LECTURE NOTES

ON

LINEAR ALGEBRA AND CALCULUS

I B. Tech I semester

Ms. L Indira
Associate Professor

FRESHMAN ENGINEERING
INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad - 500043

MODULE-I THEORY OF MATRICES

Solution for linear systems

Matrix : A system of $m n$ numbers real (or) complex arranged in the form of an ordered set of ' m ' rows, each row consisting of an ordered set of ' n ' numbers between [] (or) () (or) || || is called a matrix of order m xn.

$=\left[a_{i j}\right]_{m \times n}$ where $1 \leq i \leq m, 1 \leq j \leq n$.

Some types of matrices:

1. square matrix : A square matrix A of order $n x n$ is sometimes called as a n - rowed matrix A (or) simply a square matrix of order n
eg: $\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$ is $2^{\text {nd }}$ order matrix
2. Rectangular matrix: A matrix which is not a square matrix is called a rectangular matrix,

$$
\left[\begin{array}{rrr}
1 & -1 & 2 \\
2 & 3 & 4
\end{array}\right] \text { is a } 2 \times 3 \text { matrix }
$$

3. Row matrix: A matrix of order 1 xm is called a row matrix

$$
\text { eg: }\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]_{1 \times 3}
$$

4. Column matrix: A matrix of order $n x 1$ is called a column matrix

$$
\text { Eg: }: \begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & \vdots \\
2 &]_{3 \times 1}
\end{array}
$$

5. Unit matrix: if $A=\left[a_{i j}\right]_{n \times n}$ such that $a_{i j}=1$ for $i=j$ and $a_{i j}=0$ for $i \neq j$, then A is called a unit matrx.
$\mathrm{Eg}: I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
6. Zero matrix : it $A=\left[a_{i j}\right]_{m \times n}$ such that $\mathrm{a}_{\mathrm{ij}}=0 \forall I$ and j then A is called a zero matrix (or) null matrix
$\mathrm{Eg}: \mathrm{O}_{2 \times 3}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
7. Diagonal elements in a matrix: $A=\left[a_{i j}\right]_{n \times n}$, the elements $a_{i j}$ of A for which $i=j$.i.e. $\left(a_{11}, a_{22} \ldots . a_{n n}\right)$ are called the diagonal elements of A

Eg: $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$ diagonal elements are 1,5,9
Note: the line along which the diagonal elements lie is called the principle diagonal of A
8. Diagonal matrix: A square matrix all of whose elements except those in leading diagonal are zero is called diagonal matrix.

If $d_{1}, d_{2} \ldots . . d_{n}$ are diagonal elements of a diagonal matrix A, then A is written as $A=\operatorname{diag}$
$\left(d_{1}, d_{2} \ldots . d_{n}\right)$
E.g. : $\left.A=\operatorname{diag}(3,1,-2)=\begin{array}{lll}{[3} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2\end{array}\right]$
9. Scalar matrix: A diagonal matrix whose leading diagonal elements are equal is called a scalar matrix.
$\mathrm{Eg}: \mathrm{A}=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$
10. Equal matrices : Two matrices $A=\left[a_{i j}\right]$ and $b=\left[b_{i j}\right]$ are said to be equal if and only if (i) A and B are of the same type(order) \quad (ii) $\mathrm{a}_{\mathrm{ij}}=\mathrm{b}_{\mathrm{ij}}$ for every $\mathrm{i} \& \mathrm{j}$
11. The transpose of a matrix: The matrix obtained from any given matrix A, by interchanging its rows and columns is called the transpose of A. It is denoted by A^{1} (or) A^{\top}.
If $A=\left[a_{i j}\right]_{m \times n}$ then the transpose of A is $A^{1}=\left[b_{j i}\right]_{n \times m}$, where $b_{j i}=a_{i j}$ Also $\left(A^{1}\right)^{1}=A$
Note: A^{1} and B^{1} be the transposes of A and B respectively, then
(i) $\left(A^{1}\right)^{1}=A$
(ii) $(A+B)^{1}=A^{1}+B^{1}$
(iii) $(K A)^{1}=K A^{1}, K$ is a scalar
(iv) $(A B)^{1}=B^{1} A^{1}$
12. The conjugate of a matrix: The matrix obtained from any given matrix A, on replacing its elements by corresponding conjugate complex numbers is called the conjugate of A and is denoted by \bar{A}

Note: if \bar{A} and \bar{B} be the conjugates of A and B respectively then,

$$
\begin{gathered}
\text { (i) } \overline{(\overline{\mathrm{A}})}=\mathrm{A} \\
\text { (ii) }(\overline{\mathrm{A}+\mathrm{B})}=\mathrm{A}+\overline{\mathrm{B}}- \\
\text { (iii) }(\overline{\mathrm{KA})}=\mathrm{KA} \overline{\mathrm{~K}} \overline{\text { is a any complex number }} \\
\text { (iv) }(\overline{\mathrm{AB})}=\mathrm{B} \overline{\mathrm{~A}}- \\
\mathrm{Eg} \text {; if } \mathrm{A}=\left[\begin{array}{ccc}
2 & 3 i & 2-5 i \\
-i & 0 & 4 i+3
\end{array}\right]_{2 \times 3} \text { then } \bar{A}=\left[\begin{array}{ccc}
2 & -3 i & 2+5 i \\
i & 0 & -4 i+3
\end{array}\right]_{2 \times 3}
\end{gathered}
$$

13. The conjugate Transpose of a matrix

The conjugate of the transpose of the matrix A is called the conjugate transpose of A and is denoted by A^{θ} Thus $A^{\theta}=\left(A^{1}\right)$ where A^{1} is the transpose of A. Now $A=\left[a_{i j}\right]_{m \times n} \Rightarrow A^{\theta}=\left[b_{i j}\right]_{n \times m}$, where $b_{i j}=\quad a$ ij i.e. the $(i, j)^{\text {th }}$ element of A^{θ} conjugate complex of the $(j, i)^{\text {th }}$ element of A

Eg: if $\mathrm{A}=\left[\begin{array}{lll}5 & 3-i & -2 i \\ 0 & 1+i & 4-i\end{array}\right]_{2 \times 3} \quad$ then $\quad \mathrm{A}^{\theta} \quad=\left[\begin{array}{ll}5 & 0 \\ 3+i & 1-i \\ 2 i & 4+i \\ \mid & \\ & \end{array}\right] 3 \times 2$
Note: $\mathrm{A}^{\theta}=A^{1}=(A)^{1}$ and $\left(A^{\theta}\right)^{\theta}=\mathrm{A}$
14.
(i) Upper Triangular matrix: A square matrix all of whose elements below the leading diagonal are zero is called an Upper triangular matrix. i.e, $\mathrm{a}_{\mathrm{ij}=0}$ for $\mathrm{i}>\mathrm{j}$
Eg; $\left[\begin{array}{ccc}1 & 3 & 8 \\ 0 & 4 & -5 \\ 0 & 0 & 2\end{array}\right]$ is an

Upper triangular matrix

(ii) Lower triangular matrix: A square matrix all of whose elements above the leading diagonal are zero is called a lower triangular matrix. i.e, $\mathrm{a}_{\mathrm{ij}=0}$ for $\mathrm{i}<\mathrm{j}$

is an Lower triangular matrix

(iii) Triangular matrix: A matrix is said to be triangular matrix it is either an upper triangular matrix or a lower triangular matrix
15. Symmetric matrix: A square matrix $A=\left[a_{i j}\right]$ is said to be symmetric if $a_{i j}=a_{j i}$ for every i and j

Thus A is a symmetric matrix if $A^{\top}=A$

Eg: $\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right] \quad$ is a symmetric matrix
16. Skew - Symmetric: A square matrix $A=\left[a_{i j}\right]$ is said to be skew - symmetric if $a_{i j}=-a_{j i}$ for every i and j.
E.g. : $\left[\begin{array}{ccc}0 & a & -b \\ -a & 0 & c \\ b-c & 0\end{array}\right]$ is a skew - symmetric matrix

Thus A is a skew - symmetric iff $A=-A^{1}$
(or) $-A=A^{1}$
Note: Every diagonal element of a skew - symmetric matrix is necessarily zero.
Since $a_{i j}=-a_{i j} \Rightarrow a_{i j}=0$

7. Multiplication of a matrix by a scalar.

Let ' A ' be a matrix. The matrix obtain by multiplying every element of A by a scalar K, is called the product of A by K and is denoted by KA (or) AK

Thus: $A+\left[a_{i j}\right]_{m \times n}$ then KA $=\left[k a_{i j}\right]_{m \times n}=k\left[a_{i j}\right]_{m \times n}$

18. Sum of matrices:

Let $A=\left[a_{i j}\right]_{m \times n}, B=\left[b_{i j}\right]_{m \times n}$ be two matrices. The matrix $C=\left[c_{i j}\right]_{m \times n}$ where $c_{i j}=a_{i j}+b_{i j}$ is called the sum of the matrices A and B.

The sum of A and B is denoted by $A+B$. Thus $\left[a_{i j}\right]_{m \times n}+\left[b_{i j}\right]_{m \times n}=\left[a_{i j}+b_{i j}\right]_{m \times n}$ and $+\left[b_{i j}\right]_{m \times n}$
19. The difference of two matrices: If A, B are two matrices of the same type then $A+(-B)$ is taken as $A-B$
20. Matrix multiplication: Let $\mathrm{A}=\left[a_{i k}\right]_{\mathrm{m} \mathrm{\times n}}, \mathrm{~B}=\left[\mathrm{b}_{\mathrm{kj}}\right]_{\mathrm{nxp}}$ then the matrix $\mathrm{C}=\left[\mathrm{c}_{\mathrm{ij}}\right]_{\mathrm{mxp}}$ where c_{ij} is called the product of the matrices A and B in that order and we write $C=A B$.

The matrix A is called the pre-factor $\& B$ is called the post - factor
Note: If the number of columns of A is equal to the number of rows in B then the matrices are said to be conformable for multiplication in that order.

21. Positive integral powers of a square matrix:

Let A be a square matrix. Then A^{2} is defined A.A
Now, by associative law $A^{3}=A^{2} \cdot A=(A A) A$

$$
=A(A A)=A A^{2}
$$

Similarly we have $A^{m-1} A=A A^{m-1}=A^{m}$ where m is a positive integer

Note: $\left.\right|^{n}=1$

$$
0^{n}=0
$$

Note 1: Multiplication of matrices is distributive w.r.t. addition of matrices.

$$
\text { i.e, } \begin{array}{lll}
& A(B+C)= & A B+A C \\
& (B+C) A= & B A+C A
\end{array}
$$

Note 2: If A is a matrix of order $m x n$ then $A I_{n}=I_{n} A=A$
22. Trace of A square matrix : Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{n} \times \mathrm{n}}$ the trace of the square matrix A is defined as $\sum_{i=1}^{n} a_{i i}$. And is denoted by 'tr A^{\prime}

Thus trA $=\quad \sum_{i=1}^{n} a_{i i}=\mathrm{a}_{11}+\mathrm{a}_{22}+\ldots . . . \mathrm{a}_{\mathrm{nn}}$
$\mathrm{Eg}: \mathrm{A}=\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right]$ then $\operatorname{tr} \mathrm{A}=\mathrm{a}+\mathrm{b}+\mathrm{c}$
Properties: If A and B are square matrices of order n and λ is any scalar, then
(i) $\quad \operatorname{tr}(\lambda A)=\lambda \operatorname{tr} A$
(ii) $\quad \operatorname{tr}(\mathrm{A}+\mathrm{B})=\operatorname{tr} \mathrm{A}+\operatorname{tr} \mathrm{B}$
(iii) $\operatorname{tr}(\mathrm{AB})=\operatorname{tr}(\mathrm{BA})$
23. Idempotent matrix: If A is a square matrix such that A = A then ' A ' is called idempotent matrix
24. Nilpotent Matrix: If A is a square matrix such that $A^{m}=0$ where m is a +ve integer then A is called nilpotent matrix.

Note: If m is least positive integer such that $A^{m}=0$ then A is called nilpotent of index m
25. Involutary : If A is a square matrix such that $A^{2}=I$ then A is called involuntary matrix.
26. Orthogonal Matrix: A square matrix A is said to be orthogonal if $A A^{1}=A^{1} A=I$

Examples:

1. Show that $\mathrm{A}=\left[\begin{array}{ll}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ is orthogonal.

Sol: Given $\mathrm{A}=\left[\begin{array}{ll}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$
$A^{\top}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$

Consider A. $\mathrm{A}^{\top}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{cc}{[\cos \theta} & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$

$$
=\left[\begin{array}{lc}
\cos ^{2} \theta+\sin ^{2} \theta & -\cos \theta \sin \theta+\cos \theta \sin \theta \\
-\sin \theta \cos \theta+\cos \theta \sin \theta & \cos ^{2} \theta+\sin ^{2} \theta
\end{array}\right]
$$

$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$
$\therefore \mathrm{A}$ is orthogonal matrix.
2. Prove that the matrix $\left.\frac{1}{3} \left\lvert\, \begin{array}{ccc}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right.\right]$ is orthogonal.

