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Properties of Eigen values and Eigen vectors of real and complex 
matrices 
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CONTENTS

• Rolle’s mean value theorem 

• Geometric representation of Rolle’s mean value theorem 

• Applications of Rolle’s mean value theorem 
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OBJECTIVE AND OUTCOME

OBJECTIVE:

Rolle’s mean value theorem.

OUTCOME:
Student get to understand the concept of Rolle’s mean value theorem and its 

applications.
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Statement of Rolle ’s Mean Value Theorem

Let  f(x) be a function defined in [a,b] such that  

(i) f(x) It is continuous in closed interval [a,b] 

(ii) f(x)  is differentiable in open interval (a,b) and  

(iii) f(a) = f(b).  

Then there exists at least one point ‘c’ in (a,b) such that  f
1
(c) = 0. 
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Geometrical Representation of Rolle ’s Mean Value Theorem

Let Rbaf ],[:

 

be a function satisfying the three conditions of Rolle’s theorem.  

Then the graph drawn is as follows 

 

Geometrically Rolles mean value theorem means the following  

1. y=f(x) in a continuous curve in [a,b]. 

2. There exist a unique tangent line at every point x=c, where a<c<b 

3. The ordinates f(a), f(b) at the end points A,B are equal so that the points A and B are 

equidistant from the X-axis. 

By Rolle’s Theorem, There is at least one point x=c between A and B on the curve at which 

the tangent line is parallel to the x-axis and also it is parallel to chord of the curve. 
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Applications of Rolle ’s Mean Value Theorem

Example 1. Verify Rolle‟s theorem for the function f(x) = sinx/e
x
 or e

-x
 sinx in [0,π] 

Sol: i) Since sinx and e
x
 are both continuous functions in [0, π].  

Therefore, sinx/e
x
 is also continuous in [0,π]. 

ii) Since sinx and e
x
 be derivable in (0,π), then f is also derivable in (0,π). 

iii) f(0) = sin0/e
0
 = 0 and f(π)= sin π/e

 π
 =0 

  f(0) = f(π) 

Thus all three conditions of Rolle’s theorem are satisfied. 



 

There exists c є(0, π) such that f
1
(c)=0 

Now 
xx

xx

e

xx

e

exxe
xf

sincos

)(

sincos
)(

2

1 



  

f
1
(c)= 0  => 0

sincos




c
e

cc
 

cos c = sin c => tan c = 1 

c = π/4 є(0,π) 

Hence Rolle’s theorem is verified. 
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Applications of Rolle ’s Mean Value Theorem Contd.,

Example 2. Verify Rolle‟s theorem for the functions 
2

lo g  
 

 
 

x a b

x ( a b )
 in[a,b] , a>0, b>0,  

Sol: Let f(x)= 
2

lo g  
 

 
 

x a b

x ( a b )
 

= log(x
2
+ab) – log x –log(a+b) 

(i). Since f(x) is a composite function of continuous functions in [a,b], it is continuous in [a,b]. 

(ii). f
1
(x) =  

)(

1
2.

1

2

2

2
abxx

abx

x
x

abx 





 

f
1
(x) exists for all xє (a,b) 

(iii). f(a) = 01loglog
2

2















aba

aba
 

 f(b) = 01loglog
2

2















abb

abb
 

f(a) = f(b) 

Thus f(x) satisfies all the three conditions of Rolle’s theorem. 

So,   c   (a, b)  f
1
(c) = 0,  

f
1
(c) = 0, 

2

2





c a b

c( c a b )

= 0   c
2
 = ab  

),( baabc 

  

Hence Rolle’s theorem verified. 
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Applications of Rolle ’s Mean Value Theorem Contd.,

Example 3. Verify whether Rolle ‟s Theorem can be applied to the following functions in the 

intervals. 

i) f(x) = tan x in[0 , π] and ii) f(x) = 1/x
2
 in [-1,1] 

(i) f(x) is discontinuous at x = π/2 as it is not defined there. Thus condition (i) of Rolle ’s 

Theorem is not satisfied. Hence we cannot apply Rolle ’s Theorem here. 

  Rolle’s theorem cannot be applicable to f(x) = tan x in [0,π]. 

(ii). f(x) = 1/x
2
 in [-1,1] 

f(x) is discontinuous at x= 0. 

Hence Rolle ’s Theorem cannot be applied. 

 

94



Applications of Rolle ’s Mean Value Theorem Contd.,

Example 4. Using Rolle ‟s Theorem, show that g(x) = 8x
3
-6x

2
-2x+1 has a zero between  

0 and 1. 

Sol: g(x) = 8x
3
-6x

2
-2x+1 being a polynomial, it is continuous on [0,1] and differentiable on (0,1) 

Now g(0) = 1 and g(1)= 8-6-2+1 = 1 

Also g(0)=g(1) 

Hence, all the conditions of Rolle’s theorem are satisfied on [0,1]. 

Therefore, there exists a number cє(0,1) such that g
1
(c)=0. 

Now g
1
(x) = 24x

2
-12x-2 

 g
1
(c)= 0 => 24c

2
-12c-2 =0  

 c= ie
12

213 
c= 0.63 or -0.132 

only the value c = 0.63 lies in (0,1) 

Thus there exists at least one root between 0 and 1. 
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Applications of Rolle ’s Mean Value Theorem Contd.,

Example 5. Verify Rolle‟s theorem for f(x) = x
 2/3

 -2x 
1/3

  in the interval (0,8).   

Sol: Given f(x) = x
 2/3

 -2x 
1/3

 

 f(x) is continuous in [0,8] 

f
1
(x) = 2/3 . 1/x

1/3
 -2/3 . 1/x

2/3
 = 2/3(1/x

1/3
 – 1/x

2/3
) 

Which exists for all x in the interval (0,8) 

 f is derivable (0,8). 

Now f(0) = 0 and f(8) = (8)
2/3

-2(8)
1/3

 = 4-4 =0 

 i.e., f(0) = f(8) 

Thus all the three conditions of Rolle’s Theorem are satisfied. 

 There exists at least one value of c in(0,8) such that f
1
(c)=0 

 ie. 0
11

3

2

3

1


cc

=> c = 1 є (0,8) 

Hence Rolle’s Theorem is verified. 
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Applications of Rolle ’s Mean Value Theorem Contd.,

Example 6. Verify Rolle‟s theorem for f(x) = x(x+3)e
-x/2

 in [-3,0]. 

Sol: -  (i). Since x(x+3) being a polynomial is continuous for all values of x and e
-x/2

 is also 

continuous for all x, their product x(x+3)e
-x/2

 = f(x) is also continuous for every value of x and in 

particular f(x) is continuous in the [-3,0]. 

(ii). we have f
1
(x) = x(x+3)( -1/2  e

-x/2
)+(2x+3)e

-x/2
 

  = e
-x/2

 [2x+3-
2

3
2

xx 
] 

  =e
-x/2

[6+x-x
2
/2] 

Since f
1
(x) does not become infinite or indeterminate at any point of the interval(-3,0). 

f(x) is derivable in (-3,0) 
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Applications of Rolle ’s Mean Value Theorem Contd.,

(i) Also we have f(-3) = 0 and f(0) =0 

 f (-3)=f(0)  

Thus f(x) satisfies all the three conditions of Rolle’s theorem in the interval [-3,0]. 

Hence there exist at least one value c of x in the interval (-3,0) such that f
1
(c)=0 

i.e., ½ e
-c/2

(6+c-c
2
)=0 =>6+c-c

2
=0  (e

-c/2
≠0 for any c) 

=> c
2
+c-6 = 0 => (c-3)(c+2)=0 

 c=3,-2 

Clearly, the value c= -2 lies within the (-3,0) which verifies Rolle’s theorem. 
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Applications of Rolle ’s Mean Value Theorem Contd.,
Example 7. 
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CONTENTS

• Lagrange’s mean value theorem 

• Geometric Representation of Lagrange’s mean value theorem 

• Applications of Lagrange’s mean value theorem 
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OBJECTIVE AND OUTCOME

OBJECTIVE:

Lagrange’s mean value theorem. 

OUTCOME:
Student get to understand the concept of Lagrange’s mean value theorem

and its applications.
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Statement of Lagrange ’s Mean Value Theorem

 

Let f(x) be a function defined in [a,b] such that  

(i) f(x)  is continuous in closed interval [a,b] &  

(ii) f(x) is differentiable in (a,b).  

Then there exists at least one point c in (a,b) such that  f
1
(c) = 

ab

afbf



 )()(
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Geometrical Representation  of Lagrange ’s Mean Value Theorem

Let Rbaf ],[:

 
be a function satisfying the two conditions of Lagrange’s theorem.  

Then the graph is as follows 

 

 

Geometrically Lagrange’s mean value theorem means the following  

1. y=f(x) is continuous curve in [a,b] 

2. At every point x=c, when a<c<b, on the curve y=f(x), there is unique tangent to the curve. By 

Lagrange’s theorem there exists at least one point 
ab

afbf
cfbac






)()(
)(),(

1   

Geometrically there exist at least one point c on the curve between A and B such that the tangent 

line is parallel to the chord 


AB   
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Applications of Lagrange ’s Mean Value Theorem

Example 1. Verify Lagrange‟s Mean value theorem for f(x) = x
3
-x

2
-5x+3 in [0,4] 

Sol: Let f(x)= x
3
-x

2
-5x+3 is a polynomial in x. 

 It is continuous & derivable for every value of x. 

In particular, f(x) is continuous [0,4] & derivable in (0,4) 

Hence by Lagrange’s Mean value theorem   c (0,4)  

f
1
(c)= 

04

)0()4(



 ff
 

i.e., 3c
2
-2c-5 = 

4

)0()4( ff 
   …………………….(1) 

Now f(4) = 4
3
-4

2
-5.4+3 =64-16-20-3=67-36= 31 & f(0)=3 

4

)0()4( ff 
= 7

4

)331(




 

From equation (1), we have 
 

3c
2
-2c-5 =7 => 3c

2
-2c-12 =0 

c =
3

371

6

1482

6

14442 






 

We see that 
3

371 
lies in open interval (0,4) & thus Lagrange’s Mean value theorem 

is verified. 
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Example 2. Verify Lagrange‟s Mean value theorem for f(x) = x
e

log  in [1,e] 

Sol: - f(x) = x
e

log
 

This function is continuous in closed interval [1,e] & derivable in (1,e). Hence L.M.V.T is 

applicable here. By this theorem,  a point c in open interval (1,e) such that 

  f
1
(c) = 

1

1

1

01

1

)1()(













eee

fef
 

  But f
1
(c)= 

1

11

1

1




 ece
 

    c = e - 1 

Note that (e-1) is in the interval (1,e). 

Hence Lagrange’s mean value theorem is verified. 

 

Applications of Lagrange ’s Mean Value Theorem Contd.,
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Example 3. Give an example of a function that is continuous on [-1, 1] and for which mean 

value theorem does not hold with explanations. 

Sol:- The function f(x) = x is continuous on [-1,1] 

But Lagrange Mean value theorem is not applicable for the function f(x) as its derivative 

does not exist in (-1,1) at x=0. 

 

Applications of Lagrange ’s Mean Value Theorem Contd.,
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Example 4. If a<b, P.T 
2

11

2
11 a

ab
aTanbTan

b

ab








   using Lagrange‟s Mean 

value theorem. Deduce the following. 

i). 
6

1

43

4

25

3

4

1


 
Tan  

ii). 
4

2
2

20

45 1 


  
Tan  

Sol: consider f(x) = Tan
-1

 x in [a,b] for 0<a<b<1 

Since f(x) is continuous in closed interval [a,b] & derivable in open interval 

(a,b). 

