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Describe the concept of Structural components, structural joints,
Monocoque and semi monocoque structures and also energy methods and
principles.

@017 Describe the concept of thin plates subject to different types of loads and also

buckling phenomena of thin plates, local instability and instability of stiffened
panels.

@0Fci Understand the concept of symmetric and un-symmetric bending of beams
shear stresses and shear flow distribution of thin walled sections and Torsion
phenomenon.

oo Explore the concept of Structural idealization and stress distribution of
Idealized thin walled sections.

@01 Discuss the concept of idealized thin walled sections, fuselage, Wing spar and
box beams.



Module- 1
INTRODUCTION TO AIRCRAFT STRUCTURAL
COMPONENTS AND ENERGY METHODS



Aircraft Structural components and loads

Aircraft are generally built up from the basic components of wings,
fuselages, tail units and control surfaces

The structure of an aircraft is required to support

1 ground loads: includes all loads encountered by the aircraft during
movement or transportation on the ground such as taxiing and landing
loads, towing and hoisting loads

2 air loads: comprises loads imposed on the structure during flight by
maneuvers and gusts.

Source from Aircraft Structures by T. H. G. Megson



Aircraft designed for a particular role encounter loads peculiar to their range
of operation.

Carrier born aircraft, for instance, are subjected to shoot take-off and
arrested landing loads

Most large civil and practically all military aircraft have pressurized cabins for
high altitude flying;

Amphibious aircraft must be capable of landing on water and aircraft
designed to fly at high speed at low altitude,

Ex. The Tornado, require a structure of above average strength to withstand

the effects of flight in extremely turbulent air.

Source from Aircraft Structures by T. H. G. Megson



The two classes of loads may be further divided into surface forces which
act upon the surface of the structure,

e.g. aerodynamic and hydrostatic pressure, and body forces which act over
the volume of the structure and are produced by gravitational and inertial
effects.

Calculation of the distribution of aerodynamic pressure over the various
surfaces of an aircraft’s structure is presented in numerous texts on
aerodynamics and will therefore not be attempted here.

We shall, however, discuss the types of load induced by these various
effects and their action on the different structural components.

Source from Aircraft Structures by T. H. G. Megson



Vertical tail providing
directional control

Horizontal tail countering
the aircraft’s tendency to
pitch in a vertical plane

Pitching moment

Yawing moment
Aircraft weight

Principal aerodynamic forces on an aircraft during flight.
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The basic functions of an aircraft’s structure are to transmit and resist the
applied loads; to provide an aerodynamic shape and to protect passengers,

payload, systems, etc. from the environmental conditions encountered in
flight.

These requirements, in most aircraft, result in thin shell structures where
the outer surface or skin of the shell is usually supported by longitudinal
stiffening members and transverse frames to enable it to resist bending,
compressive and torsional loads without buckling.

Such structures are known as semi-monocoque, while thin shells which rely
entirely on their skins for their capacity to resist loads are referred to as
monocoque.

Source from Aircraft Structures by T. H. G. Megson



De Havilland Canada Twin Otter (courtesy of De Havilland Air
Source fron




Harrier (courtesy of Pilot Press Ltd.).

Source from Aircraft Structures by T. H. G. Megson



British Aerospace 146 (courtesy of British Aerospace).
Source from Aircraft Structures by T. H. G. Megson



No matter how complex the internal structural arrangement the different
components perform the same kind of function.

The shape of the cross-section is governed by aerodynamic considerations
and clearly must be maintained for all combinations of load; this is one of
the functions of the ribs.

They also act with the skin in resisting the distributed aerodynamic pressure
loads; they distribute concentrated loads

(e.g. undercarriage and additional wing store loads)

into the structure and redistribute stress around discontinuities, such as
undercarriage wells, inspection panels and fuel tanks, in the wing surface.

Source from Aircraft Structures by T. H. G. Megson



Ribs increase the column buckling stress of the longitudinal stiffeners by
providing end restraint and establishing their column length; in a similar
manner they increase the plate buckling stress of the skin panels.

The dimensions of ribs are governed by their spanwise position in the wing
and by the loads they are required to support.

In the outer portions of the wing, where the cross-section may be relatively
small if the wing is tapered and the loads are light, ribs act primarily as
formers for the aerofoil shape.

A light structure is sufficient for this purpose whereas at sections closer to
the wing root, where the ribs are required to absorb and transmit large
concentrated applied loads, such as those from the undercarriage, engine
thrust and fuselage attachment point reactions, a much more rugged
construction is necessary.

Source from Aircraft Structures by T. H. G. Megson



Between these two extremes are ribs which support hinge reactions from
ailerons, flaps and other control surfaces, plus the many internal loads from
fuel, armament and systems installations.

The primary function of the wing skin is to form an impermeable surface for
supporting the aerodynamic pressure distribution from which the lifting
capability of the wing is derived.

These aerodynamic forces are transmitted in turn to the ribs and stringers
by the skin through plate and membrane action.

Resistance to shear and torsional loads is supplied by shear stresses
developed in the skin and spar webs, while axial and bending loads are
reacted by the combined action of skin and stringers.

Source from Aircraft Structures by T. H. G. Megson



Types of structural joints

The fuselage structure generally consists of skin panels joined directly to the
structural members such as frames, stringers for longitudinal splices. In
assembling process critical structures like military or commercial aircraft,
riveted or bolted joints are basically used as they offer many options to the
engineer.

(source:https://www.google.co.in/search?source=hp&ei=0OgH8W
tqUMYLIOgSpsKi4BQ&q=types+of+structural+joints+in+aircraft&oq=Types+of+struc
tural+joints&gs_|=psy-ab.1.1.35i39k1j0j0i22i30k118.8846.8846.
0.10736.3.2.0.0.0.0.176.176.0j1.2.0....0...1c.1.64. psy-ab..1.2.348.6...172.
muPwFe8AWPS)

Source from Aircraft Structures by T. H. G. Megson


https://www.google.co.in/search?source=hp&ei

The fabrication of aircraft components generally involves the joining of one
part of the component to another.

For example, fuselage skins are connected to stringers and frames while
wing skins are connected to stringers and wing ribs unless, as in some
military aircraft with high wing loadings, the stringers are machined
integrally with the wing skin.

With the advent of all-metal, i.e. aluminium alloy construction, riveted joints
became the main form of connection with some welding although
aluminium alloys are difficult to weld, and, in the modern era, some glued
joints which use epoxy resin.

In this section we shall concentrate on the still predominant method of
connection, riveting.

Source from Aircraft Structures by T. H. G. Megson



In general riveted joints are stressed in complex ways and an accurate analysis is
very often difficult to achieve because of the discontinuities in the region of the
joint.

Fairly crude assumptions as to joint behaviour are made but, when combined with
experience, safe designs are produced.

Figure shows two plates of thickness t connected together by a single line of rivets;
this type of joint is termed a lap joint and is one of the simplest used in
construction.

Suppose that the plates carry edge loads of P/unit width, that the rivets are of
diameter d and are spaced at a distance b apart, and that the distance from the line
of rivets to the edge of each plate is a.

There are four possible modes of failure which must be considered as follows:

Source from Aircraft Structures by T. H. G. Megson



Simple riveted lap joint.




Rivet shear

The rivets may fail by shear across their diameter at the interface of the
plates.

Then, if the maximum shear stress the rivets will withstand is 11 failure will

occur when
di
Pb = 14 (H—)
4

which gives




Bearing pressure

Either the rivet or plate may fail due to bearing pressure. Suppose that pb is
this pressure then failure will occur when

Pb

"




Plate failure in tension

The area of plate in tension along the line of rivets is reduced due to the
presence of rivet holes.

Therefore, if the ultimate tensile stress in the plate is oult failure will occur

when
Pb
t(b—d)

Oult

from which _ Oult (b —d)
b




Shear failure in a plate

Shearing of the plates may occur on the planes cc resulting in the rivets
being dragged out of the plate. If the maximum shear stress at failure of the
material of the plates is t, then a failure of this type will occur when

Pb = 2at ©»

which gives

2at T







Aircraft inertia loads

The maximum loads on the components of an aircraft’s structure generally
occur when the aircraft is undergoing some form of acceleration or
deceleration, such as in landings, take-offs and manoeuvres within the flight
and gust envelopes.

Before a structural component can be designed, the inertia loads
corresponding to these accelerations and decelerations must be calculated.

For these purposes we shall suppose that an aircraft is a rigid body and
represent it by a rigid mass, m, as shown in Fig. below.

We shall also, at this stage, consider motion in the plane of the mass which
would correspond to pitching of the aircraft without roll or yaw.

Source from Aircraft Structures by T. H. G. Megson



The centre of gravity (CG) of the mass has coordinates x, y referred to x
and y axes having an arbitrary origin O; the mass is rotating about an axis
through O perpendicular to the xy plane with a constant angular velocity w.

The acceleration of any point, a distance r from O, is w?r and is directed
towards O.

Thus, the inertia force acting on the element, ém, is w?rém in a direction
opposite to the acceleration, as shown in Fig. below.

The components of this inertia force, parallel to the x and y axes, are
w?rémcos & and w2rémsin 8, respectively, or, in terms of x and y, w’xém
and w?yém.

The resultant inertia forces, Fx and Fy, are then given by

Source from Aircraft Structures by T. H. G. Megson



The acceleration of any point, a distance r from O, is w?r and is directed
towards O.

The inertia force acting on the element, ém, is w?rém in a direction opposite
to the acceleration, as shown in Fig.below.

The components of this inertia force, parallel to the x and y axes, are
w?rémcos ¢ and w?rémsin 8, respectively, or, in terms of x and y, w?xém and

w?yém.

The resultant inertia forces, Fx and Fy, are then given by

Fy :fwzydm:a)2fydm
F :/wzxdmza)z/xdm

Source from Aircraft Structures by T. H. G. Megson
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The angular velocity w is constant and may therefore be taken outside the
integral sign.

In the above expressions x dm and y dm are the moments of the mass, m,
about the y and x axes, respectively, so that

F, = W’ Xm

Fy = wzym




Mass m

A ®CG(X )
L
o _J

Inertia forces on a rigid mass having a constant angular velocity.







Consider the calculation of aircraft loads corresponding to the flight
conditions specified by flight envelopes.

There are infinite number of flight conditions within the boundary of the
flight envelope although, structurally, those represented by the boundary
are the most severe.

In symmetric manoeuvres we consider the motion of the aircraft initiated by
movement of the control surfaces in the plane of symmetry.

Examples of such manoeuvres are loops, straight pull-outs and bunts, and
the calculations involve the determination of lift, drag and tailplane loads at

given flight speeds and altitudes.

Source from Aircraft Structures by T. H. G. Megson



Steady level flight is not a manoeuvre in the strict sense of the word, it is a
useful condition to investigate initially since it establishes points of load
application and gives some idea of the equilibrium of an aircraft in the
longitudinal plane.

The loads acting on an aircraft in steady flight are shown in Fig. below, with
the following notation:

L is the lift acting at the aerodynamic centre of the wing.
D is the aircraft drag.

MO is the aerodynamic pitching moment of the aircraft less its horizontal
tail.

P is the horizontal tail load acting at the aerodynamic centre of the tail,
usually taken to be at approximately one-third of the tailplane chord.

W is the aircraft weight acting at its CG.

T is the engine thrust, assumed here to act parallel to the direction of flight
in order to simplify calculation. Source from Aircraft Structures by T. H. G. Megson



Aerodynamic ¥
centre

Aircraft loads in level flight.




The loads are in static equilibrium since the aircraft is in a steady,
unaccelerated, level flight condition. Thus for vertical equilibrium

L+P-W=0
e T-D=0
and taking moments about the aircraft’s CG in the plane of symmetry
e La-Db-Tc-MO-PI=0

As a first approximation we assume that the tail load P is small
compared with the wing lift L so that, from, L =W. From aerodynamic
theory with the usual

L=1pv2sCcL  3pVSCL~W

Source from Aircraft Structures by T. H. G. Megson



Aircraft loads in a pull-out from a dive.

Sour




e basic functions of an aircraft’s structure are to
applied loads;

to provide an aerodynamic shape and to protect passengers, payload, systems,
etc. from the environmental conditions encountered in flight.

These requirements, in most aircraft, result in thin shell structures where the
outer surface or skin of the shell is usually supported by longitudinal stiffening
members and transverse frames to enable it to resist bending, compressive
and torsional loads without buckling.

Such structures are known as semi-monocoque,

while thin shells which rely entirely on their skins for their capacity to resist
loads are referred to as monocoque.

Source from Aircraft Structures by T. H. G. Megson
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Cylindrical and spherical pressure vessels are commonly used for
storing gas and liquids under pressure.

A thin cylinder is normally defined as one in which the thickness of
the metal is less than 1/20 of the diameter of the cylinder.

www.eng.uwi.tt/depts/mech/ugrad/courses/notes/mel6achapter2.ppt



* In thin cylinders, it can be assumed that the variation of stress
within the metal is negligible, and that the mean diameter, D |
is approximately equal to the internal diameter, D.

e At mid-length, the walls are subjected to hoop or
circumferential stress, and a longitudinal stress, .

www.eng.uwi.tt/depts/mech/ugrad/courses/notes/mel6achapter2.ppt



www.eng.uwi.tt/depts/mech/ugrad/courses/notes/mel6achapter2.ppt



Projected area

Pressure
P

Radial stress Failure along longitudinal
equal to pressure  section

) (b

www.eng.uwi.tt/depts/mech/ugrad/courses/notes/mel6achapter2.ppt



 The internal pressure, p tends to increase the diameter of the
cylinder and this produces a hoop or circumferential stress (tensile).

* If the stress becomes excessive, failure in the form of a longitudinal
burst would occur.

www.eng.uwi.tt/depts/mech/ugrad/courses/notes/mel6achapter2.ppt



Consider the half cylinder shown. Force due to internal pressure, p is balanced by the

force due to hoop stress, o, .

l.e. hoop stress x area = pressure X projected area
O, x 2Lt =Pxd L

Gy = (Pd)/2t

Where: d is the internal diameter of cylinder; t is the thickness of wall of cylinder.

www.eng.uwi.tt/depts/mech/ugrad/courses/notes/mel6achapter2.ppt



Longitudinal stress in thin cylindrical shell

(a) (b)
Fig. 3.15 Longitudinal stress in a thin cylindrical shell

www.eng.uwi.tt/depts/mech/ugrad/courses/notes/mel6achapter2.ppt



The internal pressure, P also produces a tensile stress in

longitudinal direction as shown above.

