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THEORY OF MATRICES

Solution for linear systems

Matrix : A system of mn numbers real (or) complex arranged in the form of an ordered set of ‘m’ rows, each

row consisting of an ordered set of 'n” numbers between [ ] (or) { ) {or) || || iscalled a matrix of order m xn.

hy  geeeeeeees in
L7 TR T REREERES gy
Eg:| o = [8j )oun where 1< i<m, 1<j<n.
_aml am" """" am

some types of matrics:

1. square matrix: A square matrix A of order nxn is sometimes called as a n- rowed matrix A [or) simply a

square matrix of order n

1 1 oo o1
eg: is order matrix
#1122

2. Rectangular matrix : A matrix which is not a square matrix is called a rectangular matrix,

1 -1 2
isa 2x3 matrix
2 3 4|

3. Row matrix : A matrix of order 1xm is called a row matrix

EE: [1 2 3]1:3
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THEORY OF MATRICES

4. Column matrix : A matrix of order nx1 is called a column matrix

Eg: |1

5. Unit matrix : if A= [3y] e such that g3 = 1 for j =j and g; =0 for i#], then A is called a unit matrx.

1 0 1 O O
o iy

6. Zero matrix : it A= [g;] qu such that 3; =0 % 1 and j then A is called a2 zero matrix (or) null matrix

7. Diagonal elements in a matrix A= [34],,, the elements g; of A for which | = j. i.e. (8.1, 822....85,) are called the

diagonal elements of A

1 2 3
Eg:A=|4 5 6| diagonal elements are 1,5,9
7 8 9

MNote: the line along which the diagonal elements lie is called the principle diagonal of &

8. Diagonal matrix: A square matrix all of whose elements except those inleading diagonal are zerois

called diagonal matrix.

Ifdy d;..... dj are diagonal elements of a diagonal matrix A, then Als written as A = diag

(dy,dz....d)

3 0 0
Eg. :A=diag(3,1-2= |0 1 O

o 0 -2
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THEORY OF MATRICES

12. The conjugate of a matrix: The matrix obtained from any given matrix A, on replacing its elements by

corresponding conjugate complex numbers is called the conjugate of A and is denoted by A

EoifA 2 3 2-5i pon T 2 =30 2+5
i = e =
i -1 0 4i+3 b ] 0 —4I'+3h3

13. The conjugate Transpose of a matrix
The conjugate of the transpose of the matrix Ais called the conjugate transpose of A and is denoted by

AfThus A%= (A") where At is the transpose of A. Now A = [aj] ma = A% =[bj] ==, where bij= ajji.e. the
(i,j)* element of A®conjugate complex of the (j, i) element of A
5 0
5 3-i -2 ) )
Eg:if A= ) ) then  A? =|3+1 1-1
0 1+i 4-1i 2%3 2 4o

Ix2

Note: A%= A" =(A) and(4°) _,
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THEORY OF MATRICES

14.

(i) Upper Triangular matrix ; A square matrix all of whose elements below the leading diagonal are zerois
called an Upper triangular matrix. .2, Si=tor =]

1 3 8
Eg; |0 4 —5
0 0 2

ic an Yppertriangular matrix

(ii) Lower triangular matrix: A square matrix all of whose elements above the leading diagonal are zerois called

a lower triangular matrix. i.e., gjofor <]

0 0
2 0
3 6

E.g.:

et

=1

is an Lower triangular matrix
(iii) Triangular matrix: A matrix is said to be triangular matrix it is either an upper triangular matrix or a lower

trianeular matrix

15. Symmetric matrix: A square matrix A =|3;] is said to be symmetric it g; = g; for everyjand j
Thus A is a2 symmetric matrix if A™=A
a h g
Eg: |k b f is a symmetric matrix

g f c

16. Skew — Symmetric: A square matrix A = [g;] is said to be skew —symmetricif a;=— 3; for every i and j.
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THEORY OF MATRICES

0 a -b
Eg:|-a O c is a skew — symmetric matrix
b —¢c 0
Thus A is a skew — symmetric iff A=-At N L

Note: Every diagonal element of a skew — symmetric matrix is necessarily zero.
Since gj=-g; —=g;=0
17. Multiplication of a matrix by a scalar.
Let ‘A’ be a matrix. The matrix obtain by multiplying every element of A by _a scalar K, is called the

product of A by K and is denoted by KA {or) AK
Thus: A+ [aj] mn then KA = [ka;] m= = k[gg] mn

18. Sum of matrices:
Let A = [g;] == B = [bj] ma be two matrices. The matrix C = [gj] == where ¢; = g3th; is called the sum of

the matrices A and B.

The sum of A and B is denoted by A+B. Thus [3;] ma + [by] == = [3;thg] ma 00

| [agthi] ma -[a] ma + [by] ma
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THEORY OF MATRICES

19. The difference of two matrices: If A, B are two matrices of the same type then A#(-B) is taken as A— B

n
22. Trace of A square matrix : Let A = [3;] n«n the trace of the square matrix A is defined as Z a, . And is
i1

denoted by “tr A’

n

Thus trA = Z a; = ay,+aznt .3y
i-1
a h g
Eg:A=|h b f|thentrA=atb+c
g f ¢

Properties : If A and B are square matrices of order n and A is any scalar, then
() wOA=AgA
(i) i (A+B)=trA+ 1B

(i) 1r(AB) = tr(BA)
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THEORY OF MATRICES

23. ldempotent matrix: If A is 2 square matrix such that A? = A then "4’ is called idempotent matrix

24. Nilpotent Matrix: If A is a2 square matrix such that A™=0 where m is a +ve integer then A is called nilpotent

matrix.

Note : If m is least positive integer such that A™ = 0 then A is called nilpotent of index m

25. Involutary : If A is a square matrix such that A% =1 then A is called involuntary matrix.

26. Orthogonal Matrix: A square matrix A is said to be orthogonal if AA* = AA =1

Examples:

INSTITUTE OF AERONAUTICAL ENGINEERING



THEORY OF MATRICES

cost sin &
1. Showthat A= . is orthogonal.
—sin d  cosd
cosd sin &
Sol: Given A = .
—sin @ cosfd

e cosd —smn &
sin & cost?

Consider AAT |:CDSH sin & } |:c03¢5‘ —sin&}
onsigaer A. =

—sin & cos& sin & cost?

_ |:n:||::rs'.l H+sin’ 6 —cos&sin 8+ cosfsm 5:|

—sin fcos@+cosfsin @ cos” B+sin” &

£ 9

- Ais orthogonal matrix.
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THEORY OF MATRICES

27 . Minors and cofactors of a square matrix

Let A =[a;] ==n be a square matrix when form Athe elements of * row and j column are deleted the
determinant of (n-1) rowed matrix [Mij] is called the minor of aij of A and is denoted by |M;]|

The signed minor (-1) * |M;| is called the cofactor of g; and is denoted by A;..

@ @ @
IfA= a, 4, O then
aﬁl aﬁ:‘. H33

IA I =d11 IM]_]_I + 34z IMLE I +ay3 IMHI {Dr]
=311AM+3L2AL2 +a43 A]j

Mote 1: If A is a square matrix of order n then |K}I| =K" |A . where k is a scalar.

Mote 2: If A is a square matrix of order n, then |A| = ‘AT‘

Mote 3: If A and B be two square matrices of the same order, then |AB| = |A| |B|

28. Inverse of a Matrix: Let A be any square matrix, then a matrix B, if exists such that AB = BA =l then B iscalled

inverse of A and is denoted by A
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THEORY OF MATRICES

25. Adjoint of a matrix:

Let A be a square matrix of order n. The transpose of the matrix got from A
By replacing the elements of A by the corresponding co-factors is called the adjeint of A and is denoted by adj A.
Note: For any scalar k, adj{kA) = k™ adj A

Note: if |4]|=0 then A_1=|—;|(a¢1jfd}

30. Singular and Non-singular Matrices:

A square matrix Ais said to be singular :lfN|A|: 0. If |4|=0 then

Ais said to be non-singular,

Note: 1. Only non-singular matrices posses inverses.

2. The product of non-singular matrices is also non-singular.
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THEORY OF MATRICES

Real and complex matrices
Conjugate of a matrix:

If the elements of a matrix A are replaced by their conjugates then the resulting

matrix is defined as the conjugate of the given matrix. We denote it with A

A F+3i 5 L‘h y [2—3:‘ 5 W
2. = en =
&8 6—Ti —5+i 6+7i —5—i

The transpose of the conjugate of a square matrix:

i i _.T
If A is a square matrix and its conjugate is 4. then the transpose of 4 is (AJ i

—T
It can be easily seen that (AJ =A

It is denoted by A°
A=(a) =4
Note:If 4%and B? be the transposed conjugates of A and B respectively, then
D (4 =4 i) (42B) =4 +5° iii) (K4) = K4° iv) (4B) =B°4°
Hermﬁian matrix:
A square matrix A such that :15 A" (or) (E]T =A is called a hermitian matrix
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THEORY OF MATRICES

4 1+3i - 4 1-3i 4 1+3i
e.g A= ) then A= _ and A= )
1-31 7 1+ 31 7 e 11-=31 7

—T
Here fAJ =A, Hence A 1s called Hermitian
Note:

1) The element of the principal diagonal of a Hermitian matrix must be real
2) A hermitian matrix over the field ofreal numbers is nothing but a real symmetric.

Skew-Hermitian matrix

_ T
A square matrix A such that A= Alor) (AJ =-A is called a Skew-Hermitian matrix

=3 2+i - i 2-i (— i -2-1
e.g Let A= ) _ |then A= o andLA_]T=2 _

241 - —2—i 1 -1 I
_.T
(4] =A
A e elraw_Harmitian matriv

Note:
1) The elements of the leading diagonal must be zero (or) all are purely imaginary
2) A skew-Hermitian matrix over the field of real numbers is nothing but a real skew-symmetric
matrix.
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THEORY OF MATRICES

Elementary row and column transformations
The matrix operations of
1. Interchanging two rows or columns,
2. Adding a multiple of one row or columnto anaother,
3. Multiplying any row or column by a8 nonzero element.

Elementary Matrix Operations

Elementary matrix operations play an important role in many matrix algebra applications, such as finding the inverse of a

matrix and solving simultaneous linear equations.
Elementary Operations

There are three kinds of elementary matrix operations.
1. Interchange two rows (or columns).
2. Multiply each element in a row (or column) by a non-zero number,
3. Multiply a row (or column) by a non-zero number and add the result to another row (or column).

When these operations are performed on rows, they are called elementary row operations; and when they are performed on

+| columns, they are called elementary column operations.
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THEORY OF MATRICES
Iy

Row operations

1. Interchange rows i and j R <--> R
2. Multiply row [ by 5, where s 2 0 sh--> R
3. Add s times row [ to row j sRy+ R --> R

Column operations

1. Interchange columns { and j C=->0C
2. Multiply column ( by s, where s # 0 sC--> G
3. Add s times column [ to column j s+ C-->C

Elementary Operators
Each type of elementary operation may be performed by matrix multiplication, using square matrices called elementary
operators.

For example, suppose you want fo interchange rows 1 and 2 of Matrix A. To accomplish this, you could pre-multiply A by Eto

produce B, as shown below.

01 135
Ry<--=R; =

10 246

E A
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THEORY OF MATRICES

246
R_' oS-l I"?: = = B
135

How to Perform Elementary Row Operations
To perform an elementary row operation on a A, an r x ¢ matrix, take the following steps.
1. Tofind E the elementary row operator, apply the operation to an rx ridentity matrix
2. To carry out the elementary row operation, premultiply A by E.
We illustrate this process below for each of the three types of elementary row operations.
= Interchange two rows. Suppose we want to interchange the second and third rows of A, a 3 x 2 matrix
To create the elementary row operator E we interchange the second and third rows of the identity
matrix L.

100 100
010 =001
001 010

E
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THEORY OF MATRICES

=  Then, to interchange the second and third rows of A, we pre-multiply A by E as shown below.

100 01
Ri<--=R: = |0 0 1 2 3

010 4 5

E A

1%0 + 0*2 + 0*4 171 + 0*3 + 0*5

R:<--> R: = 00 + 0*2 + 1%4 0*1 + 0*3 + 1%5

00 + 1*2 + 0*4 01 + 1*3 + 0*5

R:=-->R: = |4 5
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THEORY OF MATRICES

*  Multiply a row by a number. Suppose we want to multiply each element in the second row of

Matrix A by 7. Assume Ais a 2 x 3 matrix. To create the elementary row operator E we multiply each

element in the second row of the identity matrix I by 7.

10 10
01 o7

L E
= Then, to multiply each element in the second row of A by 7, we premultiply A by E.
10 012

?Rz--} Fl?j‘ =
07 345
E A
1*0+ 03 1*1+ 0%4 1*2 + 0*5
?RJ__} R} =
0*0+ 73 0*1+ 754 0%2+ 7*5
[+
1*0+0%3 11+ 04 1*2+ 0%5
?R;“} R} =
0*0+ 73 01+ 754 0%2+ 7*5
m}
o 1 2
?Rx--:" R} =
21 28 35
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THEORY OF MATRICES

Multiply a row and add it to another row. Assume A is a 2 x 2 matrix. Suppose we want to multiply

each element in the first row of A by 3; and we want to add that result to the second row of A. For this
operation, creating the elementary row operator is a two-step process. First, we multiply each element in

the first row of the identity matrix I by 3. Next, we add the result of that multiplication to the second row
of I; to produce E

10 1 0 10
= =
01 0+ 3%1 1+3%0 31
L E
=  Then, to multiply each element in the first row of A by 3 and add that result to the second row, we pre-
multiply A by E.
10 01

ER: + R}'_} R}
31 2 3

=  Then, to multiply each element in the first row of A by 3 and add that result to the second row, we pre-

multiply A by E.

SR: + R;'--} R} =

3R + Rz--» R = |:1*D +0%2 1*1+ D*3 }
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THEORY OF MATRICES

How to Perform Elementary Column Operations
To perform an elementary column operation on A, an r x ¢ matrix, takes the following steps.
1. Tofind E the elementary column operator, apply the operation to an ¢ x c identity matrix
2. To carry out the elementary column operation, post-multiply A by E
Let's work through an elementary column operation to illustrate the process. For example, suppose we want to
interchange the first and second columns of A, a 3 x 2 matrix. To create the elementary column operator E we

interchange 4he first and second columns of the identity matrix L.

10 01
=
01 10
L E
Then, to interchange the first and second columns of A, we postmultiply A by E as shown below.
01
01
Cie—->C; = 2 3
10
4 5
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THEORY OF MATRICES

0*0 + 1*1 0*1 + 1*0
Ci<-->C; = | 2°0 + 371 2¥1 + 3*0
4*0 + 5%1 4*1 + 550
10
Cr=-->C =3 2
54

Mote that the process for performing an elementary column operation on an r x c matrix is very similar to the
process for performing an elementary row operation. The main differences are:
= To operate on the rxc matrix A, the row operator E is created from an r x ridentity matrix whereas the

column operator Eis created from gn ¢ x ¢ identity matrix.

INSTITUTE OF AERONAUTICAL ENGINEERING



THEORY OF MATRICES

= To perform arow operation, A is pre-multiplied by E: whereas to perform a column operation, Ais post-

multiplied by E.
=  Problem1
= Assume that Ais a 4 x 3 matrix. Suppose youwant to multiply each element in the second column of matrix A by 9.
Find the elementary column operator E.
=  Solution
=  To find the elementary column operator E, we multiply each element in the second column of the identity matrix Lz by
* 9. _ -
100 100

010 = |090
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THEORY OF MATRICES

*Rank of a Matrix:

Let A be m x n matrix. If Ais a null matrix, we define its rank to be ‘0", If A is a non-zero matrix, we say
thatris the rank of A if
(i) Every (r+1)" order miner of A is ‘0" (zero) &
(ii) At least one 1™ order minor of A which is not zero.
Note: 1. Itis denoted by p(A)
2. Rank of a matrix is unique.
3. Every matrix will have a rank.
4. If A is a matrix of order mxn,
Rank of A £ min{m,n)
5. If p{A) =r then every minor of A of order r+1, or more is zero.
6. Rank of the Identity matrix | is n.

7.1f Ais a matrix of order n and A is non-singular then p(A) =n
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THEORY OF MATRICES

Important Note:
1. The rank of a matrix is <r if all minors of (r+1)" order are zero.

2. Therankof a matrix is zr, if there is at least one minor of order r’ which is not equal to zero.

PROBLEMS
1 2 3
1. Find therank of the given matrix |3 4 4
710 12
1 2 3
Sol: Given matrixA= |3 4 4
710 12

= det A =1(48-40)-2(36-28)+3(30-28)
= 8-16+6=-2%0

hhhhhhh

We have minor of order 3

plA) =3
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THEORY OF MATRICES

1 2 3 4
2. Find the rank ofthematrix |5 ©& 7 2
g 7 0 5

Sol: Given the matrix is of order 3Ixd

Its Rank = min(3,4) = 3
Highest order of the minor will be 3.

1 2 3
Let us consider the minor | 5 (&) 7
8 7 0

Determinant of minor is 1{-49)-2(-56)+3(35-48)
=-49+112-39= 24+ 0.

Hence rank of the given matrix is ‘3".
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THEORY OF MATRICES

* Elementary Transformations on a Matrix:

i}. Interchange of i row and | row is denoted by R; €3 R;

(ii). f i" row is multiplied with k then it is denoted by R; 2K R;

(iii). If all the elements of i row are multiplied with k and added to the corresponding elements of | row then
it is denoted by R; — R; +KR;

Note: 1. The corresponding column transfermations will be denoted by writing ‘c’. i.e

g G—>kg > gtk

2. The elementary operations on a matrix do not change its rank.

Equivalence of Matrices: If B is obtained from A after a finite number of elementary transformations on A, then
B is said to be equivalent to A.

Itis denoted as B~A.

Note :1.IfA and B are two equivalent matrices, then rank A= rankB.

2.1t A and B have the same size and the same rank, then the two matrices are equivalent.
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THEORY OF MATRICES

Echelon form of a matrix:

A matrix is said to be in Echelon form, if

(i). Zero rows, if any exists, they should be below the non-zero row.
(ii). The first non-zero entry in each non-zero row is equal to 1"

(iii). The number of zeros before the first non-zero elementin a row is less than the number of such zeros in the

next row.

Mote: 1. the number of non-zero rows in echelon form of A is the rank of ‘4.

2. The rank of the transpose of a matrix is the same as that of original matrix.

3. The condition (ii) is optional.

0O 0 0
0 0
Eg.: 1. is a row echelon form.
1 1
i 0 0
0O 0 0 0 O
2 0 0 0] isarowechelonform.
0O 0 0 0
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THEORY OF MATRICES

PROBLEMS
2 3 7
1. Findtherank ofthe matrix A= |3 —2 4 | by reducing it to Echelon form.
1-3-1
2 3 7
sol: GivenA= |3 -2 4
1-3-1
Applying row transformations on_A.
1-3-1
A~ |3 -2 4| R, &R,
2 3 7
1-3-1
~10 7 7| R:>R:-3R;
09 9
R:— R:-2R;
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THEORY OF MATRICES

1-3-1
~l0 1 1 | Rz=>RJ/7R:=> Rs/9
011
1-3-1
101 1 |[R:i=>R:-R:
00 0
This is the Echelon form of matrix A.
The rank of a matrix A.

= Number of non — zero rows =2

4 4 -3 1
1 1 -1 20
2. For what values of k the matrix has rank ‘3.
k 2 2 -2
|9 9 k 3

Sol: The given matrix is of the order 4x4
Ifitsrank is3 = det A=0
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THEORY OF MATRICES

4 4 -3 1
1 1 -1 0
A=

k 2 2 -2
99 &k 3

Apphring Rz —= -ﬂ-R}_—RL, Rj, %‘ﬂﬂj_ I'(Rj_,. R4 —= -ﬂ-Rd_ ERL

4 4 -3 1

0 0 -1 -1
WegetA™

0 8—4k 8+3k 8-k

00 4k + 27 3

Since RankA=3 = det A=0
0 -1 -1

=4 8—-4k B+3k 8-k=0
0 4k+27 3
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THEORY OF MATRICES

= 1[(8-ak)3]-1(8-ak)(4k+27)] = 0

= (8-4k) (3-4k-27) =0
= (8-4k)(-24-4k) =0
= (2-k)(6+k)=0

= k=2ork=-6
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Normal form

Mormal Form:

I, 0 I I, 0
Every mxn matrix of rank r can be reduced to the form [[; 0 J (or) (L) (or) [ﬂ: JI:DF] [ ' ] by a

finite number of elementary transformations, where |, is the r —rowed unit matrix.

I, 0O
Note: 1. If Aisan mxn matrix of rank r, there exists non-singular matrices P and Q such that PAQ = [Elr 0 J

Mormal form another name is “canonical form”
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Normal form

1 2 3 4
e.g.: Byreducing the matrix [2 1 4 3 into normal form, find its rank.
30 5 -10
1 2 3 4
Sol: GivenA=|2 1 4 3
30 5 -10
1 2 3 4

A~|0 -3 -1 5 R: 2 R:— 2R,
0 -6 -4 -22
R: = R;—3R;

1 2 3 4

A~10 -3 =2 -5 R: > Rs/-2
03 2 11
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1 2 3 4
AN G _3‘ _2 _5 Rj%‘Rj"’Rz
00 0 6
o 0o 0 0
A~10 -3 -2 -5 Cz%‘ Cz - 2C1_’ (:36‘(:3—3(:]_J C.;,J)C.t—ﬂcl
00 0 6
1 0o o o
A~|0 =3 0 0 Cj% 3':3 _2':1, C4$3C4—5C}_
0 0o o0 18]
1 0o o o
A~10 1 0O 0 | cz2caf-3, ci>cy/18
o0 0o 1 |
1 0 0 0
A0 1 0 0 jcaércs
0 0 1 0

This is in normal form [15 0]

Hence Rank of Ais 3.
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Normal form

Inverse of a matrix by Gauss-Jordhan method

@ An n - n matrix A is nonsingular or invertible if n - n A~!
exists with 44! = 414 =71

@ The matrix 11 is called the inverse of A

¢ A matnx without an inverse 15 called singular or noninvertible

*nverse of a Matrix:

Gauss—Jordan method

* Theinverse of a matrix by elementary Transformations: (Gauss — Jordan method)

1. suppose A is a non-singular matrix of order ‘n’ then we write A=1, A
2. MNow we apply elementary row-operations only to the matrix A and the pre-factor |, of the R.H.5

3. We will do this till we get I, = BA then obviously B is the inverse of A.
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Inverse of a matrix by Gauss-Jordan method

1 6 4
*Find the inverse of the matrix A using elementary operations where A=|0 2 3
01 2
Sol:
1 6 4
GivenA= |0 2 3
01 2

WE canwrite A=13 A

1 6 4 1 0 0
02 3|=/01 0 |A
00 1 o -1 2

INSTITUTE OF AERONAUTICAL ENGINEERING



Inverse of a matrix by Gauss-Jordan method

Applying R;—=R:-3R;, we get
1 0 -5 1 -3 0
02 3|/=/01 0 |A
00 1 o -1 2

Applying Ry = Ry#5R;, R; - Rz-3R; , we get

Applying R; = R2/2, we get
1 0 0 1 -8 10
01 0|=]0 2 -3 |A=I;=BA
0 0 1 o -1 2

B is the inverse of A.
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Inverse of a matrix by Gauss-Jordan method

Example
Find the inverse of A=[; 3]

r— -
1

We augment the matrix to form [; 3 (l) (I)J And perform row operations to reduce the left-side to
the identity.
7 54 0] %Rxl % % o] -sr1 317 117 0]
2 5 5
5~01ﬁ.5201 0 5 0 1
i 22 0| SZhanli-o 2-2 226431 [1 o =2 3
A= 7 7 g % 77 7 =
015 -7 - 0 1 5 =7 ]
=2 3
So —{ _7l
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Inverse of a matrix by Gauss-Jordan method

Example 2
1 2 =2
Find the inverseof B=|1 1 1
00 1
1 2 -2100
We augmentBtoform |1 1 1 0 1 0| which, after Gauss-Jordan elimination, we get
00 0 0 1
Example 3
1 3 1
Find the inverseof C=|{-1 2 0
2 11 3

Answer: C has no inverse as we get zeros in last row
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Inverse of a matrix by Gauss-Jordan method

Example: _ )
b 1 2 3
=2 3 3

10 8

Example: Do row operations to get upper
triangular form: {Like Gaussian Elimination)

I - 3 | t 1
> 5 A 1] ] i)
I ] ~ i §] |

| 2 3 [ £ 1\
I 3 N ] 1
b 2 A [ tl |
I R A l ¥ 1
2 ] {)

I q 1 3 i I
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Inverse of a matrix by Gauss-Jordan method

Continue doing row operations to

] - ol =14 0

b l §! | 3 A
b 1" I A .
] i (s 4] 1 L)
b | 0 |3 —2 =3
b i I = . ]
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Inverse of a matrix by Gauss-Jordan method

At this point the |last matrix on the
left is the Identity. Thus, the right matrix must
be the inverse to A:;

(10 16 9]
17 = 13 —5 —3
5 -2
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Inverse of a matrix by Gauss-Jordan method

ex) Find the inverse of A:E g]

We augment the matrix to form [; 3 é [ﬂ And perform row operations to reduce the left-side to
the identity.
[? 3 1 ﬂ %R] 1 % % 0| -sr[1 3/7 117 n}
52[}1_}-52{:1 - {0 5 0 1
Rt 2L oo Zrarfi-o 2-3 LD o310 2 3
7 7 77 7 7 o1 5 -7
015 -7 - 0 1 5 -7
a_(-2 3
So A=
R

which, after Gauss-Jordan elimination, we get
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Inverse of a matrix by Gauss-Jordan method

100 -1 2 -4 ] -1 2 -4
010 1 -1 3|,s0B=1 -1 3
001 0 0 1 0 0 1
1 31
ex) Find the inverseof C=|=1 2 0
2 11 3
1 3 1100 1 0 2/5 0 -11/15 2/15
The augmented matrix -1 2 0 0 1 0| reducesto (0 1 1/5 0 2/15 1/15
2 11 3 001 00 0 1 1/3 -1/3

olumns of the last row, we can say that C has no inverse.

)

Because we have the 3 zeroes in the first 3
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Eigen values and Eigen vectors of a matrix

Eicen Values & Eigen Vectors

Def: Characteristic vector of a matrix:

Let A=[3a;] be an nxn matrix. Anon-zero vector X issaidto be a Characteristic Vector of Aif there exists a
scalar such that AX=AX.

Note: If AX=AX (X#0), then we say ‘X' is the Eigen wvalue (or) characteristic root of ‘A",

cctenl} 3 x-[]

AX= f ;] [—11] B [—11] - 1'[—11]

=1.X

Here Characteristic vector of Ais [ 11] and Characteristic root of A is “1".
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Eigen values and Eigen vectors of a matrix

MNote: We notice that an Eigen value of a square matrix A can be 0. But a zero vector cannot be an Eigen vector
of A.

Method of finding the Eigen vectors of a matrix.

Let A= [a;] be a nxn matrix. Let X be an Eigen vector of A corresponding to the Eigen value A

Then by definition AX=AX.

P AX = HIX
2 AXIX =0
2 (AMDX =0 (1)

This is 2 homogeneous system of n equations in n unknowns.

(1) Will have a non-zero solution Xif and only |A-2I =0

- A-31 is called characteristic matrix of A

- |A-}]| is a polynomial in #. of degree n and is called the characteristic polynomial of A
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Eigen values and Eigen vectors of a matrix

- |A-#1=0 is called the characteristic equation

Solving characteristic equation of A, we get the roots, 1; 4; 45 ....... 4, these are called the characteristic roots
or Eigen values of the matrix.

- Corresponding to each one of these n Eigen values, we can find the characteristic vectors.