We can apply Lagrange’s Mean value theorem here. 
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Hence there exists a point c in (a,b) 

f
1
(c) = 

ab

afbf



 )()(
 

Here f
1
(x) = 

2

1

2
1

1
)(&

1

1

c
cfhence

x 


  

Thus  c, a<c<b  

ab

aTanbTan

c 






 11

2
1

1
 ------- (1) 

We have 1+a
2
<1+c

2
<1+b

2
 

222
1

1

1

1

1

1

bca 








 ……….. (2) 

From (1) and (2), we have 

2

11

2
1

1

1

1

bab

aTanbTan

a 











 

or  

2

11

2
11 b

ab
aTanbTan

a

ab








 

     
………………(3) 

Hence the result
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Deductions: -  

(i) We have 
2

11

2
11 a

ab
aTanbTan

b

ab








 

   
Take 

3

4
b & a=1, we 

get
 

 

 

6

1

4
)

3

4
(

425

3 1


 
Tan  

(ii) Taking b=2 and a=1, we get 

 
1 1 1

2 2

2 1 2 1 1 1
2 1 2

1 2 1 1 5 4 2

    
      

 
T a n T a n T a n

 

 
4

2
2

45

1 1  



Tan  

 
14 5 2
2

2 0 4

   
   T a n

 

 

2

3

34

4
)

3

4
(

9

25

3

34

11

1
3

4

)1()
3

4
(

9

16
1

1
3

4

1

2

11 














 

TanTanTan

Applications of Lagrange ’s Mean Value Theorem Contd.,
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Example 5.  Show that for any x > 0, 1 + x < e
x 

< 1 + xe
x
. 

Sol: - Let f(x) = e
x
 defined on [0,x]. Then f(x) is continuous on [0,x] & derivable   on (0,x). 

By Lagrange’s Mean value theorem  a real number c є(0,x) such that 

)(
0

)0()( 1
cf

x

fxf





 

 

x 0 x

c ce -e e -1
= e = e

x -0 x
 ………….(1) 

Note that 0<c<x => e
0
<e

c
<e

x
 ( e

x
 is an increasing function) 

=> x

x

e
x

e





1
1  From (1) 

 

=> x<e
x
-1<xe

x
 

=> 1+x<e
x
<1+xe

x
. 
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Example 6. Calculate approximately 
5

2 4 5  by using L.M.V.T. 

Sol:- Let f(x) = 5
x =x

1/5
 & a=243 , b=245 

Then f
1
(x) = 1/5 x

- 4/5
 & f

1
(c) = 1/5c

- 4/5
 

By L.M.V.T, we have 

)(
)()( 1

cf
ab

afbf





 

=> 5

4

5

1

243245

)243()245(






c

ff
 

=> f  (245) =f(243)+2/5c
-4/5

 

=> c lies b/w 243 & 245 take c= 243 

=> 5
245 = (243) 

1/5
 +2/5(243)

-4/5 
= 5

4

55

1

5
)3(

5

2
)3(



  

= 3+ (2/5)(1/81) = 3+2/405 = 3.0049 

 

Applications of Lagrange ’s Mean Value Theorem Contd.,
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Example 7.  Find the region in which f(x) = 1-4x-x
2
 is increasing & the region in which 

it is decreasing using M.V.T. 

Sol: - Given f(x) = 1-4x-x
2
 

     f(x) being a polynomial function is continuous on [a,b] & differentiable on (a,b)  a,b 

R 

 f satisfies the conditions of L.M.V.T on every interval on the real line. 

f
1
(x)= - 4-2x= -2(2+x) xR 

f
1
(x)= 0 if  x = -2 

for x<-2, f
1
(x) >0 & for x>-2 , f

1
(x)<0 

Hence f(x) is strictly increasing on (-∞, -2) & strictly decreasing on (-2,∞) 

 

Applications of Lagrange ’s Mean Value Theorem Contd.,
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Example 8. Using Mean value theorem prove that Tan x > x in 0<x</2 

Sol:- Consider f(x) = Tan x in  x,  where 0< <x</2 

 Apply L.M.V.T to f(x) 

  a points c such that 0< <c<x</2 such that 

   



c

x

TanxTan 2
sec





   

  
c )sec -(x =Tan -Tan x

2


 

  
xxxTanthenTake

2
sec00 

 

  But sec
2
c>1. 

Hence Tan x > x 

 

Applications of Lagrange ’s Mean Value Theorem Contd.,
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Example 9. If f
1
(x) = 0 Through out an interval [a,b], prove using M.V.T f(x) is a 

constant in that interval. 

Sol:- Let  f(x) be function defined in [a,b] & let f
1
(x) = 0  x in [a,b]. 

 Then f
1
(t) is defined & continuous in [a,x] where axb. 

 & f(t) exist in open interval (a,x). 

 By L.M.V.T  a point c in open interval (a,x)  

 
)(

)()( 1
cf

ax

afxf






 

 But it is given that f
1
(c) = 0  

 
 0 = f(a)-f(x)

  

 x  f(a)=f(x) 

 

 Hence f(x) is constant. 

 

Applications of Lagrange ’s Mean Value Theorem Contd.,
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CONTENTS

• Cauchy’ s Mean value theorem

• Applications of Cauchy’ s Mean value theorem
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OBJECTIVE AND OUTCOME

OBJECTIVE:
Cauchy’ s Mean value theorem.

OUTCOME:
Student get to understand the concept of Cauchy’ s Mean value theorem 

and its applications.
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Statement of Cauchy ’s Mean Value Theorem

If f: [a,b] R,  g:[a,b] R are any two functions such that  

(i) f,g are continuous on [a,b]  

(ii) (ii) f,g are differentiable on (a,b)  

thenbaxxgiii ),,(0)()(
1

     

)()(

)()(

)(

)(
),(int

1

1

agbg

afbf

cg

cf
bacpoa




   
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Applications of Cauchy ’s Mean Value Theorem

Example 1.Find c of Cauchy‟s mean value theorem for 

 x
xgxxf

1
)(&)( 

             
in [a,b] where 0<a<b 

Sol: - Clearly f, g are continuous on [a,b]  R
+
 

 We have xx
xgnd

x
xf

2

1
)(

2

1
)(

11 
 a

 which exits on (a,b) 

 

+
R  b)(a,on  abledifferenti are g f, 

  

Also g
1
 (x)0,  x (a,b)  R

+
 

Conditions of Cauchy’s Mean value theorem are satisfied on (a,b) so c(a,b)  

  )(

)(

)()(

)()(

1

1

cg

cf

agbg

afbf






 

 

cab
c

cc

ab

ba

ab

cc

c

ab

ab

















2

2

2

1

2

1

11  

 Since a,b >0 , ab is their geometric mean and we have a<ab <b 

 c(a,b) which verifies Cauchy’s mean value theorem. 
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Applications of Cauchy ’s Mean Value Theorem Contd.,

Example 2. Verify Cauchy‟s Mean value theorem for f(x) = e
x
 & g(x) = e

-x
 in [3,7] &   

        find the value of c. 

Sol: We are given f(x) = e
x
 & g(x) = e

-x 

 
f(x) & g(x) are continuous and derivable for all values of x. 

 =>f & g are continuous in [3,7] 

 => f & g are derivable on (3,7) 

 Also g
1
(x) = e

-x
 0  x (3,7) 

 Thus f & g satisfies the conditions of Cauchy’s mean value theorem. 

 Consequently,  a point c (3,7) such that 

 

c

c

c

e

ee

ee

e

e

ee

ee

cg

cf

gg

ff 2

37

37

37

37

1

1

11)(

)(

)3()7(

)3()7(





















 

  =>  -e
7+3

 = -e
2c

   

  => 2c = 10 

    => c = 5(3,7)
 

  Hence C.M.T. is verified 
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Applications of Cauchy ’s Mean Value Theorem Contd.,

Example 3. 
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Applications of Cauchy ’s Mean Value Theorem Contd.,
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Applications of Cauchy ’s Mean Value Theorem Contd.,
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Applications of Cauchy ’s Mean Value Theorem Contd.,
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Applications of Cauchy ’s Mean Value Theorem Contd.,
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Applications of Cauchy ’s Mean Value Theorem Contd.,
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CONTENTS

• Partial Differentiation

• Chain rule of Partial Differentiation
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OBJECTIVE AND OUTCOME

OBJECTIVE:

Partial Differentiation  and Chain rule of Partial Differentiation.

OUTCOME:
Student get to understand the concept of Partial Differentiation  and 

Chain rule of Partial Differentiation.
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Partial Differentiation
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Applications on Partial Differentiation
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Applications on Partial Differentiation Contd.,
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Applications on Partial Differentiation Contd.,
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Applications on Partial Differentiation Contd.,
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Applications on Partial Differentiation Contd.,
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Applications on Partial Differentiation Contd.,
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Applications on Partial Differentiation Contd.,
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Applications on Partial Differentiation Contd.,

136



 

Applications on Partial Differentiation Contd.,
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Chain rule of Partial Differentiation

 

This is called as Chain rule of Partial Differentiation. 
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Applications of Chain rule of Partial Differentiation

Example 1:  
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Applications of Chain rule of Partial Differentiation contd.,
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Applications of Chain rule of Partial Differentiation contd.,
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Applications of Chain rule of Partial Differentiation contd.,

Example 2:  
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Applications of Chain rule of Partial Differentiation contd.,
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Applications of Chain rule of Partial Differentiation contd.,

Example 3:  ,
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Applications of Chain rule of Partial Differentiation contd.,

 

 

 

Example 4: 
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Applications of Chain rule of Partial Differentiation contd.,
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Applications of Chain rule of Partial Differentiation contd.,
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CONTENTS

• Total derivatives of partial differentiation

• Euler’s homogeneous function 

• Euler’s theorem of homogeneous function 
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OBJECTIVE AND OUTCOME

OBJECTIVE:

Total derivatives of partial differentiation, Euler’s theorem of homogeneous

function.

OUTCOME:
Student get to understand the concept of Total derivatives of partial

differentiation and Euler’s theorem of homogeneous function.
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Total derivatives of Partial Differentiation
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Total derivatives of Partial Differentiation
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Total derivatives of Partial Differentiation
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Applications of Total derivatives 

Example 1:  
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Applications of Total derivatives Contd., 

Example 2:  
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Applications of Total derivatives Contd., 

Example 3:  
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Applications of Total derivatives Contd., 

Example 4:    
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Euler’s Theorem of Homogeneous functions
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Euler’s Theorem of Homogeneous functions Contd.,
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Applications of Euler’s Theorem of Homogeneous functions

Example 1:  
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Applications of Euler’s Theorem of Homogeneous functions

Example 2:  
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Applications of Euler’s Theorem of Homogeneous functions

Example 3:  
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Applications of Euler’s Theorem of Homogeneous functions

Example 4: 
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Applications of Euler’s Theorem of Homogeneous functions
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Applications of Euler’s Theorem of Homogeneous functions

Example 5:
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CONTENTS

• Jacobian’s of two and three variables

• Functional dependence and Independence
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OBJECTIVE AND OUTCOME

OBJECTIVE:

Jacobian’s of two and three variables , Functional Dependence and

Independence.

OUTCOME:
Student get to understand the concept of Jacobian’s of two and three

variables , Functional Dependence and  Independence.
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Jacobian (J) of two and three variables

Let u = u (x , y) , v = v(x , y) are two functions of the independent variables  x , y. 

The jacobian of ( u , v ) w.r.t (x  , y ) is given by 

J (  )  =  =   

Note: 1
),(

),(

),(

),( 11










 JJthen

vu

yx
Jand

yx

vu
J

 

 

Similarly of u = u(x, y, z ) , v = v (x, y , z) , w = w(x, y , z)  

Then the Jacobian of u , v , w  w.r.to  x , y , z is given by  

J (  )  =    =  
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Applications of Jacobian’s

Example 1.  