2
n
Force by P acting on an area e Is balanced by

longitudinal stress, 0, acting over an approximate area,

rdt (mean diameter should strictly be used). That is:

2
o, X7Z'dt=PX%

_Pd

o, =——
-4t

www.eng.uwi.tt/depts/mech/ugrad/courses/notes/mel6achapter2.ppt



1. Since hoop stress is twice longitudinal stress, the cylinder
would fail by tearing along a line parallel to the axis, rather than on
a section perpendicular to the axis.

The equation for hoop stress is therefore used to determine the
cylinder thickness.

Allowance is made for this by dividing the thickness obtained in
hoop stress equation by efficiency (i.e. tearing and shearing
efficiency) of the joint.

www.eng.uwi.tt/depts/mech/ugrad/courses/notes/mel6achapter2.ppt



The thickness of the cylinder is large compared to that of thin

cylinder.

i. e., in case of thick cylinders, the metal thickness ‘t’ is more than

‘d/20’, where ‘d’ is the internal diameter of the cylinder.

Magnitude of radial stress (p,) is large and hence it cannot be
neglected. The circumferential stress is also not uniform across the
cylinder wall. The radial stress is compressive in nature and
circumferential and longitudinal stresses are tensile in nature. Radial
stress and circumferential stresses are computed by using ‘Lame’s

equations. www.engineeringduniya.com/slide_folder/First

%20Year/.../MCYLINDERS.ppt



ASSUMPTIONS:

1. Plane sections of the cylinder normal to its axis remain plane and normal

even under pressure.

2. Longitudinal stress (o,) and longitudinal strain (g ) remain constant

throughout the thickness of the wall.

3. Since longitudinal stress (o) and longitudinal strain (g ) are constant, it
follows that the difference in the magnitude of hoop stress and radial

stress (p,) at any point on the cylinder wall is a constant.

www.engineeringduniya.com/slide_folder/First%20Year/.../MCYLINDERS.ppt



MODULE —lI

THIN PLATE THEORY,
STRUCTURAL INSTABILITY
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Let P1, P2,...., Pn be the forces acting at x1, x2,......, xn from
the left end on a simply supported beam of span L .Let ul,
u2,..., un be the displacements at the loading P1, P2,...., Pn
respectively as shown in figure.

P P P.
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Source: https://www.slideshare.net/deepak 223/lecture-5-castiglionos-theore




Now, assume that the material obeys Hooke’s law and

invoking the principle of superposition, the work done by the
external forces is given by

1 1 1
=El%+56%+mﬁaPu

nn

Work done by external forces is stored in structure as strain

energ€y.
1 1 1
U=Eﬁm+5%%+m+EPu

https://www.slideshare.net/deepak _223/lectur
e-5-castiglionos-theorem



ul (deflection at point of application of P1) can be expressed
As

l‘l — auPl + alzpz = mi e o alnP"

In general = ayF +a,P, +...+a,P,

aij= flexibility coeff at i due to unit force applied at j.

Work done by external forces is stored in structure as strain energy.

U- %Pl[auPl +a,P, +.] +%P2[a21P1 o r %Pn[anll’l o Pl

https://www.slideshare.net/deepak _223/lectur
e-5-castiglionos-theorem



o

“ In general

| 5 >
U = ;[auPl’ +a,,P," +..+a

Pnz] + [alzplpz +aBP; + ..+ alnplp,:]

nn

-

* Differentiating the strain energy with force P,

Z—g = [auPl +a,P + ..+ alnPn]
% This is nothing but displacement at the loading point
oU
'(? i,

n
https://www.slideshare.net/deepak _223/lectur
e-5-castiglionos-theorem



Castigliano’s first theorem may be stated as the first partial derivative of the
strain energy of the structure with respect to any particular force gives the
displacement of the point of application of that force in the direction of its
line of action.

ol
—_u,
P

f

https://www.slideshare.net/deepak _223/lectur
e-5-castiglionos-theorem



The reciprocal theorem is an exceptionally powerful method of analysis of
linearly elastic structures and is accredited in turn to Maxwell, Betti and
Rayleigh.

Before establish the theorem we first consider a useful property of linearly
elastic systems resulting from the principle of superposition.

The principle enables us to express the deflection of any point in a structure
in terms of a constant coefficient and the applied loads.

For example, a load P1 applied at a point 1 in a linearly elastic body will
produce a deflection A1 at the point given by

Al = a1 P

Source from Aircraft Structures by T. H. G. Megson



Linearly elastic body subjected to loads P, P2, Ps,..., P..




The influence or flexibility coeffcient all is defined as the deflection at the
point 1 in the direction of P1, produced by a unit load at the point 1 applied
in the direction of P1.

Clearly, if the body supports a system of loads such as those shown in Fig.
each of the loads P1, P2, ..., Pn will contribute to the deflection at the point

1.
Thus, the corresponding deflection A1 at the point 1 is then

Al =a1P1+anP2+ -+ anPn

Source from Aircraft Structures by T. H. G. Megson



where al12 is the deflection at the point 1 in the direction of P1, produced
by a unit load at the point 2 in the direction of the load P2 and so on.

The corresponding deflections at the points of application of the complete
system of loads are then

Ay =an Py +apP+apPs+---+ap, Py
a1 Py + axpPr +ayaPsy+ -+ axylPy
A3 =a31P1 +anPr+axzP3+--- 4+ ay Py

>
-3
|

ﬂn:'ﬂﬁlpl "I'HHEPZ"I_HHSP?}_'_”'_I_HHHPH

Source from Aircraft Structures by T. H. G. Megson



In matrix form

Aq ajl a2 a3 ... din | (py
Ar axy a2 az ... dp P>
A3\ _ ta3; azxp azxz ... az, | |P3
&” |y (2 y3 - pn _ P”




which may be written in shorthand matrix notation as

{A} = [Al{P}
Suppose now that an elastic body is subjected to a gradually applied force
P1 at a point 1 and then, while P1 remains in position, a force P2 is

gradually applied at another point 2.

The total strain energy U of the body is given by

P Py
Uy = 7&‘1111’1) + ?(szpz) + Pi(anP)




The third term on the right-hand side of Eq. results from the additional work

done by P1 as it is displaced through a further distance a12 P2 by the action
of P2.

If we now remove the loads and apply P2 followed by P1 we have

P> P
Uy = E[f’fzzpz} + ?{ﬂ'] 1P1) + Pa(ax1Py)

By the principle of superposition the strain energy stored is independent of the
order in which the loads are applied. Hence

a2 = azi

Source from Aircraft Structures by T. H. G. Megson



Thus in its simplest form the reciprocal theorem states that:

The deflection at a point 1 in a given direction due to a unit load at a point 2
in a second direction is equal to the deflection at the point 2 in the second
direction due to a unit load at the point 1 in the first direction.

In a similar manner, we derive the relationship between moments and
rotations, thus: The rotation at a point 1 due to a unit moment at a point 2 is
equal to the rotation at the point 2 produced by a unit moment at the point
1.

Finally, we have: The rotation at a point 1 due to a unit load at a point 2 is
numerically equal to the deflection at the point 2 in the direction of the unit
load due to a unit moment at the point 1.

Source from Aircraft Structures by T. H. G. Megson



Discussed the dummy or fictitious load method of obtaining deflections of
structures.

For a linearly elastic structure the method may be stream-lined as follows.

Consider the framework of Fig. in which we require, say, to find the vertical
deflection of the point C.

place a vertical dummy load Pf at C and write down the total
complementary energy of the framework, i.e.

C = Z[ ridF; — Zlgp

Source from Aircraft Structures by T. H. G. Megson



For a stationary value of C

oC dF;
— = Ai — A =
an Z i C

k

JdF;
Ac = A ' as before
" 0Py

i=

If instead of the arbitrary dummy load Pf we had placed a unit load at C, then
the load in the ith linearly elastic member would be

_ dF;
) 2

F;

1




where Fi,0 is the force in the ith member due to the actual loading and Fi,1 is
the force in the ith member due to a unit load placed at the position and in
the direction of the required deflection.

Similar expressions for deflection due to bending and torsion of linear
structures follow from the well-known relationships between bending and
rotation and torsion and rotation.

Hence, for a member of length L and flexural and torsional rigidities E/ and

GJ, respectively
MoM ToT
ARM = 0 ]d- AT = f Ldﬁ

L

Source from Aircraft Structures by T. H. G. Megson



where MO is the bending moment at any section produced by the actual
loading and M1 is the bending moment at any section due to a unit load
applied at the position and in the direction of the required deflection.

Similarly for torsion. Generally, shear deflections of slender beams are
ignored but may be calculated when required for particular cases.

Of greater interest in aircraft structures is the calculation of the deflections
produced by the large shear stresses experienced by thin-walled sections.

Source from Aircraft Structures by T. H. G. Megson



Ritz Method

@ In the Rayleigh-Ritz method

> A single trial function is applied throughout the entire region

2 Trial functions of increasing complexity are required to model all but

the simplest problems
@ The FE approach

2 uses comparatively simple trial functions that are applied piece-wise

to parts of the region

2 These subsections of the region are then the finite elements

https://www.nafems.org/downloads/working_groups/etwg/intro4.ppt

74



Ritz Method

@ Consider the problem of 1-D heat flow, the functional to be extremised is

3\

1(9)= (% -0(0)slax -7

\ J
2 where the integral over Q) corresponds to the length of the region and

Neumann boundary conditions are specified at one end, I',of the

region

https://www.nafems.org/downloads/working_groups/etwg/intro4.ppt
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Ritz Method

@ The length over which the solution is required, is divided up into finite

elements | |
| |
e-1 | e | e+1 Elements
| | |
i | i+1 . i+n| i+2n — Nodes

@ In each element the value of  is found at certain points called nodes

@ Two nodes will mark the extremities of the element

@ Other nodes may occur inside the element

https://www.nafems.org/downloads/working _

groups/etwg/intro4.ppt
76



Ritz Method

@ Let the unknown temperatures at the nodes of the element e be
(0) ={b b}
- ¢, N
B

{¢}e:< >

Uny

» where n+1 is the number of nodes in each element.

https://www.nafems.org/downloads/working _

groups/etwg/intro4.ppt
77



Ritz Method

@ The temperature at any other position in the element is represented in

terms of the nodal values {(I)}e and shape functions associated with each

node

)= Z Nﬁ¢ﬂ = [N]{¢}e

» where N, is the shape function associated with the node  and f=i...

i+n and [N] is the corresponding row matrix.

https://www.nafems.org/downloads/working _

groups/etwg/intro4.ppt
78



Ritz Method

@ Let us write the trial function (I) over the entire region A in the form
o= N,¢
al o
o
» where the summation is over all the nodes in €.

https://www.nafems.org/downloads/working _
groups/etwg/intro4.ppt
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Ritz Method

The global shape functions N\O%ve been used to take into account the
contribution from ¢, to ¢ over the entire region Q
The global shape functions over much of Q will be zero

For interior nodes of an element N/gill be non-zero only within that

element

End nodes of an element will have non-zero values over the two elements

sharing the node.

https://www.nafems.org/downloads/working _
groups/etwg/intro4.ppt

80



Ritz Method

For example :

. N

i+n is non-zero only in elements e and e+1.

g g

g . :
i1 oy maes Ni+nv!|il be non-zero only in

element e.

https://www.nafems.org/downloads/working _
groups/etwg/intro4.ppt
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Ritz Method

Neglecting for the moment, consideration of the first and last elements of

the region

Write the Rayleigh-Ritz statement in which the nodal values are the

adjustable parameters.

Consider the nodes i...i+n belonging to element e

https://www.nafems.org/downloads/working _
groups/etwg/intro4.ppt
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Ritz Method

i | elemente-1 elemente

Adlg) _ o PP _—
B _§¢Lemjemj_o.ﬁ_|+1 ..... i+n—1

adl(g) o -
a¢a¢“ r }0

ment e element e+1

where for example I stands for

element e

J { (%) Q(X)¢}dx et the clemert

https.//www.nafems.org/downloads/workinc

groups/etwg/intro4.ppt -



Ritz Method

@ Since

0

O .[ is an expression involving {¢}¢!
¢i elemente-1

7
o, involves {$}°
§¢i eIeJ‘

mente

and there is no relationship between {¢}®1 and {¢}° ,both

expressions must be equal to zer
P . https:/(}www.nafems.org/down/oads/working_

groups/etwg/intro4.ppt
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Ritz Method

Let us

@ focus on the terms containing an integral over the element e
@ Drop the superscript g on the shape functions

@ Suppose that the element extends from x=x, to x=x_+h

@ No loss in generality is incurred if we
2 Shift the origin to x=x,

2 Take the element to extend rather from 0 to h
https://www.nafems.org/downloads/working_
groups/etwg/intro4.ppthttps.//www.nafems.or
g/downloads/working_groups/etwg/intro4.ppt
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Ritz Method

@ The function can be written as,

o”¢ T {I {[{ e }—Q(X){N}W}e}dx}

| ...1*N

» where o

» Note that

B _ 2 (Nygy) - [dNi dN,,,

X X dx = dx

https://www.nafems.org/downloads/working _

groups/etwg/intro4.ppt
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Ritz Method

@ Also, noting

2 A Do

ince Ol dN c
S L
Hence 0 (ﬁ¢)_dNa

op \x/  dx

https.//www.nafems.org/downloads/working_
groups/etwg/intro4.ppt
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Ritz Method

@ So, differentiating under the integral sign, we have

a§H¢(¢):i{k[czljl)\(l}{¢} (ddN ) QOON. }dx:o

(04

Hence

ki(cg“;‘){zl)\(l} b dx = jQ(x)N dx

https://www. nafems org/downloads/working_
groups/etwg/intro4.ppt
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Ritz Method

@ This equation is one in the set of n+1 simultaneous equations obtained by

letting o run through the values i...i+n :

_ki,i ki,i+1 ) ) ki,i+n i ¢i ] I:ie

i1+1,i+1 ' ) i+1,i+n

e
i+n,i+n__¢i+n_ |:i+n

https://www.nafems.org/downloads/working_
groups/etwg/intro4.ppt
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Ritz Method

@ where h
F* = [Q(XN, dx
(%) (2)
v .0 @( a é}( b

@ In the end elements, where Neumann boundary conditions may have to be

considered, there is an additional term

> where N, is the value of N, on the boundary I

kg,6,)=Kk$.N,,

https://www.nafems.org/downloads/working
groups/etwg/intro4.ppt
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Ritz Method

@ If there are two 2-noded elements, labelled m and n, with nodes i, i+1 and

i+2, assembly of the element matrices is as before. Then

= for the first element m

|, m m | ) (=m )
ki,i ki,i+1 ¢| I:i
| i i+1i+1 \¢|+1, kFi+1)

2 and similarly for element n

[ 1N n n
ki+l,i+1 ki+1,i+2 ¢|+1 _% I:i+1 [

Kon Ko |14

1+2,i+1 I+2,i+2 |
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Ritz Method

@ By combining these two matrix equations

B m m e ~N ( N
ki,i ki,i+1 0 @ Fim
m m n n . m n
ki+1,i (ki+1,i+1 + ki+1,i+1) ki+1,i+2 ) ¢|+1 F = |:i+1 + I+1 &
n
n n .
i 0 I(i+2,i+1 ki+2,i+2_ K¢'+2/ L 1+2

2 The global assembly matrix is built up in this way

2 The boundary conditions on the extreme elements are inserted

> The set of equations is solved for the unknown values of ¢

https://www.nafems.org/downloads/working_

groups/etwg/intro4.ppt
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In the spring—mass system shown in its unstrained position in Fig. normally
define the potential energy of the mass as the product of its weight, Mg,
and its height, h, above some arbitrarily fixed datum.

