INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	FLIGH	FLIGHT MECHANICS				
Course Code	AAEB	09				
Programme	B.Tech	l				
Semester	IV	AE				
Course Type	Core					
Regulation	IARE - R18					
			Theory		Practic	al
Course Structure	Lectu	ires	Tutorials	Credits	Laboratory	Credits
	3		-	3	-	-
Chief Coordinator	Mrs.Madhurakavi Sravani, Assistant Professor					
Course Faculty	Mrs.M Mrs.C.	adhu Nava	rakavi Sravani, A neetha, Assistant	ssistant Profes Professor	sor	

I. COURSE OVERVIEW:

Flight mechanics is the science that investigates the control of aircraft and other flying vehicles. From the time of the Wright brothers it was recognized that flight without control is impossible. Since then, several different concepts for controlling aircraft flight have been devised including control surfaces, deformable surfaces, rockets and others. This course introduces some of these concepts and describes their operation, as well as the degree of stability that they can provide. Both aircraft and helicopters are addressed. Modern aircraft control is ensured through automatic control systems. Their role is to increase safety, facilitate the pilot's task and improve flight qualities. The course will introduce modern aircraft control and discuss some of its objectives and applications.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AAEB03	II	Engineering Mechanics	4

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Flight mechanics	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	>	Quiz	>	Assignments	×	MOOCs
~	LCD / PPT	>	Seminars	×	Mini Project	>	Videos
×	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 Alternative Assessment Tool (AAT).

Table 1: A	ssessment pattern	for CIA
------------	-------------------	---------

Component		Total Marka		
Type of Assessment	CIE Exam	Quiz	AAT	
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz – Online Examination:

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Such a

question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quizzes for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the class room into effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in engineering) five minutes video and MOOCs etc.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	2	Assignments
	and an engineering specialization to the solution of		
	complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	3	Assignments, Real
	research literature, and analyze		time applications
	complexengineering problems reaching		
	substantiated conclusions using first principles of		
	mathematics, natural sciences, and engineering		
	sciences		
PO 4	Conduct investigations of complex problems:	2	Seminars
	Use research-based knowledge and research		
	methods including design of experiments, analysis		
	and interpretation of data, and synthesis of the		
	information to provide valid conclusions.		

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency
			assessed by
PSO 1	Professional skills: Able to utilize the knowledge of	-	-
	aeronautical/aerospace engineering in innovative, dynamic		
	and challenging environment for design and development of		
	new products		
PSO2	Problem-solving Skills: Imparted through simulation	2	Tutorials
	language skills and general purpose CAE packages to solve		
	practical, design and analysis problems of components to		
	complete the challenge of airworthiness for flight vehicles.		
PSO 3	Practical implementation and testing skills: Providing	-	-
	different types of in house and training and industry practice		
	to fabricate and test and develop the products with more		
	innovative technologies		
PSO4	Successful career and entrepreneurship: To prepare the	-	-
	students with broad aerospace knowledge to design and		
	develop systems and subsystems of aerospace and allied		
	systems and become technocrats.		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES:

The co	The course should enable the students to:					
Ι	Learn the different regimes of aircraft and performance requirements at different atmospheric conditions.					
II	Understand the different type of velocities and gives differences between stall velocity and maximum and minimum velocities.					
III	Estimate the time to climb and descent and relate between rate of climb and descent and time to climb and descent at different altitudes.					
IV	Illustrate the velocity and radius required for different type of maneuvers like pull-up, pull down and steady turn.					
V	Evaluate the equations of motion for an airplane in different flight modes like takeoff, cruise and landing.					