                 If x + y
2
 = u ,  y + z

2
 = v , z + x

2
 = w find  

),,(

),,(

wvu

zyx




   

Sol :  Given  x + y
2
 = u ,  y + z

2
 = v , z + x

2
 = w   

         We have      =   =    

                                           = 1(1-0) – 2y(0 – 4xz) + 0 

            = 1 – 2y(-4xz) 

            = 1 + 8xyz   

      =       =  
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Applications of Jacobian’s Contd.,
Example 2. 

 

 S.T the functions u = x + y + z , v = x
2
 + y

2
 + z

2
 -2xy – 2yz -2xz   and   

w = x
3
 + y

3
 + z

3
 -3xyz   are functionally related.   

 

Sol:  Given   u = x + y + z 

                     v = x
2
 + y

2
 + z

2
 -2xy – 2yz -2xz 

           w = x
3
 + y

3
 + z

3
 -3xyz 

we have  

              =     

                          =   

                           =6  

 
322

211

ccc

ccc




  

xyzxyzxzyxzyyzx

xyzzyyx





22222

2222

100

6

 

 

         =6[2(x - y) (y
2  

+  xy – xz -z
2
 )-2(y - z)(x

2 
+ xz – yz - y

2
)] 

=6[2(x - y)( y – z)(x + y + z) – 2(y – z)(x – y)(x + y + z)] 

=0 

 Hence there is a relation between u,v,w. 
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Applications of Jacobian’s Contd.,
Example 3. 

 

If x + y + z = u , y + z = uv , z = uvw then evaluate           

Sol:     x + y + z = u 

             y + z = uv 

   z = uvw 

  y = uv – uvw = uv (1 – w) 

  x = u – uv = u (1 – v) 

              =   

                           =    

322
RRR    

   =    

   = uv [ u –uv +uv] 

   = u
2
v  
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Applications of Jacobian’s Contd.,
Example 4. 

 

                If u = x
2
 – y

2
 , v =2xy  where x = r cos  , y = r sin   S.T   = 4r

3
   

    Sol:  Given       u = x
2
 – y

2           
 ,                              v = 2xy   

                        =r
2
cos

2
 – r

2
sin

2
                   = 2rcos  r sin  

              = r
2 
(cos

2
 – sin

2
                   = r

2
 sin2  

              = r
2
 cos2  

            =     =   

                                                   = (2r)(2r)  

                                                  = 4r
2
 [rcos

2
2  + r sin

2
2  ] 

       =4r
2
(r)[ cos

2
2  + sin

2
2  ] 

     =4r
3
  

 

171



Applications of Jacobian’s Contd.,
Example 5. 

 

                   If u =   , v =    , w =       find            

Sol:  Given u =   , v =    , w =        

          We have  

              =     

             ux = yz(-1/x
2
)    =      ,          uy =       ,   uz =    

              =       ,    xz(-1/y
2
)   =          ,          

  =            ,    =         , = xy (-1/z
2
)     =       

                 =  

                              =  .  .     

                             =    

         = 1[-1(1-1) -1(-1-1) + (1+1) ] 

        = 0 -1(-2) + (2)  

        =2 + 2 

        =4 
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Applications of Jacobian’s Contd.,

Example 6. 

 

                    If x = e
r
 sec  , y =  e

r
 tan  P.T  .   = 1     

Sol: Given x = e
r
 sec  , y =  e

r
 tan   

    =  ,         =        

        = e
r
 sec   = x   ,        = e

r
sec  tan  

       = e
r
 tan   = y   ,       = e

r
 sec

2
  

          x
2
 – y

2
 = e

2r
 (sec

2
 - tan

2
 ) 

 2r = log (x
2
 – y

2
 )  

   r = ½ log (x
2
 – y

2
 ) 
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Applications of Jacobian’s Contd.,
)(

)2(
1

2

1

2222
yx

x
x

yx
r

x





   

)(
)2(

1

2

1

2222
yx

y
y

yx
r

y









 

   =   =  =      

   =      , = sin
-1

( )  

        
222

2

2

1

1

1

yxx

y

x
y

x

y
x

















   

  =   (1/x)        =     

  =    = e
2r

 sec
2

 - y e
r 
sec  tan  

                                           = e
2r

 sec [sec
2

 - tan
2

 ] = e
2r

 sec  

   

2222

2222

1

)()(

),(

,

yxyxx

y

yx

y

yx

x

yx

r














      

            =[    -     ] 

             =      =       =   

 

 .   = 1 
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Functional Dependence and Independence
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Functional Dependence and Independence Contd.,

Example 1.   
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Functional Dependence and Independence Contd.,
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Functional Dependence and Independence Contd.,

Example 2.   
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CONTENTS

• Maxima and Minima of two variables with constraints

• Working Rule of Maxima and Minima of two variables with 
constraints

• Applications of Maxima and Minima of two variables with 
constraints

179



OBJECTIVE AND OUTCOME

OBJECTIVE:

Maxima and Minima of two variables with constraints.

OUTCOME:
Student get to understand the concept of Maxima and Minima of two 

variables with constraints.
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Maximum & Minimum for function of a single Variable

To find the Maxima & Minima of  f(x) we use the following procedure. 

(i) Find  f
1(x) and equate it to zero 

(ii) Solve the above equation we get x0,x1 as roots. 

(iii) Then find f
11

(x). 

If f
11

(x)(x = x0) > 0, then f(x) is minimum at x0 

If    f
11

(x)(x = x0) , <  0, f(x) is  maximum at x0 .  Similarly we do this for other 

stationary   

       points. 
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Maximum & Minimum for function of a single Variable

Example. Find the max & min of the function f(x) = x
5
 -3x

4
 + 5   

Sol: Given f(x) = x
5
 -3x

4
 + 5  

                   f
1
(x) = 5x

4
 – 12x

3
  

for maxima or minima    f
1
(x) =0 

5x
4
 – 12x

3
 = 0 

 x =0, x= 12/5 

               f
11

(x) = 20 x
3
 – 36 x

2
  

     At   x = 0 =>   f
11

(x) = 0.  So f is neither maximum nor minimum at x 

= 0 

At  x = (12/5) =>  f
11

(x) =20 (12/5)
3
 – 36(12/5) 

            =144(48-36) /25   =1728/25 > 0 

  So f(x) is minimum at x = 12/5 

The minimum value is f (12/5) = (12/5)
5
 -3(12/5)

4
 + 5  
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Definitions 

*Extremum : A function which have a maximum or minimum or both is called               

                       ‘extremum’  

*Extreme  value :- The maximum value or minimum value or both of a function is       

                             Extreme value.  

*Stationary points: - To get stationary points we solve the equations   = 0 and     

                                = 0 i.e the pairs (a1, b1), (a2, b2) ………….. are called  

        Stationary. 
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Maximum & Minimum for function of two Variables

 

 Necessary and Sufficient Conditions for Maxima and Minima: 

The necessary conditions for a function f (x, y) to have either a 

maximum or a minimum at a point    (a, b) are fx (a, b) = 0 

and fy (a, b) = 0. 

The points (x, y) where x and y satisfy fx  (x, y) = 0 and  fy  
(x, y) = 0 are called the stationary      or the critical values of 
the function. 

Suppose (a, b) is a critical value of the function f (x, y). Then fx (a, b) = 0, fy 

(a, b) = 0. 

Now denote 

fxx  (a,  b) =  A,  fxy  (a,  b) = B,  fyy (a, b) = C 

1. Then, the function f (x, y) has a maximum at (a, b) if AC – B
2
 > 0 and A 

< 0. 

2. The function f (x, y) has a minimum at (a, b) if AC – B
2
 > 0 and A > 0. 

Maximum and minimum values of a function are called the “extreme values 

of the function”. 
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Maximum & Minimum for function of two Variables

Working procedure:  

 

1. Find  and   Equate each to zero. Solve these equations for x & y we get 

the pair of values (a1, b1) (a2,b2) (a3 ,b3) ……………… 

2. Find l =
2 2

2

 


  

f f
,m

x x y

 , n =  
2

2





f

y

 

3. i. If  l n –m
2
 > 0 and l  < 0 at   (a1,b1) then f(x ,y) is maximum at (a1,b1) 

and maximum value is f(a1,b1) 

ii.  If  l n –m
2
 > 0 and l  > 0 at   (a1,b1) then f(x ,y) is minimum at (a1,b1) and 

minimum value is f(a1,b1) . 

iii. If l n –m
2
 < 0 and at   (a1, b1) then f(x, y) is neither maximum nor minimum 

at (a1, b1). In this case (a1, b1) is saddle point. 

iv. If l n –m
2
 = 0 and at   (a1, b1) , no conclusion can be drawn about maximum  

or minimum and needs further investigation.   Similarly we do this for other 

stationary points. 
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Applications of Maximum & Minimum for function of two Variables

Example 1. Locate the stationary points & examine their nature of the following 

functions.                                                    

 u =x
4
 + y

4
 -2x

2
 +4xy -2y

2
,   (x > 0, y > 0)   

Sol: Given u(x ,y) = x
4
 + y

4
 -2x

2
 +4xy -2y

2
   

         For maxima & minima 
u

x




= 0, 

u

y




= 0 

          = 4x
3
 -4x + 4y = 0    x

3
 – x + y = 0      -------------------> (1)  

          = 4y
3
 +4x - 4y = 0    y

3
 + x – y = 0      -------------------> (2)   

        Adding (1) & (2),    

      x
3
 + y

3
 = 0   

                                    x = – y -------------------> (3)      
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Applications of Maximum & Minimum for function of two Variables

(1)    x
3
 – 2x   x = 0 , 2 , 2   

Hence (3)    y = 0, - 2 , 2   

        l = 
2

2

x

u




= 12x

2
 – 4, m =

yx

u




2

  = (   )   = 4 & n = 
2

2

y

u




  = 12y

2
 – 4  

       ln – m
2
 = (12x

2
 – 4 )( 12y

2
 – 4 ) -16  

     At ( ,     ), ln – m
2
 = (24 – 4)(24 -4) -16  = (20) (20) – 16    >  0 and l=20>0 

      The function has minimum value at ( ,     ) 

 At (0,0) , ln – m
2
 = (0– 4)(0 -4) -16  = 0  

    (0,0) is not a extreme value. 
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Applications of Maximum & Minimum for function of two Variables

        Example 2. Investigate the maxima & minima, if any, of the function  

                         f(x) = x
3
y

2
 (1-x-y).      