Procedure to find Eigen values and Eigen vectors

d1q g7 e e Ay
daq dag vnne dy . )
Let A= ™ | be a given matrix
Qpn1  Qna- Gnn
Characteristic matrix of Ais A —AM
a; —A a, a,
a a,, —A a
. . 11 o] n
e A—Al=
a, a,., a,, —A

Then the characteristic polynomial is |A — Al
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Eigen values and Eigen vectors of a matrix

a, -4 apy a,

— A u

S@ﬂi(-i}=|ﬁ_ﬂ|= a4y dp @
ay Gy amu_":{‘

The characteristic equation is_|A-AI| = 0 we solve the @(A) = |A — AIl = 0, we get nroots, these are called

Eigen values or latent values or proper values.

Let each one of these Eigen values say A their Eigen vector X corresponding the given value A is obtained by

solving Homogeneous system
ap — 4 dy &y, X 0

= and determining the non-trivial solution.
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Eigen values and Eigen vectors of a matrix

PROBLEMS

1. Find the Eigen values and the corresponding Eigen vectors of [g _24]

_ |8 —4
sol:Let A = [2 2]
Characteristic matrix = 4 — Al
_[8—x -4
_[ 2 2—)«]
Characteristic equation of A is |A —Al | =0
S—A —4 | _
:’l 2 z—hl_ﬂ
=(8—-AN(z2-N+8=0
= 16+A2—10A+8=10

— A —10A+24=0
— (A—6)(A—4)= 0

= A= 6,4 are eigen values of A

. 8—A —4 X1y
Consider system [ 2 2_)‘_—| (12)— 0
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Eigen values and Eigen vectors of a matrix

Eigen vector corresponding to A = 4
Put A = 4in the above system, we get
4 —4\ X1\ _ (0
(2 _2) (xz) o (ﬂ)
= 4x1—4x2=ﬂ———{:1}
from (1)and (2)we have x; = x,

Letx, = &

e <o
Eigen vector is = =
X o 1

[ﬂ is a Eigenvector of matrix A,corresponding eigen value A =4
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Eigen values and Eigen vectors of a matrix

Eigen Vector correspondingto A = 6
put A= 6 in the above system, we get
G D=0
2 —4S \X3 0
= 2xy—4x,=0———(1)

2x1—4x2=ﬂ———{:2}

from (1) and (2) we have x; = 2x;

Say X, =@ =x, =2a

Eigenvector = =
o 1

E] is eigen vector of matrix A corresponding eigen value A =6
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Eigen values and Eigen vectors of a matrix

2 0
1. Find the eigen values and the corresponding eigen vectors of matrix Iﬂ 2
1 0
2 0 1
ol:LetA=|0 2 ﬂ]
1 0 2

he characteristic equation is |A-Al|=0

2—A 0 1
e |ANM=] 0 2-A o0 |=0
1 0 2—-A
= (2-N2-0N*-0+[-(2=-N]=0
=(2-0*—QA-2)=0
= A—2[-(A—2)’—1]=0
= A—2 [-A*+4r—3]=0
— (A—2)A-3)(A—1)=0
¥ A=1,2,3

he eigenvaluesof Ais 1,2 3.
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Eigen values and Eigen vectors of a matrix

2—A 1] 1 ES 4]
=?[ 0 2—A GJ[XZ]:['J]
1 ] 2 - X3 ]

Eigen vector corresponding to A=1

1 0 17 [* 4]
0 1 0]|*z|=]|0
1 0 11l%3 0

x1+x3=ﬂ
x; =10
x1+x3=ﬂ
Xy = —X3,%;, =10
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Eigen values and Eigen vectors of a matrix

-3

0 ] is Eigen vector
| 1

Eigen vector corresponding to A= 2

0 0 171 %1 0
0 0 0] |*xz|=|0
1 0 0 1%z 0

Here xy = 0 and x5 = 0 and we can take any arbitary value x, i.e x; = a (say)

1 07 0
xz = =a|l
Xz 0] 0

0
Eigen vector is 1]
0

Eigen vector corresponding to A= 3

-1 0 17 [*1 0
0 -1 0]||*z|=|0
1 0 —11l%*z 0

—x1+x3=10

—x2=ﬂ
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Eigen values and Eigen vectors of a matrix

here by solving we get x; = x5,x5 = 0 say x5 =0

xq =, Xo2 = 0 1 X =0

HiER

1
Eigen vector is [D]
1
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Properties of Eigen values and Eigen vectors of real and

complex matrices

Properties of Eigen Values:
Theorem 1: The sum of the eigen values of a square matrix is equal to its trace and product of the eigen values

is equal to its determinant.

1 2 3
Example:if A=| 0 2 5| then trace=1+2+1=4 and determinant=15
2 -11

Theorem 2: I . is an Eigen value of A corresponding to the Eigen vector X, then A" is Eigen value Ar

corresponding to the Eigen vector X.

1 00
Example:ifA=| 0 2 0 |thenEigenvalues of A*are 1,8,1
00 1
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Properties of Eigen values and Eigen vectors of real and complex

matrices

Theorem 3: ASquare matrix A and its transpose AThave the same Eigen values.

1 0 0
Example:ifA=| 0 2 0] then Eigenvaluesof A" are 1,2,1.
0 0 1

Theorem 4: If Aand B are n-rowed square matrices and If A is invertible show that A*B and B A* have same

Eigen values.

Theorem 5:1f 4, A, ... . A, are the Eigenvalues of a matrix Athen k 2, k 7, ..... k A, are the Eigen value of

the matrix KA, where K is 2 non-zero scalar.
Example:

If 1,2,3 are gigen values of A then eigen values of 3A are 3,3,9

INSTITUTE OF AERONAUTICAL ENGINEERING -



Properties of Eigen values and Eigen vectors of real and complex

matrices

Theorem 6: If % is an Eigen values of the matrix A then 2+K is an Eigen value of the matrix A+KI

Example:

If1,2,3 are gigen values of A then eigen values of 3+A are 4,5,6

Theorem 7: If A, A,... A,arethe Eigenvaluesof A, then A, —K, A, —K, .. A,—K,

aretheeigenvaluesof thematrix(A — KI), whereK is anon— zero scalar
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Properties of Eigen values and Eigen vectors of real and

Example:

If1,2,3 are eigen values of A then eigen values of 3-A are 2,1,0

Theorem 8: If Ay, A~ ... A, are the Eigen values of A, find the Eigen values of the matrix (4 — AI)*

Theorem 9: If % is an Eigen value of a non-singular matrix A corresponding to the Eigen vector X, then **isan

Eigen value of A™* and corresponding Eigen vector X itself.

Theorem 10: If

A is an eigen value of a non — singular matrix A,then —= is an eigen value of the matrix Adj A
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Properties of Eigen values and Eigen vectors of real and complex

matrices

. . g 1., i
Theorem 11:If A is an eigen value of an orthogonal matrix then T is also an eigen value

Theorem 12: If A is Eigen value of A then prove that the Eigen value of B = agA+aA+a;l is ap Ax+a, A+a;

Theorem 14: Suppose that A and P be square matrices of order n such that P is non singular. Then A and PAP
have the same Eigen values.

Corollary 1:If A and B are square matrices such that A is non-singular, then A*B and BA™* have the same Eigen

values.

Corollary 2: If Aand B are non-singular matrices of the same order, then AB and BA have the same Eigen
Theorem 15: The Eigen values of a triangular matrix are just the diagonal elements of the matrix.

Theorem 16: The Eigen values of a real symmetric matrix are always real.

-~y
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Properties of Eigen values and Eigen vectors of real and complex

matrices

Theorem 17: For a real symmetric matrix, the Eigen vectors corresponding to two distinct Eigen values are

orthogonal.
PROBLEMS
1. Find the Eigen values and Eigen vectors of the matrix A and its inverse, where
1 3 4
A=|0 2 5]
0 0 3
1 3 4
Sol: Given A = {ﬂ 2 5]
0 0 3
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Properties of Eigen values and Eigen vectors of real and complex

1 3 4
Sol: Given A=|0 2 &

0 0 3
The characteristic equation of A is given by [A-M]| =0
1-4 3 +
= 1] 2—-24 5 (=0
1] 0 3—-4

= (1-A2-HE-D]=0
= i=1,273
Characteristic rooctsare 1,2,3

Characteristic vector for A= 1

0 3 41[1*% 0
For A=1,becomes |0 1 5| |X:]=|0
0 0 211X 0

= 3.1'! "« 4.‘1'3 = 0

oy,

,+5x;=0

Xy = 0)

I =
i
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Properties of Eigen values and Eigen vectors of real and complex

matrices

.T: =U.I3 = Dm x]:a’
1

o
X =10 =0 |isthe solution where ais arbitrary constant
0 0

1

S A =10 1sthe Eigen vector corresponding to A=1
0

Characteristic vector for A= 2

- 3 47 [x4 0
Fori=2becomes |0 0 5| |x=]=]0
0 0 1JLxs 0
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Properties of Eigen values and Eigen vectors of real and complex

= —x; +3x,—4x; =0
5x,=0=x,=0

—x,+3x,=0=x;=3x,

Letx, =k
x=3k
3k 3
X= =k| 1
0 0

igthe solution X =

o =

Is the Eigen vector corresponding to A=2
1

Hence the characteristic vectoris |0
0

Characteristic vector for A= 3
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Properties of Eigen values and Eigen vectors of real and complex

matrices

2 3 4]x] T0]

sl ol

h |
| 0 | X2 = |
Lo o ofx] [o]

= —2x;+3x,t+4x,=10

For A1 = 3, becomes

—x,+5x,=10

Savx; =K = x, =5K

19
=S
ﬁff] 19
X=| sk | =7 [10]
® 2

Xo= |10 | is the Eigen vector corresponding to 4 =3
[ 2]

101 1
Eigen values of A 'are —, — ,—
g A_._‘l‘iz ‘I‘is

11
= Eigen values of A ‘arel, —, —
2 3

We know Eigen vectors of A" are same as Eigen vectors of A.
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-Hamilton theorem

Cayley - Hamilton Theorem:

Statement

Every square matrix satisfies its own characteristic equation

PROELEMS
1 -2 1
1. Showthatthe matrix A=|1 =2 3| satisfiesits characteristic equation Hence find A-!
0 -1 2

Sol: Characteristic equation of A is det (A-M) =0

1-i -2 2
= 1 -2 =4 3 |=0 €2 -=2C2+C3
0 -1 2 -4
1-4 0 2
1 1—4 3 |=0
0 1—-4 2-4
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-Hamilton theorem

1—-4 0 2
(1-4] 1 1 3 |=0
0 1 2-24

M- +i-1=0

By Cayley — Hamilton theorem, we have A*-A%+A-1=0

1 -2 2 1 0 0 -1 2 -2
A=|1 -2 3| A =|-1 -1 2| 4£=|-2 2 -1
0 -1 2 -1 0 1 11 0

12 =211 0o ol 1t =2 211 00
A A A-T={-2 2 —1|—|-1 -1 2|«|1 =2 3|-|l0 1 0
11 0o |-1 0 1/l0 -1 2|0 01
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0 0 0
=10 0 0|=0
0 0 0

Multiplying with A= we get A2 - A +/=A"

-1 0 0|1 -2 12 1 00 -1 2 -2
A =-1 -1 2|-{1 =2 3|+/0 1 0|=|-2 2 -1
-1 0 1} (0 -1 2| |0 0 1 -11 0

Using Cayley - Hamilton Theorem find the inverse and A* of the matrix A =

7 2 =2
-6 -1 2 ]

6 2 -1

7 2 =2
-6 -1 2]

Sol:Let A =

The characteristic equation is given by [A-A|=0

74 2 -2
ie.|-6 —-1-4 2 |=0
6 p R
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-Hamilton theorem

-1
1
-(1+4)

AP =BA*T+T7i-3=0

1
0 =0
6

d = O

(1-24)°

By Cayley — Hamilton theorem we have A*-5A*+7A-31=0.....(1)

Multiply with A™* we get

At= = [A° —54 = 7I]

1|
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-Hamilton theorem

25 8§ -8 79 26 -—26
A*={-24 -7 8 | A =|-78 —25 26
24 8 -7 78 26 -—25
-3 -2 2
|
A'="|6 5 -2
3
6 -2 5

Multiply (1)with A, we get

A" —54°-74°-34=0

[ 3905 130 -130 175 56 -56 21 6 -6
=/-390 -125 130 |—|-168 -49 56 |+ -18 -3 6
390 130 125 led 56 —69 18 6 -3

[ 241 80 -80
=|-240 -79 80
240 80 -79
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-Hamilton theorem

Problems
2 21 -1 2 -2
1. Diagonalize the matrix (i} | 1 3 1 [{(ii)] 1 2 1
-1 2 2 -1 -1 0

1. Verify Cayley — Hamilton Theorem for A=

W e
ke
o oW

]. Hence find A2
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Linear dependence and independence of vectors

Linear dependence and independence of Vectors:
1. Show that the vectors (1.2.3).(3.-2,1), (1.-6.-5) from a linearly dependent set.
1 3 1

Sol.  The Given Vector X;=| 2 |X; =| -2 |X;=|-6
3 1 -5

The Vectors Xy, X3, X3 from a square matrix.

1 3 1
Let A=|2 -2 -6
3 1 -5
1 3 1
Then |A|= 2 -2 -6
3 1 -5

= 1(10+6)-2(15-1)+3(-18+2)
=16+32-48=0
The given vectors are linearly dependent *.|A|=0
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Linear dependence and independence of vectors

2. Show that the Vector 23i=(2.2.1), Xp=(1.4.-1) and X3=(4.6.-3) are linearly independent.
Sol. Given Vectors X1=(2.-2,1) Xx=(1.4.-1) and X3=(4.6.-3) The Vectors X;, X3, X; form a squar

matrix.
2 1 4
A=|-2 4 6
1 -1 -3
2 1 4
Then |4|={-2 4 6
1 -1 -3

=2(-12+6)+2(-3+4)+1(6-16)
=200
- The given vectors are linearly independent

- |ARO
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Diagonalization of matrix

Diagonalization of Symmetric Matrices:

NOTE:

amatrix A ls diagonalizable if and only if there is an invertible matrix P such that A =P DP ! where Dis a
diagonal matrix.

A matrix A is orthogonally diagonalizable if and only if there is an orthogonal matrix P such that
A =P DP ! where Dis a diagonal matrix.

Remark - Recall that anv orthogonal matrix A is invertible and also that A= AT . Thus we can say that A matrix
A is orthogonally diagonalizable if thereis a square matrix P such that A = P DP” where D is a diagonal matrix.

Remark - The formula for transpose of a product: (MN) = N* M7 . Using this we can_see that any orthogonally
diagonalizable A must be symmetric. This is because AT= P DPT)™=((PT)™DPT=PDPT=A.

If A is symmetric then anv two Eigen values from different Figen spaces are orthogonal
Proposition : (The Spectral Theorem) Ann = n symmetric matrix has the following properties:
1. A has nreal Eigen values if we count multiplicity

2.For each Eigen values the dimension of the corresponding Eigen spaces is equal to the algebraic multiplicity of
that Eigen values

3_The Eigen spaces are mutuallv orthogonal.

4 A is orthogonallv diagonalizable.
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Diagonalization of matrix

NOTE:

AllEigen values (all roots of the characteristic polynomial) of a svmmetric matrix are real.

Eigenvectors of a svmmetric matrix corresponding to different Eigen values are orthogonal.

Problems:
2 -1 -1
1)Find an orthogonal matrix P which diagonalizes A =| -1 2 -1
glagonanzes
-1 -1 2

Sol: Eigen systems:

Eigen values and Eigenvectorare 3 3.0and(—1.0,1),(-1.1,0). (1,1, 1)

Using the Gram-Schmidt process we find that an orthonormal
basis for the eigenspace of A correspondingto Ay = 3 is

_ (=10,1) J
P= oy~ C1/V20.1/V2)
(-1.1.0) = {(-1.1.0).p1)p1 = (-1/2,1.-1/2)

_ (-1/2,1,-1/2) =[—1f‘\.-"’§. IEJ;S__”‘.!'E}

uz

(—1/2,1,-1/2)||
H = (1/V3.1/V3,1/V3)
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Diagonalization of matrix

Let orthogonal matrix P = 0 \/; = then
1 1
V2 VB V3
PTAP
[ - 0 s, Ip— e
/_ V2 2 -1 -1 Va2 vé V3
= 2 1 2
“ =3 ¥5 =2l == 0 Vi &
1 P & -1 -1 2 % s B
/ V3 V2 Ve V3

owo f;‘J"EsJ" r(b"'
«

o oo

s

I
1 ] O
OO W
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Diagonalization of matrix

3 1 -1
1) Find an orthogonal matrix P which diagonalizes 4 =| 1 3 -1
-1 -1 5 |
Sol:
Let
a1 -1
A= 2 -1
-1 -1 5
-4 1 -1
det(A- AN =] 1 -4 -1
-1 -1 5-A1
=C3-Aa-i)o-n3-1]1-1[2-2-1]-1[-1-3-4]
=[53-20 53-8 3-20-053-2)]-04-20-42-%)
=[3-n053-0)03-20-03-2)]-2053-%)

(3-R{53-ida-n3-1-2]

=i 3-i)13-30 50— A2 -5 ]

={3-3) A%-8n-12)

SU3-RWa-60i-20
Thue, » =2_3, 6 are the eigenvalues of 4 Letus find an eigentvector cotresponsding to each
eigetmnalue | For the eigetivalue 2 = 2, since
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Diagonalization of matrix

A vector X' (%, %. % ) will be an eigenvector for eigenvalue . =2 if

B

[f we chooze %=1 then % =-1. Hence

1.e, =1

xl—x2=x3= 0.
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Diagonalization of matrix

13 a1 etgenvector for » =1 ]'_I.'_‘II’ the e1gen alue

1 0 -1
A-3r=|1 ~ -1~10 1 -1
-1 -1 0 -1 0 0 0

5]

Thus

X, =

Ay

Ay

will be an eigemvector for the eigenvalue » =3 1f

[é ? ]H
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Diagonalization of matrix

12, Xy =& and & -x;=0. Hence

1
X, -

—

1% a1 eigenvector for & = 3.

1
Finally, for». =6

-3 1 -1 -1 -1 -1 -1 -1 1
A-4r=11 -3 -1]|~ -4 =21~ -4 =21
-1 -1 -1 0 -5 -4 o0 0

eS|

Thus .

Xy = |7 | will be an gigetvector for etgernalue A =6 4f

&3
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Diagonalization of matrix

a0 =0, SEK-X-X=0

Thus, ifwe take 23=2 _then &=-1and % =-%,—x=-1.
Hence

13 an eigenvector for the eigenvalue » = 6.

Mote thar tor

-1 1 -1
P=lX X, X,]-

11 _1] »the columnz of P are orthogonal.
o1 2
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Diagonalization of matrix

To make P cathogonal, we normalize each %, %3 and %3 | and define

111
N2 B
Pel L L L
W2 B |
o L L
NEE

P |

[t 15 easyv to vertfy that FAF =0 where
2 00
D=0 3 0]
o0 é

P P =l =

Infact, 2 =F . Thus wechecks PP AF =01
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MODULE-II
FUNCTIONS OF SINGLE AND SEVERAL
VARIABLES
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CONTENTS

* Rolle’s mean value theorem

 Geometric representation of Rolle’s mean value theorem
* Applications of Rolle’s mean value theorem
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. OBJECTIVE AND OUTCOME

OBJECTIVE:

Rolle’s mean value theorem.

OUTCOME:

Student get to understand the concept of Rolle’s mean value theorem and its
applications.
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Statement of Rolle ’s Mean Value Theorem

Let f(x) be a function defined in [a,b] such that
(i) f(x) It is continuous in closed interval [a,b]

(i1) f(x) is differentiable in open interval (a,b) and

(iiii) f(a) = f(b).

Then there exists at least one point ¢’ in (a,b) such that f'(c) = 0.
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Geometrical Representation of Rolle ’'s Mean Value Theorem

Let f :[a,b] > R be a function satisfying the three conditions of Rolle’s theorem.

Then the graph drawn is as follows

b

Geometrically Rolles mean value theorem means the following

1. y=f(x) in a continuous curve in [a,b].
There exist a unique tangent line at every point x=c, where a<c<b

3. The ordinates f(a), f(b) at the end points A,B are equal so that the points A and B are
equidistant from the X-axis.
By Rolle’s Theorem, There is at least one point x=c between A and B on the curve at which

the tangent line is parallel to the x-axis and also it is parallel to chord of the curve.
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Applications of Rolle ’s Mean Value Theorem

Example 1. Verify Rolle’s theorem for the function f(x) = sinx/eX or € » sinx in [0,7]
Sol: i) Since sinx and e* are both continuous functions in [0, m].
Therefore, sinx/e* is also continuous in [0,7].
ii) Since sinx and e* be derivable in (0,7), then f is also derivable in (0,7).
iii) f(0) = sin0/e® = 0 and f(7x)= sin /e ™ =0
f(0) = f(9v)
Thus all three conditions of Rolle’s theorem are satisfied.

There exists ¢ €(0, 1) such that f1(c)=0

e“cos x —sin xe” cos X — sin X
1

Now f "(x) = — = -
(e™) e

fl(c)= 0 => cos cC —c sin ¢ ~-o

e

cosc=sinc=>tanc=1
c = /4 e(0,1m)

Hence Rolle’s theorem is verified.
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Applications of Rolle ’s Mean Value Theorem Contd.,

| ( x? + ab )

Example 2. Verify Rolle’s theorem for the functions log lkﬁ)l in[a,b] , a=0, b=0,
X a +

Sol: Let f(xX)= log (&\
(x(a +b))

= log(x?+ab) — log x —log(a+b)
(). Since f(X) is a composite function of continuous functions in [a,b], it is continuous in [a,b].

(). o) = — L o, L _ _x'—ab

2 4+ ab X x(x2 + ab )
f1(x) exists for all xe (a,b)

[a? + ab |

@ii). f(a) = 1og Laz PR J =log 1= 0

f(b) = 1og [ﬁ} =log 1= 0O

f(a) = f(b)

Thus f(x) satisfies all the three conditions of Rolle’s theorem.
So, 3 ¢ = (a, b) — fi(c) =0,

fli(c)=0, . S —2ab —0o _ c2=ab

c(c? + ab)

— c = ~/ab e (a,b)

Hence Rolle’s theorem verified.
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Applications of Rolle ’s Mean Value Theorem Contd.,

Example 3. Verify whether Rolle ’s Theorem can be applied to the following functions in the

intervals.
i) f(x) = tan x in[0 , 7] and ii) f(x) = 1/x%in [-1,1]

(i) f(x) is discontinuous at x = 7/2 as it is not defined there. Thus condition (i) of Rolle ’s
Theorem is not satisfied. Hence we cannot apply Rolle ’s Theorem here.

- Rolle’s theorem cannot be applicable to f(x) = tan x in [0,7].
(ii). f(x) = 1X? in [-1,1]
f(x) is discontinuous at x= 0.

Hence Rolle ’s Theorem cannot be applied.
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Applications of Rolle ’s Mean Value Theorem Contd.,

Example 4. Using Rolle ’s Theorem, show that g(x) = 8x--6X--2X+1 has a zero between

O and 1.

Sol: g(x) = 8x>-6x?-2x+1 being a polynomial, it is continuous on [0,1] and differentiable on (0,1)
Now g(0) =1 and g(1)=8-6-2+1 =1

Also g(0)=g(1)

Hence, all the conditions of Rolle’s theorem are satisfied on [0,1].

Therefore, there exists a number ce(0,1) such that g*(c)=0.

Now g'(x) = 24x%-12x-2

- g*(c)= 0 => 24c?-12¢c-2 =0

3iT val ie ¢c=0.63o0r-0.132

= C=

only the value c = 0.63 lies in (0,1)

Thus there exists at least one root between O and 1.
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Applications of Rolle ’s Mean Value Theorem Contd.,

Example 5. Verify Rolle’s theorem for f(xX) = X >° -2x 7> in the interval (0,8).
Sol: Given f(x) = x 23 -2x 173
f(x) is continuous in [0,8]
fL(x) = 2/3 . 1/x*3 -2/3 . 1/x*® = 2/3(A/x*3 — 1/x*/3)
Which exists for all x in the interval (0,8)
-. Fis derivable (0,8).
Now f(0) = 0 and f(8) = (8)?3-2(8)Y3 = 4-4 =0
i.e., f(O) = f(8)
Thus all the three conditions of Rolle’s Theorem are satisfied.
-. There exists at least one value of c in(0,8) such that f(c)=0

1 1
—— 5y =0=>c=1¢€(0,8)
Cg Cg

ie.

Hence Rolle’s Theorem is verified.
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Applications of Rolle ’s Mean Value Theorem Contd.,

Example 6. Verify Rolle’s theorem for f(x) = x(x+3)e™* in [-3,0].

Sol: - (i). Since x(x+3) being a polynomial is continuous for all values of x and e is also
continuous for all x, their product x(x+3)e™? = f(x) is also continuous for every value of x and in

particular f(x) is continuous in the [-3,0].

(ii). we have f1(X) = x(x+3)( -1/2 €™ ?)+(2x+3)e™"?

2
. X+ 3X
= 2 [2x+3-

]

=e™?[6+x-x?/2]
Since f'(x) does not become infinite or indeterminate at any point of the interval(-3,0).

f(x) is derivable in (-3,0)
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Applications of Rolle ’s Mean Value Theorem Contd.,

() Also we have f(-3) = 0 and f(0) =0
- T (-3)=f(0)

Thus f(x) satisfies all the three conditions of Rolle’s theorem in the interval [-3,0].
Hence there exist at least one value c of x in the interval (-3,0) such that f(c)=0
i.e., Y2 e2(6+c-c?)=0 =>6+c-c’=0 (e*“’+0 for any ¢)

=> ¢%+c-6 = 0 => (c-3)(c+2)=0

c=3,-2

Clearly, the value c= -2 lies within the (-3,0) which verifies Rolle’s theorem.

INSTITUTE OF AERONAUTICAL ENGINEERING 7



Applications of Rolle ’s Mean Value Theorem Contd

—f=arrpte—r= .
Verifv Rolle's theorem for the function
Fix) = (x —a)™ {x — b} in fa, b] where m > | and n > 1.

Solution Fix) = (x — a)” (x — b)) is continuous in [a, b]
FFfx)=@x —ay-nx— '+ mix—ayr'(x - b"
= (x — a)' (x — by [n (x —a) + m (x — b
Fox) = (x — ay' (x — by [nx — na + mx — mb]
(x

— @y (x — B [im + n) x — (na + mb)| L)

7 ) exists in (a, &)

Also Fla) = 0 = f(b)

Hence all the conditions of the theorem are salished.

MNow consider JF e =10

From (1) {o — a)y™ ! {(c — by [(m 4+ 1) ¢ — (g + mb)] = 0

== o —a=10 c—-—F~F=0 (m+ n)c— (na+ mbh) =10
. i + il
e, o, oo f, o —m————

fIL+ 1l

a, I are the end points.

o= T is the r-coordinate of the point which divides the line joining [a, F (a)], [B, £ (B)]
internally in the ratio m1 © A

+ mrf
Co= marme e (a, h)
M+ Al

Thus the Rolle®™s theorem is verified.
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. OBJECTIVE AND OUTCOME

OBJECTIVE:

Lagrange’s mean value theorem.

OUTCOME:

Student get to understand the concept of Lagrange’s mean value theorem
and its applications.
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Statement of Lagrange ’'s Mean Value Theorem

Let f(x) be a function defined in [a,b] such that

(1) f(x) is continuous in closed interval [a,b] &
(i) f(x) is differentiable in (a,b).

f(b) - f(a)

Then there exists at least one point ¢ in (a,b) such that '(c) = ,
- d
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Geometrical Representation of Lagrange ’s Mean Value Theorem

Let f :[a,b] > R be a function satisfying the two conditions of Lagrange’s theorem.