Sol: Given $A=\frac{1}{3}\left[\begin{array}{lll}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right]$

Then $A^{\top}=\frac{1}{3}\left[\begin{array}{ccc}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right]$

Consider $A . A^{\top}=\frac{1}{9}\left[\begin{array}{lll}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right]\left[\begin{array}{lll}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right]$
$\left.=\frac{1}{9} \left\lvert\, \begin{array}{lll}9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9\end{array}\right.\right]=\left[\left.\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array} \right\rvert\,\right.$
A. $A^{\top}=1$

Similarly $A^{\top} . A=1$
Hence A is orthogonal Matrix
3. Determine the values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ when $\left[\begin{array}{lll}0 & 2 b & c \\ a & b & -c \\ a & -b & c\end{array}\right]$ is orthogonal.

Sol: - For orthogonal matrix $A A^{\top}=1$

So $\mathrm{AA}^{\top}=\left[\begin{array}{lll}0 & 2 b & c \\ a & b & -c \\ a & -b & c\end{array}\right]\left[\begin{array}{lll}0 & a & a \\ 2 b & b & -b \\ c & -c & c\end{array}\right]=I$

$$
\longrightarrow\left[\begin{array}{lll}
4 b^{2}+c^{2} & 2 b^{2}-c^{2} & -2 b^{2}+c^{2} \\
2 b^{2}-c^{2} & a^{2}+b^{2}+c^{2} & a^{2}-b^{2}-c^{2} \\
-2 b^{2}+c^{2} & a^{2}-b^{2}-c^{2} & a^{2}+b^{2}+c^{2}
\end{array}\right]=\mathrm{I}=\left[\left.\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array} \right\rvert\,\right.
$$

Solving $2 b^{2}-c^{2}=0, a^{2}-b^{2}-c^{2}=0$
We get $\mathrm{c}= \pm \sqrt{2} b \quad \mathrm{a}^{2}=\mathrm{b}^{2}+2 \mathrm{~b}^{2}=3 \mathrm{~b}^{2}$

$$
\Rightarrow \mathrm{a}= \pm \sqrt{3} b
$$

From the diagonal elements of I

$$
\begin{aligned}
4 \mathrm{~b}^{2}+\mathrm{c}^{2}= & \Rightarrow 4 \mathrm{~b}^{2}+2 \mathrm{~b}^{2}=1\left(\mathrm{c}^{2}=2 \mathrm{~b}^{2}\right) \\
& \Rightarrow \mathrm{b}= \pm \frac{1}{\sqrt{6}} \\
\mathrm{a} & = \pm \sqrt{3 b} \\
& = \pm \frac{1}{\sqrt{2}} \\
\mathrm{~b} & = \pm \frac{1}{\sqrt{6}} \\
\mathrm{c} & = \pm \sqrt{2} b \\
& = \pm \frac{1}{\sqrt{3}}
\end{aligned}
$$

27. Determinant of a square matrix:

28. Minors and cofactors of a square matrix

Let $A=\left[a_{i j}\right]_{n \times n}$ be a square matrix when form A the elements of $\mathrm{i}^{\text {th }}$ row and $j^{\text {th }}$ column are deleted the determinant of $(n-1)$ rowed matrix [Mij] is called the minor of aij of A and is denoted by $\left|M_{i j}\right|$

The signed minor $(-1)^{i+j}\left|M_{i j}\right|$ is called the cofactor of $a_{i j}$ and is denoted by $A_{i j}$.
If $\mathrm{A}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right] \quad$ then

$$
\begin{aligned}
|A|= & a_{11}\left|M_{11}\right|+a_{12}\left|M_{12}\right|+a_{13}\left|M_{13}\right| \text { (or) } \\
& =a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13}
\end{aligned}
$$

E.g.: Find Determinant of $\left[\begin{array}{ccc}1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4\end{array}\right]$ by using minors and co-factors.

Sol: $A=\left[\begin{array}{ccc}1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4\end{array}\right]$
$\operatorname{det} \mathrm{A}=1\left|\begin{array}{ll}3 & -3 \\ -4 & -4\end{array}\right|-1\left|\begin{array}{cc}1 & -3 \\ -2 & -4\end{array}\right|+3\left|\begin{array}{cc}1 & 3 \\ -2 & -4\end{array}\right|$
$=1(-12-12)-1(-4-6)+3(-4+6)$
$=-24+10+6=-8$
Similarly we find det A by using co-factors also.
Note 1: If A is a square matrix of order n then $|K A|=K^{n}|A|$, where k is a scalar.
Note 2: If A is a square matrix of order n , then $|A|=\left|A^{T}\right|$
Note 3: If A and B be two square matrices of the same order, then $|A B|=|A||B|$
29. Inverse of a Matrix: Let A be any square matrix, then a matrix B, if exists such that $A B=B A=I$ then B is called inverse of A and is denoted by A^{-1}.

Note: $1\left(\mathrm{~A}^{-1}\right)^{-1}=\mathrm{A}$
Note 2: $\left.\right|^{-1}=1$
30. Adjoint of a matrix:

Let A be a square matrix of order n. The transpose of the matrix got from A
By replacing the elements of A by the corresponding co-factors is called the adjoint of A and is denoted by adj A.

Note: For any scalar $k, \operatorname{adj}(k A)=k^{n-1} \operatorname{adj} A$
Note: The necessary and sufficient condition for a square matrix to posses' inverse is that $|A| \neq 0$

Note: if $|A| \neq 0$ then $A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)$

3. Singular and Non-singular Matrices:

A square matrix A is said to be singular if $|A|=0$.
If $|A| \neq 0$
then ' A ' is said to be non-singular.
Note: 1. only non-singular matrices possess inverses.
2. The product of non-singular matrices is also non-singular.

Theorem 9: If A, B are invertible matrices of the same order, then
(i). $(A B)^{-1}=B^{-1} A^{-1}$
(ii). $\left(A^{1}\right)^{-1}=\left(A^{-1}\right)^{1}$

Proof: (i). we have $\left(B^{-1} A^{-1}\right)(A B)=B^{-1}\left(A^{-1} A\right) B$

$$
\begin{aligned}
& =B^{-1}(I B) \\
= & B^{-1} B \\
= & 1
\end{aligned}
$$

$(A B)^{-1}=B^{-1} A^{-1}$
(ii). $A^{-1} A=A A^{-1}=1$

$$
\begin{aligned}
& \text { Consider } A^{-1} A=1 \\
& \Rightarrow\left(A^{-1} A\right)^{1}=I^{1} \\
& \Rightarrow A^{1} \cdot\left(A^{-1}\right)^{1}=1 \\
& \Rightarrow\left(A^{1}\right)^{-1}=\left(A^{-1}\right)^{1}
\end{aligned}
$$

Unitary matrix:

A square matrix A such that $(\bar{A})^{T}=A^{-1}$

$$
\text { i.e }(\bar{A})^{T} \mathrm{~A}=\mathrm{A}(\bar{A})^{T}=\mathrm{I}
$$

If $A^{\theta} \mathrm{A}=\mathrm{I}$ then A is called Unitary matrix

Theorem: The Eigen values of a Hermitian matrix are real.
Note: The Eigen values of a real symmetric are all real
Corollary: The Eigen values of a skew-Hermitian matrix are either purely imaginary (or) Zero
Theorem 3: The Eigen values of an unitary matrix have absolute value 1 .

Note 1: From the above theorem, we have "The characteristic root of an orthogonal matrix is unit modulus".
2. The only real Eigen values of unitary matrix and orthogonal matrix can be ± 1

Theorem 4: Prove that transpose of a unitary matrix is unitary.

PROBLEMS

1) Find the eigen values of $\mathbf{A}=\left[\begin{array}{cc}3 i & 2+i \\ -2+i & -i\end{array}\right]$

Sol: we have $\mathrm{A}=\left[\begin{array}{cc}3 i & 2+i \\ -2+i & -i\end{array}\right]$

$$
\text { So } \bar{A}=\left[\begin{array}{cc}
-3 i & 2-i \\
-2-i & i
\end{array}\right] \text { and } A^{T}=\left[\begin{array}{cc}
3 i & -2+i \\
2+i & -i
\end{array}\right]
$$

$$
\Rightarrow \bar{A}=-A^{T}
$$

Thus A is a skew-Hermitian matrix.
\therefore The characteristic equation of A is $|A-\lambda I|=0$

$$
\begin{aligned}
& \Rightarrow A^{T}=\left|\begin{array}{cc}
3 i-\lambda & -2+i \\
-2+i & -i-\lambda
\end{array}\right|=0 \\
& \Rightarrow \lambda^{2}-2 i \lambda+8=0 \\
& \Rightarrow \lambda=4 i,-2 i \text { are the Eigen values of } \mathrm{A}
\end{aligned}
$$

2) Find the Eigen values of $A=\left[\begin{array}{ll}\frac{1}{i} i & \frac{\sqrt{3}}{2} \\ 2 & \vdots \\ \frac{\sqrt{3}}{2} & \frac{1}{2} i\end{array}\right]$

Now $\bar{A}=\left[\begin{array}{cc}-\frac{1}{2} i & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} i\end{array}\right]$ and
$(\bar{A})^{T}=\left[\begin{array}{cc}-\frac{1}{2} i & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} i\end{array}\right]$
We can see that $\bar{A}^{T} \cdot A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$
Thus A is a unitary matrix
\therefore The characteristic equation is $|A-\lambda I|=0$
$\Rightarrow\left|\begin{array}{cc}\frac{1}{2} i-\lambda & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} i-\lambda\end{array}\right|=0$
Which gives $\lambda=\frac{\sqrt{3}}{2}+i \frac{1}{2}$ and $\frac{-\sqrt{3}}{2}+\frac{1}{2} i$ and

Hence above λ values are Eigen values of A.
3) If $\mathbf{A}=\left[\begin{array}{ccc}3 & 7-4 i & -2+5 i \\ 7+4 i & -2 & 3+i \\ -2-5 i & 3-i & 4\end{array}\right]$ then show that

A is Hermitian and iA is skew-Hermitian.
Sol: Given $\mathrm{A}=\left[\begin{array}{ccc}3 & 7-4 i & -2+5 i \\ 7+4 i & -2 & 3+i \\ -2-5 i & 3-i & 4\end{array}\right]$ then

$$
\bar{A}=\left[\begin{array}{ccc}
3 & 7+4 i & -2-5 i \\
7-4 i & -2 & 3-i \\
-2+5 i & 3+i & 4
\end{array}\right] \text { And } \overline{(A)}^{T}=\left[\begin{array}{ccc}
3 & 7-4 i & -2+5 i \\
7+4 i & -2 & 3+i \\
-2-5 i & 3-i & 4
\end{array}\right]
$$

$\therefore A=(\bar{A})^{T}$ Hence A is Hermitian matrix.
Let $B=i A$
i.e $\mathrm{B}=\left[\begin{array}{ccc}3 i & 4+7 i & -5-2 i \\ -4+7 i & -2 i & -1+3 i \\ 5-2 i & 1+3 i & 4 i\end{array}\right]$ then

$$
\begin{aligned}
& \bar{B}=\left[\begin{array}{ccc}
-3 i & 4-7 i & -5+2 i \\
-4-7 i & 2 i & -1-3 i \\
5+2 i & 1-3 i & -4 i
\end{array}\right] \\
& \left.\left.(\bar{B})^{T}=\left[\begin{array}{ccc}
-3 i & -4-7 i & 5+2 i \\
4-7 i & 2 i & 1-3 i \\
-5+2 i & -1-3 i & -4 i
\end{array}\right]=(-1) \right\rvert\, \begin{array}{ccc}
3 i & 4+7 i & -5-2 i \\
-4+7 i & -2 i & -1+3 i \\
5-2 i & 1+3 i & 4 i
\end{array}\right]=-B
\end{aligned}
$$

$$
\therefore(\bar{B})^{T}=-\mathrm{B}
$$

$\therefore \mathrm{B}=\mathrm{iA}$ is a skew Hermitian matrix.

4) If A and B are Hermitian matrices, prove that $A B-B A$ is a skew-Hermitian matrix.

Sol: Given A and B are Hermitan matrices

Hence AB-BA is a skew-Hemitian matrix.

$$
\begin{aligned}
& \therefore(\bar{A})^{T}=A \quad \text { And }(\bar{B})^{T}=B \\
& \text { Now } \overline{(A B-B A)}^{T}=\left(\overline{A B}-\overline{B A}^{T}\right. \\
& =(\bar{A} \bar{B}-\bar{B} \bar{A})^{T} \\
& =(\bar{A} \bar{B})^{T}-(\bar{B} \bar{A})^{T}=(\bar{B})^{T}(\bar{A})^{T}-(\bar{A})^{T}(\bar{B})^{T} \\
& =B A-A B(B y(1)) \\
& =-(A B-B A)
\end{aligned}
$$

5) Show that $\mathbf{A}=\left[\begin{array}{cc}a+i c & -b+i d \\ b+i d & a-i c\end{array}\right]$ is unitary if and only if $\mathbf{a}^{2}+\mathbf{b}^{2}+\mathbf{c}^{2}+\mathbf{d}^{2}=\mathbf{1}$

Sol: Given $\mathrm{A}=\left[\begin{array}{ll}a+i c & -b+i d \\ b+i d & a-i c\end{array}\right]$
Then $\bar{A}=\left[\begin{array}{cc}a-i c & -b-i d \\ b-i d & a+i c\end{array}\right]$
Hence $A^{\theta}=(\bar{A})^{T}=\left[\begin{array}{cc}a-i c & b-i d \\ -b-i d & a+i c\end{array}\right]$

$$
\begin{aligned}
& \therefore A A^{\theta}=\left[\begin{array}{cc}
a+i c & -b+i d\rceil \\
b+i d & a-i c
\end{array}\right]\left[\begin{array}{cc}
a-i c & b-i d \\
-b-i d & a+i c
\end{array}\right] \\
& =\left(\begin{array}{cc}
a^{2}+b^{2}+c^{2}+d^{2} & 0 \\
0 & a^{2}+b^{2}+c^{2}+d^{2}
\end{array}\right)
\end{aligned}
$$

$\therefore A A^{\theta}=I$ if and only if $a^{2}+b^{2}+c^{2}+d^{2}=1$
6) Show that every square matrix is uniquely expressible as the sum of a Hermitian matrix and a skew- Hermitian matrix.