   

Sol: Given     f(x) = x
3
y

2
 (1-x-y)     = x

3
y

2
- x

4
y

2
 – x

3
y

3
  

           = 3x
2
y

2
 – 4x

3
y

2
 -3x

2
y

3
        = 2x

3
y – 2x

4
y -3x

3
y

2
  

For maxima & minima    = 0 and      = 0   

 3x
2
y

2
 – 4x

3
y

2
 -3x

2
y

3
   =  0    =>  x

2
y

2
(3 – 4x -3y) = 0 ---------------> 

(1) 

 2x
3
y – 2x

4
y -3x

3
y

2
    =   0    =>  x

3
y(2 – 2x -3y) = 0  ----------------> 

(2) 

 From (1) & (2)         4x + 3y – 3 = 0     

    2x + 3y - 2 = 0     

             2x = 1  => x = ½ 

4 ( ½) + 3y – 3 = 0  => 3y = 3 -2 , y = (1/3) 
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Applications of Maximum & Minimum for function of two Variables

l = 
2

2

x

f




  = 6xy

2
-12x

2
y

2
 -6xy

3
  



















2

2

x

f
(1/2,1/3) = 6(1/2)(1/3)

2
 -12 (1/2)

2
(1/3)

2
 -6(1/2)(1/3)

3
  = 1/3 – 1/3 -1/9 

= -1/9  

     m =
yx

f




2

   =






















y

f

x
 = 6x

2
y -8 x

3
y – 9x

2
y

2
  



















yx

f
2

 (1/2 ,1/3) = 6(1/2)
2
(1/3) -8 (1/2)

3
(1/3) -9(1/2)

2
(1/3)

3
  =  =  

       n =
2

2

y

f




 = 2x

3
 -2x

4
 -6x

3
y   



















2

2

y

f
 (1/2,1/3) =  2(1/2)

3
 -2(1/2)

4
 -6(1/2)

3
(1/3) =  -  -   =  -     

       ln- m
2
 =(-1/9)(-1/8) –(-1/12)

2
  =   -     =   =    > 0  

                      and l = 0
9

1



 

The function has a maximum value at  (1/2 , 1/3)  

Maximum value is 
432

1

3

1

2

1

72

1

3

1

2

1
1

9

1

8

1

3

1
,

2

1




































f
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Applications of Maximum & Minimum for function of two Variables

Example 3. Find the maxima & minima of the function  f(x) = 2(x
2
 –y

2
) –x

4
 +y

4
   

Sol: Given f(x) = 2(x
2
 –y

2
) –x

4
 +y

4
   = 2x

2
 –2y

2
 –x

4
 +y

4
    

         For maxima & minima   = 0 and      = 0   

         = 4x - 4x
3
 = 0   => 4x(1-x

2
) = 0   => x = 0  , x = ± 1 

        = -4y + 4y
3
 = 0    => -4y (1-y

2
) = 0   =>y = 0, y = ± 1   

l = 


















2

2

x

f
 = 4-12x

2
  

m = 


















yx

f
2

=   

 
  

f

x y

 = 0 

n = 


















2

2

y

f
= -4 +12y

2
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Applications of Maximum & Minimum for function of two Variables

we have ln – m
2
 = (4-12x

2
)( -4 +12y

2
 ) – 0 

        = -16 +48x
2
 +48y

2
 -144x

2
y

2
  

       = 48x
2
 +48y

2
 -144x

2
y

2
 -16  

i) At ( 0 , ± 1 )  

ln – m
2
 = 0 + 48 - 0 -16 =32 > 0 

l = 4-0 = 4 > 0  

f has minimum value at ( 0 , ± 1 )  

f (x ,y ) = 2(x
2
 –y

2
) –x

4
 +y

4
   

f ( 0 , ± 1 ) = 0 – 2 – 0 + 1  =  -1 

The minimum value is ‘-1 ‘.  

ii) At ( ± 1 ,0 )  

           ln – m
2
 =  48 + 0 - 0 -16 =32 > 0 

         l = 4-12 = - 8 < 0 

f has maximum value at ( ± 1 ,0 )  

 f (x ,y ) = 2(x
2
 –y

2
) –x

4
 +y

4
   

f ( ± 1 , 0 ) =2 -0 -1 + 0 = 1  

The maximum value is ‘1 ‘. 

iii)     At   (0,0) , (± 1 , ± 1)  

         ln – m
2
 < 0  

         l = 4 -12x
2
  

      (0 , 0)   &  (± 1 , ± 1)  are saddle points. 

  f has no max & min values at (0 , 0) , (± 1 , ± 1). 
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Applications of Maximum & Minimum for function of two Variables

Example 4.  
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Applications of Maximum & Minimum for function of two Variables
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Applications of Maximum & Minimum for function of two Variables

Example 5.  
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Applications of Maximum & Minimum for function of two Variables
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Applications of Maximum & Minimum for function of two Variables

 

            Example 6. Find three positive numbers whose sum is 100 and whose 

product is  

                             maximum.  

Sol: Let x ,y ,z be three +ve numbers. 

        Then  x + y + z = 100 

   z = 100 – x – y 

 Let f (x,y) = xyz =xy(100 – x – y) =100xy –x
2
y-xy

2
  

For maxima or minima   = 0 and      = 0   

  =100y –2xy-y
2
  = 0  => y(100- 2x –y) = 0   ----------------> (1) 

 = 100x –x
2
 -2xy = 0 => x(100 –x -2y) = 0   ------------------> (2) 

  

                                   100 -2x –y = 0 

          200 -2x -4y =0 

                            -----------------------------   

        -100 + 3y  = 0   => 3y =100    =>  y =100/3 

               100 – x –(200/3) = 0        =>  x = 100/3 
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Applications of Maximum & Minimum for function of two Variables

l = 
2

2

x

f




  =- 2y          



















2

2

x

f
 (100/3 , 100/3 ) = - 200/3  

m = 
yx

f




2

  = 






















y

f

x
 = 100 -2x -2y  



















yx

f
2

 (100/3 , 100/3 ) = 100 –(200/3) –(200/3) = -(100/3)  

 n = 
2

2

y

f




   = -2x  



















2

2

y

f
 (100/3 , 100/3 ) = - 200/3   

 ln -m
2
 = (-200/3) (-200/3) - (-100/3)

2
   = (100)

2
 /3  

The function has a maximum value at  (100/3 , 100/3)   

 i.e. at x = 100/3, y = 100/3        z  = 
1 0 0 1 0 0 1 0 0

1 0 0
3 3 3

    

    The required numbers are x = 100/3, y = 100/3,  z = 100/3 
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CONTENTS

• Maxima and Minima of two variables without constraints

• Applications of Maxima and Minima of two variables without 
constraints
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OBJECTIVE AND OUTCOME

OBJECTIVE:

Maxima and Minima of two variables without constraints.

OUTCOME:
Student get to understand the concept of Maxima and Minima of two

variables without constraints.
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Definitions 

*Extremum : A function which have a maximum or minimum or both is called               

                       ‘extremum’  

*Extreme  value :- The maximum value or minimum value or both of a function is       

                             Extreme value.  

*Stationary points: - To get stationary points we solve the equations   = 0 and     

                                = 0 i.e the pairs (a1, b1), (a2, b2) ………….. are called  

        Stationary. 
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Applications of Maximum & Minimum for function of two Variables

Example 1.  
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Applications of Maximum & Minimum for function of two Variables

 

202



Applications of Maximum & Minimum for function of two Variables
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Applications of Maximum & Minimum for function of two Variables

Example 2.  
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Applications of Maximum & Minimum for function of two Variables
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Applications of Maximum & Minimum for function of two Variables
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CONTENT

• Maxima and  Minima of two variable function  by method of 

Lagrange multipliers 
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OBJECTIVE AND OUTCOME

OBJECTIVE:
• Maxima and  Minima of two variable function  by method of Lagrange 

multipliers.

OUTCOME:
• Student get to understand the concept of Maxima and  Minima of two

variable function  by method of Lagrange multipliers.
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Method of Lagrange Multipliers 
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Method of Lagrange Multipliers 
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Method of Lagrange Multipliers 
Summary: 

  

Suppose f(x , y , z) = 0 ------------(1) 

                          ( x , y , z) = 0 ------------- (2)  

F(x , y , z) = f(x , y , z) +  ( x , y , z)  where  is called Lagrange’s 

constant.  

1. 



F

x
= 0  =>   +   = 0 --------------- (3)  





F

y
= 0   =>   +   = 0 --------------- (4) 





F

z
 = 0   =>   +   = 0 --------------- (5) 

2. Solving the equations (2) (3) (4) & (5) we get the stationary point (x, 

y, z). 

3. Substitute the value of x , y , z in equation (1) we get the extremum. 
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Applications of Method of Lagrange Multipliers 

Example 1. Find the minimum value of x
2
 +y

2
 +z

2
, given x + y + z =3a  

        Sol: u = x
2
 +y

2
 +z

2
  

               = x + y + z - 3a = 0 

               Using Lagrange’s function  

F(x , y , z) = u(x , y , z) +  ( x , y , z)   

For maxima or minima  





F

x
 =   +   = 2x +  = 0 ------------ (1)  





F

y
  =   +   = 2y +  = 0 ------------ (2)  





F

z
  =   +   = 2z +  = 0 ------------ (3)  

 (1) , (2) & (3)  

 = -2x = -2y = -2z  

 

 = x + x + x - 3a = 0 

 = a  

 = y =z = a  

Minimum value of u = a
2
 + a

2
 + a

2
 =3 a

2
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     Example 2.  

   

 

Applications of Method of Lagrange Multipliers 
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Example 

 

 

Applications of Method of Lagrange Multipliers 
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Applications of Method of Lagrange Multipliers 
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Example 

4. 

 

 

Applications of Method of Lagrange Multipliers 
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Applications of Method of Lagrange Multipliers 
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Applications of Method of Lagrange Multipliers 
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Applications of Method of Lagrange Multipliers 
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Applications of Method of Lagrange Multipliers 
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MODULE-III

HIGHER ORDER DIFFERENTIAL EQUATIONS AND ITS 
APPLICATIONS
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LINEAR DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER ORDER
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Note:  

1. Operator D =   ; D
2
 =  ; …………………… D

n
 =  

                    Dy =   ; D
2
 y=  ; …………………… D

n
 y=  

2. Operator Q =    i e  D
-1

Q  is called the integral of Q. 
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To find the general solution of f(D).y = 0 : 

Where f(D) =  D
n
 + P1 D

n-1
 + P2 D

n-2
 +-----------+Pn is a polynomial in D. 

 Now consider the auxiliary equation : f(m) = 0 

i.e f(m) =  m
n
 + P1 m

n-1
 + P2 m

n-2
 +-----------+Pn  = 0  

where p1,p2,p3 ……………pn are real constants. 

Let the roots of f(m) =0 be m1, m2, m3,…..mn.   

Depending on the nature of the roots we write the complementary function  

as follows:  
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Consider the following table  

S.No Roots of A.E f(m) =0 Complementary function(C.F) 

1. m1, m2, ..mn are real and distinct. yc = c1e
m

1
x
+ c2e

 m
2
x
 +…+ cne

m
n
x
 

2. m1, m2, ..mn are and two roots are 

equal i.e., m1, m2 are equal and 

real(i.e repeated twice) &the rest 

are real and different. 

 

yc = (c1+c2x)e
m

1
x
+ c3e

m
3
x
 +…+ cne

m
n
x
 

3. m1, m2, ..mn are real and three 

roots are equal i.e., m1, m2 , m3 are 

equal and real(i.e repeated thrice) 

&the rest are real and different. 

yc = (c1+c2x+c3x
2
)e

m
1
x
 + c4e

m
4
x
+…+ cne

m
n
x
 

4. Two roots of A.E  are complex say 

+i  -i  and rest are real and 

distinct.  

yc =  (c1 cos x + c2sin x)+ c3e
m

3
x
 +…+ cne

m
n

x
 

5. If ±i  are repeated twice & rest 

are real and distinct 

yc =  [(c1+c2x)cos x + (c3+c4x) sin x)]+ c5e
m

5
x
 

+…+ cne
m

n
x
 

6. If ±i  are repeated thrice & rest 

are real and distinct 

yc =  [(c1+c2x+ c3x
2
)cos x + (c4+c5x+ c6x

2
) sin

x)]+ c7e
m

7
x
 +………  + cne

m
n
x
 

7. If roots of A.E. irrational say 

  and rest are real and 

distinct. 

  xm

n

xmx

c

nececxcxcey  .......sinhcosh 3

321


  
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1. Solve  - 3  + 2y = 0  

 : Given equation is of the form f(D).y = 0 

         Where  f(D) = (D
3
 -3D +2) y = 0  

         Now consider the auxiliary equation f(m) = 0 

 f(m) = m
3
 -3m +2 = 0    (m-1)(m-1)(m+2) = 0 

      m = 1 , 1 ,-2  

        Since m1 and m2 are equal and m3 is -2  

        We have   yc = (c1+c2x)e
x
 + c3e

-2x
 

2. Solve (D
4
 -2 D

3
 - 3 D

2
  + 4D +4)y = 0  

Sol: Given f(D)  = (D
4
 -2 D

3
 - 3 D

2
  + 4D +4) y = 0  

 A.equation  f(m) = (m
4
 -2 m

3
 - 3 m

2
  + 4m +4) = 0 

 (m + 1)
2
 (m – 2)