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	CO 1 Understand the design mission, performance, Standard		Remember the atmospheric conditions that are suitable for better performance of an aircraft.
	atmosphere, aerodynamic and propulsive forces, different	CLO 2	Understand the basics of mathematics, science and engineering for problem solving.
	ofaircraft.	CLO 3	Describe different atmospheric models that an aircraft encounters in its real-time flight.
		CLO 4	Demonstrate different methods for the measurement of air data and their respective systems working principle.
CO 2	Remember and describe the cruise performance of an	CLO 5	Describe mission profiles that an aircraft adapts depending upon its category and requirements.
	airplane in relation with range and endurance with different	CLO 6	Understand different phases of design process from performance standpoint.
	types of engines also to understand effects of weight,	CLO 7	Identify definition of aircraft performance for different categories of aircraft.
altitude and temperature on performance.		CLO 8	Explain the force system of the aircraft and the development of equations of motion.
CO 3	Determine and apply the concept of climb and descent	CLO 9	Evaluate the performance of aircraft in cruising phase and appropriate conclusions are drawn.
	performance and to calculate power for best climb and descent performance.	CLO 10	Illustrate the climb and descent performance of the aircraft and its performance parameters are measured.
		CLO11	Understand the concept behind various methods that are employed during takeoff and landing phasesdepending upon its mission.
		CLO12	Evaluate the factors that enhance the performance of aircraft during takeoff and landing.
CO 4	Describe about aircraft maneuver performance in turn,	CLO 13	Understand the maneuver performance of typical transport and military aircrafts.
pull-ups b limitations military and c	pull-ups by considering limitations of power for military and civil aircrafts.	CLO 14	Understand the parametric performance data analysis for different phases of aircraft and various methods of measurement.
		CLO 15	Understand the concept of flight planning, fuel planning and how it affects the performance of aircraft.
		CLO 16	Understand the propulsive force characteristics like thrust that affects the

COs	Course Outcome	CLOs	Course Learning Outcome
			aircraft performance.
CO 5	Explore the methods to calculate take off and landing runway distances and to understand fuel planning,	CL017	Describes the flight measurement of performance, with detailed sections on airworthiness certification and the performance manual.
	of aircraft performance.	CLO 18	for the aircraft instruments to derive air data.
		CLO 19	Understand the aerodynamic force characteristics like lift and drag that affects the aircraft performance.
		CLO 20	Evaluate the equation of motion, which are used in the expressions for maneuver performance.

X. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's	At the end of the course, the student will have	PO's	Strength of
Code	GT 0 1	the ability to:	Mapped	Mapping
AAEB09.01	CLO 1	Remember the atmospheric conditions that are	PO 1	2
		suitable for better performance of an aircraft.		
AAEB09.02	CLO 2	Understand the basics of mathematics, science and	PO 1	3
		engineering for problem solving.	PO 2	
AAEB09.03	CLO 3	Describe different atmospheric models that an aircraft encounters in its real-time flight.	PO 1	2
AAEB09.04	CLO 4	Demonstrate different methods for the	PO 2	3
		measurement of air data and their respective		
		systems working principle.		
AAEB09.05	CLO 5	Describe mission profiles that an aircraft adapts	PO 1	2
		depending upon its category and requirements.		
AAEB09.06	CLO 6	Understand different phases of design process from	PO 3	3
		performance standpoint.		
AAEB09.07	CLO 7	Identify definition of aircraft performance for	PO 1	2
		different categories of aircraft.		
AAEB09.08	CLO 8	Explain the force system of the aircraft and the	PO 2	1
		development of equations of motion.		
AAEB09.09	CLO 9	Evaluate the performance of aircraft in cruising	PO 2	3
		phase and appropriate conclusions are drawn.		
AAEB09.10	CLO 10	Illustrate the climb and descent performance of the	PO 2	2
		aircraft and its performance parameters re		
	<u> </u>	measured.		
AAEB09.11	CLO 11	Understand the concept behind various methods that	PO 2	3
		are employed during takeoff and landing phases		
		depending upon its mission.		
AAEB09.12	CLO 12	Evaluate the factors that enhance the performance of	PO 1	2
	GT 0 10	aircraft during takeoff and landing.	DO 1	
AAEB09.13	CLO 13	Understand the maneuver performance of typical	PO I	2
	CI 0 14	transport and military aircrafts.		2
AAEB09.14	CLO 14	Understand the parametric performance data	PO 2	3
		analysis for different phases of aircraft and various		
		methods of measurement.		
AAEB09.15	CLO 15	Understand the concept of flight planning, fuel	PO 1	2
		planning and how it affects the performance of		
		aircraft.		
AAEB09.16	CLO 16	Understand the propulsive force characteristics like	PO 2	3
		thrust that affects the aircraft performance.		

CLO	CLO's	At the end of the course, the student will have	PO's	Strength of
Code		the ability to:	Mapped	Mapping
AAEB09.17	CLO 17	Describes the flight measurement of performance,	PO 2	2
		with detailed sections on airworthiness certification		
		and the performance manual.		
AAEB09.18	CLO 18	Evaluate the calibration methods that are used for	PO 1	3
		the aircraft instruments to derive air data.		
AAEB09.19	CLO 19	Understand the aerodynamic force characteristics	PO 2	2
		like lift and drag that affects the aircraft		
		performance.		
AAEB09.20	CLO 20	Evaluate the full equation of motion, which are	PO 1	2
		developed and used in the expressions for		
		maneuver performance.		