Sol. Let A be any square matrix
$\operatorname{Now}\left(A+A^{\theta}\right)^{\theta}=A^{\theta}+\left(A^{\theta}\right)^{\theta}$

$$
=A^{\theta}+A
$$

$\left(A+A^{\theta}\right)^{\theta}=A+A^{\theta} \Rightarrow A+A^{\theta}$ is a Hermitian matrix.
$\therefore \frac{1}{2}\left(A+A^{\theta}\right)$ is also a Hermitian matrix
$\operatorname{Now}\left(A-A^{\theta}\right)^{\theta}=A^{\theta}-\left(A^{\theta}\right)^{\theta}$

$$
=A^{\theta}-A=-(A-A)^{\theta}
$$

Hence $A-A^{\theta}$ is a skew-Hermitian matrix
$\therefore \frac{1}{2}\left(A-A^{\theta}\right)$ is also a skew -Hermitian matrix.

Uniqueness:

Let $A=R+S$ be another such representation of A
Where R is Hermitian and

Then $A^{\theta}=(R+S)^{\theta}$

$$
\begin{aligned}
& =R^{\theta}+S^{\theta} \\
=R & -S \quad\left(\because R^{\theta}=R, S^{\theta}=-S\right)
\end{aligned}
$$

$\therefore R=\frac{1}{2}\left(A+A^{\theta}\right)=P$ and $S=\frac{1}{2}\left(A-A^{\theta}\right)=Q$
Hence $\mathrm{P}=\mathrm{R}$ and $\mathrm{Q}=\mathrm{S}$
Thus the representation is unique.
7) Given that $\mathbf{A}=\left[\begin{array}{cc}0 & 1+2 i \\ -1+2 i & 0\end{array}\right]$, show that $(I-A)(I+A)^{-1}$ is a unitary matrix.

Sol: we have $I-A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]-\left[\begin{array}{cc}0 & 1+2 i \\ -1+2 i & 0\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
1 & -1-2 i \\
1-2 i & 1
\end{array}\right] \text { And } \\
& I+A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]^{+}\left[\begin{array}{cc}
0 & 1+2 i \\
-1+2 i & 0
\end{array}\right] \\
& \\
& =\left[\begin{array}{cc}
1 & 1+2 i \\
-1+2 i & 1
\end{array}\right] \\
& \therefore(I+A)^{-1}=\frac{1}{1-\left(4 i^{2}-1\right)}\left\lfloor\begin{array}{cc}
1 & -1-2 i\rceil \\
1-2 i & 1
\end{array}\right] \\
& \\
& \quad=\frac{1}{6}\left[\begin{array}{cc}
1 & -1-2 i \\
1-2 i & 1
\end{array}\right]
\end{aligned}
$$

Let $B=(I-A)(I+A)^{-1}$

$$
\begin{aligned}
& B=\frac{1}{6}\left[\begin{array}{ccc}
1 & -1-2 i\rceil\left[\begin{array}{cc}
1 & -1-2 i \\
1-2 i & 1
\end{array}\right][1-2 i & 1
\end{array}\right]=\frac{1}{6}\left[\begin{array}{cc}
1+(1-2 i)(-1-2 i) & -1-2 i-1-2 i \\
1-2 i+1-2 i & (-1-2 i)(1-2 i)+1
\end{array}\right] \\
& B=\frac{1}{6}\left[\begin{array}{cc}
-4 & -2-4 i\rceil \\
2-4 i & -4
\end{array}\right]
\end{aligned}
$$

Now $\bar{B}=\frac{1}{6}\left[\begin{array}{cc}-4 & -2+4 i \\ 2+4 i & -4\end{array}\right]$ and $\overline{(B)}^{T}=\frac{1}{6}\left[\begin{array}{cc}-4 & 2+4 i \\ -2+4 i & -4\end{array}\right]$
$B(\bar{B})^{T}=\frac{1}{36}\left[\begin{array}{cc}-4 & -2-4 i \\ 2-4 i & -4\end{array}\right]\left[\begin{array}{cc}-4 & 2+4 i \\ -2+4 i & -4\end{array}\right]$

$$
=\frac{1}{36}\left[\begin{array}{cc}
36 & 0 \\
0 & 36
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
$$

$(\bar{B})^{T}=B^{-1}$
i.e., B is unitary matrix.
$\therefore(I-A)(I+A)^{-1}$ is a unitary matrix.
8) Show that the inverse of a unitary matrix is unitary.

Sol: Let A be a unitary matrix. Then $A A^{\theta}=I$

$$
\begin{aligned}
& \text { i.e }\left(A A^{\theta}\right)^{-1}=I^{-1} \\
& \Rightarrow\left(A^{\theta}\right)^{-1} A^{-1}=I \\
& \Rightarrow\left(A^{-1}\right)^{\theta} A^{-1}=I
\end{aligned}
$$

Thus A^{-1} is unitary.

Problems

1). Express the matrix A as sum of symmetric and skew - symmetric matrices. Where
$A=\left[\begin{array}{ccc}3 & -2 & 6 \\ 2 & 7 & -1 \\ 5 & 4 & 0\end{array}\right]$
Sol: Given $A=\left[\begin{array}{ccc}3 & -2 & 6 \\ 2 & 7 & -1 \\ 5 & 4 & 0\end{array}\right]$

Then $A^{\top}=\left[\begin{array}{ccc}3 & 2 & 5 \\ -2 & 7 & 4 \\ 6 & -1 & 0\end{array}\right]$

Matrix A can be written as $A=1 / 2\left(A+A^{\top}\right)+1 / 2\left(A-A^{\top}\right)$
$\Rightarrow P=1 / 2\left(A+A^{\top}\right)=\frac{1}{2}\left\{\begin{array}{lcc}\left.\left[\begin{array}{ccc}3 & -2 & 6 \\ 2 & 7 & -1 \\ 5 & 4 & 0\end{array}\right\}+\left[\begin{array}{lll}3 & +2 & 5 \\ -2 & 7 & 4 \\ {\left[\begin{array}{lll}6 & -1 & 0\end{array}\right]}\end{array}\right\}\right\}\end{array}\right\}$

$Q=1 / 2\left(A-A^{\top}\right)$
$=\frac{1}{2}\left\{\begin{array}{c}\left.\left.\left[\begin{array}{ccc}3 & -2 & 6 \\ 2 & 7 & -1 \\ 5 & 4 & 0\end{array}\right]-\left\{\begin{array}{ccc}3 & 2 & 5 \\ -2 & 7 & 4 \\ 6 & -1 & 0\end{array}\right]\right\}=\frac{1}{2} \left\lvert\, \begin{array}{ccc}0 & -4 & 1 \\ 4 & 0 & -5 \\ -1 & 5 & 0\end{array}\right.\right]\end{array}\right\}$
$=\left[\begin{array}{llr}0 & -2 & 1 / 2 \\ 2 & 0 & -5 / 2 \\ -1 / 2 & 5 / 2 & 0\end{array}\right]_{\mathrm{s}}$
$A=P+Q$ where ' P ' is symmetric matrix
' Q ' is skew-symmetric matrix.

Sub - Matrix: Any matrix obtained by deleting some rows or columns or both of a given matrix is called is sub matrix.
E.g.: Let $A=\left[\begin{array}{cccc}1 & 5 & 6 & 7 \\ 8 & 9 & 10 & 5 \\ 3 & 4 & 5 & -1\end{array}\right]$. Then $\left[\begin{array}{ccc}8 & 9 & 10 \\ 3 & 4 & 5\end{array}\right]_{2 \times 3}$ is a sub matrix of A obtained by deleting first row and $4^{\text {th }}$ column of A.

Minor of a Matrix: Let A be an $m \times n$ matrix. The determinant of a square sub matrix of A is called a minor of the matrix.

Note: If the order of the square sub matrix is' t ' then its determinant is called a minor of order is ${ }^{\prime} t^{\prime}$.

Eg: $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 3 & 1 & 2 \\ 1 & 2 & 3 \\ 5 & 6 & 7\end{array}\right]_{4 \times 3} \quad$ be a matrix
$\rightarrow B=\left[\begin{array}{ll}2 & 1 \\ 3 & 1\end{array}\right]$ is a sub-matrix of order ' 2 '
$|B|=2-3=-1$ is a minor of order ' 2 '
$\rightarrow C=\left[\begin{array}{lll}2 & 1 & 1 \\ 3 & 1 & 2 \\ 5 & 6 & 7\end{array}\right]$ is a sub-matrix of order ' 3 '
detc= $2(7-12)-1(21-10)+(18-5)$
$=2(-5)-1(11)+1(13)$
$=-10-11+13=-8$ is a minor of order ' 3 '
*Rank of a Matrix:
Let A be $m x n$ matrix. If A is a null matrix, we define its rank to be ' 0 '. If A is a non-zero matrix, we say that r is the rank of A if
(i) Every $(r+1)^{\text {th }}$ order minor of A is ' 0 ' (zero) \&
(ii) At least one $r^{\text {th }}$ order minor of A which is not zero.

Note: 1. It is denoted by $\rho(A)$
2. Rank of a matrix is unique.
3. Every matrix will have a rank.
4. If A is a matrix of order $m x n$,

$$
\text { Rank of } A \leq \min (m, n)
$$

5. If $\rho(A)=r$ then every minor of A of order $r+1$, or more is zero.
6. Rank of the Identity matrix I_{n} is n.
7. If A is a matrix of order n and A is non-singular then $\rho(A)=n$

Important Note:

1. The rank of a matrix is $\leq r$ if all minors of $(r+1)^{\text {th }}$ order are zero.
2. The rank of a matrix is $\geq r$, if there is at least one minor of order ' r ' which is not equal to zero.

PROBLEMS

1. Find the rank of the given matrix $\left[\left.\begin{array}{lll}1 & 2 & 3 \\ 3 & 4 & 4\end{array} \right\rvert\,\right.$

Sol: Given matrix $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & 4 & 4 \\ 7 & 10 & 12\end{array}\right]$
$\rightarrow \operatorname{det} A=1(48-40)-2(36-28)+3(30-28)$

$$
=8-16+6=-2 \neq 0
$$

We have minor of order 3
$\rho(A)=3$
2. Find the rank of the matrix $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 8 & 7 & 0 & 5\end{array}\right]$

Sol: Given the matrix is of order 3×4
Its Rank $\leq \min (3,4)=3$
Highest order of the minor will be 3.

Let us consider the minor $\left.\left\lvert\, \begin{array}{llll}1 & 2 & 3 & \\ 5 & 6 & 7 & \mid \\ 8 & 7 & 0 & \end{array}\right.\right]$

Determinant of minor is $1(-49)-2(-56)+3(35-48)$

$$
=-49+112-39=24 \neq 0 .
$$

Hence rank of the given matrix is ' 3 '.

* Elementary Transformations on a Matrix:
i). Interchange of $i^{\text {th }}$ row and $j^{\text {th }}$ row is denoted by $R_{i} \leftrightarrow R_{j}$
(ii). If $i^{\text {th }}$ row is multiplied with k then it is denoted by $R_{i} \rightarrow K R_{i}$
(iii). If all the elements of $\mathrm{i}^{\text {th }}$ row are multiplied with k and added to the corresponding elements of $\mathrm{j}^{\text {th }}$ row then it is denoted by $R_{j} \rightarrow R_{j}+K R_{i}$

Note: 1. The corresponding column transformations will be denoted by writing 'c'. i.e
$\mathrm{c}_{\mathrm{i}} \leftrightarrow \mathrm{c}_{\mathrm{j}}, \quad \mathrm{c}_{\mathrm{i}} \rightarrow \mathrm{k} \mathrm{c}_{\mathrm{j}} \quad \mathrm{c}_{\mathrm{j}} \rightarrow \mathrm{c}_{\mathrm{j}}+\mathrm{kc}_{\mathrm{i}}$
2. The elementary operations on a matrix do not change its rank.

Equivalence of Matrices: If B is obtained from A after a finite number of elementary transformations on A, then B is said to be equivalent to A.

It is denoted as $B^{\sim} A$.
Note : 1. If A and B are two equivalent matrices, then $\operatorname{rank} A=\operatorname{rank} B$.
2. If A and B have the same size and the same rank, then the two matrices are equivalent.

Echelon form of a matrix:
A matrix is said to be in Echelon form, if
(i). Zero rows, if any exists, they should be below the non-zero row.
(ii). the first non-zero entry in each non-zero row is equal to ' 1 '.
(iii). the number of zeros before the first non-zero element in a row is less than the number of such zeros in the next row.