2
 = 0  

 m= -1 , -1 , 2 , 2  

 yc = (c1+c2x)e
-x

 +(c3+c4x)e
2x
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3. Solve (D
4
 +8D

2
 + 16) y = 0  

Sol:  Given f(D) = (D
4
 +8D

2
 + 16) y = 0 

        Auxiliary equation f(m) =  (m
4
 +8 m

2
 + 16) = 0 

 (m
2
 + 4)

2
 = 0  

 (m+2i)
2
 (m+2i)

2
 = 0 

 m= 2i ,2i , -2i , -2i 

Yc =  [(c1+c2x)cos x + (c3+c4x) sin x)] 
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4. Solve y
11

+6y
1
+9y = 0 ; y(0) = -4 , y

1
(0) = 14 

Sol:     Given equation is y
11

+6y
1
+9y = 0 

Auxiliary equationf(D) y = 0      (D
2
 +6D +9) y = 0 

         A.equation f(m) = 0   (m
2
 +6m +9) = 0 

     m = -3 ,-3 

yc = (c1+c2x)e
-3x

  -------------------> (1) 

               Differentiate of (1) w.r.to x      y
1
 =(c1+c2x)(-3e

-3x
 ) + c2(e

-3x
 )  

    Given y1 (0) =14     c1 = -4 & c2 =2  

     Hence we get  y =(-4 + 2x) (e
-3x

 )  

5. Solve  4y
111

 + 4y
11

 +y
1
 = 0  

Sol: Given equation is 4y
111

 + 4y
11

 +y
1
 = 0 

That is (4D
3
+4D

2
+D)y=0 

Auxiliary equation f(m) = 0 

  4m
3
 +4m

2
 + m = 0 

  m(4m
2
 +4m + 1) = 0 

  m(  = 0  

m = 0 , -1/2 ,-1/2  

  y =c1+ (c2+ c3x) e
-x/2
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General solution of  f(D) y = Q(x) 

Is given by y = yc + yp 

i.e. y = C.F+P.I 

Where the P.I consists of no arbitrary constants and P.I of f (D) y = Q(x)  

 Is evaluated as   P.I =  . Q(x) 

 Depending on the type of function of Q(x). 

P.I is evaluated as follows: 
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1. P.I of f (D) y = Q(x) where Q(x) =e
ax

 for (a) ≠ 0 

    Case1:   P.I =  . Q(x) =  e
ax

  =  e
ax

 

                      Provided f(a) ≠ 0 

     Case 2: If f(a) = 0 then the above method fails. Then   

if f(D) = (D-a)
k

(D) 

         (i.e  ‘ a’ is a repeated root k times). 

     Then P.I =  e
ax

  .  x
k
 provided  (a) ≠ 0 

Express  =   = [1± ] 
-1

 

 Hence P.I =  Q(x). 

                    = [1± ] 
-1

 .x
k
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1) Particular integral of f(D) y = when f(a) ≠0 

       Working rule: 

Case (i): 

 In f(D), put D=a and Particular integral will be calculated. 

Particular integral= =  provided f(a) ≠0 

Case (ii) : 

 If f(a)= 0 , then above method fails. Now proceed as below. 

 If f(D)= (D-a)K (D) 

                  i.e. ‘a’ is a repeated root k times, then  

Particular integral=  .  provided (a) ≠0 
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Solve the Differential equation(D
2
+5D+6)y=e

x
 

Sol : Given equation is (D
2
+5D+6)y=e

x
 

 Here Q( x) =e 
x
 

 Auxiliary equation is f(m) = m
2
+5m+6=0 

 m
2
+3m+2m+6=0 

 m(m+3)+2(m+3)=0 

 m=-2 or  m=-3  

 The roots are real and distinct 

 C.F = yc= c1e
-2x

 +c2 e
-3x
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Particular Integral = yp=  . Q(x) 

  = ex      =  ex 

 Put D = 1 in f(D) 

 P.I. =  ex 

 Particular Integral = yp=  . ex 

 General solution is y=yc+yp 

 y=c1e
-2x+c2 e

-3x +  
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Solve y
11

-4y
1
+3y=4e

3x
, y(0) = -1, y

1
(0) = 3 

  Sol : Given equation is y11-4y1+3y=4e3x 

 i.e.  - 4  +3y=4e
3x

 

it can be expressed as  

D
2
y-4Dy+3y=4e

3x
 

(D
2
-4D+3)y=4e

3x
 

Here Q(x)=4e
3x

; f(D)= D
2
-4D+3 

Auxiliary equation is f(m)=m
2
-4m+3 = 0 

m
2
-3m-m+3 = 0 

m(m-3) -1(m-3)=0 => m=3 or 1 

The roots are real and distinct. 

C.F= yc=c1e
3x

+c2e
x
 ---- (2) 
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P.I.= yp=  . Q(x) 

= yp=  . 4e
3x

 

= yp=  . 4e
3x

 

Put D=3 

    

xx

xx

p
xee

x

D

e

D

e
y

33

133

2
!1

2
32

4

313

4






  

General solution is y=yc+yp 

y=c1e
3x

+c2 e
x
+2xe

3x
 ------------------- (3) 

Equation (3) differentiating with respect to ‘x’ 

y
1
=3c1e

3x
+c2e

x
+2e

3x
+6xe

3x 
----------- (4) 

By data, y(0) = -1 , y
1
(0)=3 

From (3),  -1=c1+c2 ------------------- (5) 

From (4),  3=3c1+c2+2 

   3c1+c2=1  ------------------- (6) 

Solving (5) and (6) we get c1=1 and c2 = -2 

y=-2e 
x
 +(1+2x)e

3x
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P.I of f(D) y =Q(x) where Q(x) = sin ax or Q(x) = cos ax 

P.I of f(D) y =Q(x) where Q(x) = sin ax or Q(x) = cos ax where „ a „ is constant then P.I = 

 . Q(x). 

Case 1: In f(D) put D
2
 = - a

2
 f(-a

2
) ≠ 0 then P.I = 

 2

sin

af

ax


 

Case 2: If  f(-a
2
) = 0  then D

2
 + a

2
 is a factor of (D

2
) and hence it is a factor of f(D). Then 

let f(D) = (D
2
 + a

2
) .Ф(D

2
).  

Then  
  a

axx

aaD

ax

aDaD

ax

Df

ax

2

cos1sin

)(

1

)()(

sin

)(

sin

2222222










  

  a

axx

aaD

ax

aDaD

ax

Df

ax

2

sin1cos

)(

1

)()(

cos

)(

cos

2222222









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Solve y11+4y1+4y= 4cosx + 3sinx, y(0) = 0, y1(0) = 0 

Sol:  Given differential equation in operator form 

( )y= 4cosx +3sinx 

A.E is m2+4m+4 = 0 

(m+2)2=0 then m=-2, -2 

 C.F is yc= (c1 + c2x)  

P.I is = yp=   put  = -1 

yp=  =  

=  
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Put  = -1 

 yp=  

 =  =  = sinx 

 General equation is y = yc+ yp   

 y = (c1 + c2x)  + sinx ------------ (1) 

By given data, y(0) = 0 c1 = 0 and 

Diff (1) w.r.. t.  y1 = (c1 + c2x)  + (c2) +cosx  ------------ (2) 

given y1(0) = 0 

(2)  -2c1 + c2+1=0  c2 = -1 

 Required solution is y = +sinx 
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Solve (D2+9)y = cos3x 

Sol:Given equation is (D2+9)y = cos3x 

A.E is m2+9 = 0 

  m =  3i 

yc = C.F = c1 cos3x+ c2sin3x 

yc =P.I =  =  

 =  sin3x =  sin3x 

General equation is y = yc+ yp 

y = c1cos3x + c2cos3x +  sin3x 
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P.I for f(D) y = Q(x) where Q(x) = xk

1. P.I for f(D) y = Q(x) where Q(x) = x
k
 where k is a positive integer f(D) can be express 

as f(D) =[1± ]  

Express  =   = [1± ] 
-1

 

 Hence P.I =  Q(x). 

                    = [1± ] 
-1

 .x
k
 

Formulae 

1.  = (1 – D)
-1

 = 1 + D + D
2
 + D

3
 + ------------------ 

2.  = (1 + D)
-1

 = 1 - D + D
2
 - D

3
 + ------------------ 

3. = (1 – D)
-2

 = 1 + 2D + 3D
2
 + 4D

3
 + ------------------ 

4.  = (1 + D)
-2

 = 1 - 2D + 3D
2
 - 4D

3
 + ------------------ 

5. = (1 – D)
-3

 = 1 + 3D + 6D
2
 + 10D

3
 + ------------------ 

6. = (1 + D)
-3

 = 1 - 3D + 6D
2
 - 10D

3
 + ------------------ 
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Solve y111+2y11 - y1-2y= 1-4x3 

Sol:Given equation can be written as  

 = 1-4x3 

A.E is  = 0 

( (m+2) = 0 

m=- 2 

m = 1, -1, -2 

C.F =c1  + c2  + c3  
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P.I =  3
41 x  

  = )41
3

x  

  = )41
3

x  

 = [ 1 +  +  +  + …..]  3
41 x  

       333223
41

8

1
4

4

1
2

2

1
1

2

1
xDDDDDD 













  

= [ 1 -  +  -  D] 1-4 ) 

=  [(1-4 ) -  +  -  (-12  

= [-4x3+6x2 -30x +16] =  

=  [2x3-3x2 +15x -8] 
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The general solution is 

y= C.F + P.I 

y= c1  + c2  + c3  + [2x3-3x2 +15x -8] 
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P.I of f(D) y = Q(x) when Q(x) = eax V 

P.I of f(D) y = Q(x) when Q(x) = e
ax

 V  where  „a‟ is a constant and V is function of x. where 

V =sin ax or cos ax or x
k
 

Then P.I =  Q(x) 

     =  e
ax

 V 

    = e
ax

 [ (V)]  

&  V is evaluated depending on V. 
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Solve  -8)y =  cos2x 

Given equation is  

 -8)y =  cos2x 

A.E is  = 0 

(m-1) (m-2)(m-4) = 0 

Then m = 1,2,4 

C.F = c1  + c2  + c3  
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P.I =  

  = . . Cos2x 

 











 v

aDf
eve

Df
IP

axax 1

)(

1
.  

  = .  .cos2x 

  = .  .cos2x (Replacing D2 with -22) 
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= .  .cos2x 

= .  .cos2x 

= .  .cos2x 

= .  .cos2x 

=  (16cos2x – 2sin2x) 

 xx
e

x

2sin2cos8
260

2
  

 xx
e

x

2sin2cos8
130

  

General solution is y = yc + yp 

 xx
e

ecececy

x

xxx
2sin2cos8

130

4

3

2

21
  
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Solve  +4)y =  +3 

Sol:Given  +4)y =  +3 

A.E is  = 0 

(  = 0 then m=2,2 

C.F. = (c1 + c2x)  

P.I =  = +  (3) 

Now ) = ) (I.P of ) 

   = I.P of ) ) 
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= I.P of . ) 

On simplification, we get 

 =  [(220x+244)cosx+(40x+33)sinx] 

and ) = ), 

) =  

P.I =  [(220x+244)cosx+(40x+33)sinx] + ) +  

y = yc+ yp 

y= (c1 + c2x)  +  [(220x+244)cosx+(40x+33)sinx] + ) +  
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P.I of f(D) y = Q(x) when Q(x) = eax V 

P.I of f(D) y = Q(x) when Q(x) = e
ax

 V  where  „a‟ is a constant and V is function of x. where 

V =sin ax or cos ax or x
k
 

Then P.I =  Q(x) 

     =  e
ax

 V 

    = e
ax

 [ (V)]  

&  V is evaluated depending on V. 
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Solve  -8)y =  cos2x 

Given equation is  

 -8)y =  cos2x 

A.E is  = 0 

(m-1) (m-2)(m-4) = 0 

Then m = 1,2,4 

C.F = c1  + c2  + c3  
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MODULE-IV

Multiple Integrals
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Three Dimensional Space

271



In Two-Dimensional Space, you have a circle
In Three-Dimensional space, you have a _____________!!!!!!!!!!!
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More 3-D graphs

273



The Iterated Integral

2

1

2

y

xyd x
2

2 2

1 1

2 2

x

x y yd yd x


 
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Setting up the Double Integral

275



Finding Area using Double Integrals

276



Compute the integral on the pictured region

2

R

x y d A

277



Compute the integral on the pictured region

2

R

x y d A
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Finding Volume using the Double Integral

279



Evaluate the volume using the region 

2 21 1
1

2 2
R

x y d A 

0 1x 

0 1y 

280



Volume using the Triple Integral

4 4 4

0 0 0

d V  

The cubes density is proportional to its distance away from the
Xy-plane.  Find its mass.
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12

0 0 0

x yx

d V

 

  
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Double integrals

283



Definition of Double Integral

The expression:

is called a double integral and indicates that f (x, y) is first integrated with respect to 

x and the result is then integrated with respect to y

If the four limits on the integral are all constant the order in which the integrations 

are performed does not matter.