In other words it possesses energy by virtue of its position. After deflection
to an equilibrium state the mass has lost an amount of potential energy
equalto M,,.

Thus we may associate deflection with a loss of potential energy.
Alternatively, we may argue that the gravitational force acting on the mass
does work during its displacement, resulting in a loss of energy.
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Applying this reasoning to the elastic system of Fig.

Assuming that the potential energy of the system is zero in the unloaded

state, then the loss of potential energy of the load P as it produces a
deflection y is Py.

The potential energy V of P in the deflected equilibrium state is given by

V = —Py




Mass M

B

(a) (b)

(a) Potential energy of a spring—mass system; (b) loss in potential energy due
to change in position.




We now define the total potential energy (TPE) of a system in its deflected
equilibrium state as the sum of its internal or strain energy and the potential
energy of the applied external forces.

for the single member—force configuration of Fig. (a)

¥

TPE = U+V=f Pdy — Py

0

For a general system consisting of loads P1, P2, .., Pn producing
corresponding displacements 1, 2, ..., n the potential energy of all the loads
IS
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V:ivr:i(_ipr&r)

r=I1 r=I1

and the total potential energy of the system is given by

n
TPE=U+V=U+Y (P4

r=I




An alternative approach to the solution of statically indeterminate beams
and frames is to release the structure

i.e. remove redundant members or supports, until the structure becomes
statically determinate.

The displacement of some point in the released structure is then
determined by the unit load method.

The actual loads on the structure are removed and unknown forces applied
to the points where the structure has been released;

the displacement at the point produced by these unknown forces must,

from compatibility,
Source from Aircraft Structures by T. H. G. Megson



be the same as that in the released structure. The unknown forces are then
obtained; this approach is known as the flexibility method.




The thin rectangular plate of Fig. is subjected to pure bending moments of
intensity Mx and My per unit length uniformly distributed along its edges.

The former bending moment is applied along the edges parallel to the y
axis, the latter along the edges parallel to the x axis.

Assume that these bending moments are positive when they produce
compression at the upper surface of the plate and tension at the lower.

If we further assume that the displacement of the plate in a direction
parallel to the z axis is small compared with its thickness t and that sections
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which are plane before bending remain plane after bending, then, as in the
case of simple beam theory, the middle plane of the plate does not deform
during the bending and is therefore a neutral plane.

Take the neutral plane as the reference plane for our system of axes.

Consider an element of the plate of side 6xéy and having a depth equal to
the thickness t of the plate as shown in Fig.

Suppose that the radii of curvature of the neutral plane n are px and py in
the xz and yz planes respectively Fig.
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Positive curvature of the plate corresponds to the positive bending
moments which produce displacements in the positive direction of the z or

downward axis.

Again, as in simple beam theory, the direct strains ex and ey corresponding
to direct stresses ox and oy of an elemental lamina of thickness 6z a

distance z below the neutral plane are given by
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(a) (b)

(a) Direct stress on lamina of plate element; (b) radii of curvature of neutral




t/2 E 2 |
M, = < ( -+ i) dz

—t/2 I —v? Px Py
e e 1 Y
MJ’ — 3 ( —+ —) dz
21 =v\py
2 E7? Ef
D= f Zdz = 5
= 12(1 — 12)




D is known as the flexural rigidity of the plate.

If w is the deflection of any point on the plate in the z direction, then we
may relate w to the curvature of the plate in the same manner as the well-
known expression for beam curvature.

Hence | Pw 3w

pe 02 py 0y

The negative signs resulting from the fact that the centres of curvature
occur above the plate in which region z is negative.

32w *w 2 )
Mx — _D —2 ‘I‘ UT (_} W 3 w
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Anticlastic bending




The deflected shape of the plate provided that Mx and My are known.

If either Mx or My is zero then

3w %1

_— )

dx2 y2

32w 92w
— —\

3_}-'2 ax2

The plate has curvatures of opposite signs. The case of My =0 is illustrated in
Fig. A surface possessing two curvatures of opposite sign is known as an
anticlastic surface, as opposed to a synclastic surface which has curvatures
of the same sign. Further, if Mx =My =M
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Therefore, the deformed shape of the plate is spherical and of curvature

1 M

p D1 +v)




Bending moments applied to the plate will not be in planes perpendicular to
its edges.

Such bending moments, however, may be resolved in the normal manner
into tangential and perpendicular components, as shown in Fig.

The perpendicular components are seen to be Mx and My as before, while
the tangential components Mxy and Myx (again these are moments per unit
length) produce twisting of the plate about axes parallel to the x and y axes.

The system of suffixes and the sign convention for these twisting moments
must be clearly understood to avoid confusion.
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Mxy is a twisting moment intensity in a vertical x plane parallel to the y axis,
while Myx is a twisting moment intensity in a vertical y plane parallel to the
X axis.

Note that the first suffix gives the direction of the axis of the twisting
moment.

Also define positive twisting moments as being clockwise when viewed
along their axes in directions parallel to the positive directions of the
corresponding x or y axis.

All moment intensities are positive.
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Plate subjected to bending and twisting




(a) (b)

(a) Plate subjected to bending and twisting; (b) tangential and normal moments on
an arbitrary plane




Since the twisting moments are tangential moments or torques they are
resisted by a system of horizontal shear stresses txy, as shown in Fig.

From a consideration of complementary shear stresses. Mxy=-Myx, so that
we may represent a general moment application to the plate in terms of
Mx, My and Mxy as shown in Fig.

These moments produce tangential and normal moments, Mt and Mn, on
an arbitrarily chosen diagonal plane FD.

Express these moment intensities in terms of Mx, My and Mxy. Thus, for
equilibrium of the triangular element ABC of Fig. in a plane perpendicular to
AC
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M,AC = M AB cosa + M,BCsina — M,yAB sina — M,,BC cos «

My = M, cos® o + M, sin® o — My sin 2a
Similarly for equilibrium in a plane parallel to CA

M{AC = M AB sina — MyBC cosa + MyyAB cosa — M,,BC sin «

M, —M
M1=( IZ }'}sin2a+Mﬂ.c052a




Complementary shear stresses due to twisting moments M.



” Tyydyzdz
T jlt;’l
0y




- Ow
u ¥ o
dx
8 x
z ! ﬁ‘x#
A A L
R ¥4

Determination of shear strain yxy.

t/2

t/2






Replacing G by the expression E/2(1 4 v)

e Er? 9w
T12(1 4 v) dxdy

Multiplying the numerator and denominator of this equation by the
factor (1-v) yields

dx dy

92w

My, = D(1 — v)

Above eqs. relate the bending and twisting moments to the plate
deflection and are analogous to the bending moment-curvatur
relationship for a simple beam.




The relationships between bending and twisting moments and plate
deflection are now employed in establishing the general differential
equation for the solution of a thin rectangular plate, supporting a
distributed transverse load of intensity g per unit area..

Z

Plate supporting a distributed transverse load.
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M, 5
X
dx

Plate element subjected to bending, twisting and transverse loads.




shear forces Qxd0y and Qydx are assumed to act through the centroid of the faces of
the element. From the previous sections

t/2 t/2 t/2
M, = oyzdz My = Oy2 dz Myy = (—Myy) = f Txyl dz
—1/2 —t/2 —t/2

t/2 t/2
Oy = Tyz dz Qy = f Tyz dz

—t/2 —t/2

For equilibrium of the element parallel to Oz and assuming that the weight of the
plate is included in g

0Qx ? 00y
Qx + —=0x | 8y — Oxdy + (Qy + — =8y | x — Qydx + gdxdy = 0

v







2 2 2 2
PM, My My My

—q

x2 dx dy + dy? ox dy

2 2 2
PM, My, 0*M,

-2 — —
ox2 oy a2 - 4
a*tw *tw n a*w _q
x4 ax2oy: oyt D




The operator (8%/dx” + 3*/dy?) is the well-known Laplace operator in two dimensions

and is sometimes written as V2. Thus

q
v22,y = 4
(Vo)™w D
oM, M d [F*w  *w
Oy = T - 2 = -D— 3 + 3
ox dy dx \ ox ay
My M, g (FPw  Pw
Qy = - =—D— 7 T o5
ay ox dy \ ox dy

Direct and shear stresses are then calculated from the relevant expressions relating
them to Mx, My, Mxy, Qx and Qy.




So far our discussion has been limited to small deflections of thin plates
produced by different forms of transverse loading.

In these cases we assumed that the middle or neutral plane of the plate
remained unstressed.

Additional in-plane tensile, compressive or shear loads will produce stresses
in the middle plane, and these, if of sufficient magnitude, will affect the
bending of the plate.

Where the in-plane stresses are small compared with the critical buckling
stresses it is sufficient to consider the two systems separately; the total
stresses are then obtained by superposition.
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e+ 5 (50) e

+ oN
M N, + # Sx
O - x
Nrf
v 'j— Ak
N,
. """xf + a;r Sx
- ON,yx
y + =
\ vt
aN,

In-plane forces on plate element




On the other hand, if the in-plane stresses are not small then their effect on
the bending of the plate must be considered.

N. 4+ i}Nxﬁ 5 daw N 3211-'5 NS aw
X 'cos | — x| — 'COS —
* ax Y ox dx2 x0Y ox

ON,,
—I_ Ny_x ? - 5‘&1 I‘SJ. — Np_rlﬁ.l. — G
. i 1-"‘ J

For small deflections dw/dx and (Ow/0x)+(0*w/0x?)6x are small and the
cosines of these angles are therefore approximately equal to one. The
equilibrium equation thus simplifies to

ONy 0Ny,
ox ay
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Component of shear loads in the z direction.




Similarly for equilibrium in the y direction we have

oNy,  oN
. _I_ xy — 0
ay 0x
N+ GNHS 5 aw n 3w 5 NS aw
w 0x Y dy  ox dy xyoY ay

neglecting terms of a lower order. Similarly, the contribution of Nyx is

Fw INyy W
dx 0y + ———4xdy
ox dy

N
Vax oy




Fw Ny dw
dx oy + —
dy dy

Cad Rl Cad

dx 8y

The total force in the z direction is found from the summation of these expressions
and is




9w N, 0 ia INy dw

W W
Ny——50x 8y + ————0x 0y + Ny——=0xdy + dXx Oy
0x

dx ox ay dy dy

ONyy dw 9*w Ny dw
OX 6y + 2N,y oX oy + Ox Oy
ox dy dxdy - dy  ox

_+_

in which Nyx is equal to and is replaced by Nxy. Reduce this expression to




Since the in-plane forces do not produce moments along the edges of the
element then Egs. remain unaffected.

Modified simply by the addition of the above vertical component of the in-
plane loads to géxdy.

Therefore, the governing differential equation for a thin plate supporting
transverse and in-plane loads is

3411:_|_2 o*w n 0w B 1 ( N
awd T T ah  p\IT
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So far our discussion has been limited to small deflections of thin plates
produced by different forms of transverse loading.

In these cases we assumed that the middle or neutral plane of the plate
remained unstressed.

Additional in-plane tensile, compressive or shear loads will produce stresses
in the middle plane, and these, if of sufficient magnitude, will affect the
bending of the plate.

Where the in-plane stresses are small compared with the critical buckling
stresses it is sufficient to consider the two systems separately; the total
stresses are then obtained by superposition.
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+ oN
M N, + # Sx
O - x
Nrf
v 'j— Ak
N,
. """xf + a;r Sx
- ON,yx
y + =
\ vt
aN,

In-plane forces on plate element




On the other hand, if the in-plane stresses are not small then their effect on
the bending of the plate must be considered.

N. 4+ i}Nxﬁ 5 daw N 3211-'5 NS aw
X 'cos | — x| — 'COS —
* ax Y ox dx2 x0Y ox

ON,,
—I_ Ny_x ? - 5‘&1 I‘SJ. — Np_rlﬁ.l. — G
. i 1-"‘ J

For small deflections dw/dx and (Ow/0x)+(0*w/0x?)6x are small and the
cosines of these angles are therefore approximately equal to one. The
equilibrium equation thus simplifies to

ONy 0Ny,
ox ay
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Component of shear loads in the z direction.




Similarly for equilibrium in the y direction we have

oNy,  oN
. _I_ xy — 0
ay 0x
N+ GNHS 5 aw n 3w 5 NS aw
w 0x Y dy  ox dy xyoY ay

neglecting terms of a lower order. Similarly, the contribution of Nyx is

Fw INyy W
dx 0y + ———4xdy
ox dy

N
Vax oy




Fw Ny dw
dx oy + —
dy dy

Cad Rl Cad

dx 8y

The total force in the z direction is found from the summation of these expressions
and is




9w N, 0 ia INy dw

W W
Ny——50x 8y + ————0x 0y + Ny——=0xdy + dXx Oy
0x

dx ox ay dy dy

ONyy dw 9*w Ny dw
OX 6y + 2N,y oX oy + Ox Oy
ox dy dxdy - dy  ox

_+_

in which Nyx is equal to and is replaced by Nxy. Reduce this expression to




Since the in-plane forces do not produce moments along the edges of the
element then Egs. remain unaffected.

Modified simply by the addition of the above vertical component of the in-
plane loads to géxdy.

Therefore, the governing differential equation for a thin plate supporting
transverse and in-plane loads is

3411:_|_2 o*w n 0w B 1 ( N
awd T T ah  p\IT
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Suppose that a thin plate has an initial curvature so that the deflection of
any point in its middle plane is w,.