Then the graph is as follows

y
4
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o
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x

Geometrically Lagrange’s mean value theorem means the following
1. y=f(x) is continuous curve in [a,b]

2. At every point x=c, when a<c<b, on the curve y=f(x), there is unique tangent to the curve. By

f(b)— f(a)
b—-a

Lagrange’s theorem there exists at least one point c € (a,b) > f'(c) =

Geometrically there exist at least one point c on the curve between A and B such that the tangent

line is parallel to the chord AB
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Applications of Lagrange s Mean Value Theorem

Example 1. Verify Lagrange’s ™Mean value theorem for f(X) — X -X--BX+3 1N [C-),4]

Sol: Let f(xX)= x°-x*-5x+3 is a polynomial in x.
- It is continuous & derivable for every value of x.
In particular, f(x) is continuous [0,4] & derivable in (0,4)

Hence by Lagrange’s Mean value theorem 3 ce (0,4) >

Fl(c)= 1D~ 1
4 — O

i.e., 3c?-2¢c-5 = 1 ~ LS (1)

Now f(4) = 43-42-5.4+3 =64-16-20-3=67-36= 31 & f(0)=3

f(4) — f(O): (31 — 3)
4 4

= 7

From equation (1), we have

3c?-2¢c-5 =7 == 3c?-2c-12 =0

2 = ~N/4 + 144 2 += /148 714_r ~/ 37
3

We see that lies in open interval (0.4) & thus Lagrange’s Mean value theorem

1 + ~/37
3

is verified.

(/]
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Applications of Lagrange s Mean Value Theorem Contd.,

Example 2. Verify Lagrange’s Mean value theorem for f(x) = log , x In [1,€]

Sol: - f(X) = 1og . X

This function is continuous in closed interval [1,e] & derivable in (1,e). Hence L. M.VV.T is

applicable here. By this theorem, 3 a point c in open interval (1,e) such that

fl(C): f(e) - f(1)=1—0= 1
e -1 e—1 e-1

Butfi(c)= —— - 1_ 1

e -1 (o e -1

~c=e-1
Note that (e-1) is in the interval (1,e).

Hence Lagrange’s mean value theorem is verified.
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Applications of Lagrange s Mean Value Theorem Contd.,

Example 3. Give an example of a function that is continuous on [-1, 1] and for which mean

value theorem does not hold with explanations.

Sol:- The function f(x) = |x|is continuous on [-1,1]

But Lagrange Mean value theorem is not applicable for the function f(x) as its derivative

does not exist in (-1,1) at x=0.
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Applications of Lagrange ’s Mean Value Theorem Contd

b-a b-a .
— < Tan 'b-Tan 'a< — using Lagrange’s Mean
1+ b 1+ a

Example 4. If a<b, P.T

value theorem. Deduce the following.

- V4 3 714 T 1
|).—+—<Tan — < —+ —
4 25 3 4 6
Sz + 4 1 T+ 2

< Tan 2 <

i). -
Sol: consider f(x) = Tan™ x in [a,b] for O<a<b<1l

Since f(x) is continuous in closed interval [a,b] & derivable in open interval
(a,b).

We can apply Lagrange’s Mean value theorem here.
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Applications of Lagrange s Mean Value Theorem Contd.,

e | o . v | —

T T I Cr T O S 7N T OIOC o A HU-. T o L LB | \M,U}j
f(b) — f(a
b — a
1 1
Here f'(x) = ———— & hence f'(c) = .
1 + x 1 + c

T hus 3 ¢, a<c<b >

1 Tan ‘b — Tan Ta
(@)

1+ c*? b — a

WwWe have 1+a®<=1+c®=1+b?

From (1) and (2), we have

a1 Tan ‘b — Tan ‘a a1
= =
1+ a?’ b — a 1+ b’
or
b — a _ b — a
= Tan ‘b — Tan 'a <= ———— e 3
1+ a’ 1+ b?

Hence the result
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Applications of Lagrange s Mean Value Theorem Contd.,

- Deductions: -
= b a b — a 4
(1) We have < Tan ‘b — Tan ‘a < 2 Take b = — & a=1, we
1+ b 1+ a 3
get

4 a 4 — 3

— — 1 — — 1

3 1 a1 3 3 a1 7T 4 — 3

< Tan (—) — Tan 1) < === < Tan ( )y — — <

16 1 4+ 1°2 25 4 3

1+ — = =
(e} o 2
3 7T .. 4 7T 1

- — + — < Tan () < —+ —
25 4 3 4 6

(i) Taking b=2 and a=1, we get

2 —1 _a i 2 — 1 1 i 7T 1
< Tan 2 — Tan 1 < 2:>—<Tan > - — = —
1+ 2 1+ 1 5 4 2
1 7T 1 2 +
— — 4+ — < Tan 2 <
5 4 4
4 + 57t 4 2 + 7T
— —+ < T an 2 <
20 4
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Applications of Lagrange ’s Mean Value Theorem Contd

Example 5. Show that forany x>0,1+x<e” <1+ xe”".
Sol: - Let f(x) = " defined on [0,x]. Then f(x) is continuous on [0,x] & derivable on (0,x).
By Lagrange’s Mean value theorem 3 a real number c €(0,x) such that

f(x)— f(0)
x—0

= f'(c)

0

Note that O<c<x => e’<e®<e* ( €* is an increasing function)

=>q.° _1<ex From (1)

=> x<e*-1<xe*

=> 1+x<e*<1+xe”.
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Applications of Lagrange s Mean Value Theorem Contd.,

Example 6. Calculate approximately /245 by using L.M.V.T.

Sol:- Let f(x) = ¥x =x'° & a=243 , b=245
Then f}(x) = 1/5 x ** & f'(c) = 1/5¢"**
By L.M.V.T, we have

f(b)- f(a)
b-a

= f'(c)

-4
f (245 ) — f (243 1 —
_ fs) - fs) 1
245 — 243 5

=>  f (245) =f(243)+2/5c™*"
=> c lies b/w 243 & 245 take c= 243

-4

=> 3w = (243) Y5 +2/5(243) 5= 3%y 4 2(3%)*
5

= 3+ (2/5)(1/81) = 3+2/405 = 3.0049
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Applications of Lagrange s Mean Value Theorem Contd.,

' Example 7. Find the region in which f(x) = 1-4x-x° is increasing & the region in which
it is decreasing using M.VV.T.

Sol: - Given f(x) = 1-4x-x°

f(x) being a polynomial function is continuous on [a,b] & differentiable on (a,b) V a,b
eR

- T satisfies the conditions of L.M.V.T on every interval on the real line.
fL(X)= - 4-2x= -2(2+X)V xeR
f1)=0if x=-2
for x<-2, f}(x) >0 & for x>-2 , f}(x)<0

Hence f(x) is strictly increasing on (-0, -2) & strictly decreasing on (-2,00)
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Applications of Lagrange s Mean Value Theorem Contd.,

Example 8. Using Mean value theorem prove that Tan x > x in 0<x<mw/2
Sol:- Consider f(x) = Tan x in [&, x] where 0<¢ <x<m/2

Apply L.M.V.T to f(X)

3 a points ¢ such that 0<¢ <c<x<m/2 such that

Tan x —Tan &

X—=g

2
=8eC C —>

Tanx -Tan & = (X -f)seczc
Take & — 0 + Othen Tan x = X sec > X

But sec’c>1.

Hence Tan x > X
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Applications of Lagrange s Mean Value Theorem Contd.,

Example 9. If f(x) = 0 Through out an interval [a,b], prove using M.V.T f(X) is a

constant in that interval.

Sol:- Let f(x) be function defined in [a,b] & let f1(x) = 0 V¥ x in [a,b].
Then f(t) is defined & continuous in [a,x] where a<x<b.
& f(t) exist in open interval (a,x).
By L.M.VV.T 3 a point c in open interval (a,x) >

f(x) - f(a)

X —a

= f'(c)

But it is given that f'(c) = 0
S f(x) -f(a) =0

() = f(a) VX

Hence f(Xx) is constant.
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CONTENTS

* Cauchy’ s Mean value theorem
* Applications of Cauchy’ s Mean value theorem
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. OBJECTIVE AND OUTCOME

OBJECTIVE:

Cauchy’ s Mean value theorem.

OUTCOME:

Student get to understand the concept of Cauchy’ s Mean value theorem
and its applications.
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Statement of Cauchy ’s Mean Value Theorem

If f: [a,b] >R, g:[a,b] >R are any two functions such that

(i)  f,g are continuous on [a,b]
(i) (i) f,g are differentiable on (a,b)
(iii) g'(x) = 0VX e (a,b), then

fi(c) f(b)- f(a)

Ja point c e (a,b)> —;
g (c) g(b)-g(a)

INSTITUTE OF AERONAUTICAL ENGINEERING



Applications of Cauchy ’s Mean Value Theorem

Example 1.Find ¢ of Cauchy’s mean value theorem for

F(x) = /x & g(x) =— i
Nx in [a,b] where O<a<b
Sol: - Clearly f, g are continuous on [a,b] = R"

and gl(x)=

1 _ -t
We have = 7 2/x 2x~/x which exits on (a,b)

+

. f, g are differenti able on (@ b) =« R
Also g' (x)=0, V x =(a,b) = R*

Conditions of Cauchy’s Mean value theorem are satisfied on (a,b) so Ice(a,b) >

f(b) — f(a) f'(c)
g(b) — g(a) g’ (c)

N e N N P
i1 -1 Ja — b 2-lc
o Ao zeds dm

= C

Since a,b >0, Vab is their geometric mean and we have a<+Vab <b

ce(a,b) which verifies Cauchy’s mean value theorem.
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Applications of Cauchy ’s Mean Value Theorem Contd.,

| Example 2. Verif‘y (-Z‘auchy’s Mean value theorem for f(x) = e & ag(x) =e" 1IN |3,7] &
find the value of c.
Sol: We are given f(xX) = e* & g(x) = e™
f(X) & g(x) are continuous and derivable for all values of x.
=>f & g are continuous in [3,7]
== f & g are derivable on (3,7)
Also g'(x) = e™ =0 VvV x =(3,7)
Thus f & g satisfies the conditions of Cauchy’s mean value theorem.

Consequently, 3 a point ¢ (3,7) such that

f(7)—f(3)_ fl(c) L e’ — e e e — e e

9(7) —9(3) g’(e) e " —e® —e° 11

—= _e7*3 = _g2c

== 2c =10
== c=5(3,7)

Hence C.M.T. is verified

INSTITUTE OF AERONAUTICAL ENGINEERING



Applications of Cauchy ’s Mean Value Theorem Contd.,

Example 3.

Verifv Cauchy's mean value theorem for the following pairs of functions.
(i) fix)=x*+3 pix)=x"+1in[l 3]

(ii) fix)=sinx p(x)=rcosxin |ﬂ, g}

(i) fix)=¢" g(x)=¢e"in fa, bj
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Applications of Cauchy ’s Mean Value Theorem Contd.,

Solution
() We have Cauchy’s mean value theorem

Fb)— 7 (a) I ()
2 (k) — 2 (a) g2 (<)

Here, = 1, b= 3
Fix) = x*+ 3
2 ix) = x* + 1
I (x) = 2x

27 (x) = 3x*

JFix) and g (x) are continuous in [1, 3], differentiable in (1, 3)
B ix) = 0¥ xe (1, 3)

Hence the theorems becomes

F@-rm 2
2(3)—g() ~ 3

12-4 2 8 _ 2
28 -2 3¢ 26 3¢
2z 1
13 =~ 3¢
13 1
- —— = 2=
or C 6 6E{1+3}

Thus the theorem is wverified.
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Applications of Cauchy ’s Mean Value Theorem Contd.,

(i1} We have Caunchy’s mean value theorem

rig)y—sria) 1)
g(b)—gla) g’ (c)
Here, J(x) = sin x
£ (x) = cos Xx
J7(x) = cos x
2 (x) = — sin x
g x) = 0
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Applications of Cauchy ’s Mean Value Theorem Contd

1 and differentiable in [ 1] Therefore

Clearly both f (x) and g (x) are continuous in [{] 3

from Cauchy’s mean value theorem

7(%)-r
\2) f(e) N
0ol = 0 for some c: 0 << 3
gl=]-g(0) #
\2)
_ | -1 CoS ¢
o 0-1 " “sinc
~l=-cotcorcotec =1
T
= E
T n
Clearly = EE{H1 E]

Thus Cauchy’s theorem is verified.
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Applications of Cauchy ’s Mean Value Theorem Contd.,

(itf) We have Cauchy’s mean wvalue theorem

rp)—f(a) _ £{e)

g (k) — 2 (a) 2" (<)
Here fix)y = e*
arwd g lx) = e*
T (x) = e*
g (x) = — e~
S Fix) and g (x) are continuous in [a, ] and differentiable in {a, &)
and also 2" (x) = 0

. From Cauchy’s mean value theorem

JF(B)— F (a) S ()

g(B)—gla)  g7(<)
_ e’ — e” et
e, e am T E
b
e, El E] = — g¥*
P
e & [:-E&—-Eu} .
e, = — g
(e® —€)
_ﬁ..ua-b — ﬁ'_:_-,.-
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Applications of Cauchy ’s Mean Value Theorem Contd.,

LE., a+h=12%
a+h
or €=
a+b
¢ = T e (a, b

Hence Cauchy’s theorem holds good for the given functions.
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CONTENTS

e Partial Differentiation
e Chain rule of Partial Differentiation
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. OBJECTIVE AND OUTCOME .

OBJECTIVE:

Partial Differentiation and Chain rule of Partial Differentiation.

OUTCOME:

Student get to understand the concept of Partial Differentiation and
Chain rule of Partial Differentiation.
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Partial Differentiation

FPartial differential coefficients : The Partial differential coefficient of f(x,y) with
respect to x is the ordinary differential coefficient of f(x.v) when v is regarded as a
constant. It is written as

ﬁn|::||.' af f dx or Dt

ahx
Thus E=1i:n x4+ h,.v)— Hx. v)
G h

Apain, the partial differential coefficient d /8y of f{x,y) with respect to y is the
ordinary differential coefficient of f(x.v) when x is regarded as a constant,

Thus 2F = lim JO0¥ HK) = fix.¥)
,Eil:l,- h—si1 k
Similarly, if f is a function of the n variables x;, »x2.......... xn. the partial differential

coefficient of f with respect to »x: is the ordinary differental coefficient of f when
all the wariables except »x are regarded as constants and is written as Jf/ .
df alf

Eanr_'l E are also denoted by £ and fy, respectively.

The pardal differential coefficients of fx and f, are f.. o, fye foy
or o a*f o F o f res tvel
ax® " gxdy " dvdx dy? pec ¥

z 2
It should be specially noted that ¥ means Ca afjl and o f means i[%]

Sy adx FE™ dxdy Ee
The student will be able to convince himself that in all ordinary cases
a* f _ o f
dydx  dxdy
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Applications on Partial Differentiation

Example 1:If u = log (x* + y3 +z*- Jxyz) show that

[LLETU=-_- ) __
dx dy dz {x+y+:)z

Solution : The given relation is
u = log(x? + y*+ x*- 3xyz)
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Applications on Partial Differentiation Contd.,

Drifferemtiate i€ w.r. &, x partdally. we et

=Lt I Bx® — By
I :-::'-l-:_l,.r?'—i—z!—:"!-x}rz
simmilarly —_— 3? 1:3-:{3

= T =T oA W T — Bmy=
A i 3z — By=

o= = + v = E — 3xy=

=x

- -Eiu. -Eh.i a'u _ B + v 4= — wE— = — X))
-'-El':-: -Ei}r = AW A — SmwE

F(=* + ¥y 4+ =™ — = — = — =y )

_'[:""'".}"""3}[:"’:2 + W A+ ES — T — =mx— xy )
3

D el
Idicnr a+a+azu=a+a+a -El_._-E|'+-E|'u
— E'LI -Ei'u
E'_h: Ei'].-r El..'-_-. v o=
=
-EI:!-: Eﬁy -EI:E. MW 4=

Y i W T
= b 1-::+_1.F-l-.z: dwr | o+ v = b T e T

! —1 -1
- 3 = =
(2 4w+ =) (»x+ % + =) (= 4+ v+ =)

—3
(= -1-—:,.l'+.."-"_.:|z
=_{ }___: Hervwe Prowrescd
. i
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Applications on Partial Differentiation Contd.,

Example 2: If u = ez, show that
#'u
dxdydz

= (1+3Ixyz+xdyiz?) exye

Solution : Given u = @%5¥F
_du

_ = xyE
i e

Fu 4 vy L O i

= e =X —ye
ayaz ~ay VYT )=y
= x[v xz exrz + exyz]
= e*¥= (xiyz + x}

&'u .

Hence Ei:h:a}ra..-_'; -Ei':l-: [e=y= {xZyz+x)]
=exrE (2xyz+1) + yvE exr® (xiyE+x)
= @=¥: [2xyz +1 + xTy2z? + xyz]
= g@*¥: (1+3xyz + x3y2z?) Hence 'roved,
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Applications on Partial Differentiation Contd.,

-
=] = = T—

= B =
+ — =1 ., prove that ,
at 4w B = Pl S T F

Example 3 - If

= x = .
uf +ul e u? =2 (xu. Sy, + oz

x = =

. . = W = )
Solution : (;iver + =R e i
a® + w BT 4+ u c? + 1 (1}

where u is a functon of x,. v and =,
Differentiating (i) partally with respect o =, we get

(a® + w)h 2w — x” gﬁ (B* +u)d —w* %:: {c® +1u)0— =% 2
-+ —= -+ = ¥
(a® + L'L::l-2 (b™ + 1.l_::|2 (c® + 1_|.}1r
2 = e =" s
— = {1
A 1 u Ij-[az -|-1,.-|;'|2 N L=h +-|.1|::|l +|:-=:‘.2 +l.1.}1:|'§h'[
or ou 2= Sa® +u)

o= Lx* ..l"{_ai +1.1::|=+3,.-'2_.u"IZ'I::-""+Iu:|1 + = ..l"-I:I:dz +u:]=t|
- 2x S a® +
E[:-:: ..-"{a3+u}lz]
2y S (BT + 12
5 = sa u)
e 2z /e + u)

dz ~ ¥ [=* sla® +u) |

INSTITUTE OF AERONAUTICAL ENGINEERING

Similariy




Applications on Partial Differentiation Contd.,

_ @ =+ a_“*.i. ﬂ i- ll;x’.f{a=+u}z.+}r: ,.-"{h*+u}1+11,-"{|:1+11}]]
"_(Eilu] [ﬁ‘?] [ ] ! [Z{Hlf{aiﬂ}iﬂ‘

0z

OF Up +u) +ul=

k)
Also xu, + yuy + zu, = _H[ﬂu}+}r[ﬂ_u]+z[ﬂ_u
1

i 1__[2x1+:;._r+2.f"
E:j{a+u]][

- 2 = (1] )

E. :u:*,."l:a1 +u) ]
From (i), (ii) (ii1) and we have
u? +u? + u? = 2xu, +yuy + zu,;) Hence Proved.

o ()
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Applications on Partial Differentiation Contd.,

Example 4 : If u = f{r] and x = r cosf, v = r sinfl i.e, i = x24y?, Prove that

d*u EFu
S0+~ )
W
Solution : Givenu = f{r)................ (i)
Differentiating (i) partially w.r.t. x, we get
du _ F'(r) dar
dx “ax
= P(r). f o rdm x2 ey
dr
== 2r — = 2x
%
or  x
= — = —
dx 1'
oa ¥
Er]:l:l'l.ll.':l.:'!j..r EI .

¥
Drifferentiating above once again, we get
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Applications on Partial Differentiation Contd.,

r

_ r[f‘{r].l + ﬂ"[rj{ﬂr,i'ax}] - xf'(r)(dr / dx)

r‘.l'

du 1 X’

or Fwei [z {r} + =2 F'{r} - —F{r}] (11)
Similarly, g;—": = = [rf(r) + y2f*(r) - r F{r}] (iii)
Adding (ii) and (iii), we get
&UI az 1 B 1 Thpu _{1+?::| i
a—j 3_}:_- 5 2rf |[r}+{: ty ]f (r) -—-T—-rf[r]

1

= —[2r f(r) + 22 (1) - r £7)]

f(r) + "{r), Hence proved.
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Applications on Partial Differentiation Contd.,

Example 5: If x* y¥ 2* = ¢, show that at x = y =z,

d'z -
ﬁ = -(xlogex)

Solution : Given x= y¥ z¢ = ¢, where z is a function of x and ¥
Taking logarithms, x logx+ ylogy +zlogz=logc (i}
Differentiating (i) partially with respect to x, we get

[x[%}f{1::-5131]4.[1[%}{135:}:}:%=u

dz _ (1+log x:] 3
o= (1+logz) i)
Similarly from (i) we have

dy - (1+logz)

Pz _ (o
Caxdy  dx| dy

d 1+logy
= = F
Bx[ [1+'l=::gz]:| rom. (i)
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Applications on Partial Differentiation Contd.,

or &T;}? =—(1+log }r]a%[[l + log z]'1]
= —|:1+1|:rg jf:}.|:—|::1 +]ugz}4_§_%j|

Fz  (1+logy) 1+ log x ) ..
or dxdy z(1 +I-:::-gr.:|] I{_[l"'l':'gz']] - o )
Fz  [1+log :l-a::l-1
dxdy x(1+logx)
Substituting x for y and =
) d'z 1
i.e. =—
dxdy x(1+log x)
__ 1
T :[I[Iﬂ-g e+ log x]
1

B x log{ex)
= ~ {x log (ex)}! Hence Proved.

Htx=}r=z..wehave

Sloge=1

[ ]
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Chain rule of Partial Differentiation

Change of Variables : If u is a function of x, y and x, y are functions of t and r,
then u is called a composite function of tand r.

Let u =f(x, y) and x = g(t, r), y = h{t, r) then the continuous first order partial
derivatives are

du _du dx ﬂu dy
3 ax ot dy ot

du _du ﬂx du ﬁf

This 1s called as Chain rule of Partial Differentiation.
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Applications of Chain rule of Partial Differentiation

Example 1:
V- :-:rz X z du du+ 2 du

vy dy “ Bz=ﬂ

Hu#u[ Jhnwtha!:x

Xy Xik

Solution : Here given u mu[y_ﬁ,z_x]
Xy = Xz
=u(r, s)

where r—Land 5= 27X

Xy ZX
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Applications of Chain rule of Partial Differentiation contd.,

==+r=1—land 5=-15—l ................ (i)
X ¥ Xz
we know that

du_du dr du 3
dx or ox oOs ox

_Eu_[_l]j&l,[_l) L1 1
Corl %) asl ¥ ' X y
o __1
¥
__ldu_1du g1 1
T oxfar x%os “x oz
ds 1
= e I e —
ax %"
du du du
2 - -
Or X Wil vt WEICETER B (i)
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Applications of Chain rule of Partial Differentiation contd.,

Eiu du dr Eiu ds

Similarl
Yoy aray s 3y
dgu 1 du
=2 | from (i
'y  os 0 m ()
du du )
E__:'_'_ ErEEgEET ErE T ra R TR i
ory Sy o (i)
du du dr Eiu o5
and —=—.— 4+ —.—
dz dr dz ds dz
_a_uﬂ+a_u.l
dr ds z?
du du .
1_ l—
= Z 3 3 PR | 4")
Adding (i) (ii) and (iii) we get
g:+;-,r 33—:4-: %-ﬂ Hence Proved.
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Applications of Chain rule of Partial Differentiation contd.,

Example 2:

du du du

Fu=tfy=z,2-%,x-y) Provethat 3 oy oz

Solution : Here givenu=u(y -z,z-x,x - y)

letX=y-zY=z-xand Z=x-y.............{])
Then u =u (X,Y,Z), where X, Y, Z are function of x,y and z.
Then
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Applications of Chain rule of Partial Differentiation contd.,

du _du HI du r]"f du dZ

ax  dX ox E:I"f o EJZ ch
du du d}{ du E"‘:’ du d7.

—=n i)

||||||||||||||||

dy 0X dy a*fa}- aza}r

3z aXoz dYor aZez T

with the help of (1), Equahnns (i1), (it} and {iv) gives.
du Eiu ,du ﬂu du

= —'I —— e —
VA AR AL R A )
du du Elu du du :
o a}il 0 _{_]]_E_E cerrenneeen V)

du _du du du ..

nd —=—(- e —
and =X Y “ az” X oY (vil
Adding (v), (vi) and {vii) we gct ou gu 3“ 0. Hence Proved.

j-’ L
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Applications of Chain rule of Partial Differentiation contd.,

Example 3: [fzisafunctionof xand y and x = gv + g, y = g-u - g

dz dz e Oz
P that —— —=x——v—
rove that ————— = x—— Iy

Solution : Here z is a function of x and v, where x and y are functions of u and v.
dz _ dz dx . dzdy (i)

du dxdu dy du
dz _ dz Hx_‘_az. dy
dv dx dv dy dv
Also given that
®x =pU + gv and y = e-v —ev

and

. ax_ - 'a.x_ =1 a}t__ - 15 a?_ v
.,E_E,&v_ e i e, o=
~ ..From (i) we get

g—z=g—i{e“j+g—;{—e'“} ................ (iii)
and from (ii) we get

dz od=z . gz .
E_Ei:( e j+— H}rl:: o } ............. {iv)

Subtracting (iv) from (1ii) we get

AW

INSTITUTE OF AERONAUTICAL ENGINEERING




Applications of Chain rule of Partial Differentiation contd

dz dz dz dz.
E—E—{E = }E—{E - £ }E
= x ? o g_z Hence Proved.
x y
Example 4:

ItV = {(2x -dy, dy -4z 4z -2x), compute the value of 6V, +4V, +3V,.
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Applications of Chain rule of Partial Differentiation contd.,

Solution : Here given V = f{2x -3y, 3y -4z, 4z -2x)
LetX=2xdy, Y =dy-dzand Z = dz-2x............ )
Thenu=1{(X, Y, Z), where A, Y, Z are function of x, y and z,

hen v <NV VA v i

dx X o E?Y dx E:‘Z X
0V oV oX EW aY H‘u 07

V =
oy BKEW 6‘1’6}* ﬂZﬂ}r

_dV aVaX E]‘v" dY B‘v’ oz .
ad Vst (iv)

Y X i ﬂ‘r’ﬂ.{ a7z dz
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Applications of Chain rule of Partial Differentiation contd.,

with the help of (i), equations (ii), (i11) and (iv) gives

V, = 222+ 20+ 22 (-2)

= 6V, = 12[% —%] e (w)
Now V, =§—E{—3}+g—¥(3j+g—;{n}

or V, = 3[_3_;i+ g]

= 4V, =12[—3—:+%J __________________ (vi)
and V, =§—;{DJ+S—E[—4}+:—;H}

or v, =4(-¥ L 2V

= 3V, =12|i—g—:+g—;]. ................ (wii)

Adding (v), (vi) and (wvii} we get
'E'vx + 41||"r:,r _|_3"||.|r:r =[) Answer.
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CONTENTS

e Total derivatives of partial differentiation
e Euler’s homogeneous function
* Euler’s theorem of homogeneous function
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. OBJECTIVE AND OUTCOME .

OBJECTIVE:

Total derivatives of partial differentiation, Euler’s theorem of homogeneous

function.

OUTCOME:

Student get to understand the concept of Total derivatives of partial
differentiation and Euler’s theorem of homogeneous function.
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Total derivatives of Partial Differentiation

Total Differentiation

Introduction : In partial differentiation of a function of two or more variables,
only one variable varies. But in total differentiation, increments are given in all
the variables.