If the limits on one of the integrals involve the other variable then the order in 

which the integrations are performed is crucial.

2 2

1 1

( , ) .
y x

y y x x

f x y d x d y
  
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Double integrals

Multiple Integrals 

Double Integral : 

I. When y1,y2 are functions of x and 
1

x  and x2 are constants. f(x,y)is first integrated w.r.t y 

keeping ‘x’ fixed between limits y1,y2 and then the resulting expression is integrated w.r.t ‘x’ with 

in the limits x1,x2 i.e., 

 ,

R

f x y d x d y 
  

2 2

1 1

( )

( )

( , )

x x y x

x x y x

f x y d y d x





 

 

 
 

II. When x1,x2 are functions of y and y1 ,y2 are constants, f(x,y)is first integrated w.r.t ‘x’ 

keeping ‘y’ fixed, with in the limits x1,x2 and then resulting expression is integrated w.r.t ‘y’ 

between the limits y1,y2 i.e., 

 ,

R

f x y d x d y 
  

 
 

 22

1 1

,

x yy y

y y x y

f x y d x d y







 

 
 

III. When x1,x2, y1,y2 are all constants. Then 

 ,

R

f x y d x d y 
  

   

2 2 2 2

1 1 1 1

, ,

y x x y

y x x y

f x y d x d y f x y d y d x   
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Double integrals
 ,

R

f x y d x d y 
  

   

2 2 2 2

1 1 1 1

, ,

y x x y

y x x y

f x y d x d y f x y d y d x   
 

Problems 

1. Evaluate 
2 3

2

1 1

xy d x d y   

Sol. 
2 3

2

1 1

x y d x d y
 

 

 
 

 

 

3
2 22 2

2

1 11

. 9 1
2 2

x y
y d y d y

 
   

 
 

 

2 2

2 2

1 1

8
4 .

2
y d y y d y  

 

 

2
3

1

4 4 .7 2 8
4 . 8 1

3 3 3 3

y 
    

 
 

 

2. Evaluate 
2

0 0

x

y d y d x   

Sol. 
2 2

0 0 0 0

x x

x y x y

y d y d x y d y d x

   

 

  

  
   

 

   

2
2 2 22 3

2 2

0 0 00 0

1 1 1 1 8 4
0 8 0

2 2 2 2 3 6 6 3

x

x x x

y x
d x x d x x d x

  

   
           

   
  
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Double integrals

2. Evaluate 
2

0 0

x

y d y d x   

Sol. 
2 2

0 0 0 0

x x

x y x y

y d y d x y d y d x

   

 

  

  
   

 

   

2
2 2 22 3

2 2

0 0 00 0

1 1 1 1 8 4
0 8 0

2 2 2 2 3 6 6 3

x

x x x

y x
d x x d x x d x

  

   
           

   
  

 

3. Evaluate  

2
5

2 2

0 0

x

x x y d x d y 
    

 

Sol. 

 

 

2
2

5 5 3

2 2 3

0 0 0 0
3

x
x

x y x y

xy
x x y d y d x x y d x

   

 
   

 
  

 

5
65 52 3 7 6 8 8

3 2 5

0 0 0

( ) 1 5 5
. .

3 3 6 3 8 6 2 4
x x

x x x x x
x x d x x d x

 

     
           

     
   
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Double integrals

4. Evaluate 

2
1 1

2 2

0 0
1

x

d y d x

x y



 
 

    

 

Sol: 
 

2 2
1 1 1 1

2 2 2 2

0 0 0 0

1

1 1

x x

x y

d y d x
d y d x

x y x y

 

 

 

 
    

 

   
  

 

 

2

2

1

1 1 1

1

2
2 2

2 2
0 0 0

0

1 1

1 11

x

x

x y x

y

y
d y d x T a n d x

x xx y







  



 

  
    

    
 

  
1

2 2

1 1
[ tan ( )]xd x

ax a a





  

1

1 1

2

0

1
1 0

1x

T a n T a n d x

x

 



  
 




 

o r

 

1 1 1

0
(s in h x ) (s in h 1)

4 4

  


 

1
1

2

2 0
0

1
lo g ( 1)

4 41 x
x

d x x x

x

 




    
 


  

lo g (1 2 )
4


   
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Double integrals

5. Evaluate 

2
4

/

0 0

x

y x
e d y d x 

  

Ans: 3e4-7 

6. Evaluate

 

1

2 2

0

( )

x

x

x y d x d y 
  

Ans: 3/35 

7. Evaluate 
2

( )

0 0

x

x y
e d yd x



    

Ans: 
4 2

2

e e

 

 

8. Evaluate 
12

2 2

0 1

x y d x d y





    

Ans: 
3

3 6


 

9. Evaluate 
2 2

( )

0 0

x y
e d xd y

 

 

    

Sol: 
2 2 2 2

( )

0 0 0 0

x y y x
e d xd y e e d x d y

   

   
 

  

 
     

2

0
2

y
e d y





 

                           

2

0
2

x
e d x







 

 

2

0

.
2 2 2 4

y
e d y

   



  
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Double integrals

10. Evaluate ( )xy x y d xd y 
  

over the region R bounded by y=x2 and y=x 

Sol: y= 2
x  is a parabola through (0,0) symmetric about y-axis y=x is a straight line through (0,0) with 

slope1.  

Let us find their points of intersection solving y= 2
x , y=x we get 2

x =x   x=0,1Hence y=0,1 

 

  The point of intersection of the curves are (0,0), (1,1)  

Consider ( )

R

xy x y d xd y
 

For the evaluation of the integral, we first integrate w.r.t ‘y’ from y=x2 to y=x and then w.r.t. ‘x’ from x=0 to 

x=1 

   
2 2

1 1
2 2

0 0

x x

x y x x y x

xy x y d y d x x y xy d y d x
   

   
  

         
 

2

32
1

2

0 2 3

x

x

y x

y xy
x d x





 
  

 


                       

4 4 6 7
1

0 2 3 2 3x

x x x x
d x



 
    

 


 

4 6 7
1

0

5

6 2 3x

x x x
d x



 
   

 


 

1
5 7 8

0

5
.

6 5 1 4 2 4

x x x 
   
   

1 1 1 2 8 1 2 7 2 8 1 9 9 3

6 1 4 2 4 1 6 8 1 6 8 1 6 8 5 6

  
        
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Double integrals
11. Evaluate 

R

xyd xd y   where R is the region bounded by x-axis and x=2a and the curve x2=4ay. 

Sol. The line x=2a and the parabola x2=4ay intersect at B(2a,a) 

The given integral =    

R

xy d x d y   

Let us fix ‘y’ 

For a fixed ‘y’, x varies from 2 a y

 

to 2a. Then y varies from 0 to a. 

Hence the given integral can also be written as  

2 2

0 2 0 2

a x a a x a

y x a y y x a y

xy d x d y xd x yd y
 

   

 


  
   

 

2
2

0

2
2

a

a

y

x a y

x
y d y





 
  

 


 

2

0

2 2
a

y

a a y y d y


  
 

 

2 2 3

0

2 2

2 3

a

a y a y 
  
 

4 4 4 4

4 2 3 2

3 3 3

a a a a
a


   

 

 

12. Evaluate 
2

1

0

0

s inr d d r



     

Sol. 
1

2

0 0

s in
r

r d d r




 

 

 

 
 

 
 

 
1

2

00

c o s
r

r d r







 
 

 
1

0

c o s c o s 0
2r

r d r


  
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Double integrals
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Definition of Double Integral

293



Double integrals

294



Double integrals
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2 1

1

1
2

1

2

1

0

2

0

2

1

. .

.
2

1
.

2

r

r

r

A r d r d

r
d

r d



 



 



 







 







 
  

 



 





Double integrals
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Evaluate                         . 

1. 3π-12

2. 3π5π

3. 3π+12

4. Don’t know

  drdI 



  

4

1 0

cos21
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Change of order of integration
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Change of order of integration

299



Change of order of integration

300



Change of order of integration

301



Change of order of integration

302



Change of order of integration

303



Change of order of integration

304



Change of order of integration

305



Change of order of integrals

306



Change of order of integrals

307



Change of order of integrals

308



Change of order of integrals

309



Change of order of integrals

310



Change of order of integrals

311



312



313



Change of Variables 

314



Change of Variables 

315



Change of Variables 
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Inverse of a matrix by Gauss-Jordan method
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Inverse of a matrix by Gauss-Jordan method
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Change of Variables 
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Inverse of a matrix by Gauss-Jordan method

320



Change of Variables 

321



Change of Variables 
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Change of Variables 
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Inverse of a matrix by Gauss-Jordan method
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Inverse of a matrix by Gauss-Jordan method
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Change of Variables 
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Inverse of a matrix by Gauss-Jordan method

327



Transformation  of coordinate systems

328



Transformation  of coordinate systems
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Transformation  of coordinate systems

Example1 

Evaluate  
 



0 0

)(
22

dxdye
yx

by changing to polar coordinates. 

Hence show that 





dxe
x

0

 
𝜋

2
 

Solution: Since both x and y vary from 0 to ∞ 

The region of integration is the 1st quadrant of the xy plane. 

Change into polar coordinates, by putting  sin,cos ryrx  , 

 we have dxdy = rdrd𝜃 
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Transformation  of coordinate systems

331



Eigen values and Eigen vectors of a matrix

332



Transformation  of coordinate systems

333



Transformation  of coordinate systems

334



Transformation  of coordinate systems

335



Transformation  of coordinate systems
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Transformation  of coordinate systems
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Transformation  of coordinate systems

Example1 

Evaluate  
 



0 0

)(
22

dxdye
yx

by changing to polar coordinates. 

Hence show that 





dxe
x

0

 
𝜋

2
 

Solution: Since both x and y vary from 0 to ∞ 

The region of integration is the 1st quadrant of the xy plane. 

Change into polar coordinates, by putting  sin,cos ryrx  , 

 we have dxdy = rdrd𝜃 
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Transformation  of coordinate systems

339



Eigen values and Eigen vectors of a matrix

340



Transformation  of coordinate systems

341



Transformation  of coordinate systems

342



Transformation  of coordinate systems

343



Area using double integral

344



Areas using double integrals

345



Area of a Region in the Plane, Figure 14.2 and Figure 14.3

346



Determination of areas by multiple integrals polar regions

2 1

1

1
2

1

2

1

0

2

0

2

1

. .

.
2

1
.