Assume that w, is small compared with the thickness of the plate. The
application of transverse and in-plane loads will cause the plate to deflect a
further amount w, so that the total deflection is then w=w, +w;.

x4 ax2ay: oyt D

" ox? * 0y? ox dy

F*w Fw Fw 1 ( 3w 9w sz)
q -+

The derivation of Eg. the left-hand side was obtained from expressions for
bending moments which themselves depend on the change of curvature.

Use the deflection w1l on the left-hand side, not w. The effect on bending of

the in-plane forces depends on the total deflection w
Source from Aircraft Structures by T. H. G. Megson



34W| E4w| 34“’1

2
dx4 T dyZdy? T dy*
1 8% (wg + w) 8% (wp + wy) F*(wp + wy)
= = | + N_]_' -+ ¥ -+ Xy
D > dy? ' dx dy

The effect of an initial curvature on deflection is therefore equivalent to the application
of a transverse load of intensity

HE & &
MLy VAL Vs

iy? = ax dy




Thus, in-plane loads alone produce bending provided there is an initial curvature.
Assuming that the initial form of the deflected plate is

wp = E ZA"‘” sin :I sin nf

m=1 n=I

then by substitution in Eg. we find that if Nx is compressive and Ny =Nxy =0

E ZB’“" 5111 sin ?

m=1 n=1




B Apn Ny
~ (w2D/aP)[m + (n%a®/mb?)]?> — Ny

mn




A thin plate may buckle in a variety of modes depending upon its
dimensions, the loading and the method of support.

Buckling loads are much lower than those likely to cause failure in the
material of the plate.

The simplest form of buckling arises when compressive loads are applied to
simply supported opposite edges and the unloaded edges are free, as
shown in Fig. A thin plate in this configuration behaves in exactly the same
way as a pin-ended column so that the critical load is that predicted by the
Euler theory.

Once this critical load is reached the plate is incapable of supporting any
further load.
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The unloaded edges are supported against displacement out of the xy
plane.

Buckling, for such plates, takes the form of a bulging displacement of the
central region of the plate while the parts adjacent to the supported edges
remain straight.

These parts enable the plate to resist higher loads; an important factor in
aircraft design.

Here not concerned with this post-buckling behaviour, but rather with the
prediction of the critical load which causes the initial bulging of the central
area of the plate.
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Ny/unit length

4

Buckling of a thin flat plate




Consider the relatively simple case of the thin plate of Fig. , loaded as
shown, but simply supported along all four edges.

Deflected shape may be represented by the infinite double trigonometrical
series

. mmx _ nmy
Aﬂm SIM S1N
a b

||M8

Also, the total potential energy of the plate is,

1 pa b Pw  Pw\C
ULV = — D
i o [ l(axﬁayl)




The integration of Eq. on substituting for w is

TtabD o 5 m>  n- b > = 3 3
U+v=T22 Y Y (S ) - Y Y
m=1 n=I m=1 n=I

The total potential energy of the plate has a stationary value in the neutral
equilibrium of its buckled state (i.e. Nx =Nx,CR).

Differentiating Eq. with respect to each unknown coefficient A, we have

WU +V) mtabD m P\’ 2
— Amn -

N ‘A, =)
A 1 x.CRM Amnp




for a non-trivial solution

|
Nxcr = Tla D =

e

1 (m* 1y’
NI__CR = IEEED—E (—2 + F)

n

ki
.E??'

Nycr =

where the plate bucklin-g-coéffic-ien-t k is given by the minimum value of




for a given value of a/b. To determine the minimum value of k for a given
value of a/b we plot k as a function of a/b for different values of m as shown
by the dotted curves in Fig.

The minimum value of k is obtained from the lower envelope of the curves
shown solid in the figure.




Buckling coefficient k for simply supported plates.




It can be seen that m varies with the ratio a/b and that k and the buckling
load are a minimum when k =4 at values of a/b=1, 2, 3, ... .As a/b becomes
large k approaches 4 so that long narrow plates tend to buckle into a series

of squares.

The transition from one buckling mode to the next may be found by
equating values of k for the m and m+1 curves. Hence

mb (1 (m 4+ 1)b a1
4 — = +
a mb ] (m 4+ 1)b

g = Jmim+ 1)
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Substituting m=1, we have a/b=Vv2=1.414, and for m=2, a/b=V6=2.45 and

SO On.

For a given value of a/b the critical stress, oz =Nx,CR/t, is found from Eqs

kmlE (r)z
Orp = —
BT D\ b




For plates having small values of b/t the critical stress may exceed the elastic
limit of the material of the plate.

In such a situation, Eq. 2E £1\2
TR T -2 (E)

is no longer applicable since, as we saw in the case of columns, E becomes
dependent on stress as does Poisson’s ratio v.

These effects are usually included in a plasticity correction factor n so that

above Eq. becomes
B nkm’E A%
CCRTNO_ ) \b
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Loaded edges clamped

Loaded edges
simply supported

—~ Unloaded edges clamped
One unloaded edge clamped
one simply supported

_ Both unloaded edges
simply supported

One unloaded edge clamped
—————— one free

T —
T E——

One unloaded edge free

é one simply supported



60

56 -
921 Unloaded edges clamped
48 15 -
44}
13-
kK 40
° Clamped edges
361 . s
Unloaded edges simply supported k
32+ 9l
28 Simply supported
241 T+ edges
20 i | | i I | | | L 5 | f I | |
35 7 9 11131517 19 21 23 o 1 2 3 4 5
a’b a/b

(b) (c)
(a) Buckling coefficients for flat plates in compression; (b) buckli
coefficients for flat plates in bending; (c) shear buckling coeffici




where E and v are elastic values of Young’s modulus and Poisson’s ratio.

In the linearly elastic region n=1, which means that Eq. may be applied at all
stress levels.

Below eq. will giving good agreement with experiment is
| 2 E [ 1 1(1 35)%
TS1-wE |27 2\3 TR

where Et and Es are the tangent modulus and secant modulus (stress/strain)

of the plate in the inelastic region and ve and vp are Poisson’s ratio in the
elastic and inelastic ranges.
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The critical load for a column may be determined experimentally, without
actually causing the column to buckle, by means of the Southwell plot.

The critical load for an actual, rectangular, thin plate is found in a similar
manner.

The displacement of an initially curved plate from the zero load position was
found

. mMITX . NIy
H’]—E E mn'aln—‘amT

m=1 n=1
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where B, ANy

The coefficients Bmn increase with an increase of compressive load intensity
NXx.

It follows that when Nx approaches the critical value, Nx,CR, the term in the

series corresponding to the buckled shape of the plate becomes the most
significant.

For a square plate n=1 and m=1 give a minimum value of critical load so that
at the centre of the plate
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A11N

Wy =
NI,CR - Nx

or, rearranging

W1
W) = NI,CRA_IF —Aq
X

A graph of w1 plotted against w1/ Nx will have a slope, in the region of the
critical load, equal to Nx,CR.




Distinguished in the primary and secondary (or local) instability.

The latter form of buckling usually occurs in the flanges and webs of thin-
walled columns having an effective slenderness ratio, le/r <20.

For le/r >80 this type of column is susceptible to primary instability.

In the intermediate range of le/r between 20 and 80, buckling occurs by a
combination of both primary and secondary modes.
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Thin-walled columns are encountered in aircraft structures in the shape of
longitudinal stiffeners, which are normally fabricated by extrusion processes
or by forming from a flat sheet.

A variety of cross-sections are employed although each is usually composed
of flat plate elements arranged to form angle, channel, Z- or ‘top hat’
sections, as shown in Fig. below.

The plate elements fall into two distinct categories: flanges which have a
free unloaded edge and webs which are supported by the adjacent plate
elements on both unloaded edges.
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(a) (b) (c) {d)

(a) Extruded angle; (b) formed channel; (c) extruded Z; (d) formed ‘top hat'.




Values of local critical stress for columns possessing these types of section

may be found using Eq.

nkm*E £\
OCR = —
R=Ta=2)\b

and an appropriate value of k.

For example,

K for a cruciform section column is obtained from Fig(a) . Below for a plate
which is simply supported on three sides with one edge free and has a/b>3.

Hence k =0.43 and if the section buckles elastically then n=1
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It must be appreciated that the calculation of local buckling stresses is
generally complicated with no particular method gaining universal
acceptance, much of the information available being experimental.
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Shear loaded thin walled beams:

General stress,

Strain and displacement relationships,
Direct stress and shear flow system,
Shear centre,

Twist and warping



The equations of equilibrium and expressions for strain
which are necessary for the analysis of open section
beams supporting shear loads and closed section beams
carrying shear and torsional loads.

The analysis of open section beams subjected to torsion
requires a different approach

The relationships are established from first principles for
the particular case of thin-walled sections
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Assumed that axial constraint effects are negligible,

shear stresses normal to the beam surface may be neglected since they are
zero at each surface and the wall is thin,

direct and shear stresses on planes normal to the beam surface are
constant across the thickness,

Finally, the beam is of uniform section so that the thickness may vary with
distance around each section but is constant along the beam.

In addition, ignore squares and higher powers of the thickness t in the
calculation of section properties
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The parameter s in the analysis is distance measured around the cross-
section from some convenient origin.

An element 6 x4 xt of the beam wall is maintained in equilibrium by a
system of direct and shear stresses as shown in Fig. below.

(a) {b)
(a) General stress system on element of a closed or open section beam;

(b) (b) direct stress and shear flow system on the element.
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The direct stress o, is produced by bending moments or by the bending
action of shear loads while the shear stresses are due to shear and/or
torsion of a closed section beam or shear of an open section beam.

The hoop stress o, is usually zero but may be caused, in closed section
beams, by internal pressure.

Specified that t may vary with s, this variation is small for most thin-walled
structures

so that we may reasonably make the approximation that t is constant over
the length &s. Also, deduce that 7, =1, =T say.

However, we shall find it convenient to work in terms of shear flow g, i.e.
shear force per unit length rather than in terms of shear stress. qg=rtt
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For equilibrium of the element in the z direction and

neglecting body forces

dor. g
o+ H—“E: tds — o tés + | g + 3—53 6; —géz =10
z 5

[

which reduces to

dg der;

— +t— =0

as dz
Similarly for equilibrium in the s direction

dq ery

2= 0

dz ik

The direct stresses o, and os produce direct strains €z and €s, while the shear
stress Tinduces a shear strain y(=y,, =y.,).

Let v, is a tangential displacement in the xy plane and is taken to be positive
in the direction of increasing s; v, is a normal displacement in the xy plane
and is positive outwards; and w is an axial displacement.

£ = Ow/0z e, = [(Ovt/ds) + (v./r)]
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Distorted shape
of element due
to shear

—
C -
X <
w “ X -~
2 £
Axial, tangential and normal components of displacement of a point in the beam wall.  Determination of shear strain y in terms of tangential and axial components of displacement.

The shear strain y is found in terms of the displacements w and v, by
considering the shear distortion of an element 6.6, of the beam wall.
The shear strain is given by

V=¢,+ ¢,
or, in the limit as both 6, and 6, tend to zero

y = 0w/0s +0,,/0z

Source from Aircraft



Assume that during any displacement the shape of the beam cross-section
is maintained by a system of closely spaced diaphragms which are rigid in
their own plane but are perfectly flexible normal to their own plane (CSRD
assumption).

There is, therefore, no resistance to axial displacement w and the cross-
section moves as a rigid body in its own plane, the displacement of any
point being completely specified by translations v and v and a rotation ¥

The origin O of the axes in Fig. has been chosen arbitrarily and the axes
suffer displacements u, v and 0. These displacements, in a loading case
such as pure torsion, are equivalent to a pure rotation about some point
R(xR,yR) in the cross-section where R is the centre of twist.

Ly = ;:-'E' —+ 1 COS T,I.rf + v sIn IIE-’ Source from Aircraft Structures by T. H. G. Megson



¥i v = pré

PR = p — XR Sinr 4 yg COS

vy = pb — xgdsin fr + yp bt cos

Establishment of displacement relationships and position of centre of twist of beam (open or closed).



dyy df N du dv
—=p—+—CosU+—
% P U+ 37 Sin U

vy = pt + ucosyr + vsin

dz
. oy B dé - de dé
vy = ptl — xgpBsiny + ygf Ccos %z —FE—IRElnl,ﬁd—E+}?Rm5yffd—E
B dv/dz B du/dz
=404z T agjdz
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Shear of open section beams

The open section beam of arbitrary section shown in Fig. supports shear
loads Sx and Sy such that there is no twisting of the beam cross-section.

For this condition to be valid the shear loads must both pass through a
particular point in the cross-section known as the shear centre.

Since there are no hoop stresses in the beam the shear flows and direct
stresses acting on an element of the beam wall are related by

dg der -
—_— E -
ds T dz
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By assume that the direct stresses are obtained with sufficient accuracy
from basic bending theory

do _ [(aMy/dz) ] — (8My/3z)]yy]

[(8My/ 32)lyy — (9My/32) ]y ]

az

Shear loading of open section beam.

da. _ (Sxfex — Sylyy)

Tuclyy — I,

X

oMy [z = Sy,

(Sylyy — Sxky) 1

dz

Laly - I

—X

laly — 1 °

Tl — 13 !

shear loads Sx and Sy such that there
is no twisting of the beam cross-
section. For this condition to be valid
the shear loads must both pass
through a particular point in the cross-
section known as the shear centre.
Since there are no hoop stresses in
the beam the shear flows and direct
stresses acting

on an element of the beam wall are
related by
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Substituting for doz/0z
Htj (Sxfxx - Syfry} {Sylr_ W ler;l;v]

—_—— t__
05 laly—-B Iy -1 Y

Integrating above equation with respect to s from some origin for s to any
point around the cross-section, we obtain

" Sele — Syl i Selyy — Syl \ [°
_qu: = }'f f frds — | —2 I;} f tyds
0 ds I_rxf}ry — 1'1}, 0 "-'III_}’_'Ir' — .lrl}, 0
If the origin for s is taken at the open edge of the cross-section, then g=0
when s=0 and Eqg.above becomes
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Sele = 8,00\ [ -5,
gs = — iy YOXy fh:dj x} ff}'[is

For a section having either Cx or Cy as an axis of symmetry /xy =0 and
Eq. above reduces to

S i .S- kg
nc;j-z——Jr txds——}f tyds
[ lr:ct 0

¥y W0
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The solution for a shear loaded closed section beam follows a similar
pattern to that described in Sectio for an open section beam but with two
important differences.