Note: 1. the number of non-zero rows in echelon form of A is the rank of ' A '.
2. The rank of the transpose of a matrix is the same as that of original matrix.
3. The condition (ii) is optional.
E.g.: 1. $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$ is a row echelon form.
3. $\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$ is a row echelon form.

PROBLEMS

1. Find the rank of the matrix $\mathbf{A}=\left[\begin{array}{ccc}2 & 3 & 7 \\ 3 & -2 & 4 \\ 1 & -3 & -1\end{array}\right]$ by reducing it to Echelon form.
sol: Given $A=\left[\begin{array}{ccc}2 & 3 & 7 \\ 3 & -2 & 4 \\ 1 & -3 & -1\end{array}\right]$
Applying row transformations on A.
$A \sim\left[\left.\begin{array}{ccc}1 & -3 & -1 \\ 3 & -2 & 4 \\ 2 & 3 & 7\end{array} \right\rvert\, R_{1} \leftrightarrow R_{3}\right.$
$\sim\left[\begin{array}{ccc}1 & -3 & -1 \\ 0 & 7 & 7 \\ 0 & 9 & 9\end{array}\right] R_{2} \rightarrow R_{2}-3 R_{1}$
$R_{3} \rightarrow R_{3}-2 R_{1}$
$\sim\left[\begin{array}{ccc}\lceil & -3 & -1 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right] \mathrm{R}_{2} \rightarrow \mathrm{R}_{2} / 7, \mathrm{R}_{3} \rightarrow \mathrm{R}_{3} / 9$
$\sim \sim\left[\begin{array}{ccc}1 & -3 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right] \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2}$
This is the Echelon form of matrix A.
The rank of a matrix A.
= Number of non - zero rows =2
2. For what values of \mathbf{k} the matrix $\left.\left\lvert\, \begin{array}{cccc}4 & 4 & -3 & 1 \\ 1 & 1 & -1 & 0 \\ k & 2 & 2 & -2 \\ 9 & 9 & k & 3\end{array}\right.\right]$ has rank '3’.

Sol: The given matrix is of the order 4×4
If its rank is $3 \Rightarrow \operatorname{det} A=0$
$A=\left[\begin{array}{cccc}4 & 4 & -3 & 1 \\ 1 & 1 & -1 & 0 \\ k & 2 & 2 & -2 \\ 9 & 9 & k & 3\end{array}\right]$

Applying $R_{2} \rightarrow 4 R_{2}-R_{1}, R_{3} \rightarrow 4 R_{3}-k R_{1}, R_{4} \rightarrow 4 R_{4}-9 R_{1}$

We get $A \sim\left[\begin{array}{cccc}4 & 4 & -3 & 1 \\ 0 & 0 & -1 & -1 \\ 0 & 8-4 k & 8+3 k & 8-k \\ 0 & 0 & 4 k+27 & 3\end{array}\right]$

Since Rank A = 3 $\Rightarrow \operatorname{det} A=0$
$\Rightarrow 4\left|\begin{array}{lll}0 & -1 & -1 \\ 8-4 k & 8+3 k & 8-k \\ 0 & 4 k+27 & 3\end{array}\right|=0$
$\Rightarrow 1[(8-4 k) 3]-1(8-4 k)(4 k+27)]=0$
$\Rightarrow(8-4 k)(3-4 k-27)=0$
$\Rightarrow(8-4 k)(-24-4 k)=0$
$\Rightarrow(2-k)(6+k)=0$
$\Rightarrow \mathrm{k}=2$ or $\mathrm{k}=-6$

Normal Form:

$$
\text { Every mxn matrix of rank } r \text { can be reduced to the form }\left(\begin{array}{ll}
I_{r} & 0 \\
0 & 0
\end{array}\right) \text { (or) (I } I_{r} \text {) (or) }\binom{I_{r}}{0} \text { (or) }\left(\begin{array}{ll}
I_{r} & 0 \\
&
\end{array}\right) \text { by }
$$

a finite number of elementary transformations, where I_{r} is the r - rowed unit matrix.
Note: 1. If A is an mxn matrix of rank r, there exists non-singular matrices P and Q such that $P A Q=$ $\left(\begin{array}{ll}I_{r} & 0 \\ 0 & 0\end{array}\right)$

Normal form another name is "canonical form"

e.g.: By reducing the matrix $\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 0 & 5 & -10\end{array}\right]$ into normal form, find its rank.

Sol: Given $A=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 0 & 5 & -10\end{array}\right]$
$A \sim\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & -3 & -2 & 5 \\ 0 & -6 & -4 & -22\end{array}\right] R_{2} \rightarrow R_{2}-2 R_{1}$

$$
\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-3 \mathrm{R}_{1}
$$

$A \sim\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & -3 & -2 & -5 \\ 0 & 3 & 2 & 11\end{array}\right] R_{3} \rightarrow R_{3} /-2$
$A \sim\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & -3 & -2 & -5 \\ 0 & 0 & 0 & 6\end{array}\right] R_{3} \rightarrow R_{3}+R_{2}$
$A \sim\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & -3 & -2 & -5 \\ 0 & 0 & 0 & 6\end{array}\right] \mathrm{c}_{2} \rightarrow \mathrm{c}_{2}-2 \mathrm{c}_{1}, \mathrm{c}_{3} \rightarrow \mathrm{c}_{3}-3 \mathrm{c}_{1}, \mathrm{c}_{4} \rightarrow \mathrm{c}_{4}-4 \mathrm{c}_{1}$
$A \sim\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & 0 & 0 & 18\end{array}\right] c_{3} \rightarrow 3 c_{3}-2 c_{2}, c_{4} \rightarrow 3 c_{4}-5 c_{2}$
$A \sim\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \mathrm{c}_{2} \rightarrow \mathrm{c}_{2} /-3, \mathrm{c}_{4} \rightarrow \mathrm{c}_{4} / 18$
$A^{\sim}\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right] c_{4} \leftrightarrow c_{3}$

This is in normal form $\left[I_{3} 0\right]$
Hence Rank of A is ' 3 '.

Gauss - Jordan method

- The inverse of a matrix by elementary Transformations: (Gauss - Jordan method)

1. suppose A is a non-singular matrix of order ' n ' then we write $A=I_{n} A$
2. Now we apply elementary row-operations only to the matrix A and the pre-factor I_{n} of the R.H.S
3. We will do this till we get $I_{n}=B A$ then obviously B is the inverse of A.
4. Find the inverse of the matrix A using elementary operations where $A=\left[\left.\begin{array}{lll}1 & 6 & 4 \\ 0 & 2 & 3\end{array} \right\rvert\,\right.$

Sol:
Given $A=\left[\begin{array}{lll}1 & 6 & 4 \\ 0 & 2 & 3 \\ 0 & 1 & 2\end{array}\right]$

We can write $A=I_{3} A$

$$
\left[\begin{array}{lll}
1 & 6 & 4 \\
0 & 2 & 3 \\
0 & 1 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \mathrm{A}
$$

Applying $R_{3} \rightarrow 2 R_{3}-R_{2}$, we get
$\left[\begin{array}{lll}1 & 6 & 4 \\ 0 & 2 & 3 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 2\end{array}\right] A$

Applying $R_{1} \rightarrow R_{1}-3 R_{2}$, we get

$$
\left[\begin{array}{ccc}
1 & 0 & -5 \\
0 & 2 & 3 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & -3 & 0 \\
0 & 1 & 0 \\
0 & -1 & 2
\end{array}\right] A
$$

Applying $R_{1} \rightarrow R_{1}+5 R_{3}, R_{2} \rightarrow R_{2}-3 R_{3}$, we get
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}1 & -8 & 10 \\ 0 & 4 & -6 \\ 0 & -1 & 2\end{array}\right] \mathrm{A}$
Applying $R_{2} \rightarrow \quad R_{2} / 2$, we get

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & -8 & 10 \\
0 & 2 & -3 \\
0 & -1 & 2
\end{array}\right] \mathrm{A} \Rightarrow I_{3}=\mathrm{BA}
$$

B is the inverse of A.

Cayley - Hamilton Theorem:

Statement:

Every square matrix satisfies its own characteristic equation

PROBLEMS

1. Show that the matrix $\mathrm{A}=\left[\begin{array}{lll}1 & -2 & 1 \\ 1 & -2 & 3 \\ 0 & -1 & 2\end{array}\right]$ satisfies its characteristic equation Hence find A^{-1} Sol: Characteristic equation of A is $\operatorname{det}(A-\lambda I)=0$
$\Rightarrow\left|\begin{array}{ccc}1-\lambda & -2 & 2 \\ 1 & -2-\lambda & 3 \\ 0 & -1 & 2-\lambda\end{array}\right|=0 \quad C 2 \rightarrow C 2+C 3$
$\left|\begin{array}{ccc}1-\lambda & 0 & 2 \\ 1 & 1-\lambda & 3 \\ 0 & 1-\lambda & 2-\lambda\end{array}\right|=0$
$(1-\lambda)\left|\begin{array}{ccc}1-\lambda & 0 & 2 \\ 1 & 1 & 3 \\ 0 & 1 & 2-\lambda\end{array}\right|=0$
$\lambda^{3}-\lambda^{2}+\lambda-1=0$

By Cayley - Hamilton theorem, we have $A^{3}-A^{2}+A-I=0$
$A=\left[\begin{array}{lll}1 & -2 & 2 \\ 1 & -2 & 3 \\ 0 & -1 & 2\end{array} \left\lvert\, A^{2}=\left[\begin{array}{ccc}-1 & 0 & 0 \\ -1 & -1 & 2 \\ -1 & 0 & 1\end{array} \left\lvert\, A^{3}=\left[\begin{array}{lll}-1 & 2 & -2 \\ -2 & 2 & -1 \\ -1 & 1 & 0\end{array}\right]\right.\right.\right.\right.$
$A^{3}-A^{2}+A-I=\left[\begin{array}{ccc}-1 & 2 & -2 \\ -2 & 2 & -1 \\ -1 & 1 & 0\end{array}\right]-\left[\begin{array}{ccc}-1 & 0 & 0 \\ -1 & -1 & 2 \\ -1 & 0 & 1\end{array}\right]+\left[\begin{array}{lll}1 & -2 & 2 \\ 1 & -2 & 3 \\ 0 & -1 & 2\end{array}\right]-\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=0$
Multiplying with A^{-1} we get $A^{2}-A+I=A^{-1}$
$\left.A^{-1}=\begin{array}{c}{\left[\begin{array}{ccc}-1 & 0 & 0 \\ -1 & -1 & 2 \\ -1 & 0 & 1\end{array}\right]-\left[\begin{array}{lll}1 & -2 & 2 \\ 1 & -2 & 3 \\ - \\ 0 & -1 & 2\end{array}\right]+\left[\left.\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array} \right\rvert\,\right.}\end{array} \begin{array}{lll}{\left[\begin{array}{lll}-1 & 2 & -2 \\ 0 & 0 & 1\end{array}\right]} \\ -2 & 2 & -1 \\ -1 & 1 & 0\end{array}\right]$
2. Using Cayley - Hamilton Theorem find the inverse and A^{4} of the matrix $A=\left[\begin{array}{ccc}7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1\end{array}\right]$ Sol: Let $A=\left[\begin{array}{ccc}7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1\end{array}\right]$

The characteristic equation is given by $|A-\lambda|=0$
i.e., $\left|\begin{array}{ccc}7-\lambda & 2 & -2 \\ -6 & -1-\lambda & 2 \\ 6 & 2 & -1-\lambda\end{array}\right|=0$
$(1-\lambda)^{2}\left|\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 1 \\ 6 & 2 & -(1+\lambda)\end{array}\right|=0$
$\lambda^{3}-5 \lambda^{2}+7 \lambda-3=0$
By Cayley - Hamilton theorem we have $A^{3}-5 A^{2}+7 A-3 I=0 \ldots .$. (1)
Multiply with A^{-1} we get
$\mathrm{A}^{-1}=\frac{1}{3}\left[A^{2}-5 A+7 I\right]$
$A^{2}=\left[\begin{array}{ccc}25 & 8 & -8 \\ -24 & -7 & 8 \\ 24 & 8 & -7\end{array}\right] A^{3}=\left[\begin{array}{ccc}79 & 26 & -26 \\ -78 & -25 & 26 \\ 78 & 26 & -25\end{array}\right]$
$A^{-1}=\frac{1}{3}\left[\begin{array}{ccc}-3 & -2 & 2 \\ 6 & 5 & -2 \\ -6 & -2 & 5\end{array}\right]$

Multiply (1)with A, we get
$A^{4}-5 A^{3}+7 A^{2}-3 A=0$
$\left.=\left[\begin{array}{ccc}395 & 130 & -130 \\ -390 & -125 & 130 \\ 390 & 130 & -125\end{array}\right]\left[\begin{array}{ccc}175 & 56 & -56 \\ -168 & -49 & 56 \\ 168 & 56 & -69\end{array}\right]+\begin{array}{ccc}21 & 6 & -6 \\ -18 & -3 & 6 \\ 18 & 6 & -3\end{array}\right]$
$=\left[\begin{array}{ccc}241 & 80 & -80 \\ -240 & -79 & 80 \\ 240 & 80 & -79\end{array}\right]$

Problems

1. Diagonalize the matrix (i) $\left[\begin{array}{ccc}2 & 2 & 1 \\ 1 & 3 & 1 \\ -1 & 2 & 2\end{array}\right]\left(\right.$ (ii) $\left.\left\lvert\, \begin{array}{ccc}-1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0\end{array}\right.\right]$
2. Verify Cayley - Hamilton Theorem for $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$. Hence find A^{-1}.