2

r

r

r

A r d r d

r
d

r d



 



 



 







 







 
  

 



 




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Example 2: To find the area enclosed by the curves               

and 

2
9y x

2

9

x
y 

  

A @ d y
y=x2 /9

y=3x1/2

å
x=0

x=9

å .d x  so  A = dy

y=x2 /9

3x1/2

ò
x=0

9

ò dx

                                       = 3x
1
2 -

x2

9

æ

èç

ö

ø÷x=0

9

ò dx

                                       = 2x
3
2 -

x3

27

é

ë
ê

ù

û
ú

x=0

9

                                       = 27 units2

348



Example 3: To find the area bounded by                         the x-axis and the

ordinate at x = 5. 

4

5

x
y 

 

5 4 / 54 / 55

0 0 0 0

5

0

5
2

0

.   s o   

                                       4 / 5

2
                                       

5

                                       1 0  u n i

xy xx

x y x y

x

x

A y x A d yd x

x d x

x

 



   





 



 
  
 



   
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Area using double integral
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Area using double integral
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Volume using Triple integral
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Volume using Triple integral
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Volume using Triple integral
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Volume using Triple integral
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Volume using Triple integral
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Volume using triple integrals
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Volume using triple integrals
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Volume using triple integrals
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Volume using triple integrals
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Volume using triple integrals
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MODULE-V

VECTOR CALCULUS
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CONTENT

INTRODUCTION  OF   SCALAR AND 
VECTOR POINT FUNCTIONS
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OBJECTIVE:

Definitions of Gradient, divergent and curl 

OUTCOME:

Students get to understand the concept of 

Vector functions and its application on solving

Problems.
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SCALAR AND VECTOR POINT FUNCTIONS

DIFFERENTIATION OF A VECTOR FUNCTION 

 Let S be a set of real numbers. Corresponding to each scalar t ε S, 

let there be associated a unique vector . Then  is said to be a vector 

(vector valued) function. S is called the domain of . We write  = 

(t). 

 

 Let be three mutually perpendicular unit vectors in three 

dimensional space. We can write  = (t)=  , where 

f1(t), f2(t), f3(t) are real valued functions (which are called components 

of  ). (we shall assume that  are constant vectors). 
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PROPERTIES

1)  

2). If λ is a constant, then  

3). If  is a constant vector, then  

4).  

5).  

6).  

7). Let =  , where f1, f2, f3are differential scalar functions 

of more than one variable, Then (treating  as 

fixed directions) 
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VECTOR DIFFERENTIAL OPERATOR

Def. The vector differential operator (read as del) is defined as  

 . This operator possesses properties analogous to those 

of ordinary vectors as well as differentiation operator. We will define 

now some quantities known as “gradient”, “divergence” and “curl” 

involving this operator . 
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GRADIENT OF A SCALAR POINT FUNCTION

Let (x,y,z) be a scalar point function of position defined in some region 

of space. Then the vector function  is known as the 

gradient of  or  

 = ( ) =  
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PROPERTIES OF GRADIENT FUNCTION

1) If f and g are two scalar functions then grad(f g)= grad f  grad g 

2) The necessary and sufficient condition for a scalar point function to 

be constant is that f =  

3) grad(fg) = f(grad g)+g(grad f) 

4) If c is a constant, grad (cf) = c(grad f) 

5) grad  

6) Let =  Then if  is any scalar point 

function,  

 then  
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DIRECTIONAL DERIVATIVE 

Let (x,y,z) be a scalar function defined throughout some region of space. Let this 

function have a value  at a point P whose position vector referred to the origin O is 

OP  = r . Let +Δ  be the value of the function at neighboring point Q.  If  Δ r . 

Let Δr be the length of Δ  

gives a measure of the rate at which  change when we move from P to Q. The 

limiting value of is called the derivative of  in the direction of PQ  or 

simply directional derivative of  at P and is denoted by d/dr. 
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Scalar and vector point functions: Consider a region 

in three dimensional space. To each point p(x,y,z), 

suppose we associate a unique real number (called 

scalar) say . This (x,y,z) is called a scalar point 

function on the region. Similarly if to each point 

p(x,y,z) we associate a unique vector ),,( zyxf  then f  is 

called a vector point function. 

 

SCALAR AND VECTOR POINT FUNCTIONS
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For example take a heated solid. At each point p(x,y,z)of the solid, there 

will be temperature T(x,y,z). This T is a scalar point function. Suppose  

a particle (or a very small insect) is tracing a path in space. When it 

occupies a position p(x,y,z) in space, it will be having some speed, say, v. 

This speed v is a scalar point function. 

 Consider a particle moving in space. At each point P on its path, the 

particle will be having a velocity v  which is vector point function. 

Similarly, the acceleration of the particle is also a vector point function. 

 In a magnetic field, at any point P(x,y,z) there will be a magnetic 

force ),,( zyxf  This is called magnetic force field. This is also an example 

of a vector point function.  
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VECTOR DIFFERENTIAL OPERATOR 

 Def. The vector differential operator (read as del) is 

defined as 
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GRADIENT OF A SCALAR POINT FUNCTION 

 Let (x,y,z) be a scalar point function of position defined 

in some region of space. Then the vector function 

 is known as the gradient of  or  
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 Find the directional derivative of xyz2+xz at (1, 1 ,1) 

in a direction of the normal to the surface 3xy2+y= z 

at (0,1,1). 

Sol:- Let f(x, y, z)  3xy2+y- z = 0 

Let us find the unit normal e to this surface at (0,1,1). 

Then  

 

f = 3y2i+(6xy+1)j-k 

 

(f)(0,1,1) = nkji 3  

 

=  
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DIVERGENCE OF A VECTOR 

 Let f  be any continuously differentiable vector 

point function. Then     is called the 

divergence of f  and is written as div f . 

 i.e., div f  = =  

 Hence we can write div f  as  
 div f = f.  This is a scalar point function. 
Theorem 1: If the vector = , then div  =  

 

Prof:  Given =  
 

Also . Similarly and  

We have div =  

Note : If  is a constant vector then are zeros. 

div =0 for a constant vector . 
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 Depending upon f  in a physical problem, we can 

interpret ffdiv .  

 Suppose (x,y,z,t) is the velocity of a fluid at a 

point(x,y,z) and time ‘t’. Though time has no role in 

computing divergence, it is considered here because 

velocity vector depends on time. 

 Imagine a small rectangular box within the fluid 

as shown in the figure. We would like to measure the 

rate per unit volume at which the fluid flows out at 

any given time. The divergence of  measures the 

outward flow or expansions of the fluid from their 

point at any time. This gives a physical interpretation 

of the divergence. 

  

F

F

PHYSICAL INTERPRETATION OF  DIVERGENCE 
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SOLENOIDAL VECTOR 
  

A vector point function  is said to be solenoidal if 
div f =0. 
 
Find div f = rnr Find n if it is solenoidal? 
Sol: Given = where   

 We have r2 = x2+y2+z2 
 Differentiating partially w.r.t. x , we get 
   

 Similarly  

=rn (  
 
div =   

 =  

 = +3rn = nrn+3rn= (n+3)rn 

 Let  =  be solenoidal. Then div = 0 

 (n+3)rn = 0  n= -3  

 

f

f .rr
n

rrandkzjyixr 

,22
r

x

x

r
x

x

r
r 










r

z

z

r
and

r

y

y

r











f )kzjyix 

f )()()( zr
z

yr
y

xr
x

nnn















nnnnnn
rz

z

r
nrry

y

r
nrrx

x

r
nr 













  111

 

r

r
nrr

r

z

r

y

r

x
nr

nnn

2

1

222

1
3














f rr
n

f



SOLENOIDAL VECTOR

378



SOLENOIDAL VECTOR 
 A vector point function  is said to be solenoidal 
if div =0. 
Find div = Find n if it is solenoidal? 
Sol: Given = where   

 We have r2 = x2+y2+z2 
 Differentiating partially w.r.t. x , we get 
  
  

 Similarly  

=rn (  
 
div =   

 =  

 = +3rn = nrn+3rn= (n+3)rn 

 Let  =  be solenoidal. Then div = 0 

 (n+3)rn = 0  n= -3  
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CURL OF A VECTOR 
Def: Let  be any continuously differentiable vector 

point function. Then the vector function defined by 

is called curl of  and is denoted by curl 

 or (x ). 

Curl  =  

Theorem 1: If  is differentiable vector point function 

given by =  then curl  = 
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Theorem 1: If  is differentiable vector point function given by =  then curl  

=  

Proof : curl  =  

 =  

 =  

Note : (1) The above expression for curl  can be remembered easily through the representation. 

 curl  =  =x  

 Note (2)  : If  is a constant vector then curl = . 
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CURL OF A VECTOR 

Def: Let  be any continuously differentiable vector 

point function. Then the vector function defined by 

is called curl of  and is 

denoted by curl  or (x ). 

Curl  =  

Theorem 1: If  is differentiable vector point function 

given by =  then curl  = 

 

Proof : curl  =  

 =  

 =  

Note : (1) The above expression for curl  can be remembered 

easily through the representation. 

 curl  =  =x  

 Note (2)  : If  is a constant vector then  

curl = . 
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Physical Interpretation of curl 

  If is the angular velocity of a rigid body 

rotating about a fixed axis and is the velocity of any 

point P(x,y,z) on the body, then  = ½ curl . Thus 

the angular velocity of rotation at any point is equal 

to half the curl of velocity vector. This justifies the 

use of the word “curl of a vector”.  

2. Irrotational Motion, Irrotational Vector 

 Any motion in which curl of the velocity vector 

is a null vector i.e curl =  is said to be Irrotational. 

Def: A vector  is said to be Irrotational if curl  = . 
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If is Irrotational, there will always exist a scalar 

function (x,y,z) such that =grad . This  is called 

scalar potential of . 

It is easy to prove that, if  = grad , then curl = 0. 

Hence x  = 0  there exists a scalar function  

such that = . 

This idea is useful when we study the “work done by 

a force” later. 
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If = find curl   at the point (1,-1,1). 

Sol:- Let = . Then  

 curl = x =  

 =

 

=  

= curl  at (1,-1,1) =  
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Prove that div  

 
 

 

  
 

 

 
 

 

Note : Since  we have  is 
always solenoidal. 
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Find constants a,b,c so that the vector  
=  is Irrotational. 

Also find  such that = . 
 
Sol: Given vector is  

=  

 Vector  is Irrotational  curl  =   
 

  

 

  

 =  

Comparing both sides, 

c+1=0, a-4=0, b-2=0 

c= -1, a=4,b=2 

Now = , on 

substituting the values of a,b,c  
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we have  = . 

 = =  

Comparing both sides, we have 

x+2y+4z = x2/2+2xy+4zx+f1(y,z) 

2x-3y-z = 2xy-3y2/2-yz+f2(z,x) 

4x-y+2z = 4xz-yz+z2+f3(x,y) 

Hence = x2/2 -3y2/2+z2+2xy+4zx-yz+c 
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Laplacian Operator 2 

 

.=  

Thus the operator 2
  is called Laplacian 

operator. 

Note : (i). 2
= .() = div(grad ) 

     (ii). If 2
=0 then  is said to satisfy Laplacian 

equation. This  is called a harmonic function 
Find div , where = grad (x3+y3+z3-3xyz)  

Sol:  Let = x3+y3+z3-3xyz. Then  

 = grad  

 = =  

  div = = 6x+6y+6z= 6(x+y+z) 

 i.e div[grad(x3+y3+z3-3xyz)]= 2(x3+y3+z3-3xyz)= 

6(x+y+z). 
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Prove that div  

 

 

 
  

 

 

Note : Since  we have  is always 
solenoidal. 
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

If =(x2-27) -6yz +8xz2 , evaluate rdF

C

  from the 

point (0,0,0) to the point (1,1,1) along the Straight 

line from (0,0,0) to (1,0,0), (1,0,0) to (1,1,0) and 

(1,1,0) to (1,1,1). 