First, the shear loads may be applied through points in the cross-section
other than the shear centre so that torsional as well as shear effects are
y

F4 Source from Aircraft Structures by T. H. G. Megson

Shear of closed section beams.



This is possible since, as we shall see, shear stresses produced by torsion in
closed section beams have exactly the same form as shear stresses
produced by shear, unlike shear stresses due to shear and torsion in open
section beams.

Secondly, it is generally not possible to choose an origin for s at which the
value of shear flow is known.

dej do.

as T z 0
5 H_qd.'r =— b - S'N:“ f E tx ds — - 5“:“ j E fyds
o s Lalyy =I5, | Jo Toclyy — f.fv 0

Let us suppose that we choose an origin for s where the shear flow has the
unknown value gs,0.
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Sxa'.r_u' —_ S*pfn fs S}lf}}l — Sx.l';[}l fj
— gsp = — — tx ds — > ds
q.!’ ‘i’s, ( IIII}'F — fﬁ, ) 0 ( fxx:rﬂ — fﬂ 0 f:].:'

Seloy — Svlw \ [F Slyy — Sely | [
gs = — xixx }21} f i ds — L III} f f_".-'[i.‘.i'-l—ﬁ's,ﬂ

This fact indicates a method of solution for a shear loaded closed section
beam. Representing this ‘open’ section or ‘basic’ shear flow by gb,
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(a) (b)
3. 17.11 (3) Determination of q. 5; (b) equivalent loading on ‘open’ section beam.




gy = &b + 45,0

Seley — Syl ) [F Silyy = Sely \ [F
S Jr;} fmh_ vy x;?r ft_vds
laly =15 | Jo by =15 | Jo
The value of shear flow at the cut (s = 0) is then found by equating

applied and internal moments taken about some convenient moment
centre.

Sxno — Svén = Vtﬁpqu = %Fﬁ’h ds +quﬁp ds

1
5A = Eﬂsp
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far="gra
fﬁpda": 2A

where A is the area enclosed by the mid-line of the beam section wall.
Hence

Sxio — Syén = fﬁ pands + 2Aqs0




The unknown shear flow gs,0 follows from either of Egs above.

If the moment centre is chosen to coincide with the lines of action of Sx
and Sy then

0= %P% ds — l"ll.l.ti',l_qu:]




We have defined the position of the shear centre as that point in the

cross-section through which shear loads produce no twisting.

It may be shown by use of the reciprocal theorem that this point is also
the centre of twist of sections subjected to torsion.

The stresses produced by the separate actions of torsion and shear may
then be added by superposition.

It is therefore necessary to know the location of the shear centre in all
types of section or to calculate its position.

Where a cross-section has an axis of symmetry the shear centre must, of

COUTSE, lie on this axis. Source from Aircraft Structures by T. H. G. Megson
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1.8 Shear centre position for type of open section beam shown.
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The shear centre of a closed section beam is located in a similar manner to
that described for open section beams.

Therefore, to determine the coordinate & (referred to any convenient
point in the cross-section) of the shear centre S of the closed section beam

Apply an arbitrary shear load Sy through S, calculate the distribution of
shear flow gs due to Sy and then equate internal and external moments.

_ 4 _¢L
0= f adj 0= j{ G (gh + g50)ds
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If Gt =constant then

Shear centre of a dosed section beam.

Eﬁfqh,.-"ﬁt}ds
¢ ds/Gt

gs0 = — The coordinate n. is found in a similar

manner by applying S, through S.
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The shear centre of a closed section beam is located in a similar manner to
that described for open section beams.

Therefore, to determine the coordinate & (referred to any convenient
point in the cross-section) of the shear centre S of the closed section beam

Apply an arbitrary shear load Sy through S, calculate the distribution of
shear flow gs due to Sy and then equate internal and external moments.

_ 4 _¢L
0= f adj 0= j{ G (gh + g50)ds
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If Gt =constant then

Shear centre of a dosed section beam.

Eﬁfqh,.-"ﬁt}ds
¢ ds/Gt

gs0 = — The coordinate n. is found in a similar

manner by applying S, through S.
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Twist and warping of shear loaded closed section
beams

Shear loads which are not applied through the shear centre of a closed

section beam cause cross-sections to twist and warp, in addition to rotation,
they suffer out of plane axial displacements.

Expressions for these quantities may be derived in terms of the shear flow
distribution gs as follows.

Since g = tt and Tt = Gy then we can express gs in terms of the warping and
tangential displacements w and vt of a point in the beam wall by using Eq.

dw duy
= (5t I
s ( a8 az )
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2 s = 24— — £
rt dz- dr (rt
5
s Aoy "i's du

Wy —wp= | —ls—— P —ds — —(x; —xp) — —
5 — Wo G P dz{ xp) (}’s o)

: Ag dé dé

Ws—wﬂ—f de—f gids—yn—m—mnmam
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s Aps 5
—wo= | Zds LR
e fﬂ Gt A %Gt ’

a0 = constant x w Resultant axial load = ':ﬁcrtd_s
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Topics

Torsion of beams of closed section: Displacements associated with Bredt-
Batho shear flow.

Torsion of open section beams; Warping of cross section, conditions for
Zzero warping.

Bending, shear, torsion of combined open and closed section beams.




A closed section beam subjected to a pure torque T does not, in the absence
of an axial constraint, develop a direct stress system.

It follows that the equilibrium conditions of Eqs
(0q/0s)+ t(0oz/0z) =0 and
(0q/0z)+ t(0os/0s) =0 reduce to
0q/0s=0 and 0q/0z=0, respectively.

These relationships may only be satisfied simultaneously by a constant value
of g.

Therefore, that the application of a pure torque to a closed section beam
results in the development of a constant shear flow in the beam wall.



The shear stress t may vary around the cross-section since we allow the
wall thickness t to be a function of s.

The relationship between the applied torque and this constant shear flow is
simply derived by considering the torsional equilibrium of the section
shown in below Fig.

The torque produced by the shear flow acting on an element 6s of Fig
below



Torsion of a closed section beam.

Determination of the shear flow
the bEEfT wall is pgos. Hence distribution in a closed section beam

subjected to torsion.
T= pqgds ¢

or, since g is constantand  pds=2A

T =2Aq



The origin O of the axes may be positioned in or outside the cross-section
of the beam since the moment of the internal shear flows (whose resultant
is a pure torque) is the same about any point in their plane.

For an origin outside the cross-section the term p ds will involve the
summation of positive and negative areas.

The sign of an area is determined by the sign of p which itself is associated
with the sign convention for torque as follows.



If the movement of the foot of p along the tangent at any point in the
positive direction of s leads to an anticlockwise rotation of p about the

origin of axes, p is positive.

The positive direction of s is in the positive direction of g which is
anticlockwise (corresponding to a positive torque).




Sign convention for swept areas.




In Fig, a generator OA, rotating about O, will initially sweep out a negative
area since pA is negative.

At B, however, pB is positive so that the area swept out by the generator has
changed sign (at the point where the tangent passes through O and p=0).

Positive and negative areas cancel each other out as they overlap so that as
the generator moves completely around the section, starting and returning
to A say, the resultant area is that enclosed by the profile of the beam.

The theory of the torsion of closed section beams is known as the Bredt—
Batho theory and Eq. (18.1) is often referred to as the Bredt—Batho formula.
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is valid for the pure torsion case where g is constant. Differentiating this
expression with respect to z we have

dq P w9y d fowy 9% vy
— = Gt — = () of 1 5 = 0
0z 0z Js 072 s z oz




In the absence of direct stresses the longitudinal strain dw/0z(=£z) is zero
so that

v, .
ai =0 Hence from Eq. vy = pH + ucos iy + vsiny
d%o  d%u d?v
pd{_:2 Fcnsw—l—d—ﬁmnW=0

For above Eq. to hold for all points around the section wall, in other
words for all values of ¢




It follows that & =Az+B, u=Cz+D, v=Ez+F, where A, B, C, D, E and F are unknown
constants. Thus &, u and v are all linear functions of z.

Equation for rate of twist is d@ % s
d_

relating the rate of twist to the variable shear flow gs developed in a shear
loaded closed section beam, is also valid for the case gs =g=constant.

Hence dé . q ds
dz ~ 24 J Gt
which becomes, on substituting for g from Eqg. T = 2Aq
dé T ds

dz ~ 4AZ | Gt



The warping uced by a varying shear flow, as defined by

Eq.

distribution proc

s A
Wy — wp = &ds _ 20s § ﬁd:r
o Gt A Gt

for axes having their origin at the centre of twist, is also applicable to the
case of a constant shear flow.

Sds  Agy ds
o Gt AP G

Wy —Wo = ¢

Thus

Replacing g from Eq. T = 2Aq we have

I's (dos Aos
Wy — W = S i

2A




ds ¥ ds
b= @ — and dp; = -
Gt o Gt

The sign of the warping displacement in Eq.

I'5 (405 A0s
Wy — Wo = —
2A \ o A

is governed by the sign of the applied torque T and the signs of the
parameters 60s and AOs.

Having specified initially that a positive torque is anticlockwise, the signs of
60s and AOs are fixed in that 60Os is positive when s is positive, i.e. s is taken
as positive in an anticlockwise sense, and Aos is positive when, as before, p
(Fig. below) is positive.



Sign convention for swept areas.




Noted that the longitudinal strain €z is zero in a closed section beam
subjected to a pure torque.

This means that all sections of the beam must possess identical warping
distributions.

In other words longitudinal generators of the beam surface remain
unchanged in length although subjected to axial displacement.




An approximate solution for the torsion of a thin-walled open section beam
may be found by applying the results obtained for the torsion of a thin
rectangular strip.

If such a strip is bent to form an open section beam, as shown in Fig. in next
slide and if the distance s measured around the cross-section is large
compared with its thickness t then the contours of the membrane,

i.e. lines of shear stress, are still approximately parallel to the inner and
outer boundaries.

It follows that the shear lines in an element és of the open section must be
nearly the same as those in an element éy of a rectangular strip
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(a) (b)

(a) Shear lines in a thin-walled open section beam subjected to torsion;
(b) approximation of elemental shear lines to those in a thin
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3 sect

Above equation the second expression tor the torsion constant is used if
the cross-section has a variable wall thickness.

Finally, the rate of twist is expressed in terms of the applied torque

do

T =GJ
dz
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The shear stress distribution and the maximum shear stress are sometimes

more conveniently expressed in terms of the applied torque.

Therefore, substituting for d8/dz in Eqs

deo
Ty =26n—, 1;, =0

and

dé
IZ.S‘,IT[E[X — :IZGIE

gives

2n tT

Tzs — I'. Tiymax = £—

J
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We assume in open beam torsion analysis that the cross-section is
maintained by the system of closely spaced diaphragms described and that
the beam is of uniform section.

Clearly, in this problem the shear stresses vary across the thickness of the
beam wall whereas other stresses such as axial constraint stresses are
assumed constant across the thickness.
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The thin rectangular strip suffers warping across its thickness when
subjected to torsion.

In the same way a thin-walled open section beam will warp across its
thickness.

This warping, wt, may be deduced by comparing Fig.
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with Fig. next slide



Warping of

. {
cross-section
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In addition to warping across the thickness, the cross-section of the beam
will warp in a similar manner to that of a closed section beam.

B dw n dug
Vas = s 0z

Referring the tangential displacement vt to the centre of twist R of the cross-section
we have, from Eq

vy = prY

81}[ dé
3z PRdz




Substituting for dvt/0z

aw N dé

Vs = s PR d"
aw de
Tzs =G “I'PR;

On the mid-line of the section wall 7,, =0

dw do

En - PR dz

Integrating this expression with respect to s and taking the lower li
integration to coincide with the point of zero warping, we




de [*
Wy = —— R ds
5 dz 0 PR

It can be seen that two types of warping exist in an open section beam. The above
equation gives the warping of the mid-line of the beam; this is known as primary
warping and is assumed to be constant across the wall thickness.

Equation Wy = mrﬁ

S

gives the warping of the beam across its wall thickness.

This is called secondary warping, is very much less than primary warping and is
usually ignored in the thin-walled sections common to aircraft structures.

Equation  ,, _ _do pR ds may be rewritten in the form
3 .

< JO

de
Wy = —ARE



Pq s=0(w=20)

Warping of an open section beam.




or, in terms of the applied torque : T

in which AR = % f[f PR ds IS the area swept out by a generator, rotating about the
centre of twist, from the point of zero warping .

The sign of ws, for a given direction of torque, depends upon the sign of AR which in
turn depends upon the sign of Pg.




The perpendicular distance from the center of twist to the tangent at any
point.

Again, as for closed section beams, the sign of p; depends upon the assumed
direction of a positive torque, in this case anticlockwise.

Therefore, pr (and therefore A;) is positive if movement of the foot of p, along
the tangent in the assumed direction of s leads to an anticlockwise rotation of
pr about the center of twist.

For open section beams the positive direction of s may be chosen arbitrarily
since, for a given torque, the sign of the warping displacement depends only
on the sign of the swept area A;.



The geometry of the cross-section of a closed section beam subjected to
torsion may be such that no warping of the cross-section occurs.

This condition arises when % ADS or

1
- d
c‘ingr Af‘”RT

Differentiating above Eq. with respect to s gives

Il pr
5Gt  2A

or

2A
pPrGt = 5 = constant



A closed section beam for which pGt =constant does not warp and is known
as a Neuber beam.

For closed section beams having a constant shear modulus the condition
becomes pyt = constant

Examples of such beams are a circular section beam of constant thickness, a
rectangular section beam for which at, =bt,, and a triangular section beam of
constant thickness.

In the last case the shear centre and hence the centre of twist may be shown
to coincide with the centre of the inscribed circle so that p; for each side is
the radius of the inscribed circle.



So far, we have analysed thin-walled beams which consist of either completely
closed cross-sections or completely open cross-sections.

Frequently aircraft components comprise combinations of open and closed
section beams.

For example the section of a wing in the region of an undercarriage bay could
take the form shown in Fig.

Wing section comprising open and closed components.



Clearly part of the section is an open channel section while the nose portion is
a single cell closed section.

We shall now examine the methods of analysis of such sections when
subjected to bending, shear and torsional loads.

Bending

It is immaterial what form the cross-section of a beam takes; the direct
stresses due to bending are given by either of below Egs.
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The methods described in Shear of open section Beams and Shear of
closed section Beams are used to determine the shear stress distribution.

Although, unlike the completely closed section case, shear loads must be
applied through the shear centre of the combined section.

Otherwise shear stresses of the type described in Torsion of open section
Beams due to torsion will arise.