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course Outcomes	Pro	gram Outcome	Program Specific Outcomes (PSOs)	
(COs)	PO 1	PO 2	PO 3	PSO2
CO 1	2	3		2
CO 2	2	1	3	2
CO 3	2	3		2
CO 4	2	3	3	2
CO 5	3	2		2

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)								Pr Ou	ogram utcome	Species (PSC	fic Ds)				
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	2															
CLO 2	3	3														
CLO 3	2													2		
CLO 4		3														
CLO 5	2															
CLO 6			3													
CLO 7	1													2		
CLO 8		1														
CLO 9		3														
CLO 10		2														
CLO 11		3												2		

Course Learning					Progr	am C	Jutco	mes ()	POs)				Program Specific Outcomes (PSOs)			
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 12	2															
CLO 13	2															
CLO 14		3												2		
CLO 15	2															
CLO 16	2															
CLO 17		3														
CLO 18	2															
CLO 19		2												2		
CLO 20	2															

3 = High; **2** = Medium; **1** = Low

XIII. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO 1, PO 2, PO 3,PSO2	SEE Exams	PO 1, PO 2, PO 3,PSO2	Assignments	PO 1, PO 2	Seminars	PO 3
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO 1, PO2, PO3,PSO2						

XIV. ASSESSMENT METHODOLOGIES-INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

Module-I INTRODUCTION TO AIRCRAFT PERFORMANCE

The role and design mission of an aircraft; Performance requirements and mission profile; Aircraft design performance, the standard atmosphere; Off-standard and design atmosphere; Measurement of air data; Air data computers; Equations of motion for performance - the aircraft force system; Total airplane dragestimation, drag reduction methods; The propulsive forces, the thrust production engines, power producing engines, variation of thrust, propulsive power and specific fuel consumption with altitude and flight speed; The minimum drag speed, minimum power speed; Aerodynamic relationships for a parabolic drag polar.

Module-II

CRUISE PERFORMANCE

Maximum and minimum speeds in level flight; Range and endurance with thrust production, and power producing engines; Cruise techniques: constant angle of attack, constant Mach number; constant altitude,methods- comparison of performance. The effect of weight, altitude and temperature on cruise performance; Cruise performance with mixed power-Plants.

Module -III	CLIMB AND DESCENT PERFORMANCE				
Importance of	Climb and descent performance, Climb and descent technique generalized performance				
analysis for thrust producing, power producing and mixed power plants, maximum climb gradient, and					
climb rate. En	ergy height and specific excess power, energy methods for optimal climbs - minimum time,				
minimum fue	l climbs. Measurement of best climb performance. Descent performance in Aircraft				
operations. Ef	fect of wind on climb and decent performance.				
Module -IV	AIRCRAFT MANEUVER PERFORMANCE				
Lateral maneu	vers- turn performance- turn rates, turn radius- limiting factors for turning performance.				
Instantaneous	turn and sustained turns, specific excess power, energy turns. Longitudinal aircraft				
maneuvers, th	ne pull-up, maneuvers. The maneuver envelope, Significance. Maneuver boundaries,				
Maneuver per	formance of military Aircraft, transport Aircraft.				
Module-V	SAFETY REQIREMENTS – TAKEOFF AND LANDING PERFORMANCE AND FLIGHT PLANNING				
Estimation of	takeoff distances. The effect on the takeoff distance of weight wind, runway conditions,				
ground effect.	Takeoff performance safety factors. Estimation of landing distances. The discontinued				
landing, Baul	k landing, air safety procedures and requirements on performance. Fuel planning fuel				
requirement, t	rip fuel, Environment effects, reserve, and tankering.				
Text Books:					
1. Anderson	, J.D. Jr., "Aircraft Performance and Design", International Edition McGraw Hill, 1st				
Edition, 1	999, ISBN: 0				
2. Eshelby,	M.E., "Aircraft Performance theory and Practice", AIAA Education Series, AIAA,2 nd				
Edition, 20	JUU, ISBN: 1				
Reference Bo	oks:				
1. McCorm	ick,B.W,"Aerodynamics,AeronauticsandFlightMechanics",JohnWiley,2ndEdition,1995				
, ISBN: (
2. Yechout, Edition,	T.R.etal.,"IntroductiontoAircraftFlightMechanics",AIAAEducationSeries,AIAA,1st 2003, ISBN:1				
3. Shevel, R	S., "Fundamentals of Flight , Pearson Education", 2 nd Edition, 1989, ISBN:81.				
COUDSE DI	A N.				