Solution : Given = (x2-27)  -6yz +8xz2  

Now  = + + + +  

.  = (x2-27)dx – (6yz)dy +8xz2dz 

(i) Along the straight line from O = (0,0,0) to A = 

(1,0,0) 

Here y =0 =z and dy=dz=0. Also x changes 

from 0 to 1. 

. = (x2-27)dx = =  
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(i) Along the straight line from A = (1,0,0) to B = (1,1,0) 

Here x =1, z=0  dx=0, dz=0. y changes from 0 to 1. 

. =  

     (ii)Along the straight line from B = (1,1,0) to C = (1,1,1) 

x =1 =y  dx=dy=0 and z changes from 0 to 1. 

. =  

.  =  
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



If =(5xy-6x2) +(2y-4x) , evaluate rdF
C

 

 

along the curve C in xy-plane y=x3from 

 (1,1) to (2,8). 

Solution : Given =(5xy-6x2) +(2y-4x) ,-------(1) 

Along the curve y=x3, dy =3x2 dx 

=(5x4-6x2) +(2x3-4x) , [Putting y=x3 in (1)] 

           d = + =  +3x2dx  

d = [(5x4-6x2) +(2x3-4x) ].  
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= (5x4 – 6x2) dx+(2x3 – 4x)3x3dx 

 = (6x5+5x4-12x3 -6x2)dx 

Hence . =  

=  

 = 16(4+2-3-1) – (1+1-3-2) = 32+3 = 35 
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= (5x4 – 6x2) dx+(2x3 – 4x)3x3dx 

 = (6x5+5x4-12x3 -6x2)dx 

Hence . =  

=  

 = 16(4+2-3-1) – (1+1-3-2) = 32+3 = 35 
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Hence work done = d  = (t sin t + cos2 t – sin t ) dt

   

dt  

  =  

  =
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         Surface integral 
 
 

              is called surface integral 
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Evaluate  where  = zi + xj  3y2zk and S is the 

surface x2 + y2 = 16 included in the first octant 

between z = 0 and z = 5. 

Sol.   The surface S is x2 + y2 = 16 included in the 

first octant between z = 0 and z = 5. 

Let x2 + y2 = 16 

Then  =  

   unit normal   

Let R be the projection of S on yz-plane 

Then   =  ……………. * 
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Given   = zi + xj  3y
2
zk 

  

and   

In yz-plane, x = 0, y = 4 

In first octant, y varies from 0 to 4 and z varies from 0 to 5. 

  =  

   =  

   = 90. 
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If  = zi + xj  3y2zk, evaluate where S is the surface of the cube bounded by x = 0, x 

= a, y = 0, y= a, z = 0, z = a. 

Sol.  Given that S is the surface of the x = 0, x = a, y = 0, y = a, z = 0, z = a,  and  = zi + xj  

3y2zk we need to evaluate . 
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(i)  For OABC 

Eqn is z = 0 and dS = dxdy 

  

 = (yz) dxdy = 0 

(ii) For PQRS 

Eqn is z = a and dS = dxdy 

 

 =  
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(i) For OCQR 

Eqn is x = 0,  and , dS = dydz 

 =  

(ii) For ABPS 

Eqn is x = a,  and , dS = dydz 

 =  

(iii) For OASR 

Eqn is y = 0,  and , dS = dxdz 

 =  
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For PBCQ 

Eqn is y = a,  and , dS = dxdz 

 =  

From (i) – (vi) we get 

 = 0 +  + 0 +  + 0  a4 =  
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 GAUSS’S DIVERGENCE THEOREM 
(Transformation between surface integral and 
volume integral) 
 Let S be a closed surface enclosing a volume V. If 

is a continuously differentiable vector point 
function, then 

 dS 

When   is the outward drawn normal vector at any 
point of S. 
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Verify Gauss Divergence theorem for 

 taken over the surface of the cube 

bounded by the planes x = y = z = a and coordinate 

planes.  

Sol: By Gauss Divergence theorem we have 

.

S V

F nd S d iv F d v   
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Verification: We will calculate the value of .

S

F nd S  over the six faces of the cube. 

(i) For S1 = PQAS; unit outward drawn normal  

x=a; ds=dy dz; 0≤y≤a, 0≤z≤a  

  

3 3
. s inF n x y z a y z c e x a       

1

3

0 0

. (a )

a a

S z y

F nd S y z d y d z

 

       
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For S2 = OCRB; unit outward drawn normal 

          

x=0; ds=dy dz; 0≤y≤a, y≤z≤a  
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For S3 = RBQP; Z = a; ds = dxdy;  

 

0≤x≤a, 0≤y≤a  

 

 

3

3

0 0

. . . . .( 4 )

a a

S y x

F nd S a d x d y a

 

       
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Verify divergence theorem for  over the 

surface S of the solid cut off by the  

plane x+y+z=a in the first octant.  

 

Sol; By Gauss theorem, .

s v

F nd S d iv F d v   

 

1, 1, 1
x y z

g r a d i i j k
x

  




  
  

  


    



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Let R be the projection of S on xy-plane 

Then the equation of the given plane will be x+y=a   y=a-x 

Also when y=0, x=a 

 

.
.

.s R

F nd x d y
F nd S

n k

     
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=  

 

 

 

 
 

 
 

 
4

3 2 2 3

0

5 2
. 3 2 ,

3 3 4

a

s

a
F nd S x a x a x a d x

 
       

 
   on simplification…(1) 
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Given 2 2 2
F x i y j z k    

 
 

d iv
2 2 2

( ) ( ) ( ) 2 ( )F x y z x y z
x y z

  
     

  
 

 

N ow

0 0 0

. 2 ( )

a x ya a x

x y z

d iv F d v x y z d x d y d z

 

  

     
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Hence from (1) and (2), the Gauss Divergence 
theorem is verified.  
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II. GREEN’S THEOREM IN A PLANE 

(Transformation Between Line Integral and Surface 

Integral )  

If S is Closed region in xy plane bounded by a simple 

closed curve C and if M and N are continuous 

functions of x and y having continuous derivatives in 

R, then 

.

C R

N M
M d x N d y d xd y

x y

  
   

  
   

Where C  is traversed in the positive(anti  clock-wise) 

direction 
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Verify Green’s theorem in plane for  

  where C is the region bounded 

by y=   and y=  . 

Solution: Let  M=3 -  and N=4y-6xy. Then 

,  
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We have by Green’s theorem, 

 

.

C R

N M
M d x N d y d xd y

x y

  
   

  
   

 

Now   1 6 6

R R

N M
d xd y y y d xd y

x y

  
   

  
   

                                          =1 0

R

yd xd y =10
2

2

1 1 2

0 0

1 0
2

x
x

x xy x x

y
yd yd x d x

 

 
  

 
    
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Verification: 

    

  We can write the line integral along c 

 

=[line integral along y= (from O to A) + [line 

integral along =x(from A to O)] 

 

= + (say) 

 

Now     =  
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                 =  

 

And        
 

     
0 0

3
2 22

2

1 1

1 5
3 8 4 6 3 1 1 2

22

l x x d x x x d x x x d x

x

 
       

 
 
   

 

 

 

From(1) and (2), we have  

.

C R

N M
M d x N d y d xd y

x y

  
   

  
   

 

Hence the verification of the Green’s theorem. 
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Verify Green’s theorem for   where C is 

bounded by y=x and  

y=  

Solution:By Green’s theorem, we have 

C R

N M
M d x N d y d xd y

x y

  
   

  
    

 

Here M=xy +  and N=  
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The line y=x and the parabola y=  intersect at O  

and A  

 

Now  
1 2

......(1)

c c c

M d x N d y M d x N d y M d x N d y                             …..(1) 

Along   the line integral is  

 

1 1

1

2 4 2 2 3 4 3 3 4

0

[ ( ) ] ( ) ( 2 ) (3 )

c c c

M d x N d y x x x d x x d x x x x d x x x d x            

=    

=                                 …….(2) 
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Along   from  to  the line integral is  

 

2 2

2 2
( . )

c c

M d x N d y x x x d x x d x      

                        

    =       = 0-1  = -1       ….(3) 
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From (1), (2) and (3), we have 

                                                                                                       

…(4) 

Now  

R

N M
d xd y

x y

  
 

  
   = ( 2 2 )

R

x x y d xd y    

  =  

                                                  =  =                                                                  

….(5) 

From
c

M d x N d y =
R

N M

x y

  
 

  
  dxdy 

Hence the verification of the Green’s  theorem. 
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Verify Green’s theorem for   where C is 

bounded by y=x and  

y=  

Solution:By Green’s theorem, we have 

C R

N M
M d x N d y d xd y

x y

  
   

  
    

 

Here M=xy +  and N=  
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The line y=x and the parabola y=  intersect at O  

and A  

 

Now  
1 2

......(1)

c c c

M d x N d y M d x N d y M d x N d y                             …..(1) 

Along   the line integral is  

 

1 1

1

2 4 2 2 3 4 3 3 4

0

[ ( ) ] ( ) ( 2 ) (3 )

c c c

M d x N d y x x x d x x d x x x x d x x x d x            

=    

=                                 …….(2) 
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Along   from  to  the line integral is  

 

2 2

2 2
( . )

c c

M d x N d y x x x d x x d x      

                        

    =       = 0-1  = -1       ….(3) 
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From (1), (2) and (3), we have 

                                                                                                       

…(4) 

Now  

R

N M
d xd y

x y

  
 

  
   = ( 2 2 )

R

x x y d xd y    

  =  

                                                  =  =                                                                  

….(5) 

From
c

M d x N d y =
R

N M

x y

  
 

  
  dxdy 

Hence the verification of the Green’s  theorem. 
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III. STOKE’S THEOREM 

          (Transformation between Line 

Integral and Surface Integral)                       

         Let S be a open surface bounded 

by a closed, non intersecting curve C. 

 If   is any  

differentieable vector point function 

then 

 = 

 direction 

and   
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Verify Stokes theorem for , 

Where S is the circular disc 

 

Solution: Given that . The 

boundary of C of S is a circle in xy 

plane. 

We use the parametric co-

ordinates x=cos  

dx=-sin  and dy =cos  

 

    =  

         =  

=                       

 =     

=2 =2  
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Now  

 

We have ( . )k n d s d x d y and R is the region on xy-plane 

.  

Put x=r cos  

r is varying from 0 to 1 and 0  

 . .rdr d  

L.H.S=R.H.S.Hence the theorem is verified. 
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Verify Stokes theorem for  over the 

upper half surface of the sphere bounded 

by the projection of the xy-plane.                                   

Solution: The boundary C of S is a circle in xy plane 

i.e =1, z=0 

The parametric equations are x=  

 
2 2

1 2 3
. ( 2 )

c c c

F d r F d x F d y F d z x y d x yz d y y zd z          

                  =  
2 2 2

2

0 0 0

( 2 co s s in ) s in s in s in 2d d d

  

               

                    =  

                    =  
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Again  =  

. =  

Where R is the projection of S on xy plane and

 

      Now 

 

                                     = 2 =  

 Stokes theorem is verified. 
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Evaluate by Stokes theorem   where C is the boundary of 

the triangle with vertices (0,0,0), (1,0,0) and (1,1,0). 

Solution: Let   

Then  

By Stokes theorem,  

 

Where S is the surface of the triangle OAB which lies 

in the xy plane. Since the z Co-ordinates of O,A and B  

Are zero. Therefore . Equation of OA is y=0 and  

that  of OB, y=x in the xy plane. 
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Now  

 

 

 

We have ( . )k n d s d x d y and R is the region on xy-plane 

 

.  

 

Put x=r cos  

 

 

r is varying from 0 to 1 and 0  

 . .rdr d  

L.H.S=R.H.S.Hence the theorem is verified. 
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= 2  

 

 

ds=curl  

 

 

  the  

           

           = OA   AB=
1 1

1 1
2 2
    
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