Where shear loads do not act through the shear centre its position must be
found and the loading system replaced



By shear loads acting through the shear centre together with a torque; the
two loading cases are then analysed separately.

Again we assume that the cross-section of the beam remains undistorted by
the loading.




Torsion

Generally, in the torsion of composite sections, the closed portion is
dominant

since its torsional stiffness is far greater than that of the attached open
section portion

which may therefore be frequently ignored in the calculation of torsional
stiffness;

shear stresses should, however, be checked in this part of the section.



Bending, shear, torsion of combined open and closed
section beams.

Problems




So far we have been concerned with relatively uncomplicated structural
sections which in practice would be formed from thin plate or by the
extrusion process.

While these sections exist as structural members in their own right they are
frequently used, to stiffen more complex structural shapes such as fuselages,
wings and tail surfaces.

Thus a two spar wing section could take the form shown in below Fig.
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Typical wing section.
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Ig. Z-section stringers are used to stiffen the thin skin while angle

sections form the spar flanges.

Clearly, the analysis of a section of this type would be complicated and
tedious unless some simplifying assumptions are made.

Generally, the number and nature of these simplifying assumptions
determine the accuracy and the degree of complexity of the analysis; the
more complex the analysis the greater the accuracy obtained.

The degree of simplification introduced is governed by the particular
situation surrounding the problem.
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For a preliminary investigation, speed and simplicity are often of greater
importance than extreme accuracy; on the other hand a final solution must
be as exact as circumstances allow.

Complex structural sections may be idealized into simpler ‘mechanical
model’forms which behave, under given loading conditions, in the same, or
very nearly the same, way as the actual structure.

We shall see, that different models of the same structure are required to
simulate actual behaviour under different systems of loading.
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n the wing section of Fig. below the stringers and spar flanges have sma
cross-sectional dimensions compared with the complete section.

s - T T T

| Typical wing section.

Idealization of a wing section.
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The variation in stress over the cross-section of a stringer due to, say,
bending of the wing would be small.

The difference between the distances of the stringer centroids and the
adjacent skin from the wing section axis is small.

It would be reasonable to assume therefore that the direct stress is constant
over the stringer cross-sections.

We could therefore replace the stringers and spar flanges by concentrations
of area, known as booms,

over which the direct stress is constant and which are located along the

midline of the skin, as shown in above Fig.
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In wing and fuselage sections of the type shown in above Fig., the stringers
and spar flanges carry most of the direct stresses while the skin is mainly
effective in resisting shear stresses although it also carries some of the
direct stresses.

The idealization shown in above Fig. may therefore be taken a stage further
by assuming that all direct stresses are carried by the booms while the skin
is effective only in shear.

The direct stress carrying capacity of the skin may be allowed for by
increasing each boom area by an area equivalent to the direct stress
carrying capacity of the adjacent skin panels.

The calculation of these equivalent areas will generally depend upon an
initial assumption as to the form of the distribution of direct stress in a
boom/skin panel.
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(a) Actual

|dealization of a panel.
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Wish to idealize the panel of above Fig. into a combination of direct stress
carrying booms and shear stress only carrying skin as shown in above Fig.

The direct stress carrying thickness t; of the skin is equal to its actual
thickness t while t, =0.

Suppose also that the direct stress distribution in the actual panel varies
linearly from an unknown value o, to an unknown value o,.

Clearly the analysis should predict the extremes of stress o, and o, although
the distribution of direct stress is obviously lost.
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Since the loading producing the direct stresses in the actual and idealized
panels must be the same

we can equate moments to obtain expressions for the boom areas B, and B,

Thus, taking moments about the right-hand edge of each panel,

sz—l— ( )" bzb— Bb

02tp— + 5(01 — 02)ipbb = 01B)

tpb o)) tpb
By=27 (242 B, = 27
T 6 ( +Ul) 6
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fpb ( UE) tpb o
6 a By 6 (Z—I_Ug)

In above Eqgs, the ratio of o, to o,, if not known, may frequently be assumed.

The direct stress distribution in above Fig. is caused by a combination of axial
load and bending moment.

For axial load only 0,/0, =1 and B, =B, =t,b/2; for a pure bending moment
0,/0,=-1 and B, =B, =t b/6.

Thus, different idealizations of the same structure are required for different

loading conditions. .
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The addition of direct stress carrying booms to open and closed section
beams will clearly modify the analyses presented.

Before considering individual cases we shall discuss the implications of
structural idealization.

Generally, in any idealization, different loading conditions require different
idealizations of the same structure.

Suppose the loading is applied in a vertical plane. If, however, the loading
had been applied in a horizontal plane the assumed stress distribution in the
panels of the section would have been different, resulting in different values
of boom area.
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Suppose that an open or closed section beam is subjected to given bending or
shear loads and that the required idealization has been completed.

The analysis of such sections usually involves the determination of the neutral
axis position and the calculation of sectional properties.

The position of the neutral axis is derived from the condition that the
resultant load on the beam cross-section is zero, i.e.

fffsz:U
A

The area A in this expression is clearly the direct stress carrying area. It follows
that the centroid of the cross-section is the centroid of the direct stress
carrying area of the section, depending on the degree and method of
idealization. The sectional properties, Ixx, etc., must also refer to the direct
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The fuselage section shown in Fig. is subjected to a bending moment of 100
kNm applied in the vertical plane of symmetry. If the section has been
completely idealized into a combination of direct stress carrying booms and
shear stress only carrying panels, determine the direct stress in each boom.

The section has Cy as an axis of symmetry and resists a bending moment M,
=100 kN m. Equation therefore M
X

Oz = —V
!.'ﬁ.'f

The origin of axes C,, coincides with the position of the centroid of the direct
stress carrying area which, in this case, is the centroid of the boom areas.

Thus, taking moments of area about boom 9
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4 {200 mm
1140
960

768
565 %

|dealized fuselage section



(6x640+6x600+2x620+ 2 x 850)y
=640 x 1200+ 2 x 600 x 1140+ 2 x 600 x 960 + 2 x 600 x 768
+2x620%x565+2x640x336+2%x640x%x 144 + 2 x 850 x 38

@ @ @ @) ®
Boom y(mm) B(mm?) Al,=By’(mm*)  o.(N/mm?)
1 +660 640 278 x 10° 35.6
2 +600 600 216 x 10° 32.3
3 +420 600 106 x 10° 22.6
4 +228 600 31 x 10° 12.3
5 425 620 0.4 x 10° 1.3
6 —204 640 27 x 10° —11.0
7 —396 640 100 x 10° —21.4
8 —502 850 214 x 10° —27.0
9 —540 640 187 x 10° —29.0

Source from Aircraft Stru




which gives y = 540mm
The solution is now completed in above Table
From column ® Ixx = 1854 x 106 mm4
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The direct stress carrying booms to open and closed section beams .

Generally, in any idealization, different loading conditions require different
idealizations of the same structure.

The loading had been applied in a horizontal plane the assumed stress
distribution in the panels of the section would have been different, resulting in
different values of boom area.

Suppose that an open or closed section beam is subjected to given bending or
shear loads and that the required idealization has been completed.

The analysis of such sections usually involves the determination of the neutral
axis position and the calculation of sectional properties



The position of the neutral axis is derived from the condition that the resultant
load on the beam cross-section is zero, i.e.

o-dA =0
A

The area A in this expression is clearly the direct stress carrying area.

It follows that the centroid of the cross-section is the centroid of the direct
stress carrying area of the section, depending on the degree and method of
idealization.

The sectional properties, Ixx, etc., must also refer to the direct stress carrying
area.



The direct stress distribution is given by any of Egs

(MTIH : MTIW) (M'rfn' - waxv) Myx(lyyy — LyX) | My(LeX — Iyy)
o; = : —-|x+ — — |V 0. = +

% Ioxlyy — -ftlx I hyy — .ftzl

£

Toxlyy — 11-31 Dexdyy — f%

depending on the beam section being investigated.

In these equations the coordinates (x, y) of points in the cross-section are
referred to axes having their origin at the centroid of the direct stress carrying
area.

Furthermore, the section properties Ixx, lyy and Ixy are calculated for the
direct stress carrying area only.

In the case where the beam cross-section has been completely idealized into
direct stress carrying booms and shear stress only carrying panels, the direct
stress distribution consists of a series of direct stresses concentrated at the
centroids of the booms.



Ex: The fuselage section shown in Fig. below is subjected to a bending
moment of 100 kNm applied in the vertical plane of symmetry.

If the section has been completely idealized into a combination of direct
stress carrying booms and shear stress only carrying panels, determine the
direct stress in each boom.

The section has Cy as an axis of symmetry and resists a bending moment
Mx =100 kN m. Equation therefore reduces to



'
I
1140 !IE‘UDmm
960 |
768 ' g
565 ¥
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e derivation for the shear flow distribution in the cross-section of an open
section beam is based on the equilibrium equation.

The thickness t in this equation refers to the direct stress carrying thickness t,
of the skin.

Equation may therefore be rewritten

Sy 5 In f n f
= — ds — d
s (I !,m_‘,x ) fpX ds (.f Iy — I ) pyds
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ty =t if the skin is fully effective in carrying direct stress or ty =0 if the skin is
assumed to carry only shear stresses.

Again the section properties in above Eq. refer to the direct stress carrying
area of the section since they are those which feature in Egs.

0. — M‘FII'L' - Mtlrx_v  + MTI}'_'P - M‘FIT}' y M.T{I}'_'F}' T I\:}'I} MT{ITII - 1'1"»1'}
) Texlyy I} - Tox Iy IZ -

T Luly — I Leclyy — I

Xy Xy

Equation

— 5 I Sl — 5y I
g, = — uld f tpxds — [ 2 ad f tpyds
I ‘rﬂ 1:1f ‘rtl"rkb

makes no provision for the effects of booms which cause discontinuities in

the skin and therefore interrupt the shear flow.
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¥ rth boom

(x50 )

{a) (b}

(a) Elemental length of shear loaded open section beam with
booms; (b) equilibrium of boom element.
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Consider the equilibrium of the rth boom in the elemental length of beam
shown in above Fig. which carries shear loads Sx and Sy acting through its
shear centre S.

These shear loads produce direct stresses due to bending in the booms and
skin and shear stresses in the skin.

Suppose that the shear flows in the skin adjacent to the rth boom of cross-
sectional area Br are g1 and g2. Then, from above Fig.

oy
(ff: + 3 Sz) By — o8y +q26z — q16z =0
i

der
U‘Br
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which simplifies to 42 —q1 = —



[ (M, /82)lc — (M /32)]y

_ — _ B.x
q2 — 4 IHI}T_IEF rir
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— 2 r¥r
IHI}T — fw

Seloy — Sy1 Svlyy — Syl
g —q1 = — xixx 1'21'1.' B,x, — viyy IEI}' Br}’r
Luly — I, Lilyy — I,

The above Equation gives the change in shear flow induced by a boom
which itself is subjected to a direct load (o, Br ).
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Each time a boom is encountered the shear flow is incremented by this amount so that if, at
any distance s around the profile of the section, n booms have been passed, the shear flow
at the point is given by

Sxlvx — Syf
q.‘.'i' —_— — e '1-'2-1-}' f DX d..'.i' -+ E Eir.-]:r

SI. — 8.0 5 r
— L I;} f tD}rdE + Zﬂr}"r

r=—1
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Calculate the shear flow distribution in the channel section shown in Fig.
produced by a vertical shear load of 4.8 kN acting through its shear centre.
Assume that the walls of the section are only effective in resisting shear
stresses while the booms, each of area 300mm?, carry all the direct stresses.

The effective direct stress carrying thickness tD of the walls of the section is
zero so that the centroid of area and the section properties refer to the
boom areas only.

Since Cx (and Cy as far as the boom areas are concerned) is an axis of
symmetry Ixy =0; also Sx =0 and Eq. thereby reduces to

S n
(s = S Z Br}’r
Lix —1
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200 mm
‘ _— —- — ! -
S C
200 mm
® ®
3 4

|l
200 mm —‘

Idealized channel section of Example 20.3.
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in which Ixx =4x300x2002 =48x10% mm?.

Substituting the values of Sy and Ixx in gives

4.8 x 10° 4
s = — 48 » 106 Z ﬂr—_”jl ZBryr

At the outside of boom 1, gs =0. As boom 1 is crossed the shear flow changes
by an amount given by

g, =-10"*x 300 x 200 = -6N/mm
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Hence q,,=—6 N/mm since, it can be seen that no further changes in shear
flow occur until the next boom (2) is crossed.

Hence g,; = -6 — 10-4 x 300 x 200 = =12N/mm Similarly
Q34 =—-12 - 10-4 x 300 x (-200) = -6N/mm

while, finally, at the outside of boom 4 the shear flow is

-6 - 10-4 x 300 x (-200) = Oas expected.

The complete shear flow distribution is shown in Fig. below

Source from Aircraft Structures by T. H. G. Megson



12 N/mm

@& &
6 N/mm
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The thin-walled single cell beam shown in Fig. below has been idealized into a
combination of direct stress carrying booms and shear stress only carrying
walls. If the section supports a vertical shear load of 10 kN acting in a vertical
plane through booms 3 and 6, calculate the distribution of shear flow around
the section.

Boom areas: B, =B; =200mm?, B, =B, =250mm?, B; =B, =400mm?, B, =
B =100mm?.

The centroid of the direct stress carrying area lies on the horizontal axis of
symmetry so that Ixy =0. Also, since t; =0 and only a vertical shear load is
applied
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8
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120 240 mm 240 mm .
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S n
s = -2 Z Bryr + 5,0
xx

r=1

in which

Ixx = 2(200 x 302+ 250 x 1002+ 400 x 1002 + 100 x 502) = 13.86 x 10s mm+*

I

10 x 10°
= — B.v
s 13.86 x 106 ; r¥r +QS,\D

n
gs=—722x 107"} B.yr +4s0

r=1
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utting” the beam section Iin the wa any wall may
calculating the ‘basic’ shear flow distribution gb from the first term on the
right-hand side of Eg. we have

gb,23=0

gb,34 =-7.22 x 1074(400 x 100) = -28.9N/mm

gb,45 =-28.9 - 7.22 x 10-4(100 x 50) = -32.5N/mm
gb,56 = gb,34 = -28.9N/mm (by symmetry)

gb,67 = gb,23 = 0 (by symmetry)

gb,21 = -7.22 x 10-4(250 x 100) = —-18.1N/mm

gb,18 =-18.1 - 7.22 x 1074(200 % 30) = -22.4N/mm
gb,87 = gb,21 = -18.1N/mm (by symmetry)
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aking moments about the intersection of the line of action of the shear loac
and the horizontal axis of symmetry and referring to the results of Egs .