Total differential Coefficient : If u = f{x,y)

where x = ¢(t), and y = ‘¥(t) then we can find the value of u in terms of t by
substituting from the last two equations in the first equation. Hence we can
regard u as a function of the single variable t, and find the ordinary differential

coefficient d_u
dt

Thenﬂis called the total differential coefficient of u, to distinguish it from the

dt
partial differential coefficient du and du

dx dy '
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Total derivatives of Partial Differentiation

Hence
du of cl:-; df dy

—— T— — — —

dt  ox dt Ey dt

. du _du dx du dy
e,
dt ox dt Eil}f dt

Similarly, if u = f(x1, x2........%n) and X3, X2 oeviivinnn, , Xp are all functions of t, we
can prove that

clu du dx, Eiu d:-: +Hu di

dt ox, d axz TR dx  dt
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Total derivatives of Partial Differentiation

An important case : By supposing t to be the same, as x in the formula for two
variables, we get the following proposition :
When f{x,v) is a function of x and y, and y is a function of x, the total (i.e., the
ordinary) differential coefficient of f with respect to x is given by
df _ df  of dy
dx  ax gy dx
Now, if we have an implicit relation between x and y of the form f(x,y)=C
where C is a constant and v is a function of x, the above formula becomes
0 = df af dy
ay “dx
1|.-‘|.-’I11|:1h gives the important formula
El..:".?_ df of , ot o
dx  ox dy

Again, if f is a function of n variables x1, Xz, X3,..........Xn, and Xz, X3......... Xn are all
functions of x;, the total (i.e. the ordinary) differential coefficient of f with respect
to xi is given by

df af of dx, c]f dx, df dx,

i = +—'—r—.a—'—-.-.
= T T T e T w7 D mimararrnssisareama e

dx, dx, dx, 'dxl H‘x “dx, o, dx,
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Applications of Total derivatives

Example 1:
. oA
If u = x log xy. where x?+v*+3xy = 1, find eyl
Solution : Given u = x log xvy.................(i)
du du dudy .
k = + — e i eisiesaeee e i1
we know A T 3y dx {1i)

Now from (i) g—z=:~:_ 1

r4 ]
x}"} LE XY

=1+ log xv

du 1 x
and —=Xx—x=—

dy  xy ¥
Again, we are given x*+y3+3xy =1, whence differentiating, we get
Ax? +3y2 II:1—3';+ S[xd—y + y.l) =10

dx dx
Cdy _ (F+y)
dx (v® + x)

Substtuting these values in (ii) we get
du

=
U _(1+1 Ll
™ {+ﬂ5x}’}+},[

o

[ +v]

{}rz " le:| Answer.
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Applications of Total derivatives Contd.,

Example 2:

IH4{x, v) =0, 0y, z) =0 show that 5. 5o 5= = 5 5y

oy oz dx  dx dv
of

Solution : If f(x, y) =0 then ':—i = - [E] ;(E [ (i)

if o(y, z) =0, then j—;=—{g—ﬂf[g¥§] ..................... (ii)
Multiplying (1) and (i}, we have

dy dz_faf)facp] [ of (E{_M
d:-:'d}r_[fix | dy J'rlkfﬂ;,rJ' dz |

of | [ 06\ dz -Eif] (30
) =|=—|/| — |. Hence P d
m[&}f]LE&z]dx [Eix /|5y | Hence Prove
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Applications of Total derivatives Contd.,

Example 3:

If the curves f(x,v) =0 and ¢(x, y) =0 touch, show that at the point of
If o If A
contact ax dy By o = O
Solution : For the curve f(x, y) =0, we have

dy  (of) [ of dy _ (a¢),[9¢
E——[E]f[a}r]andfnrthe-:urved:{x, v) = i {Ex)"lr[&}r]

Also if two curves touch each other at a point then at that point the values of
{dv/dx) for the two curves must be the same,
Hence at the point of contact

EE-SE
[af] fa-t-J {ﬂ;](ﬂ}ﬂ, Hence Proved

Loy dy
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Applications of Total derivatives Contd.,

Example 4:

[f §(x,v.z) =0 show that [3’;’ ) [3: j [g; ] =1

Solution : The given relation defines y as a function of x and z. treating x as
constant

dy | _ db/d=z .
(El = _—aq:;ay P § |

The given relation defines z as a function of x and y. Treating v as constant
() _2er2x

ax),” “d0joz "
o /o
Similarly, [g’ﬂ ='£% .............. (iii)
Multiplying (i), (ii) and (iii) we get
3}') gz (x| _ Ton
(az ,[B‘xl.[ﬂyl_ 1 Hence Proved.
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Euler’s Theorem of Homogeneous functions

Euler's Theorem on Homogeneous Functions :
Statement : If f{x,v) is a homogeneous function of x and y of degree n, then

of of
—+y—=nf
ax dy
Proof : Since f(x,v) is a homogeneous function of degree n, it can be expressed in
the form
FO6Y) = 38 By /)i, (i)
f B, . np (Y Y
2 2 o E(y/x0) = et By e P (L))
ry
urx%—nxﬂf:[}?] }rxan'(}j ................. (ii)
Again from (i), we have
A =2 e Fy/ %)
dy dy

= x0 F'i{y /x). %
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Euler’s Theorem of Homogeneous functions Contd.,

or y a&—; = yx™1 FYy /) (iii)

Adding (ii) and (iii), we get
g—iﬂ*ﬁ = nx" Fy/x]

= nf using(i) Hence Proved.

Note. In general if £ (x, x2......... ce....Xn) be a homogeneous function of degree n,
then by Euler's theorem, we have

df of of

:-:—+:-:~ . +x —=nf

Yax, O ox, "ok
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Applications of Euler’s Theorem of Homogeneous functions

a 1 du du

Ifu=Iug[x :F ];vaethat x~a—x+:,r~a—}r-—=‘l
x+y

Example 1:

Solution : We are given that

2 2
2

2 2

X+y
X+V

Sou= = f{say)

Clearly f is a homogeneous function in x and y of degree 2-1 ie. 1

~. By Euler's theorem for f, we should have

ax  ° oy
g, d o " =
xalic- ]+}r¥|:e j=e - f=em
or xe" = 4 E“a—u—i_}“
ax = By
or xd—u +y§5=1 Hence Proved.
X dy
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Applications of Euler’s Theorem of Homogeneous functions

If u = sin-? | Y } show that K?Eu"':'rg_u:_mnu
=g . >
Example 2: {ﬂﬂ?v ¥

. . xX+y
Solution : Here u = sin! { ——————
{«.-"x + ,J'F}
X+Y

ﬂ+.f__ (say)
1

Here f is a homogeneous function in x and y of degree [1 - %) ie 5

= sinu =

. By Euler's theorem for f, we have

Of A1
* ox YE}? 2

d . d . _ 1
nrxa[s1nu]+}ra{ﬂmu} Esmu

o f=sinu
nrxmsu—@- + msuili —lS-I]"I.LI.
x ay 2
or xai+}ra—u=ltanu. Hence Proved
dx dy 2
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Applications of Euler’s Theorem of Homogeneous functions

Example 3:

g el T

x 2 1 .
x ¥y J;thenprc:vethat xax+}'a}r=551n2u

If =tan"[
N A W

X +y"
X+y

Solution : Here tan u =

f (say)

z + Z
Y isa homogeneous funchon in x and y of degree 2-11.e 1,

Then for

X+v

.. By Euler's theorem for f, we have

xﬁ+}r£=1_f

dx ~ dy
-c:urxil:tﬂn u) + yi[tanu}=tanu
dx d
~ f=tanu
nrxseczua—u +yseciu §£=tanu
dx dy
du du tanu

+ =
ax Y dy sec’u

. 1 .
or x = gin ucosu = ~2~ sin2u. Hence Proved
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Applications of Euler’s Theorem of Homogeneous functions

Example 4:
If u be a homogeneous function of degree n, then prove that
T d*u du
O xEh+y = (n-1) 2
Y I du *u ? 8’u
i) x - =(n-1)— i) ¥ — 2 = -1
( dxdy Y ay’ }E}-’ (1) x Y dxoy vy gy’ n(n-1)u
Solution : Since u is a homogenous function of degree n, therefore by Euler's
theorem
du gu
—_——y—= A | |
B j"rEi'j.-' e (1)
Differentiating (i) partially w.r.t. x, we get
xﬂiu_l_r]_u s g u =n€3u
3 o oxdy | ox
or x2 P, Fu _ Bu du
axz dxdy dx  ox
d’u d'u du
={n—=1)— _......... 2
O X5 Y gy TR @

which prove the result (i)
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Applications of Euler’s Theorem of Homogeneous functions

Now differentiating (i) partially w.r.t. v, we get

. #u +}Falu+1 du =nau
ayax Yoy’ oy oy
d'u +Fazu =nau ou
dydx ~ dy’ dy gy
or x 2% u +vr_:|':'u= du
dydx ~ dy”

Which proves the result (ii)

or X

Mu]tipf}.ring {2) by x and {"’J} by v and then adding, we get

xa"u+x d’u o d*u N ,,a?u_{n_” xau+ du
i }'axa}r FEI],'-FJ:-: Y dy? g% Ta}r
g'u d* 11 g u
z 2 z = -1
or x EE + 2Zxvy axdy + ¥ 3y (m—=1) nu

which proves the result (iii). Hence Proved
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Applications of Euler’s Theorem of Homogeneous functions

If u(x,y.=) = log (tan x + tan v + tan ) Prove that

sim 2x Ju + sin 2y — + sinﬂza—u = 2
o W az
Solution : we have
u(x,yv.z) =log(tan x + tany + tan =)................. (i)
Diifferentiating (i) w.r.t. 'x' partially, we get
du sec” x ..
e e i ttstetascesecanas (it}
dx tanx + tany + t@an z
Diifferentiating (i) w.r.t. 'v' partally we get
du sec”
= Y (1)
dy fanx + tany + tan z
Again differentiating (i) w.r.t "z’ partally we get
du sec” =z .
- e (iv)
dz tanx +tany + tanz

Multiplying (i1), (ifi) and (iv) by sin 2x, sin 2y and sin 2z respectively and adding
them, we get

sinExEE + sin2y a—u+sin2::au _ 5in2x sec” x + sin2y sec’ y +sin2z sec’ 2
ox dz tanx + tany + tan =z
2sin x cosx.sec’ x + 2sin ycos y.sec” y + 2sin z cos z.sec” z
tan x + tan v + tan =
2(tan x + tan y + tan z)
tanx + @Any + tan =z
=2

=

= si_n."-ixil'-l— + sin 2y gu + sin 2z _ﬂ__1::._ = 2. Hence Proved
ox dy dz

-~
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CONTENTS

e Jacobian’s of two and three variables
* Functional dependence and Independence
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. OBJECTIVE AND OUTCOME .

OBJECTIVE:

Jacobian’s of two and three variables, Functional Dependence and

Independence.

OUTCOME:

Student get to understand the concept of Jacobian’s of two and three
variables , Functional Dependence and Independence.
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Jacobian (J) of two and three variables

Letu=u(xX,y),V=v(X,y)are two functions of the independent variables X, V.

The jacobian of (u, v ) w.r.t (x ,Vy) is given by

TR | L. Td, .- |

2L 2 — Ll er)
JECH) T T Ve Ty

Note: 3 :Mand lewthen Jt=1
o(x,VY) o(u,v)

Similarlyofu=u(X,y,z),v=v (X, v¥,z),w=w(X,Y, z2)

Then the Jacobian ofu,v,w w.rto x,y, zis given by

U, U, T
JEzey = Emewd | p v v,
X E 2 (xan=) "W W "W

a > =

Properties:
e J(uv) d(x.y) >0 (x.y) d (u.v) =1
e If u., are functions of r.s and r.s are functions of x,y then

d (u.,v) d (x.,y) =0 (u,v)/ 9 (r.s) .0 (r.s) I (x.y)
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Applications of Jacobian’s

Example 1.
2 2 2 - a(x,y,z)
Ifx+y" =u,y+z =v,z+x =wfind
o(u,v,w)
Sol: Given X +y*=u, y+z°=v,z+x’=w
U, Uy, U 1 2v 0
a(u.rw) . . . -
Wehave ———=| % ¥y ¥ |=|0 1 2z
We Wy W 2x 0 1
=1(1-0) - 2y(0 - 4xz) + 0
=1-2y(-4x2)
=1+ 8xyz
2 (x..2) 1
—— = Farn. = ———
¥ Blweaw) [',j.‘:';_‘;:l] 1+ Buyz

INSTITUTE OF AERONAUTICAL ENGINEERING )



Applications of Jacobian’s Contd.,

Example 2.

S.Tthefunctionsu=x+y +z,v=x%+y?+ z% -2xy — 2yz -2xz and
w = x®+ y3® + z% -Bxyz are functionally related.
Sol: Given u=X—+y + z

Vv =x%+y?+ z% 2xy — 2yz -2xZ

w = x%+ y® + z% -Bxy=z

we have

i B T . T, TL
e TR T Wy ] — ., 2 . o
D (. =) . - -
= AL L
1 1 1
= 2x — 2 — 2= 2y — 2x — 2= 2=z — 2v — 2x
Sx? — 3wz Sv® — Sx= 3= — 3w
1 1 1
= o — N — = WV — x — = = — W — &
T — w= w? — = =% — v
Cl —> Cl — C2
C> > C, — Cg
(o] (o] 1
= 6 2x — 2y 2y — 2z z — Yy — X
2 2 2 2 2
X" —yz — y°~ + xz v — xz — z + Xy z° — xy

=6[2(x - Y) (Y® + Xy — Xz -z%)-2(y - 2)(X°+ xz —yz _)]
=6[2X-YI(Y 2 X+ Yy +2Z2) —2(Y —2)(X —Y)(X +y + )]
=0

Hence there is a relation between u,v,w.
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Applications of Jacobian’s Contd.,

Example 3.

Ifx+y+z=u,y+z=uv,z=uvw then evaluate ==
Sol: x+y+z=u
y +z=uv
Z = uvw

y =uv —uvw =uv (1 —w)

X=u—uv=u((l1-v)

- -
L - Vu ¥ Y
TR TRy . -
. s =z, Z, Z.
1 — — 1 O
= (1 —w) wul(l—w) —uwv
FEATE LW Uy
R, > R, + R,
1 — — 1 i
= 17 I O
W LW FTRE

= uv [ u—uv +uv]

uv
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Applications of Jacobian’s Contd.,

Example 4.
Ifu=x*-y*,v=2xy wherex=rcosé,y=rsing ST =4r°
Sol: Given u=x*—Vy* , V = 2Xy
=r?cos? & — r’sin’ @ = 2rcos 8 r sin 8
= r?(cos® & — sin® &) =r’sin2 8
= 1% cos2 &
Blur) U, Ug _ ‘ 2recos28 re (—sin28)2 ‘
airdl | v, Vg | B 2rsin2f r? (cos28)2
_ cos28 —rsin2 &
= (2n)(2r) | sin28 r (cos28)

= 4r° [rcos°26 + r sin°26 ]
=4r*(r)[ cos®26 + sin“24 ]

=4r°
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Applications of Jacobian’s Contd.,

Example 5.

ok — —_ ] = =N T
Ifu= = | v==2= /w= =X find T
ot 2 (=)
Sol: Givenu = == ,v=Z= ,w= ==
We have
1d .. T, i
EI:,E .::'.1.':-_-;- — , 27 . o
B (e =) W 1"‘"_, wr_
u, = yz(-1/x?) === uy == , Uy =2
., == , v, = xz(-1/y®) = === , v =2
w, =2 , W, =12 , wo = Xy (-1/z%) ===
= = >
:—I:': —_ -
& 2 27 W — = = =
& .= - s = I
e x —x
= = 32
— = = N
=1 1 iz — x= N
- > = V= = —
. — 1 1 1
— fo=l LIS T 1 — 1 1
s 1 1 —1

= 1[-1(1-1) -1(-1-1) + (1+1) ]
=0 -1(-2) + (2)

=2 + 2

=4
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Applications of Jacobian’s Contd.,

Example 6.

— Ar — r Blxax) (rB) _
Ifx=e"secsd,y= e tand P.T —=.7— =1

Sol: Given x = e'secé ,y = €' tang

Bixy) — | X, Xg | a(r8) — ‘ e Ty ‘

3(r8) Ve ve I 8(x) g. 8,
x,=e'secd =X |, xs= e'secd tan#
v,=e tand =y |, v.= €' sec’s

x* —y* = e (sec’s - tan’s )
= 2r = log (x> — y*)
= r=%log (X°—y*)
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Applications of Jacobian’s Contd.,

1 1 X
r.=_——> - (2x) = 2 B
2 x° — vy (X" —y")
1 1 — VY
r,= 5 (—2y) =
Y 2 X2 _ y2 (XZ _ y2)
= — secH — 1/ co=8 — i
w and singd fcosd sing
. —_ ¥ _ = -1/
=> sing = ¥ g = sin (%)
e ’ e
1 1 — VY
o, = y(— > ] = . "
x= ) x\/x —y

x ' y2
1 —
2
X

6, = —_ (1/%) = 2

Blaa) — |e"sec.|5' tand — e2r SeC2l5' -y el’ sece tansg

TR h =" sac2f
= e?'" sec #[sec?®s - tan®s ] = e?' secs
x —y
o(r.o) | (x* =y (x* —y™)
2(x,y) y 1

X_\/Xz_yz \/Xz_yz

(2 =T T —ar 2 T —w T P e —a
J— - » — 1 —_ 1
e Ly T e e s T — 27 zec &
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Functional Dependence and Independence

Functional Dependence: Two functions u (x,) ,v (x.y) are said fo be

functional dependent on one another 1f the Jacobian of u,y w.r.t x.y 15

zero. If they are functionally dependent on one another, then it 1s

possible to find the relation between these two functions.
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Functional Dependence and Independence Contd.,

Example 1.

Prove that the functions u=xy +yz+zx v=x"+y +z° ,w=x +
y+z are functionally dependent and find the relation between the

Answer: Givenu=xy +tyz +tzx v=X +vy +z° w=XxX +y+ =z

-(1)
e e
_— = o, T = X, — =— X
Ix y + z v + X, oz +y
and
o o ahar char char
L =2, =2y, =2zand X =1, =1, =1
ax ay a ax ayv Iz
L oL Pe sl
ax ay az
3 (e, v, w) av av ov
therefore = | = — —
T a(x,y.2) ax 9y oz
ahas char s
adx ay dz
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Functional Dependence and Independence Contd.,

v+z zZz4+x x4y vy+z zZz4+x x4y
= | 2x 2y 2z |=2 X y Z
1 1 1 1 1 1

Applying R, - R; + R>

x+y+z x+y+z x+y—+z
=2 X bY% z
1 1 1
1 1 1
=2(X+Y+Z) |x v =z| =0 Since Riand R, are
1 1 1

same

Hence u.v are functionally dependent. 1.e functionalrelationship exists

between u.v and w.

Now find that relation
We have w=x+y+z => w" = (x+y+2z)" =x" +y +z"+2(xy+yz+zx)=v+2u

Therefore w” = 2u+v is the functional relationship between u.v and w.
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Functional Dependence and Independence Contd.,

Example 2.

N o _ 5
If x = %;J’ — I—,Z == ﬁ1:hE:1:1 show that Sxy.z)

= 4. Are X.V.Z
v w d(uw,v,w) Y

functional dependence?

Solution: By the definition of Jacobian.

o0x Ox dx W w (=
du v oJow  uZz w u
d(x,y,z) _|oy oy oy|_| w _ wu u
d(u,v,w) |ou ov owl| | v 2 v
dz Oz Oz v u _uv
Jdu OJv JOw w w w?
— W wu uvr —1 1 1
=| 1w — Wl uv ‘ 12 12 12 1 —1 1 — 4
1L E 1w
VW uUw —Uuvr 1 1 —1

Since. Jacobian 1s non-zero. X. y. Zz are functionally independent.
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CONTENTS

e Maxima and Minima of two variables with constraints

 Working Rule of Maxima and Minima of two variables with
constraints

* Applications of Maxima and Minima of two variables with
constraints
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. OBJECTIVE AND OUTCOME .

OBJECTIVE:

Maxima and Minima of two variables with constraints.

OUTCOME:

Student get to understand the concept of Maxima and Minima of two
variables with constraints.
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Maximum & Minimum for function of a single Variable

To find the Maxima & Minima of f(x) we use the following procedure.
(i)  Find f4(x) and equate it to zero

(if)  Solve the above equation we get Xy,X; as roots.

(iii) Then find f(x).

If F(X) (= x0) > 0, then f(x) is minimum at X,

If ' (X)x=x0).< 0, f(X) is maximum at x,. Similarly we do this for other
stationary

points.
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Maximum & Minimum for function of a single Variable

Example. Find the max & min of the function f(x) = x° -3x" + 5
Sol: Given f(x) = x° -3x* + 5
f1(x) = 5x* — 12x°
for maxima or minima  f'(x) =0
5x* —12x°=0
x =0, x=12/5
f1(x) =20 x* — 36 x°

At x=0=> f(x)=0. So fis neither maximum nor minimum at x

At x=(12/5) => f(x) =20 (12/5)° — 36(12/5)
=144(48-36) /25 =1728/25>0
So f(x) is minimum at x = 12/5
The minimum value is f (12/5) = (12/5)° -3(12/5)* + 5
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*Extremum : A function which have a maximum or minimum or both is called

‘extremum’

*Extreme value :- The maximum value or minimum value or both of a function is

Extreme value.

*Stationary points: - To get stationary points we solve the equations £ =0 and

ax

g =0 i.e the pairs (a;, b1), (A2, b)) ..vevveones are called

Stationary.
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Maximum & Minimum for function of two Variables

Necessary and Sufficient Conditions for Maxima and Minima:
The necessary conditions for a function f (X, y) to have either a
maximum or a minimum at a point (a, b) are fx (a, b) = 0
and fy (a, b) = 0.

The points (X, y) where x and y satisfy fx (x,y) =0 and fy

(X, y) = 0 are called the stationary or the critical values of
the function.

Suppose (&, b) is a critical value of the function f (x, y). Then fx (a, b) =0, fy
(a, b) =0.
Now denote

fXX (a, b) = A, fxy (a, b) = B, fyy (a, b) =C

1. Then, the function f (x, y) has a maximum at (a, b) if AC — B> > 0 and A
< 0.

2. The function f (x, y) has a minimum at (a, b) if AC — B> 0 and A > 0.
Maximum and minimum values of a function are called the “extreme values
of the function”.
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Maximum & Minimum for function of two Variables

Working procedure:

1. Find:Z and z—f Equate each to zero. Solve these equations for X & y we get

the pair of values (a, bl) (a,bs) (azs ,b3) ....... ...,

2. Findi=2t ,__2'f n= 2°f

O X o X oy oy

3. I If in—m*>0and | <0at (a;,b,) then f(x,y) is maximum at (a,b,)
and maximum value is f(a;,b,)

ii. If in—m*>0and 1 >0at (a;,b;) then f(x,y) is minimum at (a;,b;) and

minimum value is f(a;,b,) .

iii. Ifin—m?<0andat (a;, bl) then f(x, y) is neither maximum nor minimum
at (a;, bl). In this case (a1, bl) is saddle point.

iv. Ifin—m?=0andat (a;, bl), no conclusion can be drawn about maximum
or minimum and needs further investigation. Similarly we do this for other
stationary points.
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Applications of Maximum & Minimum for function of two Variables

Example 1. Locate the stationary points & examine their nature of the following
functions.

u=x*+y*-2x* +4xy -2y*, (x>0,y>0)

Sol: Given u(x ,y) = x* + y* -2x* +4xy -2y°

- - . 0
For maxima & minima —=0, 2* =

oX oy
2x =4 AX+4Y =0 = X —X+Y =0 oo > (1)
z_;“'_:4y3+4x-4y:0:>y3+X—y:0 """"""""""" > (2)
Adding (1) & (2),
x> +y*=0
R i > (3)
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Applications of Maximum & Minimum for function of two Variables

(1) = X°—2X = X=o0,v2.-2
Hence 3) = y=0, -v/2 2

2

1= =122 4,m="" =2(%&) =4&n=2" =124

ox? OXOy
In—m?®=(12x*—4)(12y* —4) -16
At (—v2, V2),In—m*=(24—-4)(24 -4) -16 = (20) (20)—16 > 0 and 1=20>0
The function has minimum value at (—v2, +2)
At (0,0), In—m?=(0-4)(0-4) -16 =0

(0,0) is not a extreme value.
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Applications of Maximum & Minimum for function of two Variables

Example 2. Investigate the maxima & minima, if any, of the function
f(x) = X°y* (1-x-y).

Sol: Given  f(x) = X%y (1-x-y) = x3y?- x*? — x%y°

2f = 3x%y® — 4x%y® -3x%y°? L

e 8

= 2x3%y — 2x%y -3x3y?

For maxima & minima £ =0 and z_f —

-
-

= 3X7y —4xy? -3x%y? = 0 => Xx°y*(B3—4X -3y) = 0 ——--mmmmmme- >
(1)
= 2xX%y —2x% -3x%y* = 0 => X’y(2 —2X -3y) =0 --mmmmmmmmmmo >
(2)
From (1) & (2) 4x +3y—3 =0

2X+3y-2=0
2X =1 =>x =1
4(%»)+3y—3=0=>3y=3-2,y=(1/3)
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Applications of Maximum & Minimum for function of two Variables

L = 6xy*-12x%y® -6xy°

[Z f ] weam = 6(1/2)(1/3)2 -12 (1/2)2(1/3)? -6(1/2)(1/3)® = 1/3 — 1/3 -1/9
=-1/9

m=2"" :i(ij = 6x°y -8 X’y — 9x?y?
OXoy ox \ oy

[jzaf ] Wz 13 = 6(1/2)2(1/3) -8 (1/2)3(1/3) -9(1/2)%(1/3)® = ==%== = =2
xoy

iz 1z
8% f
oy

n=

= 2x3 -2x* -6x3%y

(57 weam = 201/2)° 2(1/2)* -6(1/2)° (W) = -1~k =

In- m? =(-1/9)(-1/8) —(-1/12)> =X - 2 =21 =1 >0

— 1
andl = —<o
9

The function has a maximum value at (1/2, 1/3)

Maximum value is f(— i\ f—x—w - = 1W—ifl =
L2 3) (8 9 2 72 2 3) 432
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Applications of Maximum & Minimum for function of two Variables

Example 3. Find the maxima & minima of the function f(x) = 2(x* —y?) —x* +y*
Sol: Given f(x) = 2(x* —y?) —x* +y* = 2x% —2y* —x* +y*

For maxima & minima 22 = 0 and zf =0

E‘f—4x A°=0 =>4x(1-x°)=0 =>x=0 ,x==*1

L=-4y+4y°=0 =>-4y(1-y)=0 =>y=0,y==1
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Applications of Maximum & Minimum for function of two Variables

we have In —m- = (4-12x)( -4 +12y- ) — O
= -16 +48x? +48y? -144x°y?
= 48x% +48y? -144x°%y? -16
i) At (O, =+=1)
In—m*=0+48-0-16 =32 >0
l=4-0=4=>=0
f has minimum value at (O, = 1)
f(x,y)=20"—-y?) x*+y*

f(O,*x1)=0—2—-0+1 = -1
The minimum value is ‘-1 °

i) At (x1,0)
In—-m®= 48+ 0-0-16 =32 >0
|l =4-12=-8<0

f has maximum value at (= 1 ,0)
fF <y ) =2(x%—y?) —x* +y*
f(x1,0)=2-0-1+0=1
The maximum value is 1 °
iii) At (0,0),(xx1,+x=21)

In—m"<0

| =4 -12x7
(0,0 & (££1,x1) are saddle points.
f has no max & min valuesat (0O, 0) , (=1, = 1).
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Applications of Maximum & Minimum for function of two Variables

Example 4.

Determine the maxima/minima of the function
Sin X+ SNy + sin (X + V).