Linear dependence and independence of Vectors:

1. Show that the vectors $(1,2,3),(3,-2,1),(1,-6,-5)$ from a linearly dependent set.

Sol. The Given Vector $X_{1}=\left\{\begin{array}{l}1 \\ \mid \\ 2 \\ 2 \\ 3\end{array} \left\lvert\, X_{2}=\left\{\begin{array}{c}3 \\ \mid-2 \\ 1\end{array}\right] X_{3}=\begin{array}{c}1 \\ {\left[\begin{array}{c}1 \\ -6 \\ -5\end{array}\right]}\end{array}\right.\right.$
The Vectors X_{1}, X_{2}, X_{3} from a square matrix.
Let $A=\left[\begin{array}{ccc}1 & 3 & 1 \\ 2 & -2 & -6 \\ 3 & 1 & -5\end{array}\right]$

Then $|A|=\left[\left.\begin{array}{ccc}1 & 3 & 1 \\ 2 & -2 & -6\end{array} \right\rvert\,\right.$
$=1(10+6)-2(15-1)+3(-18+2)$
$=16+32-48=0$

The given vectors are linearly dependent $\because|A|=0$
2. Show that the Vector $X_{1}=(2,2,1), X_{2}=(1,4,-1)$ and $X_{3}=(4,6,-3)$ are linearly independent.

Sol. Given Vectors $X_{1}=(2,-2,1) X_{2}=(1,4,-1)$ and $X_{3}=(4,6,-3)$ The Vectors X_{1}, X_{2}, X_{3} form a square matrix.
$A=\left[\begin{array}{ccc}2 & 1 & 4 \\ -2 & 4 & 6 \\ 1 & -1 & -3\end{array}\right]$

Then $|A|=\left[\begin{array}{ccc}2 & 1 & 4 \\ -2 & 4 & 6 \\ 1 & -1 & -3\end{array}\right]$
$=2(-12+6)+2(-3+4)+1(6-16)$
$=-20 \neq 0$
\therefore The given vectors are linearly independent
$\therefore \quad|\mathrm{A}| \neq 0$

Eigen Values \& Eigen Vectors

Def: Characteristic vector of a matrix:

Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix. A non-zero vector X is said to be a Characteristic Vector of A if there exists a scalar such that $A X=\lambda X$.

Note: If $A X=\lambda X(X \neq 0)$, then we say ' λ ' is the Eigen value (or) characteristic root of ' A '.

Eg: Let $\mathrm{A}=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right] \quad \mathrm{X}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$
$\mathrm{AX}=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{c}1 \\ -1\end{array}\right]=1 .\left[\begin{array}{c}1 \\ -1\end{array}\right]$
$=1 . X$

Note: We notice that an Eigen value of a square matrix A can be 0 . But a zero vector cannot be an Eigen vector of A.

Method of finding the Eigen vectors of a matrix.

Let $A=\left[a_{i j}\right]$ be a $n x n$ matrix. Let X be an Eigen vector of A corresponding to the Eigen value λ.
Then by definition $A X=\lambda X$.
$\Rightarrow \mathrm{AX}=\lambda \mathrm{IX}$
$\Rightarrow \quad \mathrm{AX}-\lambda \mathrm{IX}=0$
$\Rightarrow \quad(\mathrm{A}-\lambda \mathrm{I}) \mathrm{X}=0$
This is a homogeneous system of n equations in n unknowns.
(1) Will have a non-zero solution X if and only $|A-\lambda I|=0$

- $\quad A-\lambda I$ is called characteristic matrix of A
- $\quad|A-\lambda I|$ is a polynomial in λ of degree n and is called the characteristic polynomial of A
- $\quad|A-\lambda I|=0$ is called the characteristic equation

Solving characteristic equation of A, we get the roots, $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots \ldots . \lambda_{n}$, these are called the characteristic roots or Eigen values of the matrix.

- Corresponding to each one of these n Eigen values, we can find the characteristic vectors.

Procedure to find Eigen values and Eigen vectors

Let $\mathrm{A}=\left[\begin{array}{ccc}a_{11} & a_{12} \ldots \ldots & a_{1 n} \\ a_{21} & a_{22} \ldots . & a_{2 n} \\ \ldots \ldots & \ldots \ldots & \ldots \ldots \\ a_{n 1} & a_{n 2} \ldots \ldots & a_{n n}\end{array}\right]$ be a given matrix
Characteristic matrix of A is $A-\lambda \mathrm{I}$
i.e., $A-\lambda I=\left[\begin{array}{ccccc}a_{11}-\lambda & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22}-\lambda & \cdots & a_{2 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}-\lambda\end{array}\right]$

Then the characteristic polynomial is $|A-\lambda I|$
$\operatorname{say} \phi(\lambda)=|A-\lambda I|=\left|\begin{array}{cccc}a_{11}-\lambda & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22}-\lambda & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}-\lambda\end{array}\right|$

Eigen values or latent values or proper values.
Let each one of these Eigen values say λ their Eigen vector X corresponding the given value λ is obtained by solving Homogeneous system

PROBLEMS

1. Find the Eigen values and the corresponding Eigen vectors of $\left[\begin{array}{cc}8 & -4 \\ 2 & 2\end{array}\right]$

$$
\begin{aligned}
& \text { sol: } \text { Let } A=\left[\begin{array}{cc}
8 & -4 \\
2 & 2
\end{array}\right] \\
& \text { Characteristic matrix }=A-\lambda I \\
& =\left[\begin{array}{cc}
8-\lambda & -4 \\
2 & 2-\lambda
\end{array}\right]
\end{aligned}
$$

Characteristic equation of A is $|A-\lambda I|=0$

$$
\Rightarrow\left|\begin{array}{cc}
8-\lambda & -4 \\
2 & 2-\lambda
\end{array}\right|=0
$$

$$
\begin{aligned}
& \Rightarrow(8-\lambda)(2-\lambda)+8=0 \\
& \Rightarrow 16+\lambda^{2}-10 \lambda+8=0 \\
& \Rightarrow \lambda^{2}-10 \lambda+24=0 \\
& \Rightarrow(\lambda-6)(\lambda-4)=0
\end{aligned}
$$

$\Rightarrow \lambda=6,4$ are eigen values of A

$$
\text { Consider system }\left[\begin{array}{cc}
8-\lambda & -4 \\
2 & 2-\lambda
\end{array}\right]\binom{x_{1}}{x_{2}}=0
$$

Eigen vector corresponding to $\lambda=4$
Put $\lambda=4$ in the above system, we get

$$
\begin{aligned}
& \left(\begin{array}{ll}
4 & -4 \\
2 & -2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \\
& \Rightarrow 4 x_{1}-4 x_{2}=0---(1) \\
& 2 x_{1}-2 x_{2}=0---(2)
\end{aligned}
$$

from (1) and (2)we have $x_{1}=x_{2}$

Eigen vector is $\binom{x_{1}}{x_{2}}=\left[\begin{array}{l}\alpha \\ \alpha\end{array}\right]=\alpha\left[\begin{array}{l}17 \\ 1\end{array}\right]$
$\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is a Eigen vector of matrix A, corresponding eigen value $\lambda=4$

Eigen Vector corresponding to $\lambda=6$

$$
\text { put } \lambda=6 \text { in the above system, we get }
$$

$$
\begin{align*}
& \left(\begin{array}{ll}
2 & -4 \\
2 & -4
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \\
& \Rightarrow 2 x_{1}-4 x_{2}=0---(1) \tag{1}\\
& 2 x_{1}-4 x_{2}=0---(2)
\end{align*}
$$

from (1) and (2) we have $x_{1}=2 x_{2}$
Say $x_{2}=\alpha \Rightarrow x_{1}=2 \alpha$

Eigen vector $=\left[\begin{array}{c}2 \alpha \\ \alpha\end{array}\right]=\alpha\left[\begin{array}{c}2\rceil \\ 1\end{array}\right]$
$\left[\begin{array}{l}2 \\ 1\end{array}\right]$ is eigen vector of matrix A corresponding eigen value $\lambda=6$
2. Find the eigen values and the corresponding eigen vectors of matrix $\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2\end{array}\right]$

Sol: Let $\mathrm{A}=\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2\end{array}\right]$
The characteristic equation is $|A-\lambda| \mid=0$
i.e. $|A-\lambda|\left|=\left|\begin{array}{ccc}2-\lambda & 0 & 1 \\ 0 & 2-\lambda & 0 \\ 1 & 0 & 2-\lambda\end{array}\right|=0\right.$

$$
\begin{aligned}
& \Rightarrow(2-\lambda)(2-\lambda)^{2}-0+[-(2-\lambda)]=0 \\
& \Rightarrow(2-\lambda)^{3}-(\lambda-2)=0
\end{aligned}
$$

$$
\Rightarrow \lambda-2\left[-(\lambda-2)^{2}-1\right]=0
$$

$$
\Rightarrow \lambda-2\left[-\lambda^{2}+4 \lambda-3\right]=0
$$

$$
\Rightarrow(\lambda-2)(\lambda-3)(\lambda-1)=0
$$

For finding eigen vector the system is $(A-\lambda I) \mathrm{X}=0$

$$
\Rightarrow\left[\begin{array}{ccc}
2-\lambda & 0 & 1 \\
0 & 2-\lambda & 0 \\
1 & 0 & 2-\lambda
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Eigen vector corresponding to $\lambda=1$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& x_{1}+x_{3}=0
\end{aligned}
$$

$x_{2}=0$
$x_{1}+x_{3}=0$
$x_{1}=-x_{3}, x_{2}=0$
say $x_{3}=\alpha$
$x_{1}=-\alpha \quad x_{2}=0, \quad x_{3}=\alpha$
$\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}-\alpha \\ 0 \\ \alpha\end{array}\right]=\alpha\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$
$\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$ is Eigen vector
Eigen vector corresponding to $\lambda=2$
$\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
Here $x_{1}=0$ and $x_{3}=0$ and we can take any arbitary value x_{2} i.e $x_{2}=\alpha$ (say)

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\alpha \\
0
\end{array}\right]=\alpha\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]} \\
& \text { Eigen vector is }\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

Eigen vector corresponding to $\lambda=3$

$$
\begin{aligned}
& \qquad\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& -x_{1}+x_{3}=0 \\
& -x_{2}=0 \\
& x_{1}-x_{3}=0 \\
& \text { here by solving we get } x_{1}=x_{3}, x_{2}=0 \text { say } x_{3}=\propto \\
& x_{1}=\propto, \quad x_{2}=0 \quad, x_{3}=\propto
\end{aligned}
$$

Eigen vector is $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$

Properties of Eigen Values:

Theorem 1: The sum of the eigen values of a square matrix is equal to its trace and product of the eigen values is equal to its determinant.

Example: if $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 2 & 5 \\ 2 & -1 & 1\end{array}\right]$ then trace=1+2+1=4 and determinant=15
Theorem 2: If λ is an Eigen value of A corresponding to the Eigen vector X, then λ^{n} is Eigen value A^{n} corresponding to the Eigen vector X .

Example: if $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$ then Eigen values of A^{3} are 1,8,1

Theorem 3: A Square matrix A and its transpose A^{\top} have the same Eigen values.
Example: if $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$ then Eigen values of A^{\top} are 1,2,1.
Theorem 4: If A and B are n-rowed square matrices and If A is invertible show that $A^{-1} B$ and $B A^{-1}$ have same Eigen values.

Theorem 5: If $\lambda_{1}, \lambda_{2}, \ldots \ldots \ldots . . . \lambda_{n}$ are the Eigen values of a matrix A then $k \lambda_{1}, k \lambda_{2}, \ldots . . \mathrm{k} \lambda_{n}$ are the Eigen value of the matrix KA, where K is a non-zero scalar.

Example:
If $1,2,3$ are eigen values of A then eigen values of $3 A$ are $3,3,9$
Theorem 6: If λ is an Eigen values of the matrix A then $\lambda+K$ is an Eigen value of the matrix $A+K I$
Example:
If 1,2,3 are eigen values of A then eigen values of $3+A$ are 4,5,6

Theorem 7: If $\lambda_{1}, \lambda_{2} \ldots \lambda_{n}$ are the Eigen values of A, then $\lambda_{1}-K, \lambda_{2}-K, \ldots \lambda_{n}-K$,
are the eigen values of the matrix $(A-K I)$, where K is a non - zero scalar
Example:
If $1,2,3$ are eigen values of A then eigen values of $3-A$ are $2,1,0$

Theorem 8: If $\lambda_{1}, \lambda_{2} \ldots \lambda_{n}$ are the Eigen values of A , find the Eigen values of the matrix $(A-\lambda \mathrm{I})^{2}$

Theorem 9: If λ is an Eigen value of a non-singular matrix A corresponding to the Eigen vector X, then λ^{-1} is an Eigen value of A^{-1} and corresponding Eigen vector Xitself.