0 = [gb,81 x 60 x 480 + 2gb,12(240 x 100 + 70 x 240) + 2gb,23 x 240 x 100
— 2gb,43 x 120 x 100 - gb,54 x 100 x 120] + 2 x 97 200g,0

Substituting the above values of gb in this equation gives
q.,0 = -5.4N/mm

the negative sign indicating that gs,0 acts in a clockwise sense.
In any wall the final shear flow is given by gs =gb +gs,0 so that
g21=-18.1+5.4=-12.7N/mm = q87

g23 =-5.4N/mm = g67
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qg34 = -34.3N/mm = g56
g45 = -37.9N/mm

And

g81 =17.0N/mm

giving the shear flow distribution shown in Fig. below.
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3 5.4 >

34 .3 2.7
37.9 b 7.0
5 8
\\ /
34.3 12.7
6 5 4 7

Shear flow distribution N/mm in walls of the beam section
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The fuselage of a light passenger carrying aircraft has the circular cross-section
shown in Fig. The cross-sectional area of each stringer is 100mm? and the
vertical distances given in Fig. are to the mid-line of the section wall at the
corresponding stringer position. If the fuselage is subjected to a bending
moment of 200 kNm applied in the vertical plane of symmetry, at this section,
calculate the direct stress distribution.

The section is first idealized using the method described . As an approximation
we shall assume that the skin between adjacent stringers is flat so that we
may use either Eq.

to determine the boom areas.

Source from Aircraft Structures by T. H. G. Megson



% IARE ¢

From symmetry B1 =B9, B2 =B8 =B10 =B16, B3 =B7 =B11 =B15, B4 =B6 =B12
=B14 and B5 =B13.

0.8 x 149.6 09 0.8 x 149.6 016
B; = 100 + 24+ — )+ 2+ —
6 71 6

1.c.

By = 100 +

0.8 x 149.6 352.0 )
24— | x2=216.6mm
6 381.0
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Similarly B, =216.6mm?, B, =216.6mm?, B, =216.7mm?.

We note that stringers 5 and 13 lie on the neutral axis of the section and are
therefore unstressed; the calculation of boom areas B5 and B13 does not then
arise.

For this particular section Ixy =0 since Cx (and Cy) is an axis of symmetry.
Further, My =0 so that Eq.

in which
Ixx =2 x216.6 x381.02+4 x216.6 x352.02+4 x 216.6 x 26952
+4x216.7 x 145.82=2.52 x 108 mm4
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381.0mm
352.0 mm

(a) (b)

(a) Actual fuselage section; (b) idealized fuselage section
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Stringer/boom y (mm) o. (N/mm?)
1 381.0 302.4
2,16 352.0 279.4
3,15 269.5 213.9
4,14 145.8 115.7
5,13 0 0
6,12 —145.8 —115.7
7,11 —269.5 —213.9
8, 10 —352.0 —279.4
9 —381.0 —302.4
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The fuselage is subjected to a vertical shear load of 100 kN applied at a
distance of 150mm from the vertical axis of symmetry as shown, for the
idealized section, in Fig. 22.2. Calculate the distribution of shear flow in the

section.
Ixy =0 and, since Sx =0, Eq.

Sy w—
s = S—. Z Br}’r + {s.0
L r=1

in which Ixx =2.52x10% mm4 as before. Then

—100 x 103 &
s = 757 % 108 ZBryr"I'qLﬂ
r=1
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The first term on the right-hand side of Eq. is the ‘open section’ shear flow gb.

We therefore ‘cut’one of the skin panels, say 12, and calculate gb.

The results are presented in Table. , the column headed Boom indicates the
boom that is crossed when the analysis moves from one panel to the next.

Note also that, as would be expected, the gb shear flow distribution is
symmetrical about the Cx axis.

The shear flow gs,0 in the panel 12 is now found by taking moments about a
convenient moment centre, say C. Therefore from Eq.
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vi 100 kN
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n
gs = =397 x 1074 Y "B,y, + 450

r=1

100 x 10° x 150 = jﬁqbpdw 2Ags 0

in which A=mx381.02 =4.56x105 mmz. Since the gb shear flows are constant
between the booms, Eg. may be rewritten in the form
100 x 103 x 150 = —2A12Qb,12 — 2A23(b,23 = - -—2A161(b,16 | + 2A(s,0

in which A12, A23, ..., A161 are the areas subtended by the skin panels
12, 23,.., 16 | at the centre C of the circular cross-section and

anticlockwise moments are taken as positive. Clearly A12 =A23=- - - =A16
| =4.56x10°/16=28 500mm?. Equation then becomes
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100x103 x150 = 2x28 500(-gb12-gb23 - - -—gb16 | )+2x4.56x105gs,0

Substituting the values of gb from Table in Eq. we obtain
100 x 103 x 150 = 2 x 28 500(-262.4) + 2 x 4.56 x 105¢s,0
from which gs,0 = 32.8 N/mm (acting in an anticlockwise sense)

The complete shear flow distribution follows by adding the value of gs,0 to
the gb shear flow distribution, giving the final distribution shown in Fig. The
solution may be checked by calculating the resultant of the shear flow
distribution parallel to the Cy axis. Thus

2[(98.8 + 66.0)145.8 + (86.3 + 53.5)123.7 + (63.1 + 30.3)82.5
+(32.8 - 0)29.0] x 10-3= 99.96 kN
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Skin panel Boom B, (mm?) y,(mm) gy (N/mm)
1 2 — — - 0
2 3 2 216.6 352.0 —30.3
3 4 3 216.6 269.5 —53.5
4 5 4 216.7 145.8 —66.0
5 6 5 — 0 —66.0
6 7 6 216.7 —145.8 —53.5
7 8 7 216.6 —269.5 —30.3
& 9 8 216.6 —352.0 0
1 16 1 216.6 381.0 —32.8
16 15 16 216.6 352.0 —63.1
15 14 15 216.6 269.5 —86.3
14 13 14 216.6 145.8 —08.8
13 12 13 - 0 —08.8
12 11 12 216.7 —145.8 —86.3
11 10 11 216.6 —269.5 —63.1
10 9 10 216.6 —352.0 —32.8
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Established the basic theory for the analysis of open and closed section thin-
walled beams subjected to bending, shear and torsional loads.

In addition, complex stringer stiffened sections could be idealized into
sections more amenable to analysis.

Now extend this analysis to actual aircraft components including, wing spars
and box beams.

Investigation and analysis of fuselages, wings, frames and ribs, and consider
the effects of cut-outs in wings and fuselages.

Source from Aircraft Structures by T. H. G. Megson



Aircraft structural components are, complex, consisting usually of thin sheets
of metal stiffened by arrangements of stringers.

These structures are highly redundant and require some degree of
simplification or idealization before they can be analysed.

The analysis presented here is therefore approximate and the degree of
accuracy obtained depends on the number of simplifying assumptions made.

A further complication arises in that factors such as warping restraint,
structural and loading discontinuities and shear lag significantly affect the
analysis,

Shall investigate these effects in some simple structural components.
Source from Aircraft Structures by T. H. G. Megson



Generally, a high degree of accuracy can only be obtained by using
computer-based techniques such as the finite element method.

However, the simpler, quicker and cheaper approximate methods can be
used to advantage in the preliminary stages of design when several
possible structural alternatives are being investigated,

they also provide an insight into the physical behaviour of structures which
computer-based techniques do not.

Major aircraft structural components such as wings and fuselages are
usually tapered along their lengths for greater structural efficiency.

Source from Aircraft Structures by T. H. G. Megson



Thus, wing sections are reduced both chordwise and in depth along the wing
span towards the tip and fuselage sections aft of the passenger cabin taper to
provide a more efficient aerodynamic and structural shape.

The analysis of open and closed section beams assumes that the beam
sections are uniform.

The effect of taper on the prediction of direct stresses produced by bending is
minimal if the taper is small and the section properties are calculated at the
particular section being considered,

Calculation of shear stresses in beam webs can be significantly affected by
taper.

Source from Aircraft Structures by T. H. G. Megson
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Effect of taper on beam analysis.
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onsider the simple case of wing spar beam, positioned in the yz plane and
comprising two flanges and a web: an elemental length 6z of the beam is
shown in Fig. above slide.

At the section z the beam is subjected to a positive bending moment Mx and a
positive shear force Sy.

The bending moment resultants Pz,1 and Pz,2 are parallel to the z axis of the
beam.

For a beam in which the flanges are assumed to resist all the direct stresses,
Pz,1 =Mx/h and Pz,2=-Mx/h.
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In the case where the web is assumed to be fully effective in resisting direct
stress, Pz,1 and Pz,2 are determined by multiplying the direct stresses oz,1
and oz,2 found using Eq.

TN\ Ty - 13, Inly —13, )"

N Mx(fyyy — vax) i M}-'Uxx-x - Ixy}?)

o-. =
) Liclyy — 12 Lipdyy — 12,

by the flange areas B1 and B2.
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Pz,1 and Pz,2 are the components in the z direction of the axial loads P1 and
P2 in the flanges.

These have components Py,1 and Py,2 parallel to the y axis given by

oY1 dy2
Py = Pz’lc()'— P},g = —P.,—

' Z 07

in which, for the direction of taper shown, 6y2 is negative. The axial load
in flange is given by

Py =P +P; "




Substituting for Py,1 in above Eg. we have

5 2 4 24172 p
Plszl{E S}Il} _ z 1
) dz COS ¥ |

P z,2
COS ¢y

Py =

The internal shear force Sy comprises the resultant Syw of the web shear flows
together with the vertical components of P1 and P2. Thus

S}; = Sy,w + P}yjl — Py’Z

oy dy2
S? — S h P7 - P7 -
) VW + z.1 32 + z.2 SZ




)
S.“__-,}tr p— S}: - PZ,]

Again we note that 6y2 is negative. The above Equation may be used to
determine the shear flow distribution in the web.

For a completely idealized beam the web shear flow is constant through
the depth and is given by Sy,w/h.

For a beam in which the web is fully effective in resisting direct stresses
the web shear flow distribution is found using Eq.

Sxlix — Sylxy f . .
= — —— inx ds 4+ B x,
qs ( Irxj_v}-‘ — f% ) ( A D- Z rXp

r=I1

Sylyy — Sclyy [ -
— | == : tpyds + ) B,y,
( Irxf_x{y — I% ] Z -

r=I1




Sy is replaced by Sy,w and which, for the beam would simplify to

S_F:.w ¥

gs = tpyds + By
J!T;::r ()
S +

gy = ——— ( f ipyds + Bz}’z)
J!T;::r ()




Determine the shear flow distribution in the web of the tapered beam shown
in Fig. below, at a section midway along its length. The web of the beam has a
thickness of 2mm and is fully effective in resisting direct stress. The beam
tapers symmetrically about its horizontal centroidal axis and the cross-
sectional area of each flange is 400mm?.

'a | Ly
e A 400 mm?| 1
L
e o 1
400 mm Z : } E'ﬂﬂ_:l'lm s 300 mm
7 L ? 2 mm ==
Z ®
) o2
7 A v,mk" 400 mm?
| | Section AA
|_‘ Tm
_ Zm j

(a) (b}



The internal bending moment and shear load at the section AA produced by the
externally applied load are, respectively

My =20x1=20kNm S, =—-20kN

The direct stresses parallel to the z axis in the flanges at this section are obtained either

from Eqgs (16.18) or (16.19) in which M, =0 and I, = 0. Thus, from Eq. (16.18)

M,y .
T T ®
in which
Lo = 2 x 400 x 1507 + 2 x 300°/12
lLe.
Ie = 22.5 % 10° mm*
Hence

20 x 10° x 150

= 133.3N/mm?

O;1 = —0;2 =

22.5 x 109

The components parallel to the z axis of the axial loads in the flanges are therefore

P.y =—P.>=133.3 400 =53320N




The shear load resisted by the beam web 1s then, from Eq. (21.5)

A& &y
Sy = —20 x 10> — 5332021 1 53 323%
: z Z
in which, from Figs 21.1 and 21.2, we see that
Sy; —100 5y 100
e — = —0.05 = = 0.05
bz 2 x 103 8z 2 x 103

Hence
Syw = —20 X 10° 53320 % 0.05 + 53320 x 0.05 = —14668N

The shear flow distribution in the web follows either from Eq. (21.6) or Eq. (21.7) and
is (see Fig. 21.2(b))

14 668
22.5 x 106

qd12 =

(f 2(150 — 5)ds + 400 x 150)
0
l.e.
g12 = 6.52 x 107%(—=s> + 300s + 60 000) (ii)

The maximum value of g2 occurs when s = 150 mm and g7 (max) = 53.8 N/mm. The

values of shear flow at points 1 (s =0) and 2 (s =300 mm) are g; =39.1 N/mm and
g2 = 39.1 N/mm; the complete distribution is shown in Fig. 21.3.
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Shear flow (N/mm) distribution at Section AA in Example 21.1.




{a)

(b) {c)
Effect of taper on the analysis of open and closed




Figure shows a short length 6z of a beam carrying shear loads Sx and Sy at the
section z; Sx and Sy are positive when acting in the directions shown.

Note that if the beam were of open cross-section the shear loads would be
applied through its shear centre so that no twisting of the beam occurred.

In addition to shear loads the beam is subjected to bending moments Mx and
My which produce direct stresses oz in the booms and skin.

Suppose that in the rth boom the direct stress in a direction parallel to the z
axis is oz,r , which may be found using either 0z Eq. The component Pz,r of the
axial load Prin the rth boom is then given by

P.r = 0;,B;

Source from Aircraft Structures by T. H. G. Megson
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Px,r — zra_;

P, = (Pi,, + Pi,, + P22

(8x2 + 8y2 + 8231/

P =P

02




The applied shear loads Sx and Sy are reacted by the resultants of the shear flows in

the skin panels and webs, together with the components Px,r and Py,r of the axial loads
in the booms.

Therefore, if Sx,w and Sy,w are the resultants of the skin and web shear flows and there
Is a total of m booms in the section

m m
Sx= x,w‘l‘ZPx,r S}'= }',W—I_ZP}‘,F
r=1 r=1
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Modification of moment equation in shear of closed section beams due to boom load.

- 8x - Sy
r=1

r=1

- Sx ” Sy
Sx,w=Sx_ZPZ,r3_r S}',W=S}'_sz,r3_r
r=1 < <

r=1

S



The shear flow distribution in an open section beam is now obtained using EQ.