Solution
Let JF O ¥) = sin x4+ siny + sin (x +v)
We have j; = COS X + CO8 (X + ¥)

f, = cos ¥+ cos (x +y)
Now J, = 0 and .F} = {} implies

cos (x +v) = —cos xand cos (x + ¥) =—cos ¥
Le., ~COS X = — COS ¥V OF COS X = COS ¥
or X =9

Then, Cos 2r = —Co8 X = cos (T —x)
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Applications of Maximum & Minimum for function of two Variables

T
O 2r = M —-—X OfT X = —
3
b8
S0 that Y = 3
T T
The critical point is | =% - =
3 3
Fuarther, A = f,.=—sin x — sin (x + ¥)
B = f_=—sin (x + ¥)
C o= f = — sin ¥y — sin (x + ¥)
L - . m . 2w J3 3
— .= - —sin— —sin— = 2= X2 - _ 3
At [3 3)‘ A m3 3 2 2
I J3
B o= —sin—mr=—-—-
T . 2m ﬁ ﬁ
T = — '] _— — — — 3
(O 51n3 s1Mn 3 > 2 J‘
z
3 O
o (A (VA [ 2220
and AC - B® = (—~3)( ) 5 4
Also A= —+3<0
. . ) T T
S0 (e, W) attains its maximuom at 33
: T r sinE+5inE+5in E—ﬂ:
and maximum §JF {x, ¥} = E’E - 3 3 3
_ A3 V3 3 343
-2 2 2 2
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Applications of Maximum & Minimum for function of two Variables

Example 5.

Find the extreme values of the function x* + 2x%v — x* + 3.

Solution
Let fix, v) = x* + 2% — % + 3
We have L=4f‘+dxy—lx
and f, = 2 + by
Then J, = Uand f_ = 0 implies

2k (2 +2y— 1) = 0and 2 (x* + 3v) =0
e, x=00r2¢ +2y—1 = D and % + 3y =0
which is same as
[x = 0 and x* + 3v
e, x =0and v = (.
where 1* = — 3y
2P+ 2y-1 =10
2(-3v)+ 2y -1

0} or {28 4+ 2y = 1 =0 and x* + 3y = 0)

Il
=

which implies

t
Il

Hence, x* =

ol

3
4
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Applications of Maximum & Minimum for function of two Variables

. N
Hence, the critical values are (0, 0), = "1 and | ——.—
Further
A=f, = I2r3+4y—2fﬂ'=fq=4x+ C=f,=6
(i) AL(0, 00, A =2 B=0,C=6and AC - B> =~ 12 < 0

Hence, there is neither a maximum nor a minimum at (0, 0)

@ A F.F) A= 2Ges(Fh)-2me

2 4 4
B = 4-% =243, C=6
2
Then. AC — B = 6 (6) — (2J3) =24 >0 and
A =62>10
J3—1
o (x, ¥) has a minimum at (— v —
2 4
NER.
Hence, [ (x, ¥) altains ils minimum value al ErS

-3
Also, minimum f (x, ¥) = [T)
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Applications of Maximum & Minimum for function of two Variables

R |

Jix, v) attains its oo md e

= )

(fidy Similarly, at [

— 3 i —
Thus, J (x, ¥) atlains minimum —2—  at [i % . TI] .

Example 6. Find three positive numbers whose sum is 100 and whose
product is
maximum.
Sol: Let x ,y ,z be three +ve numbers.
Then X +y + z =100
= z=100 — X —vYy
Let f (X,y) = Xyz =xy(100 — X — y) =100Xy —X°y-Xy~

For maxima or minima z—i = 0 and z—f =0
22 =100y —2xy-y® =0 =>y(100-2X —y) =0 -—-—---mmmmmmm > (1)
2 = 100x —%x? -2Xy = O == X(100 —X -2y) = 0  ————mmmmmmmmm > (2)

Eh
Fram (10 & (2)
100 -2x —vy =0
200 -2x -4y =0

100 + 3y =0 => 3y =100 => y =100/3
100 — x —(200/3) = 0O => x = 100/3
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Applications of Maximum & Minimum for function of two Variables

O]
X

2

(azf J (100/3 , 100/3 ) = - 200/3

8y2

In -m? = (-200/3) (-200/3) - (-100/3)* = (100)* /3
The function has a maximum value at (100/3, 100/3)

(5” J (100/3 , 100/3 ) = - 200/3

100 100 100

I.e. at x = 100/3, y = 100/3 S, Z =100 - — -

3 3 3

The required numbers are x = 100/3, y = 100/3, z = 100/3
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CONTENTS

e Maxima and Minima of two variables without constraints

* Applications of Maxima and Minima of two variables without
constraints

INSTITUTE OF AERONAUTICAL ENGINEERING 7



. OBJECTIVE AND OUTCOME .

OBJECTIVE:

Maxima and Minima of two variables without constraints.

OUTCOME:

Student get to understand the concept of Maxima and Minima of two
variables without constraints.
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*Extremum : A function which have a maximum or minimum or both is called

‘extremum’

*Extreme value :- The maximum value or minimum value or both of a function is

Extreme value.

*Stationary points: - To get stationary points we solve the equations £ =0 and

ax

g =0 i.e the pairs (a;, b1), (A2, b)) ..vevveones are called

Stationary.
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Applications of Maximum & Minimum for function of two Variables

Example 1.

A rectangular box, open at the top, is to have a given capacity. Find
the dimensions of the box requiring least material for its construction.

Solution: Let x, y and z be the length, breadth and height respectively, let V be
the given capacity and 5, the surface

V is given = V is constant

V=xyz

or Z=1 (1)

Xy
S=xy+2xz+2yz
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Applications of Maximum & Minimum for function of two Variables

=
s O°F _ awv

=:-:'3'}"?_:' v
o ﬂ:ﬂ- arnd ﬁ:ﬂ
o e
Sy — o O .. (ii) and x — =2 =0 ..........(iiQ)
> ¥
From (i) y=2"'i:’
-
H-I-
-~ From (ii). x - 2W PRV = 0

- = -
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Applications of Maximum & Minimum for function of two Variables

:.:.1-
o 11— =0
”[ va

or x = (2WV)1/3 (As x = 0)
2V 2% 13
d yv = = =(2V
. - - . . 4w
Seox =y = (2V)1/3 is a stationary point. At this point, r=— =2 > 0, s =1,
_4av _,
2V

Sothatrt-s2=4-1=3>0andr>0
=S is minimum when x =y = (2V)1/3
Also == v "'-.-"2!3

xy  (2V)
_vr_@w)”
- 223 2

¥
2
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Applications of Maximum & Minimum for function of two Variables

Example 2.
Find the volume of largest parallelopiped that can be inscribed in the
ellipsoid
- S B
* 4 4 + Z = 1

a® b* ¢
Solution: Let (x,y,z) denote the co-ordinates of one vertices of the paralielnpied

which lies in the positive octant and V denote its volume so that
V = 8xyz As 2x, 2y and 2z be the length, breadth and height respectively

Ll vz:&ixl}rlzl
Xy
.‘{4 2 xt 4
=64c’[f}"- af - ,:ZF ]=f{mﬂ say
3_.2 i

T e

of 2x'y  4x’y’
nd 25 = 64c? | 2xy -2 Y
w2 a2y 3
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Applications of Maximum & Minimum for function of two Variables

b e B P putﬁngﬂ = O arwd — = O we et
= RV 2 >y
— ZI}FE — 3 — o Cr
2™ = _
— —5 iz — O (i)
= |
aarncl 2:-:1}-* — 2:?}' 41; =
< 2 - -
==.1—a,—§; — O Ciid)
Nowsws smulthply (i) by 2, we hawve
R 2= P
= == B O (aai))
subtractimng, (iii) from (ZId) wvwe hhawe
=
_1+3iz=ﬂ==-3x1=az

'x——-——a aarecl =——-h
T = Y= s
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Applications of Maximum & Minimum for function of two Variables

4 . .2 4 2 .2
and rt - s2 = (64 c2) [23:3_23'" _12“ Y ]{ch](zx;_z:m _12}: v ]

—[{64-.:" ][‘h:}r _ B:z}" _ Bgs Ir

].—rt—szhﬂandr*:ﬂ

a b
a5
Hence f(x,¥) is max at(%,%]

2 p? 1 a* b* 1 a®* b*
= V2 =—gac?| 2. - — — = >
max < [3 3 a®' 9 3 b 3 9
_ 64a’b3c?
27
. Vm_u = 8abc Answer.
33
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CONTENT

 Maximaand Minima of two variable function by method of
Lagrange multipliers
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. OBJECTIVE AND OUTCOME

OBJECTIVE:

 Maximaand Minima of two variable function by method of Lagrange

multipliers.

OUTCOME:

e Student get to understand the concept of Maxima and Minima of two
variable function by method of Lagrange multipliers.
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Method of Lagrange Multipliers

In many problems, a function of two or more variables is to be optimized,
subjected to a restriction or constraint on the variables, here we will consider a
function of three wvariables to study Lagrange's method of undetermined

multipliers.

Let

u=f(x, v, z) (i)

be a function of three variables connected by the relation
¢ (x, y, z) =0 (i)

The necessary conditions for u to have stationary values are

du du du _
ax Ug U,E—U

Differentiating equation (i), we get du =0 i.e.

du du du
du = é;dx+§d}r+£dz 0 (iii)
Differentiating equation (ii) we get d¢ =0 i.e.
d¢=%dx+§$d}?+g—:dz=ﬂ (iv)

Multiplying equation (iv) by A and adding to equation (iii) we get
(au am)dx+(au a¢)d}l’+[-—-+la¢)dz 0

x  ax 3y 3y 9z
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Method of Lagrange Multipliers

This equation will be satisfied if
du dd

a'I JLE = ﬂ {‘LF:I

% + x% ~0 (vi)
du dp .
9z ez (vii)

where A is the Lagrange multiplier. On solving equations (ii), (v) (vi) and (vii), we
get the values of x, y, z and A which determine the stationary peints and hence
the stationary values of f(x, y, z).

Note: (i) Lagrange's method gives only the stationary values of f(x, y, z). The
nature of stationary points cannot be determined by this method.

(ii) If there are two constraints ¢i(x, vy, z) =0 & ¢2 (x, y, z) =0, then the auxiliary
function is F(x, y, z) = f(x, y, z) +A,, ¢, (X, ¥, Z) + A2 92 (x, ¥, z) here A; and A; are the
two Lagrange multipliers. The stationary values are obtained by solving the five
equations Fx=0,F,=0,F.=0, F =0andF_ =0
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Method of Lagrange Multipliers

Summary:
Suppose f(x ,y,z) =0 --———----——- (1)

@(X,yY,2)=0 - (2)
F(X,y,z)=f(x,y,z)++ a(X,Y, z) where » is called Lagrange’s
constant.

1. Z_F: => 2L 4+ 3 22 =0 - (3)
‘Z—S= =>L 4+ 2 =0 - (4)
T =0 =22 + 34 22=0 ----mmmmmmmm (5)

oz

2. Solving the equations (2) (3) (4) & (5) we get the stationary point (X,

Y, Z).
3. Substitute the value of x , y, z in equation (1) we get the extremum.
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Applications of Method of Lagrange Multipliers

Example 1. Find the minimum value of x- +y” +z2, given X + y + z =3a

Sol: u = X% +y? +z°
@ =X+y+z-3a=0
Using Lagrange’s function

F(X,y,z2)=uX,y,z)+ra@(X,y, 2)
For maxima or minima

OF =28 4 122 = D% 4 3+ = 0 ———mmmmmmmmm (1)
X P o
e - A (2
oF — P 8o — —

=== + 3y ==2Z+ 3 =0 - (€))
az = =

From (1), (2) & (3)
= -2X = -2y = -227
x =y ==z

@ =X+X+x-3a=0
x =a

x =y =zZ=a

Minimum value of u = a® + a® + a2 =3 a°
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Applications of Method of Lagrange Multipliers

Example 2.
Find the minimum value of x* + v* + z° subject to the condition ax + by + ¢z = p.

Soluwtiomn
Let F = 02 +5 +29) + & (ax + by + cz)
We form the equations F_ = 0, F'__r,= ik, .F'_I = )
Ler., 2y + Aa = 0, 2v + Abh =0, 2z + Ac =10
— 2 — 2 —2
ol F .
—2x -2y -2z
- e - o i
X _ X_= _
or a b ¢ = k (say)
x = ak, v= bk, z = ck
But ax + by + ¢z = p and henos, we have
a’k + bk + c*k = p
k = L

2

a’ +b* +c°

Hence, the required minimum value of x* + v + z7% is

@k + B+ R = B at e B e D
. pz [:.c.rz +b% + e'.‘z} pz
€, 2 2 232 - z F] 2
{-E.l + P +:.‘} a“ +b° +c

thus, the required minimum value 15
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Applications of Method of Lagrange Multipliers

Example
A 0F i—ki+i = 1. show that the minimum value of the function @' + b + 2% is
x v z
(2 + P + f.‘_,:"“;_
Solution
. 3 3,,2 3.2 1 1 1
Let F=(ax+byv+32H +A | —+v—+—
x v =z
we form the equations = (b, F_-,- = (), F‘z = 0}
— 1
ie, 2a’x + :L( ] - 0 or A = 2a'x’
E.Fr}+i'~,( )-D@rL-Zh-‘}?‘
_l 3.3
2%z + A = or A = 2c¢
Now = 26y = 2572
— a'x® = by = 573
= ax = hy = oz
_ ax _ ax
v o= b z = -
1 1 1 | b
But —+— 4= = 1ie, —F—F— =]
x v Z X dax ax
a+h+ o 1
ax -
a+ b+
xX =
o
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Applications of Method of Lagrange Multipliers

d+h+c fhce
.II!"I.IE[] }‘I b lf_lﬂ -

Required minimum value of the function a’x® + K" + ¢2% is given by

) \! |
] ﬂ;_[ﬂ+h+f] +b3(ﬂ+h+£] +t3[ﬂ+ﬁ+f.)
i b ¥

—@+b+@+b+o)=(a+h+c)

Thus, the required minimum value 18 (a + b + o).
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Applications of Method of Lagrange Multipliers

Example
4,

Find the minimum value of x* + v° + 2° subject to the conditions xv + vz + o = 3a’.

Solution
Let F=x+vV+D+rAv+w+m)=0
We form the equations F_ = (), Fy =0, F, =10
LeE., 2+ A v+ =02vyv+ Ax+=02z+A(x+y)=10
-2x -2y -2z
= A = v+z 7 x+z T x+v
Equating the R.H.S. of these, we have
2x _ 2y _ 2z n
V+12 X+I X+Y¥
Consider,
X ¥
V2 T ox4r
ie., Prz=vVi+voX-VH+zx-v=0
or x—vilx+v+z)=10
= Yr=vyox+y+z=10
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Applications of Method of Lagrange Multipliers

we must have X =y, §ince x + v+ 2 cannot be zero.
Suppose X+y+z =0, then by squaring, we get
C+y+)+2y+z+m) =0
5> P4y +2+200) =0
or ey = -6d’ <0
which is not possible. Similarly by equating the other two pairs in (1), we get
V=7 7mxthusxmym=g
But o+ + 20 = 3, putting y =7 =1x, we get
W=3W=31=0
Thus, X = @ = y = 7 and the minimum value of x* + y* + 2% is

Frat+d =3

INSTITUTE OF AERONAUTICAL ENGINEERING



Applications of Method of Lagrange Multipliers

ExampleS.

Find the volume of largest pafallelopiped that can be inscribed in

2. ot @l :
the ellipsoid 12- + % + z_z =1 using Lagrange's method of Multipliers.
a C
. x2 2 z2
Solution: Let? + %2- + " 1
2 2 2

X Z :
¢(x,y,z)=az +:;2 +cz -1=0 (1)

Let 2x, 2y, and 2z be the length, breadth and height, respectively of the
rectangular parallelopiped inscribed in the ellipsoid. Then
V=(2x) (2y) (22) = By
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Applications of Method of Lagrange Multipliers

Therefore, we have
aal/+lgz=0=>8yz+li?x=0 (ii)
aa\y,+kg<;=0=98xz+k%=0 (i)
oV . do 2z :
az+)taz=0=o8xy+kc—2=0 (iv)

Multiplying (ii), (iii) and (iv) be x, y and z respectively, and adding, we get

2 2 2
24xyz+2k[x2 +L +Z,J=o

a* b® «c
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Applications of Method of Lagrange Multipliers

24 xyz +2A (1) =0
= A=-12xyz
putting the value of A in (ii) we have

8yz + (<12 xyz) :—: =0

3x?

a

=}x=.l
J3

Similarly, on putting A = - 12 xyz in equation (iii) and (iv) we get

- -
BT
Hence, the volume of the largest parallelopiped = 8xyz

-3 ) )%)

_ 8abc
3J3
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MODULE-III

HIGHER ORDER DIFFERENTIAL EQUATIONS AND ITS
APPLICATIONS
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LINEAR DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER ORDER

* Definition: An equation of the form + P (x) + P,(x) + --

* P,(x).y =Q(x) Where P,(x), P,(x), P5(x)... ..... P.(x) and
Q(x) (functions of x) continuous is called a linear
differential equation of order n.

* LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT
COEFFICIENTS

* Def: An equation of the form +P, +P, + -———- + P,y
= Q(x) where Py, P,, P5....P, are “real constants and
Q(x) is a continuous functlon ofx is called an linear
differential equation of order ‘ n” with constant
coefficients.
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Note:

d ) d? ) 4
1. r F D = D = 5 . e D" =
Operato P PR on
2 it
.-'_',E}r > b | Y N T v
Dy _d_'x y_dxz R D y_dx]"‘[

2. Operator %Q = [Q ie D'Q is called the integral of Q.
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To find the general solution of f(D).y=0:

Where f(D) = D"+ P; D" + P, D™ 4---eemeeo- +P,, is a polynomial in D.
Now consider the auxiliary equation : f(m) =0
ief(m)= m"+Pym"™ + P, m"? 4mmmemme- +P, =0
where p1,P2,P3 - ceeevnnnnnn.. pn are real constants.

Let the roots of f(m) =0 be mz, mz, ms......my.
Depending on the nature of the roots we write the complementary function

as follows:
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Consider the following table

S.No Roots of A.E f(m) =0 Complementary function(C.F)
1. m1, My, ..m, are real and distinct. | y. = c1e™+ ce "X +.. 4 c ™
2. mjy, My, ..My are and two roots are
H —_ m,X myX m_X
equal i.e., my, m; are equal and Ye = (CrtCox)e v+ cge 3+t cpe
real(i.e repeated twice) &the rest
are real and different.
3. m1, My, ..m, are real and three Ye = (Cr+Cox+Cax?)e™* + ceM*+ ..+ ¢
roots are equal i.e., m;, m, , mg are
equal and real(i.e repeated thrice)
&the rest are real and different.
4, Two roots of A.E are complex say ye =€ (c1cosfFx + csin3 x)+ cae™ +.. .+ cre™n
a+iffa -ifS and rest are real and
distinct.
5. If ct+if5 are repeated twice & rest | ye = €™ [(Cr+cox)cos5 x + (C3+Cax) sinfF x)]+ cse™
are real and distinct +...4 cpe™
6. If ct+if5 are repeated thrice & rest | y. = € [(ci+Cox+ cax?)cosf3x + (Catcsx+ cex?) sins
are real and distinct X)]+ ¢+ + cpe™™
7. If roots of A.E. irrational say y, =e” [c1 cosh \/;x + ¢, sinh \/;x]+ ce™ + +ce™
« + +/p and rest are real and
distinct.
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d*y _dy
Solve —-3—+2y=0
dx®  dx

Sol: Given equation is of the form f(D).y =0
Where f(D) = (D*-3D +2) y =0
Now consider the auxiliary equation f(m) =0
f(m)=m*-3m+2=0 = (M-1)(m-1)(M+2) =0
- m=1,1,2
Since my and m; are equal and ms is -2
We have Y. = (ci+Cox)e” + cge™
. Solve (D*-2D3-3D? +4D +4)y =0
Sol: Given f(D) = (D*-2D*-3D? +4D +4)y=0
= A.equation f(m)=(m*-2m*-3m? +4m+4)=0
= Mm+1)*(M-2)>=0
= m=-1,-1,2,2

2y = (Cr+Cox)e™ +(Catcax)e?
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3. Solve (D* +8D*+16) y =0
Sol: Given f(D) = (D* +8D*+ 16) y =0
Auxiliary equation f(m) = (m* +8 m? + 16) = 0
= (M’ +4)°=0
= (M+2i)° (M+2i)2=0
= m=2i,2i,-2i,-2i

Ye = 9% [(ci+cx)c0s2X + (Ca+Cax) sin2x)]
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4. Solve y*'+6y*'+9y =0 ; y(0) = -4, y'(0) = 14
Sol:  Given equation is y'*+6y*+9y = 0
Auxiliary equationf(D) y=0 — (D?+6D +9)y =0
A.equation f(m) = 0 — (M? +6m +9) = 0
= m=-3,-3
Ve = (C1+CoX)e ™ cmmmmo > (1)
Differentiate of (1) w.r.to x — y* =(ci+cax)(-3e3*) + cu(e3)
Giveny; (0) =14 — c1=-4&cCc,=2
Hence we get y =(-4 + 2x) (e3*)

111 4 gyt 4yl =0

111

5. Solve 4y
Sol: Given equation is 4y*** + 4y +y' =0
That is (4D3+4D?+D)y=0
Auxiliary equation f(m) = 0

4am® +4m?+m =0

m(4m? +4m + 1) =0

m(2m + 1) =0

m=0, -1/2 ,-1/2

y =c;+ (Co+ c3x) e™/?
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General solution of f(D)y = Q(x)

Isgiven by y=y:+Y,
|6 y= C.F+P.l
Where the P.I consists of no arbitrary constants and P.1 of f (D) y = Q(x)

IS evaluated as P.I= ﬁ .Q(x)
|1~ ;I

Depending on the type of function of Q(x).

P.1is evaluated as follows:
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1. P.1 of f (D) y = Q(X) where Q(x) =e°" for (a) # 0

1 1 1
Casel: P.l= .QXx) = e = e
o) o) f(a)

Provided f(a) # 0
Case 2: If f(a) = O then the above method fails. Then
if f(D) = (D-a)* D(D)

(i.e °© a’ is arepeated root k times).

Then P.1 = —— e . — x* provided @ (a) # 0
@ a) L
1 1
= = + D -1
Express F(Dy 1+0(D) [1+ E}( }]
1
Hence P.I = liT{D:l Q(X).

=[1+ @(D)]* x*
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T) Pa = when I(a) Z0
Working rule:
Case (i):
In f(D), put D=a and Particular integral will be calculated.

ﬂ_‘?ﬁ:’: 1
Fio) Flal

Particular integral= 2“* provided f(a) #0

Case (ii) :

If f(a)= 0, then above method fails. Now proceed as below.
If f(D)= (D-a)“g> (D)
i.e. ‘@’ is a repeated root k times, then

oo I.'-.

g (a) ~ k!

Particular integral= provided ¢ (a) #0
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Solve the Differential equation(D?*+5D+6)y=e*
Sol : Given equation is (D*+5D+6)y=e*

Here Q( x) =e *

Auxiliary equation is f(m) = m*+5m+6=0
m*+3m+2m+6=0
M(Mm+3)+2(Mm+3)=0
m=-2 or m=-3
The roots are real and distinct

C.F = y.=cie® +c, e
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Particular Integral = y,= Q(x)

floy’

1 X 1 X

= e — —
DZ+5D+6 D+2ND+3)

Put D=1 in f(D)

1
Particular Integral = y,= 1=z ©
=

General solution is y=y+y,

.
=
2 -
y=c,e ¥+c, e +—

—
==
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Solve y-4y~+3y=4e>*, y(0) = -1,y (0) = 3
Sol : Given equation is y''-4y'+3y=4e*
2y 4
d xZ e

JE
=2 1 3y=4e>
.

I.e
it can be expressed as

D?y-4Dy+3y=4e*

(D?-4D+3)y=4e*

Here Q(x)=4e>*; f(D)= D?-4D+3
Auxiliary equation is f(m)=m?-4m+3 =0
m?-3m-m+3 =0

m(m-3) -1(m-3)=0 =>m=3 or 1

The roots are real and distinct.

C.F= y.=cie¥+ce* --—-> (2)

INSTITUTE OF AERONAUTICAL ENGINEERING



1

P.l.=yp= D) QX)
1
— - - @ 3X
=Yo= 52 _upaa 2®
— — 1 3X
= yp— ':D— 1:||:D—3:| . 4e
Put D=3
4e°%* 4 %
Y, —

General solution is y=yc+Yy,

y=cie3*+c, e*+2xe3

Equation (3) differentiating with respect to ‘x’

y'=3c,e¥*+ce*+2e3*+6xe*
By data, y(0) = -1, y*(0)=3
From (3), -1=c;+cC;

From (4), 3=3c;+co+2

3c1+co=1

B (3—1)(0—3)= 2 (D -3)

X 3x _ 2Xe3x
1!
............. > (3)
___________ > (4)
............. > (5)

Solving (5) and (6) we get c;=1 and c, = -2

y=-2e * +(1+2x)e*
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P.l of f(D) y =Q(x) where Q(x) = sin ax or Q(x) = cos ax

P.I of f(D) y =Q(x) where Q(x) = sin ax or Q(x) = cos ax where ¢ a ¢ is constant then P.I =

—— . Q).

(D)
sin ax

f (— az)

Case 2: If f(-a%) =0 then D? + &% is a factor of @(D?) and hence it is a factor of f(D). Then
let f(D) = (D” + a%) .®(D?).

Case 1: In f(D) put D* = - a* 3 f(-a%) # 0 then P.I=

sin ax sin ax 1 sin ax 1 — X COS ax

Then - 2 2 2 = 2 2 2: 2
f(D) (D°+a’)®(D’) @(-a’)D’+a’ @(-a’) 2a

COS ax COS aX 1 CoS ax 1 X sin ax

(D) (D'+a’)®p(D’) d(-a’)D’+a’ ®f-a’) 2a
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Solve y "+4y +4y= 4cosx + 3sinx, y(0) = 0, vy (0) = O
Sol: Given differential equation in operator form
(JE;"2 + 4D 4+ 4)yy= 4cosx +3sinx

A.E is m2+4m+4 =0

(m+2)°=0 then m=-2, -2
Yo C.F is ye= (C1 + cox)&E~ =™
doosx+ 2SIV =
P.lis = y,= ut I3 = = _
Ye© D2 +aD +4) P
doosx+ v (2D —2 1 docosxe+ 35w )
Yp= (4D +3)) N (4D —3WaD +2))

(4D — I L ocosx+ 357y )

1sD= —o
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Put JD'E = -1

(4D —3I M docosx+Is5irmx ]

TTYeT —1l&a—a3
—lasinxy+ 12cosxy— 12 cosxy— Fsirnx ] — TS oiiiae
= —— = — = sinx
e —25

»+General equation isy = y+ Yy,

— 2 .
Yy = (c1 + cox)& + sinx 0 ———————— (1)
By given data, y(0O) = O*+*c; = O and

Diff (1) w.r..t. y' = (c; + cox)[—2)e& =% + & ¥ (c,) +cosx ——————mmmv (2)

given y'(0) = 0O
(2) = -2c, + c,+1=0 vac, = -1

~+Required solutionisy = —X&~ “Fa4sinx
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Solve (D?*+9)y = cos3x

Sol:Given equation is (D’+9)y = cos3x

A.E is mZ+9 =0
Yo = T 3

Ye = C.F = cq, cos3x+ c>sin3x

P [l o T Pl e e
Ye =1 = pb24o T D=4+ 3=
A R X .
= — . siN3x = T sin3x
2{3) &

. -

General equation isy = y.+ vy,

X
Y = C1COsS3X + C>CcOos3X + g sin3x
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P.I for f(D) y = Q(x) where Q(x) = xX

1. P.1for f(D) y = Q(x) where Q(x) = x* where k is a positive integer f(D) can be express
as f(D) =[1+ @ (D)]

1 1
= =[1+ Dt
Express Dy 1+0(D) [1+ g( )]
1
Hence P.1 = 1 BCD) Q(X).