Theorem 10: If

λ is an eigen value of a non - singular matrix A, then $\frac{\|A\|}{\lambda}$ is an eigen value of the matrix $\operatorname{Adj} A$

Theorem 11: If λ is an eigen value of an orthogonal matrix then $\frac{1}{\lambda}$ is also an eigen value Theorem 12: If λ is Eigen value of A then prove that the Eigen value of $B=a_{0} A^{2}+a_{1} A+a_{2} I$ is $a_{0} \lambda^{2}+a_{1} \lambda+a_{2}$

Theorem 14: Suppose that A and P be square matrices of order n such that P is non singular. Then A and $P^{-1} A P$ have the same Eigen values.
Corollary 1: If A and B are square matrices such that A is non-singular, then $A^{-1} B$ and $B A^{-1}$ have the same Eigen values.

Corollary 2: If A and B are non-singular matrices of the same order, then $A B$ and $B A$ have the same Eigen Theorem 15: The Eigen values of a triangular matrix are just the diagonal elements of the matrix.

Theorem 16: The Eigen values of a real symmetric matrix are always real.
Theorem 17: For a real symmetric matrix, the Eigen vectors corresponding to two distinct Eigen values are orthogonal.

PROBLEMS

1. Find the Eigen values and Eigen vectors of the matrix A and its inverse, where

$$
\mathrm{A}=\left[\begin{array}{lll}
1 & 3 & 4 \\
0 & 2 & 5 \\
0 & 0 & 3
\end{array}\right]
$$

Sol: Given $A=\left[\begin{array}{lll}1 & 3 & 4 \\ 0 & 2 & 5 \\ 0 & 0 & 3\end{array}\right]$
The characteristic equation of A is given by $|A-\lambda| \mid=0$
$\Rightarrow\left|\begin{array}{ccc}1-\lambda & 3 & 4 \\ 0 & 2-\lambda & 5 \\ 0 & 0 & 3-\lambda\end{array}\right|=0$
$\Rightarrow(1-\lambda)[(2-\lambda)(3-\lambda)]=0$
$\Rightarrow \lambda=1,2,3$
Characteristic roots are $1,2,3$
Characteristic vector for $\lambda=1$
For $\lambda=1$, becomes $\left[\begin{array}{lll}0 & 3 & 4 \\ 0 & 1 & 5 \\ 0 & 0 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$\Rightarrow 3 x_{2}+4 x_{3}=0$
$x_{2}+5 x_{3}=0$
$2 x_{3}=0$
$x_{2}=0, x_{3}=0$ and $x_{1}=\alpha$
$X=\left[\begin{array}{l}\alpha \\ 0 \\ 0 \\ 0\end{array}\right]=\alpha\left|\begin{array}{l}{[17} \\ 0\end{array}\right|$ is the solution where α is arbitrary constant
$\therefore x=\left\{\begin{array}{l}1 \\ 0 \\ 0\end{array}\right\}$ Is the Eigen vector corresponding to $\lambda=1$

Characteristic vector for $\lambda=2$
For $\lambda=2$, becomes $\left[\begin{array}{ccc}-1 & 3 & 4 \\ 0 & 0 & 5 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$\Rightarrow-x_{1}+3 x_{2}+4 x_{3}=0$
$5 x_{3}=0 \Rightarrow x_{3}=0$
$-x_{1}+3 x_{2}=0 \Rightarrow x_{1}=3 x_{2}$
Let $x_{2}=k$
$x_{1}=3 k$
$\left.X=\left[\begin{array}{c}\lceil 3 k \\ k \\ 0\end{array}\right\rfloor=\begin{array}{r}\lceil 37 \\ \mid \\ \lfloor \end{array}\right\rfloor$
is the solution $\therefore x=\{1$
0]
Is the Eigen vector corresponding to $\lambda=2$
Hence the characteristic vector is $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
Characteristic vector for $\lambda=3$
For $\lambda=3$, becomes $\left.\left\{\begin{array}{ccc}{[-2} & 3 & 4\rceil\left[x_{1}\right] \\ 0 & -1 & 5 \| x_{2} \\ 0 & 0 & 0\end{array}\right]\left\lfloor x_{3}\right\rfloor\right\rfloor\left[\left.\begin{array}{l}0 \\ 0 \\ 0\end{array} \right\rvert\,\right.$
$\Rightarrow-2 x_{1}+3 x_{2}+4 x_{3}=0$
$-x_{2}+5 x_{3}=0$
Say $x_{3}=K \Longrightarrow x_{2}=5 K$
$x_{1}=\frac{19}{2} K$
$\mathrm{x}=\left[\begin{array}{c}\frac{19}{2} K \\ 5 K \\ K\end{array}\right]=\frac{K}{2}\left[\begin{array}{c}19 \\ 10 \\ 2\end{array}\right]$
$\therefore X=\left\{\begin{array}{l}19 \\ 10 \\ 2\end{array}\right]$ is the Eigen vector corresponding to $\lambda=3$
Eigen values of A^{-1} are $\frac{1}{\lambda_{1}}, \frac{1}{\lambda_{2}}, \frac{1}{\lambda_{\mathrm{g}}}$
\Rightarrow Eigen values of A^{-1} are $1, \frac{1}{2}, \frac{1}{3}$
We know Eigen vectors of A^{-1} are same as Eigen vectors of A.
2. Find the Eigen values of $3 A^{3}+5 A^{2}-6 A+2 I$ where $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 0 & 3 & 2 \\ 0 & 0 & -2\end{array}\right]$

Sol:The characteristic equation of A is $|A-\lambda I|=0$
i. $e_{,}\left|\begin{array}{ccc}1-\lambda & 2 & -3 \\ 0 & 3-\lambda & 2 \\ 0 & 0 & -2-\lambda\end{array}\right|=0$
$\Rightarrow[(1-\lambda)(3-\lambda)(-2-\lambda)-0]=0$
$\Rightarrow(1-\lambda)(3-\lambda)(2+\lambda)=0 \quad \lambda=1,3,-2$
Eigen values of A are $1,3,-2$
We know that if λ is an eigen value of A and $f(A)$ is a polynomial in A.
then the eigen value of $f(A)$ is $f(\lambda)$
Let $\mathrm{f}(\mathrm{A})=3 A^{3}+5 A^{2}-6 A+2 I$
Then eigen values of $f(A)$ are $f(1), f(3)$ and $f(-2)$
$f(1)=3(1)^{3}+5(1)^{2}-6(1)+2(1)=4$
$f(3)=3(3)^{3}+5(3)^{2}-6(3)+2(1)=110$
$f(-2)=3(-2)^{3}+5(-2)^{2}-6(-2)+2(1)=10$
Eigen values of $3 A^{3}+5 A^{2}-6 A+2 I$ are 4,110,10

Diagonalization of a matrix:

Theorem: If a square matrix A of order n has n linearly independent eigen vectors $\left(X_{1}, X_{2} \ldots X_{n}\right)$ corresponding to the n eigen values $\lambda_{1}, \lambda_{2} \ldots . \lambda_{n}$ respectively then a matrix P can be found such that $\mathrm{P}^{-1} \mathrm{AP}$ is a diagonal matrix.

Proof: Given that $\left(X_{1}, X_{2} \ldots X_{n}\right)$ be eigen vectors of A corresponding to the eigen values $\lambda_{1}, \lambda_{2} \ldots . \lambda_{n}$ respectively and these eigen vectors are linearly independent Define $P=\left(X_{1}, X_{2} \ldots X_{n}\right)$ Since the n columns of P are linearly independent $|P| \neq 0$

Hence P^{-1} exists
Consider AP $=\mathrm{A}\left[\mathrm{X}_{1}, \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{n}}\right]$

$$
\begin{aligned}
& =\left[A X_{1}, A X_{2} \ldots . . \mathrm{AX}_{n}\right] \\
& =\left[\lambda X_{1}, \lambda_{2} X_{2} \ldots . \lambda_{n} X_{n}\right] \\
& {\left[X_{1}, X_{2} \ldots X_{n}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right]} \\
& =P D
\end{aligned}
$$

Where $\mathrm{D}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots \ldots \ldots . . . \lambda_{n}\right)$
$A P=P D$
$P^{-1}(A P)=P^{-1}(P D) \Rightarrow P^{-1} A P=\left(P^{-1} P\right) D$
$\Rightarrow P^{-1} A P=(I) D$
$=D$
$=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots \ldots \ldots . . . \lambda_{n}\right)$
Hence the theorem is proved.

Modal and Spectral matrices:

The matrix P in the above result which diagonalizable the square matrix A is called modal matrix of A and the resulting diagonal matrix D is known as spectral matrix.

Note 1: If $X_{1}, X_{2} \ldots X_{n}$ are not linearly independent this result is not true.
2: Suppose A is a real symmetric matrix with n pair wise distinct Eigen values $\lambda_{1}, \lambda_{2} \cdots \lambda_{n}$ then the corresponding Eigen vectors $\mathrm{X}_{1}, \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{n}}$ are pair wise orthogonal.
Hence if $\mathrm{P}=\left(\mathrm{e}_{1}, \mathrm{e}_{2} \ldots \mathrm{e}_{\mathrm{n}}\right)$
Where $\mathrm{e}_{1}=\left(\mathrm{X}_{1} /\left\|\mathrm{X}_{1}\right\|\right), \mathrm{e}_{2}=\left(\mathrm{X}_{2} /\left\|\mathrm{X}_{2}\right\|\right) \ldots \mathrm{e}_{\mathrm{n}}=\left(\mathrm{X}_{\mathrm{n}}\right) /\left\|\mathrm{X}_{\mathrm{n}}\right\|$
then P will be an orthogonal matrix.
i.e, $\mathrm{P}^{\mathrm{T}} \mathrm{P}=\mathrm{PP}^{\mathrm{T}}=\mathrm{I}$

Hence $\mathrm{P}^{-1}=\mathrm{P}^{\mathrm{T}}$
$\mathrm{P}^{-1} A P=D \Rightarrow \mathrm{P}^{\mathrm{T}} \mathrm{AP}=\mathrm{D}$

Calculation of powers of a matrix:

We can obtain the power of a matrix by using diagonalization
Let A be the square matrix then a non-singular matrix P can be found such that $D=P^{-1} A P$
$\mathrm{D}^{2}=\left(\mathrm{P}^{-1} \mathrm{AP}\right)\left(\mathrm{P}^{-1} \mathrm{AP}\right)$
$=\mathrm{P}^{-1} \mathrm{~A}\left(\mathrm{PP}^{-1}\right) \mathrm{AP}$
$=\mathrm{P}^{-1} \mathrm{~A}^{2} \mathrm{P} \quad\left(\right.$ since $\left.\mathrm{PP}^{-1}=\mathrm{I}\right)$
Similarly $D^{3}=P^{-1} A^{3} P$
In general $D^{n}=P^{-1} A^{n} P$.
To obtain A^{n}, Pre-multiply (1) by P and post multiply by P^{-1}
Then $\mathrm{PD}^{\mathrm{n}} \mathrm{P}^{-1}=\mathrm{P}\left(\mathrm{P}^{-1} \mathrm{~A}^{\mathrm{n}} \mathrm{P}\right) \mathrm{P}^{-1}$

$$
=\left(\mathrm{PP}^{-1}\right) \mathrm{A}^{\mathrm{n}}\left(\mathrm{PP}^{-1}\right)=\mathrm{A}^{\mathrm{n}} \Rightarrow A^{n}=P D^{n} P^{-1}
$$

Hence $\mathbf{A}^{\mathrm{n}}=\mathbf{P}\left[\begin{array}{cccc}\lambda_{1}^{n} & 0 & 0 \cdots & 0 \\ 0 & \lambda_{2}^{n} & 0 \cdots & 0 \\ \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & \lambda_{n}^{n}\end{array}\right] P^{-1}$

PROBLEMS

2. Determine the modal matrix P of $=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$. Verify that $P^{-1} A P$ is a diagonal matrix. Sol: The characteristic equation of A is $|A-\lambda| \mid=0$
i.e, $\left|\begin{array}{ccc}-2-\lambda & 2 & -3 \\ 2 & 1-\lambda & -6 \\ -1 & -2 & -\lambda\end{array}\right|=0$
which gives $(\lambda-5)(\lambda+3)^{2}=0$
Thus the eigen values are $\lambda=5, \lambda=-3$ and $\lambda=-3$
when $\lambda=5 \Rightarrow\left[\begin{array}{ccc}-7 & 2 & -3 \\ 2 & -4 & -6 \\ -1 & -2 & -5\end{array}\right]\left[\begin{array}{c}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
By solving above we get $\mathrm{X}_{1}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$
Similarly, for the given eigen value $\lambda=-3$ we can have two linearly independent eigen vectors $X_{2}=$
$\left[\begin{array}{c}2 \\ -1 \\ 0\end{array}\right]$ and $X_{3}=\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$
$P=\left(\begin{array}{lll}X_{1} & X_{2} & X_{3}\end{array}\right)$
$P=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 0 \\ -1 & 0 & 1\end{array}\right]=$ modal matrix of A
Now $\operatorname{det} P=1(-1)-2(2)+3(0-1)=-8$
$P^{-1}=\frac{\operatorname{adj} P}{\operatorname{det} P}=-\frac{1}{8}\left[\begin{array}{ccc}-1 & -2 & 3 \\ -2 & 4 & 6 \\ -1 & -2 & -5\end{array}\right]$
$=-\frac{1}{8}\left[\begin{array}{ccc}-1 & -2 & 3 \\ -2 & 4 & 6 \\ -1 & -2 & -5\end{array}\right]\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$
$=-\frac{1}{8}\left[\begin{array}{ccc}-5 & -10 & 15 \\ 6 & -12 & -18 \\ 3 & 6 & 15\end{array}\right]$
$P^{-1} A P=-\frac{1}{8}\left[\begin{array}{ccc}-40 & 0 & 0 \\ 0 & 24 & 0 \\ 0 & 0 & 24\end{array}\right]$
$=\left[\begin{array}{ccc}5 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -3\end{array}\right]=\operatorname{diag}(5,-3,-3)$
Hence $P^{-1} A P$ is a diagonal matrix.
3. Find a matrix P which transform the matrix $\mathrm{A}=$