Sxfrxx T Svixv '/S .
4s = — — mx ds + B, x,

Sylyy — Silyy BF “
el : tpyds+ ) By
(H5) ([ oo o

in which Sx s replaced by Sx,w and Sy by Sy,w from Eq.

W,
1 oz oz

Syw =Sy — P,

Similarly for a closed section beam, Sxand Sy in Eq. (20.11)

SI.—S.I. s n
xtax vixy
s = — ; f mx ds + E Byx,
( Leclyy = I3, ) ( 0 o
Soly — Sely s "
i ( Il a}) (f; e ZB””) T

r=1

So



are replaced by Sx,w and Sy,w. In the latter case the moment equation

Sxno — Syéo = f pavds + 2Aqs.0

requires modification due to the presence of the boom load components Px,rand Py,r.
Thus from Fig.

Sy f- ko - £ -

.
. i
Moment
centre Tlo
—-_#.’*1 -

o—

> Modification of moment equation in shear of closed section beams due to boom load.



we see that Eq.

Sx no — Syf‘_’-;_ﬂ = fpfj’bdﬁ‘ + ZAQS,U

becomes
m m
S0 — Syko = 55 qopds +2Aq50 — Y Pstlr + Y Pysky
r=1 r=1

The above Equation is directly applicable to a tapered beam subjected to forces
positioned in relation to the moment centre as shown.

Care must be taken in a particular problem to ensure that the moments of the
forces are given the correct sign.




In many aircraft, structural beams, such as wings, have stringers whose
cross-sectional areas vary in the spanwise direction.

The effects of this variation on the determination of shear flow
distribution cannot therefore be found by the methods described in
previous Section which assume constant boom areas.

In fact, if the stringer stress is made constant by varying the area of
cross-section there is no change in shear flow as the stringer/boom is
crossed.

Source from Aircraft Structures by T. H. G. Megson



The calculation of shear flow distributions in beams having variable stringer
areas is based on the alternative method for the calculation of shear flow
distributions described in previous Section and illustrated in the alternative
solution also.

The stringer loads Pz,1 and Pz,2 are calculated at two sections z1 and z2 of
the beam a convenient distance apart.

We assume that the stringer load varies linearly along its length so that the
change in stringer load per unit length of beam is given by

_Pz.l_Pz,E

721 — 22

]

AP

The shear flow distribution follows as previously described.

Source from Aircraft Structures by T. H. G. Megson



The wing section shown in Fig. below has been idealized into an
arrangement of direct stress carrying booms and shear—stress-only
carrying skin panels. The part of the wing section aft of the vertical
spar 31 performs an aerodynamic role only and is therefore

Three-boom wing section. Source from Aircraft Structures by T. H. G. Megson



unstressed. Lift and drag loads, Sy and Sx, induce shear flows in the skin
panels which are constant between adjacent booms since the section has
been completely idealized.

Therefore, resolving horizontally and noting that the resultant of the internal
shear flows is equivalent to the applied load, we have

Sy = —q12l12 + q23123
Now resolving vertically

Sy = q31(h2 + h23) — q12h12 — q23h23
Finally, taking moments about, say, boom 3

Sxno + Syéo = —2A12q12 — 2A23423

Source from Aircraft Structures by T. H. G. Megson



In the above there are three unknown values of shear flow, g12, g23, g31
and three equations of statical equilibrium. We conclude therefore that a
three-boom idealized shell is statically determinate.

We shall return to the simple case of a three-boom wing section when we
examine the distributions of direct load and shear flows in wing ribs.

Meanwhile, we shall consider the bending, torsion and shear of
multicellular wing sections.

Source from Aircraft Structures by T. H. G. Megson



Bending moments at any section of a wing are usually produced by shear
loads at other sections of the wing.

The direct stress system for such a wing section below Fig. is given by o, Eqgs
in which the coordinates (x, y) of any point in the cross-section and the
sectional properties are referred to axes Cxy in which the origin C coincides
with the centroid of the direct stress carrying area.

¥ i

A
Y

= T

J
L/

\‘\F\C
I &

Idealized section of a multicell wing.
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The wing section shown in Fig. below has been idealized such that the
booms carry all the direct stresses. If the wing section is subjected to a
bending moment of 300 kNm applied in a vertical plane, calculate the
direct stresses in the booms.

Boom areas: B1 = B6 = 2580mm? B2 = B5 = 3880mm? B3 = B4 =

3230mm?

*\1 T

- I ;IGS mm | €30 mm
f . . ;|65 mm 5
e /6 230 mm

— P

1270mm 1 020 mm
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We note that the distribution of the boom areas is symmetrical about the
horizontal x axis.

Hence, in 0z Eq. Ixy =0. Further, Mx =300 kNm and My =0 so that ozEq.
reduces to

My
Ly

O; =

Ly = 2(2580 x 165 + 3880 x 230% + 3230 x 200%) = 809 x 10® mm*




The solution is now completed in below Table in which positive direct
stresses are tensile and negative direct stresses compressive.

Boom Vv (mm) o. (N/mm?)
1 165 61.2
2 230 85.3
3 200 74.2
4 —200 —74.2
5 —230 —85.3
6 —165 —61.2




e chordwise pressure distribution on an aerodynamic surface may
represented by shear loads (lift and drag loads) acting through the
aerodynamic centre together with a pitching moment MO.

This system of shear loads may be transferred to the shear centre of the
section in the form of shear loads Sx and Sy together with a torque T.

It is the pure torsion case that is considered here. In the analysis we assume
that no axial constraint effects are present and that the shape of the wing
section remains unchanged by the load application.

In the absence of axial constraint there is no development of direct stress in
the wing section so that only shear stresses are present.

It follows that the presence of booms does not affect the analysis in the pure

torsion case.
Source from Aircraft Structures by T. H. G. Megson



Multicell wing section subjected to torsion.




The wing section shown in Fig. 23.4 comprises N cells and carries a torque T which
generates individual but unknown torques in each of the N cells. Each cell therefore
develops a constant shear flow qi, qi, ..., gr, . . ., gNgiven by .

The total is therefore




Deflections of multi-cell wings may be calculated by the unit load method in
an identical manner to that described in open and single cell beams.

Cut-outs in wings

Wings, as well as fuselages, have openings in their surfaces to
accommodate undercarriages, engine nacelles and weapons installations,
etc.

In addition inspection panels are required at specific positions so that, as
for fuselages, the loads in adjacent portions of the wing structure are

modified.

Source from Aircraft Structures by T. H. G. Megson
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n practice It Is necessary to provide openings In these closed stitfened
shells for, for example, doors, cockpits, bomb bays, windows in
passenger cabins, etc.

These openings or ‘cut-outs’ produce discontinuities in the otherwise
continuous shell structure so that loads are redistributed in the vicinity
of the cut-out thereby affecting loads in the skin, stringers and frames.

Frequently these regions must be heavily reinforced resulting in
unavoidable weight increases.

In some cases, for example door openings in passenger aircraft, it is not
possible to provide rigid fuselage frames on each side of the opening
because the cabin space must not be restricted.



In such situations a rigid frame is placed around the opening to resist shear
loads and to transmit loads from one side of the opening to the other.

The effects of smaller cut-outs, such as those required for rows of windows in
passenger aircraft, may be found approximately as follows.

Figure shows a fuselage panel provided with cut-outs for windows which are
spaced a distance / apart.

The panel is subjected to an average shear flow gav which would be the value
of the shear flow in the panel without cut-outs.

Considering a horizontal length of the panel through the cut-outs we see that
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q1

“h

Now considering a vertical length of the panel through the cut-outs

q2d1 = qayd

d

q2 = EQEW

The shear flows g3 may be obtained by considering either vertical or horizontal
sections not containing the cut-out. Thus

a3 + @2l = qayl!



Substituting for ¢, from Eq. (22.3) and noting that /=1y + [, and d =d;| +d,,, we
obtain




Aircraft are constructed primarily Trom thin metal skins which are capable 0
resisting in-plane tension and shear loads but buckle under comparatively low
values of in-plane compressive loads.

The skins are therefore stiffened by longitudinal stringers which resist the in-
plane compressive loads and, at the same time, resist small distributed loads
normal to the plane of the skin.

The effective length in compression of the stringers is reduced, in the case of
fuselages, by transverse frames or bulkheads or, in the case of wings, by ribs.

In addition, the frames and ribs resist concentrated loads in transverse planes
and transmit them to the stringers and the plane of the skin.

Thus, cantilever wings may be bolted to fuselage frames at the spar caps while

undercarriage loads are transmitted to the wing through spar and rib
attachment poi nts. Source from Aircraft Structures by T. H. G. Megson



Generally, frames and ribs are themselves fabricated from thin sheets of
metal and therefore require stiffening members to distribute the
concentrated loads to the thin webs.

If the load is applied in the plane of a web the stiffeners must be aligned
with the direction of the load.

Alternatively, if this is not possible, the load should be applied at the

intersection of two stiffeners so that each stiffener resists the component of
load in its direction.

Source from Aircraft Structures by T. H. G. Megson



A cantilever beam Fig. below carries concentrated loads as shown. Calculate
the distribution of stiffener loads and the shear flow distribution in the web
panels assuming that the latter are effective only in shear.

We note that stiffeners HKD and JK are required at the point of application of
the 4000N load to resist its vertical and horizontal components.

A further transverse stiffener GJC is positioned at the unloaded end J of the
stiffener JK since stress concentrations are produced if a stiffener ends in the
centre of a web panel.

We note also that the web panels are only effective in shear so that the shear

flow is constant throughout a particular web panel; the assumed directions of
the shear flows are shown in Fig.

Source from Aircraft Structures by T. H. G. Megson
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From the equilibrium of stiffener JK we have

(g, — g,) x 250 = 4000 sin 60° = 3464.1N

250
_

- il ~ 4000sin60° |
s
! - K q [ 200 mm
qz L ]

.

[
4000
q, I cos 60° 100 mm




Y
q, | 0
! 200 mm
J
q, 100 mm

G

Equilibrium of stiffener CJG in the beam




and from the equilibrium of stiffener HKD
200q, + 100g, = 4000 cos 60° = 2000N (ii)
q,=11.3N/mm g, =-2.6N/mm

The vertical shear force in the panel BCGF is equilibrated by the vertical
resultant of the shear flow g;. Thus

300qg; = 4000 cos 60° = 2000N
Whence g; =6.7N/mm

Alternatively, g; may be found by considering the equilibrium of the stiffener
CJG.

Source from Aircraft Structures by T. H. G. Megson



300g3 = 200g1 + 100qg2

or

30093 =200x11.3-100x% 2.6
from which

g3 =6.7N/mm

The shear flow g4 in the panel ABFE may be found using either of the above
methods.

Thus, considering the vertical shear force in the panel
300g4 = 4000 cos 60° + 5000 = 7000N

whence

g4 = 23.3N/mm

Alternatively, from the equilibrium of stiffener BF
30094 - 300g3 = 5000N

Source from Aircraft Structures by T. H. G. Megson
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Aircratt landing gear supports the entire weight of an aircraftt during landing
and ground operations.

They are attached to primary structural members of the aircraft. The type of
gear depends on the aircraft design and its intended use.

Most landing gear have wheels to facilitate operation to and from hard
surfaces, such as airport runways.

Other gear feature skids for this purpose, such as those found on
helicopters, balloon gondolas, and in the tail area of some tail dragger
aircraft.

Aircraft that operate to and from frozen lakes and snowy areas may be
equipped with landing gear that have skis.

Slide is belongs to https.//www.faa.gov/reqgulations_policies/handbeeks manuals/.../ama_Ch13.pdf




Aircraft that operate to and from the surface of water have pontoon-type
landing gear.

Regardless of the type of landing gear utilized, shock absorbing equipment,
brakes, retraction mechanisms, controls, warning devices, cowling, fairings,
and structural members necessary to attach the gear to the aircraft are
considered parts of the landing gear system.

Landing Gear Arrangement
Three basic arrangements of landing gear are used: tail wheel type landing

gear (also known as conventional gear), tandem landing gear, and tricycle-
type landing gear.

Slide is belongs to https.//www.faa.gov/reqgulations_policies/handbeeks manuals/.../ama_Ch13.pdf
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Tail Wheel-Type Landing Gear

Tail wheel-type landing gear is also known as conventional gear because
many early aircraft use this type of arrangement.

The main gear are located forward of the center of gravity, causing the tail to
require support from a third wheel assembly.

A few early aircraft designs use a skid rather than a tail wheel. This helps slow
the aircraft upon landing and provides directional stability.

The resulting angle of the aircraft fuselage, when fitted with conventional
gear, allows the use of a long propeller that compensates for older,

underpowered engine design.

Slide is belongs to https://www.faa.gov/requlations_policies/handbeoks manuals/.../ama_Ch13.pdf



& 000

e increased clearance of the forwarc
landing gear is also advantageous when operating in and out of non-paved

runways.

Today, aircraft are manufactured with conventional gear for this reason and
for the weight savings accompanying the relatively light tail wheel assembly.

Slide is belongs to https://www.faa.gov/regulations_policies/handbee




Few aircraft are designed with tandem landing gear. As the name implies, this
type of landing gear has the main gear and tail gear aligned on the longitudinal
axis of the aircraft.

Sailplanes commonly use tandem gear, although many only have one actual
gear forward on the fuselage with a skid under the tail.

A few military bombers, such as the B-47 and the B-52, have tandem gear, as
does the U2 spy plane.

The VTOL Harrier has tandem gear but uses small outrigger gear under the
wings for support.

Generally, placing the gear only under the fuselage facilitates the use of very

flexible wings.
Slide is belongs to https.//www.faa.gov/reqgulations_policies/handbeeks manuals/.../ama_Ch13.pdf
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The most commonly used landing gear arrangement is the tricycle-type
landing gear. It is comprised of main gear and nose gear. [Figure 13-6]

Tricycle-type landing gear is used on large and small aircraft with the
following benefits:

1. Allows more forceful application of the brakes without nosing over when
braking, which enables higher landing speeds.

2. Provides better visibility from the flight deck, especially during landing
and ground maneuvering.

3. Prevents ground-looping of the aircraft. Since the aircraft center of
gravity is forward of the main gear, forces acting on the center of gravity
tend to keep the aircraft moving forward rather than looping, such as with
a tail wheel-type landing gear.

Slide is belongs to https.//www.faa.gov/reqgulations_policies/handbeeks manuals/.../ama_Ch13.pdf
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