecting air to cause lift
and also in cars with airfoil wings that redirect air to cause a
downforce.

Induced Drag
—»

Lers

Chord
Line

Effective .
Relative Airflow """ el

"E"("; ______________________________

Relative Airflow
(Free Stream) Induced
Downwash

Angle



Prandtl’s Lifting Line Theory

The Prandtl lifting-line theory iIs a mathematical
model that predicts lift distribution over a three-
dimensional wing based on its geometry. ... In this
model, the vortex loses strength along the whole
wingspan because it is shed as a vortex-sheet from the
trailing edge, rather than just at the wing-tips.




Elliptic Wing

An elliptical wing is a wing planform whose leading and
trailing edges each approximate two segments of an ellipse.
Not to be confused with annular wings, which may be
elliptically shaped.

Distribution of Spanwise Lift Force
$=10ft, AR=10, TR = 1.00, V = 100 KCAS, NACA 4416
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Influence of Taper and Twist Applied to Wings%m%g

Wing twist Is an aerodynamic feature added to
aircraft wings to adjust lift ... cause the wing itself to be
deflected and is related to compressibility effects;
Hornet Wing Twist - Applied Aerodynamics: A Digital
Textbook, Wing Design Parameters.
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Effect of Sweep Back Wings

weeping The Wing Back Delays Supersonic Flow
It delays the start of supersonic flow, by reducing
the amount of acceleration over the wing. On a
straight wing airplane, all of the airflow over
the wing travels parallel to the aircraft's chord line.

Efect of Sweep on Crivical Mach Number




Delta Wings

The delta wing is a wing shaped in the form of a triangle. It is
named for its similarity in shape to the Greek uppercase
letter delta (A). Although long studied, it did not find significant
applications until the jet age, when it proved suitable for high-
speed subsonic and supersonic flight.

75° Delts, M0

18 —

Fodal Lift,

Angle of Attack (deg)




Primary and Secondary Vortex

\ortices that attain their full strength in a single oscillation
are named “ primary,” whilst those which require more than
one oscillation for their complete development are termed
“ secondary  vortices: In previous papers the latter were
called “ residual ” vortices.
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Elements of Lifting Surface Theory *
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Source Panel Vortex Panel and Vortex Lattice %

Methods

The vortex-panel method is a method for computing ideal
flows - flows in which the effects of compressibility and
viscosity are negligible. Ideal flow is often the first type of
fluid motion that student engineers and scientists study,
because it Is the simplest.
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MODULE -IV

FLOW PAST NON-LIFTING BODIES AND INTERFERENCE EFFECTS

4.1  Flow Past Non-Lifting Bodies

4.2  Method of Singularities

4.3  Wing-Body Interference

4.4  Effect of Propeller on Wings and Bodies and Tail Unit
4.5  Flow Over Airplane as A Whole




Flow Past Non-Lifting Bodies
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Method of Singularities




Wing-Body Interference
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Effect of Propeller on Wings and

Bodies and Tail Unit
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BOUNDARY LAYERTHEORY
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Introduction to Boundary Layer

The fundamental concept of the boundary layer was
suggested by L. Prandtl (1904), it defines the boundary
layer as a layer of fluid developing in flows with very
high Reynolds Numbers Re, that is with relatively low
viscosity as compared with inertia

FLAT PLATE BOUNDARY LAYER

| LAMINAR TRANSITION
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Displacement Thickness

Displacement Thickness
Laminar B.L.

)
pu* = L p(u, — u) dy

e w=[ (=5

\

1
0.8




Momentum Thickness

| Momentum Thickness

The rate of mass flow across an element of the boundary layer is (p u dy)
and the mass has a momentum (p u? dy ) The same mass outside the
boundary layer has the momentum (p u u, dy)

e 2

P f (uue — u?)dy = pug J; (i— z%)dy = pu2 0
é

BL

® is a measure of the reduction in momentum transport in the B. Layer

0=f°°1(1—l)d
o WUe Ug d




Energy Thickness

[Eqn. for Energy Thickness ]

= By equating the energy transport rate for velocity defect
to that for ideal fluid

: —pU’ —I (pudy)(U* - u?)

= |f density is constant, this simplifies to

su u’




Effect of Curvature
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Temperature Boundary Layer

The thermal boundary layer thickness, &5, Is the distance
across a boundary layer from the wall to a point where the
flow temperature has essentially reached the 'free stream’
temperature, T,. This distance is defined normal to the wall in
the y-direction. The thermal boundary layer thickness is
customarily defined as the point in the boundary layer, yqq,
where the temperature T(X,y) reaches 99% of the free stream
value T,



Temperature Boundary Layer
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Schematic drawing depicting fluid flow over a heated flat plate.

d = oo such that T(x, yge ) =0.99 T



Temperature Boundary Layer

at a position x along the wall. In a real fluid, this quantity can
be estimated by measuring the temperature profile at a
position x along the wall. The temperature profile is the
temperature as a function of y at a fixed x position.

For laminar flow over a flat plate a zero incidence, the thermal
boundary layer thickness is given by

ET _ Et.Pr_l"'fa where
Pr is the Prandtl Number

dr = 5.0 EPI—U d 3, is the thickness of the velocity boundary layer thickness [
U Ty

g Is the freestream velocity

& is the distance downstream from the start of the boundary layer
v is the kinematic viscosity




Temperature Boundary Layer

The thermal boundary layer thickness for turbulent flow does
not depend on the Prandtl number but instead on
the Reynolds number. Hence, the turbulent thermal
boundary layer thickness is given approximately by the
turbulent velocity boundary layer thickness expression given

by

§7 =~ § =~ 0.37z/Re, \/°

where

. = upx/1 is the Reynolds number




BLASIUS" EQUATION

d<<c¢

The basic assumption of boundary-
layer theory:

A boundary layer is very thin in
comparison with the scale of
the body

© = constant
U = constant
dpe/dx = 0 (because the inviscid flow over a flat plate at a =0
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Basic Equations for Incompressible Flow %

d(pu) N d(pv) _

Continuity: ™ 5 0
. du N du dp. N d ( E.lu)
X momentum. u— V— = — —
Phox T F dy dx  dy “'5‘}'
d
Yy momentum. P 0
dy

oh oh 9 [ 8T dp, au\
Energy: ~ pu— + pv (ka )+u P +#(—H)
y

ax " ay  ay




Boundary Layer Equations

kinematic viscosity, defined
as v = u/p.




Let us transform the independent
Va'&':x and n=y % (f! n)’ Where

Using the chain rule, we obtain the derivatives

3_33§+33na d 90§ 0 apy
dx  dEIx  Onox N 5‘}1_8§'3}’+3r}3}'
d
d& d& an Vo




V= vxVs f(n)

Let us define a stream
function w such that

From the definition of the stream function.

__ Yedy
_3}"_ U.Ia:f}_ :::f(n]' &

dr dyr  dn 31;,’/) 1 vV an
= ———= — —_— —_—— _ —— —_ V —_f
T T (3§'+3x an o\ xS Ve

The function f (n) défasethe property that its
derivative f gives the x

compon

]

f(nJ=Vm




By substituting into the momentum

equation, we get

d 1 [vV d V. V
mef Vm_nfﬂ . = oo f _I_ uxvm_nff Vm _mfﬂ — Uvmﬁfrﬂ
ax 2 X dx VX VX

Simplifying, we obtain

an 1 V2 an V2
2_ o . *) "o 2 _ ’ ﬂ:;l-."“.- I
Vigh £ f" =32 f1"— Vi () £11" = =

The first and third terms cancel, and

Equation becomes 2" L FF" =0

is called Blasius’ equati