= [1+ E}l(ﬂ]] Xk
Formulae
1 —119 =(1-D)'=1+D+D?+D°+ oo

1

2. —=A+D)'=1-D+D?-D3®+ -
1+D

3. — 1952:(1—D)'2:1+2D+3D2+4D3+ ------------------
Li— A

4. L = (1+D)2=1-2D +3D?- 4D + cemememeee
(1+D7)2

5. — 1DEE:(1—D)'3:1+3D+6D2+10D3+ __________________
LiL— 4

6. ——=(1+D)3=1-3D + 6D? - 10D + —-cmcmemememee

(1+D7)2
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Solve y +2y T -y -2y= 1-4x°

Sol:Given equation can be written as

(D3 + 2D — D — 2)v = 1-2x°
AEis(mMm® +2m° —m — 2)=o0
(mn* — L)m+2)=0

m< =1 0 m=-2
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P.l (1-4ax?)

" T (D3+2D2-D-2)

_1 .
= (D2 +2D2 D) (1-4ax%)
2[1—= J
2
-1 [ (D342D?—-D) ]_1( ]
="_ — 1—4
=z > X7)
—1 (D3+2D?-D) (D3*+2D?-D)? (D3*+2D?-D)3
= [1+ + + +....] @0-4ax°)
2 2 4 a

- _2—1[1+ %(D3 +2D° - D)+ %(D2 —4D°%)+ i(— Ds)}(1—4x3)
=—[1-2(D3*)+>(D?)-20] (14x7)
= 1(1-4x%) -2 (—24) + 2 (—24%) - - (-12%7)

—1 3 2
= —[-4x"+6x" -30x +16] =

= [2x3-3x® +15x -8]
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The general solution is

y=CF+P.l

V= clE‘I + G, o c3E_EI +[2¢-3x’ +15x -8]
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P.l of f(D) y = Q(x) when Q(x) = e?*V

PToTT(D)y = QX)When Q(X] = ¢V where ‘a’1s a constant and V s funcfion of x. where

\/ =sin ax or cos ax or x*

-
ThenP.| o) Q(x)

|
=— e?V
f(0)
1

- [f (D+a] (V)]

1

f(D+a)

&

Vis evaluated depending on V.
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solve (D® — 7D? 4+ 14D -8)y = €™ cos2x
Given equation is

(D3 — 7D? 4+ 14D -8)y = €7 cos2x
AEis(m® — 7m~ + 14m — 8)=o0
(m-1) (M-2)(m-4) =0
Then m = 1,2,4

C.F = cluE:‘T + co, & =3 + c3& 4
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e*cos2x
(DE-7DZ+14D —-8)

P.l

; 1
b |
"(D+1)3-7(D+1)2+14(D+1)—-8

Cos2x

ax ax 1
e v=e¢e

f (D) f(D—ka)J

1
" (DE—4DZ+43D )

.COS2X

1
"(—4D+3D+16 )

=g .cos2x (Replacing D? with -2?)
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ES o > |
=& . -—_——_——— .cos
(16—D ) X
P 1s+iI»
= & . .cos2
(16—D J(16+D ) X
v le+D
=& . T - - _—= .cos2x
256— D=
P 1s -+
= &7 . .COs2x
25&—{—47)
E.‘?ﬁ
= (1l6cos2x — 2sin2x)
2&ai
2e” ]
= (8cos 2x — sin 2x)
260
e’ )
= (8cos 2x — sin 2x)
130

General solutionisy =vy. + vy,

X

e
130

x 2 x 4 x

y = c,e + c,e + c,e +

(8cos 2x — sin 2x)
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solve (D2 — 4D +a)y = x2sinx + e2* 43
sol:Given (D? — 4D +a)y = x° sinx + e** +3
AEis (M —4m+4)=o0
(m — 2)2 =0 then m=2,2

C.F. = (c, + c,x)e"

p o iimire 43 3 (x*sinx) e=¥ + (3)
d= = +
(D—27° (D—2772 (D—272 (D—-27°
Now (x*sinx) = : (x%) (1.P of &%)
|:D—::IE I:D—E:IE
- 1P of ——— (x2) (&%)
(D—2772
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=

=lPoflE ).

1

€5

(D+i—27°

On simplification, we get

- . 1 )
(D+i—2)2 E:I' SIHI) = 525‘ [(220x+244)cosx+(40x+33)sinx]

1 - .-":‘.'E -
and ———— (e~")=—1(e""),
(D—277 ( ) 2 ( )

e

P.I=

Y=Yt Yp

- 1 =2 3
y=(cy + czx)E‘x + P [(220x+244)cosx+(40x+33)sinx] + IT I:E"'x) +1

INSTITUTE OF AERONAUTICAL ENGINEERING

1 , x% . o, 3
- [(220x+244)cosx+(40x+33)sinx] + — (&~7) 3
e s
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P.l of f(D) y = Q(x) when Q(x) = e?*V

PToTT(D)y = QX)When Q(X] = ¢V where ‘a’1s a constant and V s funcfion of x. where

\/ =sin ax or cos ax or x*

-
ThenP.| o) Q(x)

1
=— ™V
f(D)

_axp L
- [Jf (D+a] (V)]

1

f(D+a)

&

Vis evaluated depending on V.
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solve (D® — 7D? 4+ 14D -8)y = €™ cos2x
Given equation is

(D3 — 7D? 4+ 14D -8)y = €7 cos2x
AEis(m® — 7m~ + 14m — 8)=o0
(m-1) (M-2)(m-4) =0
Then m = 1,2,4

C.F = cluE:‘T + co, & =3 + c3& 4
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MODULE-IV

Multiple Integrals
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>

d -
R
AAk
/

ﬁxk

C —
' l > x

0 a b

FIGURE 15.1 Rectangular grid
partitioning the region R into small
rectangles of area A4, = Ax; Ayy.
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FIGURE 15.2 Approximating solids with
rectangular boxes leads us to define the
volumes of more general solids as double
integrals. The volume of the solid shown
here is the double integral of f(x, y) over
the base region R.
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Volume = lim S, = // f(x,y) dA,
R

n—0Q0

where A4, — 0 as n — 00,
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(ayn =16 (b)yn = 64 (c)n = 256

FIGURE 15.3 As n increases, the Riemann sum approximations approach the total
volume of the solid shown in Figure 15.2.
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z2=4 —x—y

—

FIGURE 15.4 To obtain the cross-
sectional area 4(x), we hold x fixed and
integrate with respect to y.
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z=4—-—x—y

/<

1
e \y
2\

"“-—.\\h‘ B
x/ A) =L:)2(4 —x — y) dx

FIGURE 15.5 To obtain the cross-
sectional area A(y), we hold y fixed and
integrate with respect to x.

INSTITUTE OF AERONAUTICAL ENGINEERING




THEOREM 1  Fubini’s Theorem (First Form)

If f(x, y) is continuous throughout the rectangular region R:a = x = b,
c =y = d, then

d rb b rd
/f(x,y)dA=// f(x,y)dxdy=/f f(x,y) dy dx.

R
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EXAMPLE 1 Evaluating a Double Integral

Calculate j:f = f(x,y) dA for
flx,y) =1 — 6x% and R 0=x=2 —-1=y=1.

Solution By Fubini’s Theorem,
1 2 1
x=2
/ f(x,y)dA = [1£ (1 — 6x%)dxdy = [1 [x — 2x3y]x=0 dy
R

1
= [1(2 — 16y)dy = [2y — 8?]!, = 4.

Reversing the order of integration gives the same answer:

2 1 2
// (1 — 6x%y)dydx = / [y — 3x2y2}iil_l dx
0o J-1 0

2
= f [(1 — 3x%) — (=1 — 3x?)] dx
0

2
=/2w:4
0
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Aye| "o =Cxp, i)

N 1

S 7

FIGURE 15.6 A rectangular grid
partitioning a bounded nonrectangular
region into rectangular cells.
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o W~ >
[f £ee vy da = [ . vy aa + [ fox v da
R R, R,

FIGURE 15.7 The Additivity Property for
rectangular regions holds for regions
bounded by continuous curves.
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< & f(xs y)
B Eicight — f(xe )

R

s Vi) AAy

Volume = lim >, f(x;, y;) AAy =f f f(x, y) dA
R
FIGURE 15.8 We define the volumes of solids

with curved bases the same way we define the
volumes of solids with rectangular bases.
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FIGURE 15.9 The area of the vertical
slice shown here i1s

Z2(x)
A(x) = / JFCe, v) dy.
21

)

To calculate the volume of the solid, we
integrate this area from x = a to x = b.
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FIGURE 15.10 The volume of the solid
shown here 1s

d d [fh(y)
/ Ay = / A O 1) dx .
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If f(x, y) is positive and continuous over R we define the volume of the solid region
between R and the surface z = f(x, y) to be [, r f(x,y) dA, as before (Figure 15.8).

If R is a region like the one shown in the xy-plane in Figure 15.9, bounded “above”
and “below” by the curves y = g»(x) and y = g1(x) and on the sides by the lines
x = a,x = b, we may again calculate the volume by the method of slicing. We first calcu-
late the cross-sectional area

y=g(x)
A(x) = / f(x,y) dy
y

=g(x)

and then integrate A(x) from x = a to x = b to get the volume as an iterated integral:

b b [gx)
V=f A(x)dx=/f() fGx,y) dy dx. (5)
a a Jgi\x

Similarly, if R is a region like the one shown in Figure 15.10, bounded by the curves
x = hy(y) and x = Ah(y) and the lines y = ¢ and y = d, then the volume calculated by
slicing is given by the iterated integral

d [hyy)
Volume = / / f(x,y) dxdy. (6)
c hi(y)
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> <

> X

FIGURE 15.12 The region of integration
in Example 3.
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> <

4 (2, 4)

(b)

FIGURE 15.13 Region of integration for Example 4.
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Properties of Double Integrals
If f(x, y) and g(x, y) are continuous, then

1. Constant Multiple: f/ cf(x,y)dA = c//f(x, y)dA (any number c)
R R

2. Sum and Difference:

f (FGxy) + g, v)) dd = ff Fx,v) dd + f 2(x, y) dA

R R R

3. Domination:

(a) //f(x,y) d4 = 0 if  f(x,y) =0onR
R

(b) / / fx,y)dA = [/ g(x,y) dA4 if  f(x,y) = g(x,y)onR
R R

4. Additivity: /f Fx, ) dd = // G y) dd + // Fx.y) dA
R R, R>

if R is the union of two nonoverlapping regions R; and R, (Figure 15.7).
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Three Dimensional Space

=
H=(0yz
S=|[x,[:l,zj [He’j
TP=|£I,jf,E:|
/i\.}’
x :
0=(xy.0],
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More 3-D graphs

J Al
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. The lterated Integral .

2y ‘y y=x
J'nydx 2 x R:i};ii
1 ijxzy_2+2ydydx .l
11 E
L L
! T
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Setting up the Double Integral

R 0<x<4

(sSvysS vV

o4 ! "4 "'V
Arca = I ' dx. dy Areq =/ ‘ dy . dy
JUJy JO I
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Finding Area using Double Integrals
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Compute the integral on the pictured region
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Compute the integral on the pictured region

nysz
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Finding Volume using the Double Integral

Surface: . Z

z2=f(x,y) \

x R

Surface: z

z=fx,y) |

INSTITUTE OF AERONAUTICAL ENGINEERING



Evaluate the volume using the region

Surface:
1 5 1 5 ace z
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Volume using the Triple Integral

4 4 4

JIjav

000

The cubes density is proportional to its distance away from the
Xy-plane. Find its mass.
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2 X 1+x+vy

SR
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Double integrals

Definition of Double Integral

If f 1s defined on a closed, bounded region R 1n the xy-plane, then the double
integral of f over R is given by

)dA = i
U ey ik Ef )8

provided the limit exists. If the limit exists, then f 1s integrable over R.
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Definition of Double Integral

The expression:

j:y j f(x,y)dx.dy

is called a double integral and indicates that f (x, y) is first integrated with respect to
x and the result is then integrated with respect to y

If the four limits on the integral are all constant the order in which the integrations
are performed does not matter.

If the limits on one of the integrals involve the other variable then the order in
which the integrations are performed is crucial.
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Double integrals

Multiple Integrals

Double Integral :

I When ys,y- are functions of x and x, and X, are constants. f(x,y)is first integrated w.r.t y

keeping ‘x’ fixed between limits y1,Y» and then the resulting expression is integrated w.r.t ‘x” with

in the limits x¢,xs i.e.,

X=X, Y=, (X)
“f(x,y)dxdy: J' J' f(x,y)dydx
R =%, y=4,()

Il. When x1,x; are functions of y and y; Y, are constants, f(x,y)is first integrated w.r.t ‘x’
keeping ‘y’ fixed, with in the limits X1,X; and then resulting expression is integrated w.r.t ‘y’

between the limits yy,y; i.e.,

Y=Y, x=¢,(y)

”f(x,y)dxdy: j J' f(x,y)dx dy

y=y, x=41(Y)

IIl.  When X1,Xz, Y1,Y2 are all constants. Then

X, Y2

”f(x,y)dxdy: f ff(x,y)dxdy=j If(x,y)dydx

Xy Y1
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rals

[ £ (x y)dxdy = [ [fOoy)dxdy = [ [ f(x,y)dy dx
Problems - o

1. Evaluate }}xyzdx dy

Sol ;[} xy “dx |dy

= !{yz.%ldy = {dey[Q—l]

2 x
2. Evaluate [[ydydx
00
2 x 2 X —l
Sol. J' J'ydydx: II J' ydy |dx
x=0y=0 x=0] y=0
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Double integrals

2. Evaluate I}ydy dx
2 x 2 |— X —|
Sol. _[ J'ydydx='[|jydy|dx
x=0y=0 x:ULy:O J
2y 1, 12, 1731 1 8 4
= IOLTJO dx = IOZ(X —O)dX=;X‘[OX dX=;t?Jo=g(8—0)=g=g
3. Evaluatej'jx(xz+y2)dxdy
Sol.
J J'x(x2+y2)dydx= I {x3y+%} dx
= ‘[rx3.x2+x(X ) —|dx= J'|(x5+x—\|dx:rx—+£.x——| 2 +5—
| RN WY R NN AR

INSTITUTE OF AERONAUTICAL ENGINEERING 7



Double integrals

1 \1+x°

dydx
4, Evaluat
vauaej j Xy
1 L[ ]
Sol:j I d{dx = jl j 21 dy | dx
o o ltXx +y X=°Ly=° (1+x7)+y J

1

:Z} dx:—rlog(x+ X +1—|
4 0V1+X 4|_ J =0
= 109+ +2)
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Double integrals

a4 x?

5. Evaluate J'J'eylxdydx
0o o

Ans: 3e*-7

1 X
6. Evaluate _[ J‘ (x> + y?)dxdy

o

Ans: 3/35

2 x
7. Evaluate j_[e‘““dydx

o o

T
8. Evaluate J‘J‘ x2yZdxdy
o

3

T
AnNs:
36

9. Evaluate }}e’“z”z’dxdy

oo

o o o B

Sol: J'J'e’(xz”’z)dxdy = J'e’yz i—je’xzdx—}dy
i

0o 0 o o
:J'e'yz—”dy J'e’xdx:—ir
o 2 o 2
_N= }e—y*dy _ Nz Nz _ =
2 2 2 4
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Double integrals

10. Evaluate J‘ _f xy(x + y)dxdy over the region R bounded by y=x? and y=x
Sol: y= x? is a parabola through (0,0) symmetric about y-axis y=x is a straight line through (0,0) with
slopel.

Let us find their points of intersection solving y=x?, y=x we get x° =x = x=0,1Hence y=0,1

The point of intersection of the curves are (0,0), (1,1)

Consider J’J‘ Xy (x + y)dxdy

R

the evaluation of the integral, we first integrate w.r.t ‘y’ from y=x? to y=x and then w.r.t. ‘x’ from x=0 to

‘[J': L Xy (x + y)dy ]dx = I:ZO[J‘::XZ(XZY-;- xyz)dy }dx

= x

i x? x* x © x 70
-+ — — d x

ol 2 3 2 s )
1 (5x* x© x 7

| — — |d x
o 6 2 3 )

5 7 8 1

5 x x x%
- - - |
6 5 14 24 ),

1 1 1 28 —12 — 7 28 — 19 9 3

6 14 24 168 168 168 56
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Double integrals

Evaluate J' J' xydxdy where R is the region bounded by x-axis and x=2a and the curve x’=4ay.
R

The line x=2a and the parabola x’>=4ay intersect at B(2a,a)

e given integral = J’J’ xy dx dy
R

us fix vy’
a fixed ‘y’, x varies from 2.\/ay to 2a. Then y varies from O to a.

1Ice the given integral can also be written as

x=2a x=2a

,Ix:zJa—yxdedy: .[j:o [I

1
d d
x=2fay x XJy Y

a [ x?

y =0 L 2

y:o |:2a2 — 2ay:| y dy

ydy

2a

1
Jx 2 Jfay

Zazy2 2ay3—|a_a4 2a - .
2 3 J 3 3 3

o

s

1
Evaluate_" J' rsinedeoedr
o
o

J‘i r [J’ﬂz sin Hde}dr

1 S
r(fcosa)é dr
—o o-o

%:Ofr(cos%fcoso)dr
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Double integrals

Double integrals in polar co-ordinates:

wd maging  popd 8 = asing .:ra.nf.l -2
sol. ‘[f [ : — — = _[f{‘[ﬂ Jﬁ dr}d& =Y { Ji"rl dr} de
= __1 J‘%Z( a® —r? )ams [ } [ [wfa —a’sin’ 8- Ja D:| deg

% in6-8)"
=(~a)[ *(cos6-1)d6 =(~a)(sin6-6)_
= (-a)|[sin 7~ 7, ]~(0-0)]
oA
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ral

2 Evaluate [ [ rdrd8 Ans: £F

40 J0 i

BN

3. Ewaluate I: Eﬁ g"z = A e Awa-

=

1
= pafl+«a in fd & d
4. Evaluate -L' -L' 5. Ewvaluate L El;rsm '

1 =
sol. [ r[[”ﬁ sin Sd&}:’r
ol o Sl
= [: ﬂr[—cosﬁ'};”idr

= [:_ﬂ - (cos % —Cos D) dr
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Double integrals

Example 2.
Evaluate the integral [[rsinfdrde, where the region of integration R is
enclosed by the cardioid r=1+cos6

Solution.
In polar coordinates, the integral can be YA
written as
27 14co=l 1
f f sin Adrdf = / f sin Adrdd R
I o o '
25 [14cosd 0 2 X
- f d'r] sin #dd
o Lo
ix
= f rly <>*?] sin 6a
St
2x :
Figure 6.
= f (1 + cos @) sin 6dF
0

Q /]
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Double integrals

2w 2w 27

_ [ (sin6+ cos0sind) do — [ singdd+ [ Z22% 45 — (_ cos) 2
2 0

0

1 cos 26
7 (-5 )c.
=—/I’+,1’—/1—/+/}1—/=0.

] ]
2w

1
= —cos2m +cos0 — Ecosalﬂ + —cos0
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Double integrals
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(1-2cos @ )dadr

Evaluate 4
=
1

O ) 3

v

1. 3m-12
2. 315m
3. 3n+12
4. Don’t know 0% 0% 0% 0% 0%

[ e e e =
VAL S AV

Q
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Change of order of integration

Change of order of Integration:
. 42 2=
1. Changethe order of Integration and evaluate [ [ . dvdx
.x-ﬂl.;'-x;_qr; v
N : : x :

Sol. In the givenintegral for a fixed x, y varies from E to 2+fax and thenx varies from 0to 4a. Let us

x
drawthe curves v="— and v =2/ax

4a
The region of integration is the shaded region in diagram.

4 pld]]
The givenintegral is = [_ﬂ[ ;;, av dx
B b=
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Change of order of integration

Changing the order of integration, we must fix y

N . _
first,forafixedy, x varies from i to f4ay and ) | _ -r.:;fl—ﬁ

thenywvariesfrom 0 to 4a.

Hence the integralis equalto

4o f1 _ 4a 1,8
.[1'-{) -[xeliq/ﬂdxatu - -[1'-{) |:- x-rri_q/ﬂ dx:|d’u

=D = [ e =

ﬂqa
_1
4a 3

[+]

_3 aafia-L eaa
3 12

= {2\5_

oY G

:EGI—E :Eal
3 3 3
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Change of order of integration

2. Changethe order of integration and evaluate = [: [;LE (xl + yl}dxaﬁv

x ||x
Sol. In the given integral for a fixed x, y variesfrom —to ,[— and thenxvaries from 0 to a
a a

x ||x
Hence we shall draw the curves y=— and v=,]—
o o

i.e.ay=xand ay’=x
weget ay — ap’
=a-@i-0 \ ot
— a(1-3) =0 | A

= yv=0yv=1 {
Ify=0,x=0if y=1, x=a |

The shaded region is the region of integration.

[+ 57 ey

o
The givenintegral is [ =
- X

Changing the order of integration, we must fix y first. For a fixed y, x varies from ay?® to ay and theny
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Change of order of integration

varies from0 to 1.

Hence the given integral, after change of the order of integration becomes

.[:_c._l.:.: (xl - }’J}fixaf]v'

L r)a

d,a 4 a_a a
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Change of order of integration

13-x
3.Change the order of integrationin [ [ xvebedv and hence evaluate the double integral.
s

Sol.Inthe givenintegral for a fixed x,y varies from x* to 2-x and thenx varies from 0 to 1. Hence we shall

draw the curvesy=x* and y=2-x.
The line y=2-x passesthrough (0,2), (2,0)
Solving y=x2,y=2-x

Thenweget X = 2—X
=2 +x-2=0 _ F

= x> +2x-x-2=0 DA

=x(x+2)-1{x+2)=0
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Change of order of integration

=(x-1)(x+2)=0

= x=1-2

IARE MULTIPLE INTEGRALS
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Change of order of integration

Ifx=Ly=1

Ifx=-2y=4

Hence the points of intersection of the curvesare  (-2,4) (1,1}
The Shaded region in the diagram is the region of intersection.

Changing the order of integration, we must fix y, for the region with in OACO for a fixed y, x varies from 0
w0y

Thenyvaries from0 to 1

Forthe region within CABC, fora fixedy, x varies from 0 to 2-y ,thenyvaries from1 to 2

Hence _[;_[;_xxydvdxz ” xy dxdv+ “ xydbedy
Poytals)

CABC

S e

5 v
Ll e
el 2 0 2 =0

X

(/]
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Change of order of integration

[y e

W y=l

e
L

ylcfﬁl-[j (4y—4? +17 )
24
VY 142 4 »T
| [ i . S S
3), 22 3 4

[24-21-4(s8-1)+ 1 (16-1)

[ =

+

ad | =
b | =

ba | =
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Change of order of integrals

1 l|: 28 15} 1 1|:?2—112+45} 1 1|:5} 4+5 9 3
= -+ S |= | T T = | S == =2
6 2 3 4 6 2 12 6 2 8

aprlax 2
4. Changingthe order of integration L L!/ xy dv dx
Yt

1 pafl-x*
5. Change ofthe orderof integration L [:1— videdy  Ans: %

Hint : Now limits are ¥=0roland x = 0 o ,fl — 3*

puty=sin&

\ f'l —v* =cos#

dv = cos 8df

= f; yifl-yay

= [jisinl &ros’ 846 = [:isinlﬁdn?— L?is.in4 ade

~3(%)-33(%)-Hs
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Change of order of integrals

Change of order of Integration:

Change the order of integration in the following integral

[/ el

Solution: In the original integral, the integration order is dx dy. This integration order corresponds to integrating first with
respect to z (i.e., summing along rows in the picture below), and afterwards integrating with respect to y (i.e., summing up the
values for each row). Our task is to change the integration to be dy dx, which means integrating first with respect to y.

We begin by transforming the limits of integration into the domain D. The limits of the outer dy integral meanthat0 < y < 1,
and the limits on the inner dr integral mean that for each value of y the range of zis 1 < x < ¢¥. The region D is shown in the
following figure,

T
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Change of order of integrals

Change of order of Integration:

Change the order of integration in the following integral

[/ el

Solution: In the original integral, the integration order is dx dy. This integration order corresponds to integrating first with
respect to z (i.e., summing along rows in the picture below), and afterwards integrating with respect to y (i.e., summing up the
values for each row). Our task is to change the integration to be dy dx, which means integrating first with respect to y.

We begin by transforming the limits of integration into the domain D. The limits of the outer dy integral meanthat0 < y < 1,
and the limits on the inner dr integral mean that for each value of y the range of zis 1 < x < ¢¥. The region D is shown in the
following figure,

T
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Change of order of integrals

We begin by transforming the limits of integration into the domain D. The limits of the outer dy integral mean that0 < y < 1,
and the limits on the inner dr integral mean that for each value of y the range of zis 1 < z < ¢¥. The region D is shown in the

following figure,
Yy y=1  (e1)
1 ’-
="] r = ¢Y
0 (1, 0) X,
0 1 2 3
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Change of order of integrals

The maximum range of y over the region is from o to 1, as indicated by the gray bar to the left of the figure. The horizontal hashing
within the figure indicates the range of z for each value of y, beginning at the left edge x = 1 (blue line) and ending at the right
curve edge x = ¢¥ (red curve).

We have also labeled all the corners of the region. The upper-right corner is the intersection of the line y = 1 with the curve

z = ¢¥. Therefore, the value of z at this comer must be ¢ = ¢! = ¢, and the point is (e, 1).

To change order of integration, we need to write an integral with order dy dx. This means that r is the variable of the outer
integral. Its limits must be constant and correspond to the total range of z over the region D. The total rangeof zis 1 < z < ¢, as
indicated by the gray bar below the region in the following figure.

;\

(1.,1) y=1 (e,1)

I

b

8 (1.0 7y = logx

W

L2 3
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Change of order of integrals

Sinee ¥ will be the variable for the inner integration, we need to integrate with respect to y first. The vertical hashing indicates
how, for each value of x, we will integrate from the lower boundary (red curve) to the upper boundary (purple line). These two
boundares determine the range of y. Since we can rewrite the equation = = ¢ for the red curve as y = log ., the range of y 1=
log x < y = 1. (The function log = indicates the natural logarithm, which sometimes we write as In z.)

In summary, the region [ can be described not only by

D<y<1
1< x =< ._-.!'

as it was for the original dr dy integral, but also by

l<x<e
logz=y=1,

which 15 the deseription we need for the new dy dr integration order. This latter pair of inequalites determine the bounds for
integral.

We conclude that the integral.ﬁ]’ j'l"' fl=, y)dz dywith integration order reversed is

& 1
f fiz, w)dydz.
| logx
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Example 2

Sometimes you need to change the order of integration to get a tractable integral. For example, if yvou tried to evaluate

1o
/ / & dydx
0 z

directly, vou would run into trouble. There is no antiderivative of e s0 you get stuck trying to compute the integral with respect
to y. But, if we change the order of integration, then we can integrate with respect to z first, which is doable. And, it turns out that
the integral with respect to y also becomes possible after we finish integrating with respect to x.
According to the limits of integration of the given integral, the region of integration is
0<z<1
xr < !l < l'

which is shown in the following picture,
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Since we can also describe the region by

D<z <y,

1 1 1 ¥
f f r"zd'yd: f f r"’d:dy
0 Jz o Jo

With this new dr dy order, we integrate first with respect to =

1 pw 1 1
f [ & dz dy f r{:"1|: ”d'y f yn"ldy.
o Jo b 2=t 0

Since the integration with respect to x gave us an extra factor of , we can compute the integral with respect to y by using a u-
substitution, u = y°, 2o du = 2y dy. With thic substitution, u rannges from o to 1, and we caleulate the integral az

1oy, 1
f f ¥ dx dy f yc“,d’y
o 0 0
o |

f .-'I.Id 1 II.I:IL 1 [ - l]
A El u El’. E E L .

the integral with the order changed is
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Change of Variables

Change of variables:

The variables x,y in ”f[xy:]dxaiu are changed to u,v with the help of the relations
B

x=f [u v}:y=f1 [ZJ;‘J} thenthe double integralis transferred into

5(1::}-')

d e
ﬁ[uy) wav

[T Y. Awy)]

ﬁﬁﬁﬁﬁ
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Change of Variables

Changing from Cartesian to polar co-ordinates

x=rcos@ y=rsinf

cx
3 (2 ) :E ﬁz osf —rsinf
(r.8) cy @ sinf  rcosd
cr ¢&f
=r (c0515+ sin” Ei‘) =r._ Hf[x:y)ixdy :Hf[rcna & rsin E}'dr a8
R E

Note : In polar form dx dyis replaced by r a@r d@

INSTITUTE OF AERONAUTICAL ENGINEERING



Change of Variables

Problems:

o f@ 'f 2%
1. Evaluate the integral by changing to polar co-ordinates LI [ e 7 -'Idrc{u

0

Sol.The limits of x and y are both from 0 1o 0.