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	The role and design mission of an aircraft; Performance requirements and mission profile	CLO 05, CLO 07	T2:1.1-12 T1:2.1-3
2-3	Aircraft design performance	CLO 06	T2:1.3-1.5 T1:2.3-4
4-5	The standard atmosphere; Off-standard and design atmosphere; Measurement of air data; Air data computers	CLO 01, CLO 03, CLO 04	T2:2.2-2.4
6-7	Equations of motion for performance - the aircraft force system	CLO 02, CLO 08	T2:.3.1-3.2
8	Total airplane drag- estimation, drag reduction methods	CLO 19	T1:3.1-4 R2:3.3
9	The thrust production engines, power producing engines	CLO 16	T1:3.5-7 R2:3.4
10-11	Variation of thrust, propulsive power and specific fuel consumption with altitude and flight speed	CLO 16	T2:3.4
12	The minimum drag speed, minimum power speed; Aerodynamic relationships for a parabolic drag polar	CLO 02, CLO 19	T2:3.3
13-14	Maximum and minimum speeds in level flight	CLO 09	T2:4.2
15	Cruise techniques: constant angle of attack, constant Mach	CLO 09	T2:4.3

Lecture No	Topics to be covered	Course Learning Outcomes	Reference
		(CLOs)	
	number; constant altitude, methods		
16	Comparison of performance	CLO 09	T2:4.3
17	The effect of weight, altitude and temperature on cruise	CLO 02,	R2:4.3
	performance	CLO 09	
18-19	Cruise performance with mixed power-Plants	CLO 09	R2:4.5
20-22	Importance of Climb and descent performance	CLO 10	T2:5.1
23	Climb and descent technique generalized performance analysis	CLO 02,	T2:5.2,5.5
	for thrust producing	CLO 10	
24	Power producing and mixed power plants	CLO 10	T2:5.2
24-25	maximum climb gradient, and climb rate	CLO 02,	T2:5.2
		CLO 10	
26-28	Energy height and specific excess power	CLO 10	T2:5.2
29-31	Energy methods for optimal climbs - minimum time, minimum fuel climbs	CLO 10	T2:5.3
32-33	Measurement of best climb performance and descent performance in Aircraft operations	CLO 10	T2:5.4
34-36	Lateral maneuvers- turn performance- turn rates, turn radius	CLO 20	T2:7.1
37-39	Limiting factors for turning performance	CLO 20	T2:7.1
40-42	Instantaneous turn and sustained turns, specific excess	CLO 20	T2:7.1
	power, energy turns		
43-44	Longitudinal aircraft maneuvers, the pull-up, maneuvers	CLO 20	T2:7.3
45-46	The maneuver envelope, Significance	CLO 20	T2:7.2
		GT 0 00	T2:7.2.1-
47-48	Maneuver boundaries	CLO 20	7.2.2
49-50	Maneuver performance of military Aircraft, transport	CLO 13	T2:7.4-7.5
	Aircraft		
51-52	Estimation of takeoff distances	CLO 11	T2:6.2
53	The effect on the takeoff distance of weight wind, runway	CLO 12	T2:6.2.2
	conditions, ground effect		
54-55	Takeoff performance safety factors	CLO 12	T2:9.3.3
56-57	Estimation of landing distances	CLO 11	T2:6.3
58-59	The discontinued landing, Baulk landing	CLO 12	T2:9.6.3
60-61	Air safety procedures and requirements on performance	CLO 14	T2:9.3.3
62-63	Fuel planning fuel requirement, trip fuel	CLO 15	T2:9.8
64-65	Environment effects, reserve, and tankering	CLO 15	T2:9.8

XVII. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S no	Description	Proposed actions	Relevance with	Relevance with
1				1503
1	Application of knowledge and	Guest Lectures /	PO 2, PO 4	PSO 2
	skills in the estimation of	NPTEL		
	aircraftexperimental			
	performance parameters			
2	Implementation of aircraft	Seminars / Guest	PO 2, PO 4	PSO 2
	performance measurement	Lectures /		
	inaircraft design.	NPTEL		

Prepared by:

Mrs.Madhurakavi Sravani, Assistant Professor