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 2 & 1 \\
2 & 2 & 3
\end{array}\right] \text { to diagonal form. Hence calculate } A^{4}
$$

Sol: Characteristic equation of A is given by $|A-\lambda| \mid=0$
i.e, $\left|\begin{array}{ccc}1-\lambda & 0 & -1 \\ 1 & 2-\lambda & 1 \\ 2 & 2 & 3-\lambda\end{array}\right|=0$
$\Rightarrow(1-\lambda)[(2-\lambda)(3-\lambda)-2]-0-1[2-2(2-\lambda 0\}=0$
$\Rightarrow(\lambda-1)(\lambda-2)(\lambda-3)=0$
$\Rightarrow \lambda=1, \lambda=2, \lambda=3$
Thus the eigen values of A are $1,2,3$
If x_{1}, x_{2}, x_{3} be the components of an Eigen vector corresponding to the Eigen value λ, we have
$[\mathrm{A}-\lambda] \mathrm{X}=\left[\begin{array}{ccc}1-\lambda & 0 & -1 \\ 1 & 2-\lambda & 1 \\ 2 & 2 & 3-\lambda\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
For $\lambda=1$, eigen vectors are given by
$\left[\begin{array}{ccc}0 & 0 & -1 \\ 1 & 1 & 1 \\ 2 & 2 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ i.e, $0 . \mathrm{x}_{1}+0 . \mathrm{x}_{2}+0 . \mathrm{x}_{3}=0$ and $\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=0$
$x_{3}=0$ and $x_{1}+x_{2}+x_{3}=0$
$x_{3}=0, x_{1}=-x_{2}$
$x_{1}=1, x_{2}=-1, x_{3}=0$
Eigen vector is $[1,-1,0]^{\top}$
Also every non-zero multiple of this vector is an Eigen vector corresponding to $\lambda=1$
For $\lambda=2, \lambda=3$ we can obtain Eigen vector $[-2,1,2]^{\top}$ and $[-1,1,2]^{\top}$
$P=\left[\begin{array}{ccc}1 & -2 & -1 \\ -1 & 1 & 1 \\ 0 & 2 & 2\end{array}\right]$
The Matrix P is called modal matrix of A
$\mathrm{P}^{-1}=-\frac{1}{2}\left[\begin{array}{ccc}0 & 2 & -1 \\ 2 & 2 & 0 \\ -2 & -2 & -1\end{array}\right]$

$=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]-D($ say $)$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
-49 & -50 & -40 \\
65 & 66 & 40 \\
130 & 130 & 81
\end{array}\right]
\end{aligned}
$$

Diagonalization of Symmetric Matrices:

NOTE:

a matrix A is diagonalizable if and only if there is an invertible matrix P such that $\mathrm{A}=\mathrm{P} \mathrm{DP}^{-1}$ where D is a diagonal matrix.
A matrix A is orthogonally diagonalizable if and only if there is an orthogonal matrix P such that $\mathrm{A}=\mathrm{P} \mathrm{DP}{ }^{-1}$ where D is a diagonal matrix.
Remark : Recall that any orthogonal matrix A is invertible and also that $A^{-1}=A^{T}$. Thus we can say that A matrix A is orthogonally diagonalizable if there is a square matrix P such that $A=P D P^{T}$ where D is a diagonal matrix
Remark: The formula for transpose of a product: $(M N)^{T}=N^{T} M^{T}$. Using this we can see that any
orthogonally diagonalizable A must be symmetric. This is because $A^{T}=\left(\mathrm{PDP}^{\mathrm{T}}\right)^{\mathrm{T}}=\left(\left(\mathrm{P}^{\mathrm{T}}\right)^{\mathrm{T}} \mathrm{D}^{\mathrm{T}} \mathrm{P}^{\mathrm{T}}=\mathrm{P} \mathrm{DP}^{\mathrm{T}}=\right.$ A.

If A is symmetric then any two Eigen values from different Eigen spaces are orthogonal
Proposition: (The Spectral Theorem) An $\mathrm{n} \times \mathrm{n}$ symmetric matrix has the following properties:

1. A has n real Eigen values if we count multiplicity
2. For each Eigen values the dimension of the corresponding Eigen spaces is equal to the algebraic multiplicity of that Eigen values
3. The Eigen spaces are mutually orthogonal.
4. A is orthogonally diagonalizable.

NOTE:

All Eigen values (all roots of the characteristic polynomial) of a symmetric matrix are real. Eigenvectors of a symmetric matrix corresponding to different Eigen values are orthogonal.

Problems:

1) Find an orthogonal matrix P which diagonalizes $A=\left[\begin{array}{ccc}2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2\end{array}\right]$

Sol: Eigen systems:
Eigen values and Eigenvector are $3,3,0$ and $(-1,0,1),(-1,1,0),(1,1,1)$

Using the Gram-Schmidt process we find that an orthonormal basis for the eigenspace of A corresponding to $\lambda_{1}=3$ is

$$
\begin{aligned}
& \mathbf{p}_{1}=\frac{(-1,0,1)}{\|(-1,0,1)\|}=(-1 / \sqrt{2}, 0,1 / \sqrt{2}) \\
& \mathbf{u}_{2}=(-1,1,0)-\left\langle(-1,1,0), \mathbf{p}_{1}\right\rangle \mathbf{p}_{1}=(-1 / 2,1,-1 / 2) \\
& \mathbf{p}_{2}=\frac{(-1 / 2,1,-1 / 2)}{\|(-1 / 2,1,-1 / 2)\|}=(-1 / \sqrt{6}, \sqrt{2 / 3},-1 / \sqrt{6}) \\
& \mathbf{p}_{3}=\frac{(1,1,1)}{\|(1,1,1)\|}=(1 / \sqrt{3}, 1 / \sqrt{3}, 1 / \sqrt{3})
\end{aligned}
$$

Let orthogonal matrix $P=\left[\begin{array}{rrr}-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}}\end{array}\right]$ then

$$
\begin{aligned}
& P^{\top} A P \\
& =\left[\begin{array}{rrr}
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right]\left[\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]\left[\begin{array}{rrr}
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
0 & \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}}
\end{array}\right] \\
& =\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

2. Find an orthogonal matrix P which diagonalizes $A=\left[\begin{array}{ccc}3 & 1 & -1 \\ 1 & 3 & -1 \\ -1 & -1 & 5\end{array}\right]$

Let

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
3 & 1 & -1 \\
1 & 3 & -1 \\
-1 & -1 & 5
\end{array}\right] \\
\operatorname{det}(A-\lambda I) & =\left[\begin{array}{ccc}
3-\lambda & 1 & -1 \\
1 & 3-\lambda & -1 \\
-1 & -1 & 5-\lambda
\end{array}\right] \\
& =(3-\lambda)[(\bar{\lambda}-\lambda)(5-\lambda)-1]-1[5-\lambda-1]-1[-1-3-\lambda] \\
& =[(3-\lambda)(3-\lambda)(5-\lambda)-(3-\lambda,)]-(\lambda-\lambda)-(2-\lambda) \\
& =[(3-\lambda)(3-\lambda)(5-\lambda)-(3-\lambda,)]-2(3-\lambda) \\
& =(3-\lambda)[(3-\lambda)(3-\lambda)-1-2] \\
& \left.=(3-\lambda)[15-j)-3)-\lambda^{2}-\overline{3}\right] \\
& \left.=(3-\lambda)\left(\lambda^{2}-8\right)-12\right) \\
& =(3-\lambda)(\lambda-6)(\lambda-2)
\end{aligned}
$$

Thus: $i=1,3,6$ are the eigenvalues of A. Let us find an eigenvector corresponding to each eigenvalue . For the eigenvalue $\%=2$, since

$$
\begin{aligned}
A-2 I & =\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 3
\end{array}\right] \\
& \sim\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right] \\
& \sim\left[\begin{array}{lll}
1 & 1 & -1 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

A vector $X^{t}=\left(x_{1}, x_{2}, x_{3}\right)$ will be an eigenvector for eigenvalue $\lambda=2$ if

$$
\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=0
$$

i.e. $\quad x_{3}=0$

$$
x_{1}-x_{2}=x_{3}=0 .
$$

If we choose $x_{2}=1$, then $x_{1}=-1$. Hence

$$
X_{1}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

is an eigenvector for $\bar{i}=2$ For the eigenvalue $i=3$,

$$
A-3 I=\left[\begin{array}{ccc}
0 & 1 & -1 \\
1 & 0 & -1 \\
-1 & -1 & 2
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] .
$$

Thus

$$
X_{2}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

will be an eigenvector for the eigenvalue $\lambda=3$, if

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\mathbf{0},
$$

i.e.: $\quad x_{2}=x_{3}$ and $x_{1}-x_{3}=0$. Hence

Finally, for $\bar{\lambda}=6$

$$
X_{2}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \text { is an eigenvector for } \lambda=3 .
$$

$$
A-4 I=\left[\begin{array}{ccc}
-3 & 1 & -1 \\
1 & -3 & -1 \\
-1 & -1 & -1
\end{array}\right] \sim\left[\begin{array}{ccc}
-1 & -1 & -1 \\
0 & -4 & -2 \\
0 & -8 & -4
\end{array}\right] \sim\left[\begin{array}{ccc}
-1 & -1 & 1 \\
0 & -4 & -2 \\
0 & 0 & 0
\end{array}\right] .
$$

Thus:

$$
X_{2}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \text { will be an eigenvector for eigenvalue } \dot{\lambda}=6 \text { if }
$$

$-+x_{2}-2 \quad x_{3}=0, \quad-x_{1}-x_{2}-x_{3}=0$.
Thus, if we take $x_{3}=2$, then $x_{2}=-1$ and $x_{1}=-x_{2}-x_{3}=-1$.
Hence

$$
X_{3}=\left[\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right] \text { is ann eigenvector for the eigenvalue } i=6
$$

Note that for

$$
P:=\left[\begin{array}{lll}
X_{1} & X_{2} & X_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 1 & -1 \\
1 & 1 & -1 \\
0 & 1 & 2
\end{array}\right] \text {, the columns of } P \text { are orthogonal. }
$$

To make P orthogonal, we normalize each x_{1}, x_{2} and x_{3}, and define

$$
\tilde{P}:=\left[\begin{array}{ccc}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} \\
0 & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}}
\end{array}\right],
$$

It is easy to verify that $\tilde{P} A \widetilde{P}^{-1}=D$, where

$$
D=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 6
\end{array}\right]
$$

In fact, $\tilde{P}^{-1}=\tilde{P}^{-t}$. Thus, we checks $\tilde{P}^{-1} \tilde{P}^{-t}=D$.
3) Find an orthogonal matrix P which diagonalizes $A=\left[\begin{array}{lll}0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0\end{array}\right]$

Sol:
Let

$$
A=\left[\begin{array}{lll}
0 & 2 & 2 \\
2 & 0 & 2 \\
2 & 2 & 0
\end{array}\right]
$$

Then A is a real symmetric matrix with eigenvalues given by

$$
\begin{aligned}
0=\operatorname{det}(A-\lambda I) & =\left[\begin{array}{ccc}
-\lambda & 2 & 2 \\
2 & -\lambda & 2 \\
2 & 2 & -\lambda
\end{array}\right] \\
& =-\lambda\left(\lambda^{2}-+\right)-2(-2 \lambda-+)-2(++2 \lambda) \\
& =-\lambda(\lambda-2)(\lambda-2)-+(\lambda-2)++(\lambda+2) \\
& =(\lambda-2)\left(-\lambda^{2}-2 \lambda-8\right) \\
& =-(\lambda-2)(\lambda-2)(\lambda-+) .
\end{aligned}
$$

Hence, $\dot{\lambda}=-2, \dot{\lambda}=4$ are two distinct eigenvalues of A . To find eigenvectors for $\bar{\lambda}=-2$, since

$$
(A+2 I)=\left[\begin{array}{ccc}
+2 & 2 & 2 \\
2 & +2 & 2 \\
2 & 2 & +2
\end{array}\right] \sim\left[\begin{array}{ccc}
+2 & 2 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