C.The regionis in the first quadrantwhere r variesfrom 0 to @ and & variesfrom 0 to %

Substituting x=rcos&, y=rsiné and dcdv=r a df

Hence I: ‘l‘: e_'.‘xzﬂi -Idx dy = [:‘ji [:’_ﬂ e rdrdé
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Inverse of a matrix by Gauss-Jordan method

Puty* =¢
= 2rdr=4dr

=>rdr=d%

Wherer=0=t=0and r=oc=f=x
[ [ a7 e ae
=41
[c. 2 [ ){:l dﬁ

2_[”"5 1}d9:} —IFV A
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Inverse of a matrix by Gauss-Jordan method

2. Evaluate the integral by changing to polar co-ordinates [: [ﬁ - (xl + vl}ri)mfu

x= ﬂ'aj -t
Sol.The limits for x are x=0to -

= x4 y1 =a
.. The givenregionis the first quadrant of the circle.

By changing to polar co-ordinates

x=rcos@ y=rsinf dcdv=rdrdd

Here ‘r'variesfrom 0 to a and '&'varies from 0 to %

T (2 D (A _(A() ald oy
[ﬁ _[ﬂ (2 +y }cirdy—‘[”‘l‘mrlrdrdﬁ—-l‘ﬁ [Ilda_T[a)ﬂ

e
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Change of Variables

1. Showthat [ [/—o{m ~8a @ :)

2
Sol. The region of integration is givenby x = }42,1; = y and y=0, y=4a

yi=dax

i.e., The region is bounded by the parabola y*=4ax and the straight line x=y.
Let x=rcost y=rsin& Thendcdy=rdrdf
The limits for rare r=0 at O and for P on the parabola

risinld = -’I—a[rcosé?):}r—!‘ac?sg
sin” &

i - =1i = =TT,
Forthe line y=x, slope m=1i.e,, TanE—LE?—A

_ _
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Inverse of a matrix by Gauss-Jordan method

The limits for r are r=0 at O and for P on the parabola

dacos b

pl
sin” &

risint G = %(rcosﬁ):‘rr—

; - —1i — — T
Forthe line y=x,slope m=1i.e,, Tanf=1.6 = A
- - . .?I-—
The limits for &: A —>’/32

Also x? —y? =#? [cnsl 6 —sin’ S}cmdxl +yt=r?

4ary xl— 2 51’ daceEs, .
L;. _[1'%& F::ldxd}' =_[E_ %L_ﬂ “E(casl E—mnlé}’drdé
4
— r:/i (C’DEJ E_S.]ﬂlﬁ) ﬁ W/{ﬁi Sdg
..9_% 2 ;
[%[{:{15 £—sin la}idg
% 6
=8a [%[cos & —cot E}dﬁ 8a [M+F—I—l:|:gal[f_§)
¢ 12 4 273

INSTITUTE OF AERONAUTICAL ENGINEERING



Change of Variables

Change of variables:

The variables x,y in ”f[xy:]dxaiu are changed to u,v with the help of the relations
B

x=f [u v}:y=f1 [ZJ;‘J} thenthe double integralis transferred into

5(1::}-')

d e
ﬁ[uy) wav

[T Y. Awy)]

ﬁﬁﬁﬁﬁ
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Change of Variables

Changing from Cartesian to polar co-ordinates

x=rcos@ y=rsinf

cx
3 (2 ) :E ﬁz osf —rsinf
(r.8) cy @ sinf  rcosd
cr ¢&f
=r (c0515+ sin” Ei‘) =r._ Hf[x:y)ixdy :Hf[rcna & rsin E}'dr a8
R E

Note : In polar form dx dyis replaced by r a@r d@
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Change of Variables

Problems:

o f@ 'f 2%
1. Evaluate the integral by changing to polar co-ordinates LI [ e 7 -'Idrc{u

0

Sol.The limits of x and y are both from 0 1o 0.

C.The regionis in the first quadrantwhere r variesfrom 0 to @ and & variesfrom 0 to %

Substituting x=rcos&, y=rsiné and dcdv=r a df

Hence I: ‘l‘: e_'.‘xzﬂi -Idx dy = [:‘ji [:’_ﬂ e rdrdé
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Inverse of a matrix by Gauss-Jordan method

Puty* =¢
= 2rdr=4dr

=>rdr=d%

Wherer=0=t=0and r=oc=f=x
[ [ a7 e ae
=41
[c. 2 [ ){:l dﬁ

2_[”"5 1}d9:} —IFV A
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Inverse of a matrix by Gauss-Jordan method

2. Evaluate the integral by changing to polar co-ordinates [: [ﬁ - (xl + vl}ri)mfu

x= ﬂ'aj -t
Sol.The limits for x are x=0to -

= x4 y1 =a
.. The givenregionis the first quadrant of the circle.

By changing to polar co-ordinates

x=rcos@ y=rsinf dcdv=rdrdd

Here ‘r'variesfrom 0 to a and '&'varies from 0 to %

T (2 D (A _(A() ald oy
[ﬁ _[ﬂ (2 +y }cirdy—‘[”‘l‘mrlrdrdﬁ—-l‘ﬁ [Ilda_T[a)ﬂ

e
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Change of Variables

1. Showthat [ [/—o{m ~8a @ :)

2
Sol. The region of integration is givenby x = }42,1; = y and y=0, y=4a

yi=dax

i.e., The region is bounded by the parabola y*=4ax and the straight line x=y.
Let x=rcost y=rsin& Thendcdy=rdrdf
The limits for rare r=0 at O and for P on the parabola

risinld = -’I—a[rcosé?):}r—!‘ac?sg
sin” &

i - =1i = =TT,
Forthe line y=x, slope m=1i.e,, TanE—LE?—A

_ _
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Inverse of a matrix by Gauss-Jordan method

The limits for r are r=0 at O and for P on the parabola

dacos b

pl
sin” &

risint G = %(rcosﬁ):‘rr—

; - —1i — — T
Forthe line y=x,slope m=1i.e,, Tanf=1.6 = A
- - . .?I-—
The limits for &: A —>’/32

Also x? —y? =#? [cnsl 6 —sin’ S}cmdxl +yt=r?

4ary xl— 2 51’ daceEs, .
L;. _[1'%& F::ldxd}' =_[E_ %L_ﬂ “E(casl E—mnlé}’drdé
4
— r:/i (C’DEJ E_S.]ﬂlﬁ) ﬁ W/{ﬁi Sdg
..9_% 2 ;
[%[{:{15 £—sin la}idg
% 6
=8a [%[cos & —cot E}dﬁ 8a [M+F—I—l:|:gal[f_§)
¢ 12 4 273
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Transformation of coordinate systems

Change of variables:

The variables x,y in ”f[Ly:]:ixdy are changed to u,v with the help of the relations
®

x=f [u‘ v}zyzfz lr_m 'v‘} thenthe doubleintegralis transferred into

”f I:f (w.v). fi(n V}:I du av
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Transformation of coordinate systems

Changing from Cartesian to polar co-ordinates

x=rcosf y=rsing

cx Ox

B{EL}'}}_E 20 _|<ﬂsﬁ' —rsin

(r.6)) |&v &| |sin@ rcosd

= -

cr &f
=7 (c0515+ sin” 5‘) =r ”f[;-: }:hfixd} =‘|‘_|‘f|£r{:{:-5 &.rsin E}'d}' de
R

R

Mote :In polar form dx dy is replaced by r dr d@
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Transformation of coordinate systems

Examplel
Evaluate (e "'oor by changing to polar coordinates.

T

Hence show that fe "¢ - |3

Solution: Since both x and y vary from 0 to oo

The region of integration is the 1% quadrant of the xy plane.
Change into polar coordinates, by putting x-rcoso.y=rsin o,

we have dxdy = rdrdd
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Transformation of coordinate systems

And *° = » 7 = 7 intheregion of integration r varies
F 3

from 0 to oo and @ various from 0 to%

r

II
([ axay=[] & v (put t=r,dt=2rdr.) \ ¢ X
o0 00
I 1)
- ﬁle dtdé r varies from 0 tow=, t varies from 0 to «
X %)
I
- _f{e‘*‘); d6= |~
1]
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Eigen values and Eigen vectors of a matrix

Example 2:
Evaluate the double integral

T [{xl+1 Ydvdx
[H] L]

Solutions:

The region R is bounded by the circle * +3? =47 lies in the first

quadrant; change into polar coordinates, by putting

x=rcosf yv=rsin &,
'y

We have dxdy =rdrdf N

L J

_32, _1 A . ma
!_ ¥l rdrd@ = _‘[(T)ﬂ 6= : I
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Transformation of coordinate systems

Example 3:

By changing into polar coordinates, evaluate j‘j‘%dm over

the annular region between the circle x? +3? =aand x? + 32 = b7 (b>a)

Solution: change to polar coordinates buy putting

x=rcosf,y=rsin @ _dxdy=rdrdd

2

x*+yi=a’s ri(cos?B+sn ‘G =a’—=r=a

x4y =b? = ri(cos?B4sin 1B =b = r=b
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Transformation of coordinate systems

6 various from 0 to 2m

(riri(cos *8sin * 8Y)

rdrd @
(rT(cos 6 +sm 28)

Hence j‘j‘Ldm = lff
0 a

x +y

sk
= [[# cos® 6sin 6arde
[

1= }’4

= [cos’ 6sin? 6(—),’d6
) 4
bt —g*

s
= [cos @sin* 646
[

4

bl P
= 1; [ sin® 2646
4]
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Transformation of coordinate systems

b:‘._ 4 1s
= 2 [cos® osin’ 66
[+

4

bﬂ _ 3 i
= 1: [ sin? 2646
0

bl_ 4 1s
= 3; [ 1-cos 46d6
4]

_ bi-a* sin 46 5
= g_ =
o ( 2 Yo

— E(b*i _ ﬂ4)
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Transformation of coordinate systems

Change of variables:

The variables x,y in ”f[Ly:]:ixdy are changed to u,v with the help of the relations
®

x=f [u‘ v}zyzfz lr_m 'v‘} thenthe doubleintegralis transferred into

”f I:f (w.v). fi(n V}:I du av
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Transformation of coordinate systems

Changing from Cartesian to polar co-ordinates

x=rcosf y=rsing

cx Ox

B{EL}'}}_E 20 _|<ﬂsﬁ' —rsin

(r.6)) |&v &| |sin@ rcosd

= -

cr &f
=7 (c0515+ sin” 5‘) =r ”f[;-: }:hfixd} =‘|‘_|‘f|£r{:{:-5 &.rsin E}'d}' de
R

R

Mote :In polar form dx dy is replaced by r dr d@
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Transformation of coordinate systems

Examplel
Evaluate (e "'oor by changing to polar coordinates.

T

Hence show that fe "¢ - |3

Solution: Since both x and y vary from 0 to oo

The region of integration is the 1% quadrant of the xy plane.
Change into polar coordinates, by putting x-rcoso.y=rsin o,

we have dxdy = rdrdd
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Transformation of coordinate systems

And *° = » 7 = 7 intheregion of integration r varies
F 3

from 0 to oo and @ various from 0 to%

r

II
([ axay=[] & v (put t=r,dt=2rdr.) \ ¢ X
o0 00
I 1)
- ﬁle dtdé r varies from 0 tow=, t varies from 0 to «
X %)
I
- _f{e‘*‘); d6= |~
1]
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Eigen values and Eigen vectors of a matrix

Example 2:
Evaluate the double integral

T [{xl+1 Ydvdx
[H] L]

Solutions:

The region R is bounded by the circle * +3? =47 lies in the first

quadrant; change into polar coordinates, by putting

x=rcosf yv=rsin &,
'y

We have dxdy =rdrdf N

L J

_32, _1 A . ma
!_ ¥l rdrd@ = _‘[(T)ﬂ 6= : I
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Transformation of coordinate systems

Example 3:

By changing into polar coordinates, evaluate j‘j‘%dm over

the annular region between the circle x? +3? =aand x? + 32 = b7 (b>a)

Solution: change to polar coordinates buy putting

x=rcosf,y=rsin @ _dxdy=rdrdd

2

x*+yi=a’s ri(cos?B+sn ‘G =a’—=r=a

x4y =b? = ri(cos?B4sin 1B =b = r=b
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Transformation of coordinate systems

6 various from 0 to 2m

(riri(cos *8sin * 8Y)

rdrd @
(rT(cos 6 +sm 28)

Hence j‘j‘Ldm = lff
0 a

x +y

sk
= [[# cos® 6sin 6arde
[

1= }’4

= [cos’ 6sin? 6(—),’d6
) 4
bt —g*

s
= [cos @sin* 646
[

4

bl P
= 1; [ sin® 2646
4]
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Transformation of coordinate systems

b:‘._ 4 1s
= 2 [cos® osin’ 66
[+

4

bﬂ _ 3 i
= 1: [ sin? 2646
0

bl_ 4 1s
= 3; [ 1-cos 46d6
4]

_ bi-a* sin 46 5
= g_ =
o ( 2 Yo

— E(b*i _ ﬂ4)
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Area using double integral

AREA ENCLOSED BY A PLANE CURVE

Consider the area enclosed by the curves y=f(x ), y =g(x), x =a , x = b in the xy plane.
B y=glx)
The area of the region R bounded by the given curves is given by ”draﬁv ar “-aiudr = [ [aﬁudr
R R Kl Ve F{x)

If the region is represented through polar coordinates then the area is given by ”rdrdé?
2

1} Findthe area of the region bounded by the two parabolas y =x% and y* = x.

Solution_The point of intersection of these two parabolas are O (0, 0) and A (1, 1) as shown in the

Fig8.15.
Y
™ J"’ ‘:xz
x =y
(1,1)
Xe >X
0O
k'
i
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Areas using double integrals

il'he area of the region R bounded by the given curves is given by ”dmiu

R
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Region is bounded by
a<x<band

y 80 Sy<gy(x)

D N
\\_/ &
Area of a Region in the Plane R .
1
1. If R is defined by a < x < b and g,(x) <y < g,(x), where g, and g, are | ;
continuous on [a, b}, then the area of R is given by | A b ;
b [8,(x) gﬁx
A= JJ dy dx. Figure 14.2 (vertically simple) Area = L J (x) -
o Jgy
2. If R is defined by ¢ <y < d and hy(y) < x < hy(y), where h, and h, are
continuous on [c, d], then the area of R is given by Region is bounded by
c<y<dand
d (h(y) hl(yy) < x < hy(y)
A= J J - dx dy Figure 14.3 (horizontally simple) 1
¢ Jhy(y) drF--
R
‘\ }l} Ay
h, n,/

2(v) e
Areca = J ft o
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A@Z Z dy.dx soO A= I j dydx
=0 y=x2/9 *=0 y=x2/9 P I}"12= X
9 . 2 Yarm——~> ||
= I [3}62 - x—]dx % |
x=0 9 VA C_:'l l
L0 Yo | I I
= ZX% - X_ 0 L 9 X:_
27 o - X —-—‘ ‘-l—
* )
= 27 units® )
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4 X

Example 3: To find the area bounded by y = —— the x-axis and the
ordinate at x = 5. S
x=5 y=4x/5 5 4x/5 yll
A=> > Sy.dx so A=J' I dydx y1:4_;(
x=0 y=0 x=0 y=0
j (4x15)d P~
! -
B
|_2x21 ‘T %é 1,y
- | .
{ 5 szo 0 5 X
L2 -« X —| OX|=—
=10 units
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Area using double integral

3)Find area of region bounded by parabola x* = v and theline y=x

The region is pictured below.

y=x
x=y27 (L.1)

Solution: Let v varies from 0 to 1

Then x varies from y * to y

The area is

[ [azxdv [T dy

—

1
[
[
==y
o
1

v_l_v_}
FEN

1

6
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Area using double integral

4) Using double integral find the area of the cardioid » = a(l —cos &)

If the region is represented through polar coordinates then the area is given by ”m’m’ﬁ
'

& al-coss)

A =2[ [rarde

r={

= rj' afl-cosd) B T
[(?] RN
%

, b

a’[(1-cose)’ a6
]

g=m |
4a*[sin*E a0 \ )
: NS
2 g R
1a [ “62d gl pumn,grE:@]
[
Ealfsm ‘dlp—sa* 3 L X 3™
! =TT 2
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Volume using Triple integral

Calculation of Volumes Using Triple Integrals

(17 Gez)av = [ |7 £ (w9.7) dvavet

Example I Evaluate the following integral
.[[[8,@‘2 davr
&2 :

B=[2,3]x[1,2]x[ 0,1]

Solution
Just to make the point that order doesn’t matter let’s use a different order from that listed above. We'll do
the integral in the following order.

2

f{fwozar = [ fsnzdeaas

-l

_ = 2
B 2 4xyz ru dxdy

.1 L4
)

= .; Axy dx cly

wl o

_-222 Ed
= | 20"y dy

= [ 10yay =15
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Volume using Triple integral

wl

Example 1 Evaluate _U]'ydr where E is the region that lies below the

plane Z2=x+ 2 above the xy-plane and between the cylinders x* +»* =1 and
Py =4

Solution

There really isn’t too much to do with this one other than do the conversions and then
evaluate the integral.

We’ll start out by getting the range forz in terms of cylindrical coordinates.
O=z<x4+2 = Ofz=rcosf+2
Remember that we are above the xy-plane and so we are above the plane z=0
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Volume using Triple integral

Next, the region D is the region between the two circles #* +»* =land x* +»' =4 in
the xy-plane and so the ranges for it are,
DSFsm l=r=2

Here is the integral.

[[[»av= [;’jf [ " (rsin 8)rdzdrds
E

= .l-uh.l.:rj sin 5(:‘ Cos 5+2)drd§

=[5 sin(28) 42 singar as

iz
= [lr‘sin[25)+gr35in S‘JEdE
. ] 3

i
=f B in(26)+ 2 sin 646
0 B 3
dx
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Volume using Triple integral

Example 1 Evaluate the following integral.

J.J; Bm’z‘wr B=[2,3]x[1 2]x[0,1]

Solution

Just to make the point that order doesn’t matter let’s use a different order from that
listed above. We'll do the integral in the following order.

[[[ 8xzav = Ifjjﬁ Rz dz dx dy

z
- .|-12.|-234M2|; ardy
[} [ awara
= .I-lg Eny dy

= [Moyay=15
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Volume using Triple integral

41

dxal”
Exnnvpmgwgmhlate'q where E is the region under the plane 2x+ 3y+z =6 that
lies in the first octant.

Solution

We should first define octant. Just as the two-dimensional coordinates system can be
divided into four quadrants the three-dimensional coordinate system can be divided

into eight octants. The first octantis the octantin which all three of the coordinates
are positive.

Here is a sketch of the plane in the first octant.
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0

We now need to determine the region D in the xy-plane. We can get a visualization of
the region by pretending to look straight down on the object from above. What we
see will be the region D in the xy-plane. So D will be the triangle with vertices at_

[D:D), '[3:[:]:', and (0.2}, Here is a sketch of D.
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Volume using triple integrals

Now we need the limits of integration. Since we are under the plane and in the first
octant (so we're above the plane z =0 ) we have the following limits for z.

0=z=6-2x-3y

We can integrate the double integral over D using either of the following two sets of
inequalities.

Lo
Uex=3 GExE—§y+3

2
UEyE—§x+2 D=ys2
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Volume using triple integrals

Since neitherreally holds an advantage over the other we’ll use the first one. The

integral is then,
_”IEde ﬂ[ 2xai'z}

—IIEXZ 2 = 44

I
A% 3

IDE 2x(6-2x-3y)dvdx

v
]

3 ——x+2
= (121}:—4xjy—33}32)|03 dx
v 0
.'-34
= | —x -8x*+12xdx

:[_x 8 et ][

=9
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Volume using triple integrals

=9 |
Example 3 Determine the volume of the region that lies behind the
plane ¥ T ¥+ z = 8 x+¥+ z=18 and in front of the region in the yz-plane

— 3 _ 3
thatisbuunde:dbyz_z\/; Z:%x[;%@z—?.}; z=3.

Solution

In this case we've been given D and so we won’t have to really work to find
that. Hereisa sketch of the region D as well as a quick sketch of the plane and the

curves defining Dprojected out past the plane so we can get an idea of what the region
we're dealing with looks like.

4
3
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Volume using triple integrals

Now, the graph of the region above is all okay, but it doesn’t really show us what the
regionis. So, here is a sketch of the region itself.

Here are the limits for each of the variables.
0=y=d

3 3
g7 = EEGNY

l=x=8-y—=z
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MODULE-V
VECTOR CALCULUS
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INTRODUCTION OF SCALAR AND
VECTOR POINT FUNCTIONS
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— OBIJECTIVE:

Definitions of Gradient, divergent and curl

OUTCOME:
Students get to understand the concept of

Vector functions and its application on solving

Problems.
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DIFFERENTIATION OF A VECTOR FUNCTION

Let S be a set of real numbers. Corresponding to each scalart €S,
let there be associated a unique vector 1. Then ¢ is said to be a vector

(vector valued) function. S is called the domain of . We write ¢ = ¢

(t).

Let i j.«x be three mutually perpendicular unit vectors in three

dimensional space. We can write ¢ = f(t)= )i+ f,®i+f,mk , where
fi(t), f2(t), f3(t) are real valued functions (which are called components

of ). (we shall assume that i, j « are constant vectors).
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1) < — D) LA Pl
ot ot

2). If A is a constant, then iug) a2
ot
3).If ¢ isa constant vector, then 2 S - g2¢
ot

4) 0 — 6a Bb

5). Ty P sl
0
6). i(z;xb_):a—a><b_+€;><a—
ot ot ot
7). Let r=+i+1, i+ 1,k , Where fi, f5, fsare differential scalar functions

of  -of, -of,
= + +
ot ot ot

i,k as

fixed directions)
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Def. The vector differential operator V(read as del) is defined as

V=i2, ;2 ,2.This operator possesses properties analogous to those
OX oy oz

of ordinary vectors as well as differentiation operator. We will define
now some quantities known as “gradient”, “divergence” and “curl”

involving this operator V.
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Let ¢(x,y,z) be a scalar point function of position defined in some region

of space. Then the vector function 22, ;22 .,¢2% is known as the
gradient of $ or Vo

V(I)—(l—+j—+k—)(|)_'_6¢ '_%+I<_%
oz

oy oy
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1) If f and g are two scalar functions then grad(f +g)=grad f + grad g

2) The necessary and sufficient condition for a scalar point function to

be constant is that Vf = o

3) grad(fg) = f(grad g)+g(grad f)
4) If c is a constant, grad (cf) = c(grad f)

5) grad [L]z g (grad f)—zf(grad g)’ (g = 0)
g g
6) Let r=xi+yj+zk. Then dr=di+dy j+azkif ¢ is any scalar point

function,

5 5 5 _od  —o®  —od ), - - -
then gy - Pax+ Pay+ Par = | i s 7k S ik + jdy + kdz )= vaodr
oX oy oz OX oy 0z

INSTITUTE OF AERONAUTICAL ENGINEERING -



Let ¢(x,y,z) be a scalar function defined throughout some region of space. Let this
function have a value ¢ at a point P whose position vector referred to the origin O is
o =r.Let ¢p+Ad be the value of the function at neighboring point Q. If 53 =7+ Ar.

Let Ar be the length of A7

AQ
&— gives a measure of the rate at which ¢ change when we move from P to Q. The
r

limiting value of% as Ar— 0 is called the derivative of ¢ in the direction of rqo or

simply directional derivative of ¢ at P and is denoted by d¢/dr.
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Scalar and vector point functions: Consider a region
in three dimensional space. To each point p(x,y,z),
suppose we associate a unique real number (called
scalar) say ¢. This ¢(x,y,z) is called a scalar point
function on the region. Similarly if to each point
p(x,y,z) we associate a unique vector f(xy,z) then r is

called a vector point function.
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SCALAR AND VECTOR POINT FUNCTIONS

For example take a heated solid. At each point p(Xx,y,z)of the solid, there
will be temperature T(X,y,z). This T is a scalar point function. Suppose

a particle (or a very small insect) is tracing a path in space. When it
occupies a position p(x,y,z) in space, it will be having some speed, say, V.
This speed v is a scalar point function.

Consider a particle moving in space. At each point P on its path, the
particle will be having a velocity v which is vector point function.
Similarly, the acceleration of the particle is also a vector point function.

In a magnetic field, at any point P(x,y,z) there will be a magnetic

force f(x,y,z) This is called magnetic force field. This is also an example

of a vector point function.
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per. 1he vector dirrerential operator v(read as del) IS

_—a _a

- 0
. o ;
definedas v =1 -+ 1 7+«

GRADIENT OF A SCALAR POINT FUNCTION
Let ¢(x,y,z) be a scalar point function of position defined

In some region of space. Then the vector function

-0¢p -0¢ k—@¢
| —+ J—+ kK —
o Jay oz 1s known as the gradient of ¢ or Vo
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DIRECTIONAL DERIVATIVE

Find the directional derivative of xyzz+xz at(1,1,1)

in a direction of the normal to the surface 3xy*+y= z
at (0,1,1).

Sol:- Let f(x, y, z) = 3xy2+y- z=0

Let us find the unit normal e to this surface at (0,1,1).

Then

of ,  oOf of
—=3y°", —=6xy +1,— = —1.
O X oy oz

Vf= 3y2i+(6xy+1)j-k

ez\n_\zx/9+1+1= N
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DIVERGENCE OF A VECTOR

DIVERGENCE OF A VECTOR

Let + be any continuously differentiable vector
point function. Then r.zlx+ j‘%+ <2 is called the

oz

divergence of r and is written as div r.
e, div i =12l it =(is 5 )

i—+ j—+k.— —
OX oy oz

Hence we can write div  as
divi=v.f This is a scalar point function.
Theorem 1: If the vector = i+ i-1«, thendiv

f =
of, of, of,

of -of, -—of, —of,
— =i—+ j——+K
OX OX OX OX
- of P _of  of _of

Also 2t _2%  Similarly 1&-Z-and ¢ 2f 2%

OX OX oy oy oz oz

: - — . ~(of
We have div i =3 i.[_Jz of,  of, ot
oX ox oy oz

Note : If 7 is a constant vector then 2. °: °% gre zeros.

ox oy 0z

~div =0 for a constant vector 1

f e
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Depending upon ¢ in a physical problem, we can
interpret div f =v.f

Suppose (x,y,z,t) is the velocity of a fluid at a
point(x,y,z) and time ‘t’. Though time has no role in
computing divergence, it is considered here because
velocity vector depends on time.

Imagine a small rectangular box within the fluid
as shown in the figure. We would like to measure the
rate per unit volume at which the fluid flows out at
any given time. The divergence of = measures the
outward flow or expansions of the fluid from their
point at any time. This gives a physical interpretation

of the divergence.
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SOLENOIDAL VECTOR

SOLENOIDAL VECTOR

A vector point function 1 is said to be solenoidal if
div r=0.

Find divi=r" r Find n if it is solenoidal?

Sol: Given i= = where
We have r° = x’+y°+z
Differentiating partially w.r.t. x, we get

=xi + yj + zk and r = |r_|

N T

or or X
2r — =2xX=> — = —,
OX OX r

Similarly 2r_ Y. 20 2
y

o r oz r

- n _ _ —
f=r (xi+yj+zk)

1 T — 0 n 0 n 0 n
div 7= —(r"x)+ —(r"y)+ —(r"z)
oX oy oz
o n-1 or n n-1 or n n-1 or n
- nr —X+r +nr —Vy+r +nr —Z+r
o0X oy oz

= nr "'1[ﬁ+ v’ +i]+3rn =nr "'1ﬂ+3rn = nrn+3rn= (n+3)rn

r r r r

Let = .+ be solenoidal. Then div =0
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SOLENOIDAL VECTOR
A vector point function 7 is said to be solenoidal
if div =0.
Find divi= .-~ Find n if it is solenoidal?
Sol: Given = .~ where
We have r° = x’+y°+z
Differentiating partially w.r.t. x, we get

=xi + yj + zk and r — |F|

or or X
2r — =2xX=> — = —,
X oOX r

Similarly 2 _ Y 2r_ 2

oy r oz r

_ n _ _ —
f=r (xi+yj+zk)

div = Lo oty Lty
OX oy oz

— no1 OF n no1 OF n no1 OF n
- nr —X+r +nr —y+r +nr —z+r
OX oy oz

BN R ) 43r" = nr"+3r"= (n+3)r"

+ +
r r r r

Let = .+ be solenoidal. Then div =0

(n+3)r"=0- n=-3
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CURL OF A VECTOR

CURL OF A VECTOR
Def: Let 7 be any continuously differentiable vector

point function. Then the vector function defined by

i Zis called curl of 7 and is denoted by curl

ox oy 0z

i or (Vxr).
I A s
Curl 7 = i e z[ ax}

Theorem 1: If 7 is differentiable vector point function

givenby =i+ i.rni thencurl 7 =
oy o\, (oot ); (o o)
[E_ az] {62 ax}J [ax ay]k
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CURL OF A VECTOR

Theorem 1: If f is differentiable vector point function givenby f = fi + f, j+ f,k thencurl f

of of, - of of, ) - of of, \—
[ . Z]H( . 3)1.{ 2__1}

oy oz \ oz ox ) ox oy

Proof : curl f = Zi_xa—(f_):z i_xa—(fli_+ £+ fsk_):Z(a—zk——3j
OX OX N

of, — of, - of, - of, — of, - of, -
:( 2K - 3ﬂ+ i - —tk +(1j— Zi)
\ Ox ox ) oy oy \ oz oz )
(of, of (of, of —(of, of
zi| — - 2 +j(—1— 3W+k Lt
oy oz \ 0z ox ) ox oy
Note : (1) The above expression for curl £ can be remembered easily through the representation.
i j 0k
- 0 0 -
curl f =|— — — | =Vx f
ox oy o0z
fl f2 f3

Note (2) : If f isa constant vector thencurl = o .
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CURL OF A VECTOR

Def: Let i be any continuously differentiable vector
point function. Then the vector function defined by

- of - of —

of -
i< —+ jJ < —+ k < — f .
= oy S, is called curl of and is

denoted by curl  or (Vx ).

- of -  of —  of _
Curl F= 0 > “+ J =< + k =< >
O X oy oz O X

Theorem 1: If 7 is differentiable vector point function

given by i=+«i. i+, then curl ¢ =
of, of (af
[ay 6ZJ \ oz ) [ ]
. - P of, — of, -
Proof.curl f >0 a_ :le—x(f|+fj+fk)— [ax - j}
—=(0f, - oty <\ (ot ot - (of - of, -
[6xk_ax J) (ay 6yk] \82J oz J

— __[ of,  of, J -(of,  of, W —[ of,  of, ]
i —— + ] — + k - —
oy oz \ oz ox ) oX oy
Note : (1) The above expression for curl 7 can be remembered
easily through the representation.

i i Kk
- _—_ |e 2 o — -
curl - =2 2 2 | =Vx:«
ox oy oz
f1 f2 f3

Note (2) :If 7 is a constant vector then
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PHYSICAL INTERPRETATION OF CURL

Physical Interpretation of curl

If wis the angular velocity of a rigid body

rotating about a fixed axis and V is the velocity of any
point P(x,y,z) on the body, then w = % curl v. Thus
the angular velocity of rotation at any point is equal
to half the curl of velocity vector. This justifies the
use of the word “curl of a vector”.
2. Irrotational Motion, Irrotational Vector

Any motion in which curl of the velocity vector
is a null vector i.e curl v =0 is said to be Irrotational.

Def: A vector ¢ is said to be Irrotational if curl + = o.
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SCALAR POTENTIAL

If fis Irrotational, there will always exist a scalar

function o¢(x,y,z) such that r=grad ¢. This ¢ is called
scalar potential of 1.

It is easy to prove that, if 1+ =grad ¢, then curl 1=0.
Hence Vx i =0 < there exists a scalar function ¢
such that r=Vg.

This idea is useful when we study the “work done by

a force” later.
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PROBLEM

Ff=x 1+2xyz]j-3yz k findcurl T atthe point (1,-1,1).

Sol:-Let f = x i +2x’yz j-3yz°k . Then
i Kk
o 90 o

0z

curl t=Vx=lax oy

xy2 2x2yz —3yz2

. 0 2 0 2 _(@ 2 0 2 \] —( 0 2 0 2
| —(=3yz")——@x"yz) |+ j| —(xy ) —(-3yz") |+ k| —(@2x yz) - —(xy ")
oy 0z \ 0z OX ) OX oy

=i_(—3z2 —2x22)+ j(0-0)+ k_(4xyz —2xy )= —(322 +2x2y)i_+(4xyz — 2xy )k

=curl 7 at(1,-1,1) = -2«
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VECTOR IDENTITY

Prove that divcuris -0

Pr oof : Let f_= fli_+ f2j_+ f3k_

i i K
— — o o o
~ecurl f =V < f = |— —
O X oy oz
f, f f,
( of, \— ( of, N\ — [ of, afl\—
— j + k
Lay azJ Lax azJ Lax )

o (of, of,) o (of, of\ o (of, of)

div curIf—V(fo)—— + —
8xL8y azJ aytax 0z 62L6x 6yJ
o2 f 22 f, a7 f o2 f, ISEEE 22 f,
= — — —+ —+ — = O
OXAOY OX oz Oy O X oy oz O zZO X ozoy

Note : Since div(curl f) = 0, we havecurl f is

always solenoidal.
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PROBLEM

Ellllllllll L L)Y

A =(x+2y+az)i+(bx 3y —2)j+ (4x+cy +22)k IS lrrotational.
Also find ¢ such that A = V.

Sol: Given vector is

A =(X+2y+az)i_+(bx—3y—z)j_+(4x+cy+22)k_

Vector x is Irrotational = curl A = o
i i K
o o 2 5
:>6x oy oz
X+ 2y + az bx — 3y — z 4xXx +cy + 2z

—(c+1)i+(a—4)j+(b-—2)k=0
—>(c+1)i+(a—-4)j+(b—-—2)k = 0i +0j+0k
Comparing both sides,

c+1=0, a-4=0, b-2=0

c=-1, a=4,b=2

NOW A = (x+2y+42)i+(2x-3y—2)j+(4x—y+22)k , ON

substituting the values of a,b,c
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PROBLEM

we have == V.

— X=(x+2y+4z)i_+(2x—3y—z)j_+(4x—y+22)k_= i_%+ j_%+ k_%

OX oy 0z

Comparing both sides, we have

2 x+2y+4z =¢= X" [2+2xy+42x+f1(y,2)
= 2x-3y-2=¢= 2xy-3y*/2-yz+f5(2,)
2 Ax-y+27 =0= dxz-yz+2 +f3(x,Y)

Hence ¢= x*/2 -3y°/2+2°+2xy+4zX-yz+C
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LAPLACIAN OPERATOR

Caplacian Operator v

VVd) s ax['_+_a_+'<_ [ +62+822]¢:V2¢

8y2 oz

Thus the operator V? E; .2, 2 is called Laplacian

operator.
Note : (i). Vb= V.(Vd) = div(grad ¢)
(ii). If V>$=0 then ¢ is said to satisfy Laplacian
equation. This ¢ is called a harmonic function
Find div =, where == grad (x>+y>+z>-3xyz)

Sol: Let ¢= x>+y>+23-3xyz. Then

= grad ¢

= > i—— = 3(x° — yz)i_+3(y2—z><)jT+3(x2 —xy)k_= F.i+ F,j+ F,k (say )

cdiv =R 2R 2F = BX+6Y+62= 6(Xx+y+2)

i.e divigrad(x>+y>+z>-3xyz)]= V(x>+y>+z>-3xyz)=

6(x+y+2z2).
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VECTOR IDENTITY

Prove that diveurs - o

Pr oof : Let f_= fli_+ f2j_+ f3k_

i j k

- — 0 0 0
Leurl f=vx f=|— — —
oX oy oz

fl f2 f3

(ot ot ) (ot of)o fof, ot

Lay GZJ Lax azJ Lax ayJ

- — o (of, of o (of, of o (of, of )

div curl f =V.(Vx f)= of, ot} oot o) 2 9

—_— | — —= - —

6xLay azJ 6yL6x azJ azkax ayJ

2 2 2 2 2 2
AR PR PRGN PRGN PG PR

_axay 0xdz 0yox 0yoz 0z0x 020y

Note : Since divrin)-o, We haveuwnt is always
solenoidal.
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PROBLEM

If ¢ =(x*-27) i-byz ;+8xz% «, evaluate r.«sfrom the

point (0,0,0) to the point (1,1,1) along the Straight
line from (0,0,0) to (1,0,0), (1,0,0) to (1,1,0) and
(1,1,0) to (1,1,1).
Solution : Given r = (x>-27) -6yz ;+8xz° «
Now = .i+yi+ k= dr —dxi+ayjtazk
F.ar = (x*-27)dx — (6yz)dy +8xz°dz
(i) Along the straight line from O = (0,0,0) to A =
(1,0,0)
Here y =0 =z and dy=dz=0. Also x changes
from O to 1.

3

o F.dr= } (X2—27)dX= [X —27xJ1= Loy o220

3
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PROBLEM

(i) Along the straight line from A = (1,0,0)to B = (1,1,0)
Here x =1, z=0 - dx=0, dz=0. y changes from 0 to 1.

- _ 1
j Fodr=— [(-6yz)dy =0
y=0

(ii)Along the straight line from B =(1,1,0)to C=(1,1,1)
x=1=y dx=dy=0 and z changes from O to 1.

1 1
_ = [8z° ]t

j Fodr— J8xzzdz: ISXZZdZ:t_J -
2=0 2=0 3 0

w | @

i)+ (i)« ()= [ Fodr = 88
. 3
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PROBLEM

If £=(5xy-6x°)i+(2y-4x)], evaluate [F-dr

along the curve C in xy-plane y=x>from
(1,1) to (2,8).
Solution : Given ﬁ=(5xy-6x2)i+(2y-4x)j, ------- (1)
Along the curve y=x>, dy =3x° dx
F=(5x*-6x%)i+(2x>-4x) i, [Putting y=x in (1)]
di= dxi+ayj= dxi +3x°dx ]

F.di= [(5x*-6x%)i+(2x>-4x%) ]. [ dxi+3xzdx;]
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= (5x4 - 6x2) dx+(2x3 — 4x)3x3dx

= (6x5+5x4-12x3 -6x2)dx

2

Hence J .oi=[(6x°+5x*—12x* - 6x7)dx

2

1

( X X X X \
= |6 —+5—-12.—-6.— = (x"+x" -3x" —2x%)
L 6 5 4 4 )

16(4+2-3-1) — (1+1-3-2) = 32+3 = 35
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= (5x4 - 6x2) dx+(2x3 — 4x)3x3dx

= (6x5+5x4-12x3 -6x2)dx

2

Hence J .oi=[(6x°+5x*—12x* - 6x7)dx

2

1

( X X X X \
= |6 —+5—-12.—-6.— = (x"+x" -3x" —2x%)
L 6 5 4 4 )

16(4+2-3-1) — (1+1-3-2) = 32+3 = 35

INSTITUTE OF AERONAUTICAL ENGINEERING



I

Hence work done = +.d: = | (t sin t + cos” t —sin t ) dt

2 2
2 4 "1+ cos 2t
0

[t(—cost)] - J' (—sint)dt+j dt—jsint dt
0 0 2 0

2

2

) +(cos t).”

0

”r 1( sin 2t
_—2x —(cos t),” + —|t+
= 2 \ 2

—27z—(1—1)+£(27z')+(1—1)=—27z+7r = —7
2
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Surface integral

J F.nds is called surface integral
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Evaluate (rnas Where = = zi + xj- 3y“zk and S is the
surface x* + y2 = 16 included in the first octant
betweenz=0andz=5

Sol. The surface S is x* + y2 = 16 included in the

first octant betweenz=0and z=5

let x°+y°=16

Then Vo — I@ ]—¢+E%=2XI+2yJ
oX oy 0z
unit normal - Y% o XEYD oo
Vel 4

Let R be the projection of S on yz-plane

Then J'F nds = ”Eﬁ‘d_ydf‘ ................ *
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Given F =zi+xj— 3y’zk
- — 1
F.n=—(xz+ xy)

4

and n .

_ X
4
In yz-plane, x =0,y =4

In first octant, y varies from 0 to 4 and z varies from 0O to 5.

4 s( Xz + Xy \)dydz

N G

y=0

E.nds
JFon x

4

4

| js(y+z)dz dy

y=0

= 90.
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If F =zi+xj— 3y’zk, evaluate j F.ndS where S is the surface of the cube bounded by x =0, x

=a,y=0,y=a,z=0,z=a.
Sol. Given that S is the surface of thex=0,x=a,y=0,y=a,z=0,z=a, and F =zi +Xxj -

3y’zk we need to evaluate [F.ndS.
S
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(i) For OABC

Egnisz=0and dS = dxdy

no=—k

jraas = " -1 (yz) dxdy =0
(ii) For PQRS

Eqnis z=a and dS = dxdy
n o=k

— a a a4
[Fnds = | ( | y(a)dy)dx=?
s, x=0 y=0
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(i) For OCQR

Egnisx=0, and » - i, dS =dydz
IE.ndS = Ia ja4xzdydz =0

(ii) For ABPS
Eqnisx=a, and » - i, dS = dydz
IE.;dS = J‘a( £a4azdz)dy = 2a’

(iii) For OASR
Egnisy=0, and » --j, dS =dxdz

jE.ndS - J'a J'ayzdzdx=0
S, y=0  z=0
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For PBCQ
Egnisy=a, and » --j, dS = dxdz

IE.;dS = - ja jayzdzdx=0
S z=0

From (i) — (vi) we get

jFnos =0+ 2 +0+ 22 +0 - a4 =2
;. 2 2

40
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GAUSS’S DIVERGENCE THEOREM
(Transformation between surface integral and
volume integral)

Let S be a closed surface enclosing a volume V. If
ris a continuously differentiable vector point
function, then

J‘didev:J'I;.r; ds

When n is the outward drawn normal vector at any
point of S.
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Verify Gauss Divergence theorem for
F = (x* —y2)1- 24%y7 + zk taken over the surface of the cube
bounded by the planes x =y =z = a and coordinate

planes.

Sol: By Gauss Divergence theorem we have

jE.Eds - jdivEdv
S A\
[ 2

RHS = fff[Ex:—E-x:—l}dxd}'dz=fff[x:—l}dxd}'dz=ff(§—x)ﬂd}'dz

o0 o0

0
_([Jia?+ a}dydz = I{a?+ a}(y)f}dz ={a?+ a]a{dz =|(a—+a\|(a2): a?+a3 ...... (1)

0

40
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S

For S; = PQAS; unit outward drawn normal n =1

x=a; ds=dy dz; 0<y<a, 0<z<a

3 3 .
S~ Fn=x"-yz=a -yzsincex=a

HE.Eds = [ [ @'~ y2)dydz
S, z=0 y=0
& h
J‘ . vP ] ,
= @’y -z dz
==0 ¥=0
E -~
J (-5
= a-——Z | az
2
=0
_ e
=g*——..12
2 (2)
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For S, = OCRB; unit outward drawn normal

x=0; ds=dy dz; 0<y<a, y<z<a

Fil=—(x3—yz)=yzsincex =10

irg i irg )
_ e
J‘ J‘F.ﬁnﬂ: f J‘ vzdydz = f[—] zZdz
- E E 1-_I}
=0 = A

o ==03 =
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For S3=RBQP; Z=a; ds = dxdy; =%
0<x<a, 0<y<a

Frn=z=aqa sincez=ana

jjadxdy:a3 ..... (4)

0 x=

HEEas -
53

y=
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Verify divergence theorem for r =i+, + 22k Over the
surface S of the solid cut off by the

plane x+y+z=a in the first octant.

Sol; By Gauss theorem, [raas - [aivFay

Letg =x+ v+ z—a bethe given plane then

o0 ==
sogradg => i—=i+j+k
ox

e T+7+k
Unit normal = grac ¢ =!
|grad ¢|

\"'E

INSTITUTE OF AERONAUTICAL ENGINEERING



Let R be the projection of S on xy-plane
Then the equation of the given plane will be x+y=a = y=a-Xx

Also when y=0, x=a

[Fnds - I F ‘:_dkfry
o a=x \ . . o=
YA o ﬂ
= J J — :J J [ 4y 4 (a-x-y)dvdy [sincex +y+2 =4
¥y ﬂ—dx dy 0y
1\3
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—_ J:: f.: !I[E-:cE + 2y° —2ax + 2xy — 2ay + a” |dx dy

: 2y3 e
= f[2-:(:}'—'?—:(}'3—E-M}'—a;}':—a;:}' dx
x=0 o
= f 2xt a—x]——(a—x]a—x[a—x] —2ax(a—x)—ala—x)*+ a*(a —x)dx

3

< fFas - (-2 vaac 2 2o - 2 on simplification... (1)

0
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Given F-oxis vtk

- 0 2 0 2 0 2
sdivEF=—X)+ —(y )+ —(z27)=2(x+y+2)
ox oy 0z

X a-—

]

y

Now IIIdivF.dv =2 I (x+y+ z)dxdydz

a- X—
0y=0 0

= 2 f lz(x—lj—z—_] dx dy
x=0 =0 . o
a—x—3)
= 2 f [a—x—x][:c—x— > ]dxah
x=0w=0

INSTITUTE OF AERONAUTICAL ENGINEERING



-

f }- (a—x—vi[a+ x+ v]dx dv

x=0

- f?x[af—tx—;f)fj dy dx = f

o—X
(a? —x? — v? — 2xv)dx dv

o

f 1.—x-v—'——x1. 57 dx
o

(a— x)(2a2 — %2 — ax)dx = “‘T ...... (2)

[
o

Hence from (1) and (2), the Gauss Divergence
theorem is verified.

INSTITUTE OF AERONAUTICAL ENGINEERING



1. GREEN’S THEOREM IN A PLANE

(Transformation Between Line Integral and Surface
Integral )

If S is Closed region in xy plane bounded by a simple
closed curve C and if M and N are continuous
functions of x and y having continuous derivatives in

R, then

(6N M )
EPde+ Ndy:"!tax - oy dedy.

Where C is traversed in the positive(anti clock-wise)

direction
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y=u F
(o
A
Y==% | &
X=a X:E»x
O
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Verify Green’s theorem in plane for

$(3x?— 8y?)dx + (av —exy)dy Where C is the region bounded
by y=vx and y==x=.

Solution: Let M=3x:-5y and N=4y-6xy. Then

1]

M an
= — r _— = — 6 1
16w, e a

= 1]

-
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We have by Green’s theorem,

Mdx + Ndy = —N—ﬂ\dxdy
f 0o o)

oX oy

NOW ”L o dedy-”(le 6y )dxdy

1
=10]'J'ydxdy=10f J ydydx =10 [yTJ
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Verification:

We can write the line integral along c

=[line integral along y=x*(from O to A) + [line

Integral along »:=x(from A to O)]

=,+,(say)

NOW =" ([327 —8(x?)dx + [4x — 6x(x)]2xdx) [ y=x2a® _ zx]

dx
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_[[ (3P +80° - 200*)dr = -1

And

I2=I{(3x2—8x)dx+(4\/x—6x%) e dx}:j(3x2—11x+2)dx=§

2 X

From(1l) and (2), we have

(&N oM )
E‘?de+ Ndyz_.'RjL P oy dedy.

Hence the verification of the Green’s theorem.
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Verify Green’s theorem for [ [y« y?)dae + x2ay),

bounded by y=x and
y=x*

Solution:By Green’s theorem, we have

(6N oM
d dy = —
q]M X+ Ndy I{L "

\
dxdy
oy J

Here M=xy +,> and N=x:
1

y =x2
c2
Ph )
&)
C1

o e X
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The line y=x and the parabola y=»+* intersect at Ow.0

and Ay

Along c, (ie.v ==, the line integral is

1
Ide + Ndy = J'[x(x2)+ x*1dx + x°d (xz)J'(x3 x4+ 2x})dx = J'(3x3 +x)ydx

0
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Along c.(.e.v=x from (11 to 00, the line integral is

J'de+ Ndy = J'(x.x+ x2)dx + x“dx

C2 C,

[+ dy = dx]

" R %t o
=f|:= Jx-dx =73 fl x°dx=73 (?)1 = (x%)] = 0-1 =-1 ..(3)
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15 -1

[ Mdx+ Ndy= =—1=—
c - 2o 20

..(4)

Now

(6N oM )
J‘J‘La—x—gjdxdy —jj(zx x —2y)dxdy

=107 — 2% = (% —xH)]dx = [ (x* — x%)dx

...(5)

From(4)and(s), we ravefj o nay —”{a’“ om dedy

Hence the verification of the Green’s theorem.
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Verify Green’s theorem for [ [y« y?)dae + x2ay),

bounded by y=x and
y=x*

Solution:By Green’s theorem, we have

(6N oM
d dy = —
q]M X+ Ndy I{L "

\
dxdy
oy J

Here M=xy +,> and N=x:
1

y =x2
c2
Ph )
&)
C1

o e X
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The line y=x and the parabola y=»+* intersect at Ow.0

and Ay

Along c, (ie.v ==, the line integral is

1
Ide + Ndy = J'[x(x2)+ x*1dx + x°d (xz)J'(x3 x4+ 2x})dx = J'(3x3 +x)ydx

0

INSTITUTE OF AERONAUTICAL ENGINEERING



Along c.(.e.v=x from (11 to 00, the line integral is

J'de+ Ndy = J'(x.x+ x2)dx + x“dx

C2 C,

[+ dy = dx]

" R %t o
=f|:= Jx-dx =73 fl x°dx=73 (?)1 = (x%)] = 0-1 =-1 ..(3)
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15 -1

[ Mdx+ Ndy= =—1=—
c - 2o 20

..(4)

Now

(6N oM )
J‘J‘La—x—gjdxdy —jj(zx x —2y)dxdy

=107 — 2% = (% —xH)]dx = [ (x* — x%)dx

...(5)

From(4)and(s), we ravefj o nay —”{a’“ om dedy

Hence the verification of the Green’s theorem.
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11I. STOKE’S THEOREM

(Transformation between Line
INntegral and Surface Integral)

Let S be a open surface bounded
by a closed, non intersecting curve C.
If ~is any
differentieable vector point function

then
d_ F ool i

fy curl F.nds where cis traversed in the positive 4. viom

and

il is unit outward drawn normal at any point of the surface,
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‘v'WW' EEEESS T S |
W here S is the circular disc

w4 = 1= — O

Solution: Given thhat == —+=r = ~=57. The

boundary of C of S is a circle in xy
plane.

x2 + +2 = 1.= =0 VWe use the parametric co-
ordinates X=coss.+ =smn8.= = 0.0 = & = 2m;

dx=-sineas and dy =coses a=

~ g F.dr = [ Fydx + Fody +Fad=z = [ —33dx + x%dy
— _J"Gﬂ-‘f [—sim @[ —=imnE) + cos® Scos|d8 — f;TECOS"’S 4 sinT 20de
=J’G:T (1 — Z2=im? @ cos280dse
=J";-‘f e — %j;"f (2simnd cosE)2 &
=IST ae — )7 sinf2de = (27w — 0) — I [T (1L — cosagdde
=2 . = [_%.5- —:—651"1’1-‘—}5']2?T=23T — = === ==
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T g
g a T b b
™ a = k[Ex + 3y :I

e

Nowv x F =

3

_}73 ¥

o [(Vx F)dids =3 [ (x* + y k. fids
We have«nes-aayand R is the region on xy-plane

ﬂ;[? X F)oids = 3 ffR[:c: +y?) dx dy
Put x=r COS@, v = r sind.. dxdy = rdr dd

risvarying from0Oto1and Ozo=<2x

3

@ xF).ras =37 - .rdr do -2
L.H.S=R.H.S.Hence the theorem is verified.
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Verify Stokes theorem for 7= (zx— yvi7— v=27— »2-:2 over the
upper half surface of the sphere 2+ ,2+:2=1bounded
by the projection of the xy-plane.

Solution: The boundary C of S is a circle in xy plane

i.e x:—}'3=1, z=0
The parametric equations are X=coss,v = sin8,6 =0 — 2=

dx = —sinf d8,dv = cosf d&

IEdF IF_ldx+F_2dy+F_3dz=J'(2x—y)dx—yzzdy—yzzdz
=_j;[2x — vidx(since z = 0 and dz = Q)
27 2z 27
= —J' (2cos® —sin®)sin Odo = J'sinzﬁdél —J'sin 20do

0 o o

—_— r2m 1—cos28

=z, fdﬁ' — Jﬂ,}:rsinﬂ-ﬁ' dd = [%6‘ — %5‘1’1‘125‘ —%. 0032-5'] ;

=% (27 — Q) + 0 + % (cos4w — cos0) = o
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T 7 %
H  — a8 2 2 — — - —
Agaln VxF=| P = |=t—2yz+2yz)—j0-0)+k(0+1)=k
2x—y —yz® —yiz

o [ (Vv x F).hds=[ E.Ads = [_ [ dxdy

Where R is the projection of S on xy plane and

k. fds = dxdy

Now

Lt (It 3 . 1. -1 ]
ffgdxd}—dlfxzujl_zﬂ dydx =4[ _ Vi—x dx—dl[:‘.rl x* + Zsin x]l}

=4 [%sin_i 1] = §=7r

- the Stokes theorem is verified.
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IlIl. STOKE’S THEOREM
(Transformation between Line Integral and

Surface Integral)

Let S be a open surface bounded by a closed,
non intersecting curve C.
If risany
differentieable vector point function then
§ F.d7= [Lewrl Fmds where o is traversed in the positive direction and

i b i wthnas e divaues seoyerad o ooy point of the surfoace.
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Evaluate by Stokes theorem ¢ (x ~ v)dx + (2% — z)dy ~ (v + z)dz where C Is the boundary of
the triangle with vertices (0,0,0), (1,0,0) and (1,1,0).

Solution: Let F.d7 = F.( tdx + jdy + kdz) = (x + v)dx + (2x — z)dy + (v + z)d=

Then F =(x+v)i+(2x—z)j+ (v + 20k

By Stokes theorem, ¢_F.d7 = [ [_curl F.fids

/8(1,1,0)

YI=x

P A(1,0,0)

z
Where S is the surface of the triangle OAB which lies
in the xy plane. Since the z Co-ordinates of O,A and B
Are zero. Thereforeii = k. Equation of OA is y=0 and
that of OB, y=x in the xy plane.
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=k(3x% +3v7)

NowV x F =
Px

~ [(Vx F)ads =3 [(x? + y*)k. Ads

We have (k.n)ds = dxdy and R is the region on xy-plane

ﬂ;[? X F).iids =3 ffR[:c: +v3) dx dy

Put x=r cos®@, v = r sin@. dxdy = rdr d@

risvarying from0Oto1land 0= @ < 2.
3

L [(VXF).Ads =37 [7__»*rdrdo =
L.H.S=R.H.S.Hence the theorem is verified.
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~ curl F.ads=curl F.K dx dv = dx dv

“¢F.di=[[dedy=[[ dA=A=areaofthed 0OAB

1

='0A x AB=1x1x1-
- 2 2
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