If we choose $x_{3}=0$ and $x_{2}=1$ then $x_{1}=-1$. And for $x_{3}=1$ and $x_{2}=0$ we get $x_{1}=-1$.
Thus

$$
X_{1}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right], X_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

are two mutually orthogonal eigenvector for $\bar{\lambda}=-2$.
For the eigenvalue $i=4$, since

$$
\begin{aligned}
A-4 I & =\left[\begin{array}{ccc}
-4 & 2 & 2 \\
2 & -4 & 2 \\
2 & 2 & -4
\end{array}\right] \sim\left[\begin{array}{ccc}
-4 & 2 & 2 \\
0 & -3 & 3 \\
0 & 3 & -3
\end{array}\right] \sim\left[\begin{array}{ccc}
-4 & 2 & 2 \\
0 & -3 & 3 \\
0 & 0 & 0
\end{array}\right], \\
E_{\lambda=4} & =\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\,-3 x_{2}+3 x_{3}=0,-4 x_{1}+2 x_{2}+2 x_{3}=0\right\} \\
& =\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, x_{2}=x_{3}=x_{1}\right\} .
\end{aligned}
$$

Thus, if we choose

$$
\begin{aligned}
& x_{3}=x_{2}=x_{1}=1 \text {, then } \\
& X_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
\end{aligned}
$$

is an eigenvector for the eigenvalue $\lambda=4$. Thus, the eigenvector for A are

$$
X_{1}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right], X_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], X_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

To make $\left\{X_{1}, X_{2}\right\}$ orthonormal, we use the Gram-Schmict process.
Define

$$
\begin{aligned}
& \tilde{X}_{1}:=X_{1}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right], \\
& \tilde{X}_{2}:=X_{2}-\frac{\left\langle X_{2}, X_{1}\right\rangle}{\left\langle X_{1}, X_{1}\right\rangle} X_{1} \\
&=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]-\left[\begin{array}{c}
+\frac{1}{2} \\
-\frac{1}{2} \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
-\frac{1}{2} \\
1
\end{array}\right] .
\end{aligned}
$$

We normalize X_{3} also to get

$$
\tilde{X}_{1}=\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right], \tilde{X}_{2}=\left[\begin{array}{c}
-\frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{6}}
\end{array}\right], \tilde{X}_{3}=\left[\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right] \text {, }
$$

are orthonormal basis of \mathbb{R}^{3} of eigenvectors of A. Thus, for

$$
P:=\left[\begin{array}{lll}
\tilde{X}_{1} & \tilde{X}_{2} & \tilde{X}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
0 & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}}
\end{array}\right] \text {, }
$$

one checks that

$$
P A P^{t}=D
$$

where

$$
D=\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 4
\end{array}\right]
$$

MODULE-II

FUNCTIONS
 OF SINGLE AND SEVERAL VARIABLES

MEAN VALUE THEOREMS

| Rolle's Theorem:

Let $f(x)$ be a function such that
(i). It is continuous in closed interval [a,b]
(ii). It is differentiable in open interval (a, b) and
(iii). $f(a)=f(b)$.

Then there exists at least one point ' c ' in (a, b) such that
$f^{1}(c)=0$.

Geometrical Interpretation of Rolle's Theorem:

Let $f:[a, b] \rightarrow R$ be a function satisfying the three conditions of Rolle 's Theorem. Then the graph.

1. $y=f(x)$ in a continuous curve in $[a, b]$.
2. There exist a unique tangent line at every point $x=c$, where $a<c<b$
3. The ordinates $f(a), f(b)$ at the end points A, B are equal so that the points A and B are equidistant from the X -axis.
4. By Rolle's Theorem, There is at least one point $x=c$ between A and B on the curve at which the tangent line is parallel to the x-axis and also it is parallel to chord of the curve.

1. Verify Rolle's theorem for the function $f(x)=\sin x / e^{x}$ or $e^{-x} \sin x$ in $[0, \pi]$

Sol: i) Since $\sin x$ and e^{x} are both continuous functions in $[0, \pi]$.
Therefore, $\sin x / e^{x}$ is also continuous in $[0, \pi]$.
ii) Since $\sin x$ and e^{x} be derivable in $(0, \pi)$, then f is also derivable in $(0, \pi)$.
iii) $f(0)=\sin 0 / e^{0}=0$ and $f(\pi)=\sin \pi / e^{\pi}=0$
$\therefore \quad \mathrm{f}(0)=\mathrm{f}(\pi)$

Thus all three conditions of Rolle's Theorem are satisfied.
\therefore There exists $\mathrm{c} \in(0, \pi)$ such that $\mathrm{f}^{1}(\mathrm{c})=0$

Now $f^{1}(x)=\frac{e^{x} \cos x-\sin x e^{x}}{\left(e^{x}\right)^{2}}=\frac{\cos x-\sin x}{e^{x}}$
$\mathrm{f}^{1}(\mathrm{c})=0 \Rightarrow \frac{\cos c-\sin c}{e^{c}}=0$
$\cos \mathrm{c}=\sin \mathrm{c}=>\tan \mathrm{c}=1$
$\mathrm{C}=\pi / 4 \in(0, \pi)$
Hence Rolle's theorem is verified.
2. Verify Rolle's theorem for the functions $\log \left(\frac{x^{2}+a b}{x(a+b)}\right)$ in $\left.\mathbf{a}, \mathbf{b}\right], \mathbf{a}>\mathbf{0}, \mathbf{b}>\mathbf{0}$,

Sol: Let $\mathrm{f}(\mathrm{x})=\log \left(\frac{x^{2}+a b}{x(a+b)}\right)$
$=\log \left(x^{2}+a b\right)-\log x-\log (a+b)$
(i). Since $f(x)$ is a composite function of continuous functions in $[a, b]$, it is continuous in $[a, b]$.
(ii). $\mathrm{f}^{1}(\mathrm{x})=\frac{1}{x^{2}+a b} \cdot 2 x-\frac{1}{x}=\frac{x^{2}-a b}{x\left(x^{2}+a b\right)}$
$f^{1}(x)$ exists for all $x \in(a, b)$
(iii). $\mathrm{f}(\mathrm{a})=\log \left\lceil\frac{a^{2}+a b}{a^{2}+a b}\right\rceil=\log 1=0$
$\mathrm{f}(\mathrm{b})=\log \left[\frac{b^{2}+a b}{b^{2}+a b}\right\rceil=\log 1=0$
$f(a)=f(b)$
Thus $f(x)$ satisfies all the three conditions of Rolle's Theorem.
So, $\exists c \in(a, b) \Rightarrow f^{1}(c)=0$,
$\mathrm{f}^{1}(\mathrm{c})=0, \Rightarrow \frac{c^{2}-a b}{c\left(c^{2}+a b\right)}=0 \Rightarrow \mathrm{c}^{2}=\mathrm{ab}$
$\Rightarrow c=\sqrt{a b} \in(a, b)$

Hence Rolle's theorem verified.

3. Verify whether Rolle's Theorem can be applied to the following functions in the intervals.

i) $f(x)=\tan x$ in $[0, \pi]$ and ii) $f(x)=1 / x^{2}$ in $[-1,1]$
(i) $f(x)$ is discontinuous at $x=\pi / 2$ as it is not defined there. Thus condition (i) of Rolle 's Theorem is not satisfied. Hence we cannot apply Rolle 's Theorem here.
\therefore Rolle's theorem cannot be applicable to $\mathrm{f}(\mathrm{x})=\tan \mathrm{x}$ in $[0, \pi]$.
(ii). $f(x)=1 / x^{2}$ in $[-1,1]$
$f(x)$ is discontinuous at $x=0$. Hence Rolle's Theorem cannot be applied.
4. Verify Rolle's theorem for the function $f(x)=(x-a)^{m}(x-b)^{n}$ where m, n are positive integers in $[a, b]$.

Sol: (i). Since every polynomial is continuous for all values, $f(x)$ is also continuous in[a,b].

[^0]\[

$$
\begin{aligned}
f^{1}(x)= & m(x-a)^{m-1}(x-b)^{n}+(x-a)^{m} \cdot n(x-b)^{n-1} \\
& =(x-a)^{m-1}(x-b)^{n-1}[m(x-b)+n(x-a)] \\
& =(x-a)^{m-1}(x-b)^{n-1}[(m+n) x-(m b+n a)] \\
& \text { Which exists }
\end{aligned}
$$
\]

Thus $\mathrm{f}(\mathrm{x})$ is derivable in (a, b)
(iii) $f(a)=0$ and $f(b)=0$
$\therefore \mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{b})$
Thus three conditions of Rolle's theorem are satisfied.
\therefore There exists $\mathrm{c} \epsilon(\mathrm{a}, \mathrm{b})$ such that $\mathrm{f}^{1}(\mathrm{c})=0$
$(c-a)^{m-1}(c-b)^{n-1}[(m+n) c-(m b+n a)]=0$
$\Rightarrow(m+n) c-(m b+n a)=0=>(m+n) c=m b+n a$
$\Rightarrow \mathrm{c}=\mathrm{mb}+\mathrm{na} \epsilon(\mathrm{a}, \mathrm{b})$
m+n
\therefore Rolle's Theorem verified.

5. Using Rolle 's Theorem, show that $g(x)=8 x^{3}-6 x^{2}-2 x+1$ has a zero between

0 and 1.

Sol: $g(x)=8 x^{3}-6 x^{2}-2 x+1$ being a polynomial, it is continuous on $[0,1]$ and differentiable on $(0,1)$
Now $\mathrm{g}(0)=1$ and $\mathrm{g}(1)=8-6-2+1=1$
Also $\mathrm{g}(0)=\mathrm{g}(1)$
Hence, all the conditions of Rolle's theorem are satisfied on [0,1].
Therefore, there exists a number $c \in(0,1)$ such that $\mathrm{g}^{1}(\mathrm{c})=0$.
Now $g^{1}(x)=24 x^{2}-12 x-2$
$\therefore \mathrm{g}^{1}(\mathrm{c})=0 \Rightarrow 24 \mathrm{c}^{2}-12 \mathrm{c}-2=0$
$\Rightarrow \mathrm{c}=\frac{3 \pm \sqrt{21}}{12}$ ie $\mathrm{c}=0.63$ or -0.132
only the value $\mathrm{c}=0.63$ lies in $(0,1)$
Thus there exists at least one root between 0 and 1 .
6. Verify Rolle's theorem for $f(x)=x^{2 / 3}-2 x^{1 / 3}$ in the interval $(0,8)$.

Sol: Given $f(x)=x^{2 / 3}-2 x^{1 / 3}$
$f(x)$ is continuous in $[0,8]$
$f^{1}(x)=2 / 3 \cdot 1 / x^{1 / 3}-2 / 3 \cdot 1 / x^{2 / 3}=2 / 3\left(1 / x^{1 / 3}-1 / x^{2 / 3}\right)$
Which exists for all x in the interval $(0,8)$
$\therefore \mathrm{f}$ is derivable $(0,8)$.
Now $f(0)=0$ and $f(8)=(8)^{2 / 3}-2(8)^{1 / 3}=4-4=0$
\therefore There exists at least one value of c in $(0,8)$ such that $f^{1}(c)=0$
ie. $\frac{1}{c^{\frac{1}{3}}}-\frac{1}{c^{\frac{2}{3}}}=0 \Rightarrow \mathrm{c}=1 \in(0,8)$
Hence Rolle's Theorem is verified.

7. Verify Rolle's theorem for $f(x)=x(x+3) e^{-x / 2}$ in $[-3,0]$.

Sol: - (i). Since $x(x+3)$ being a polynomial is continuous for all values of x and $e^{-x / 2}$ is also continuous for all x, their product $x(x+3) e^{-x / 2}=f(x)$ is also continuous for every value of x and in particular $f(x)$ is continuous in the [-3,0].
(ii). we have $f^{1}(x)=x(x+3)\left(-1 / 2 e^{-x / 2}\right)+(2 x+3) e^{-x / 2}$

$$
\begin{aligned}
& =e^{-x / 2}\left[2 x+3-\frac{x^{2}+3 x}{2}\right] \\
& =e^{-x / 2}\left[6+x-x^{2} / 2\right]
\end{aligned}
$$

Since $f^{1}(x)$ doesnot become infinite or indeterminate at any point of the interval(-3,0).
$f(x)$ is derivable in $(-3,0)$
(iii) Also we have $f(-3)=0$ and $f(0)=0$
$\therefore f(-3)=f(0)$
Thus $f(x)$ satisfies all the three conditions of Rolle's theorem in the interval $[-3,0]$.
Hence there exist at least one value c of x in the interval $(-3,0)$ such that $f^{1}(c)=0$
i.e., $1 / 2 e^{-c / 2}\left(6+c-c^{2}\right)=0=>6+c-c^{2}=0 \quad\left(e^{-c / 2} \neq 0\right.$ for any $\left.c\right)$

$$
\begin{aligned}
& =>c^{2}+c-6=0 \Rightarrow>(c-3)(c+2)=0 \\
& c=3,-2
\end{aligned}
$$

Clearly, the value $c=-2$ lies within the $(-3,0)$ which verifies Rolle's theorem.

II. Lagrange's mean value Theorem

Let $f(x)$ be a function such that (i) it is continuous in closed interval $[a, b]$ \& (ii) differentiable in (a, b). Then \exists at least one point c in (a, b) such that
$\mathrm{f}^{1}(\mathrm{c})=\frac{f(b)-f(a)}{b-a}$
Geometrical Interpretation of Lagrange's Mean Value theorem:
Let $f:[a, b] \rightarrow R$ be a function satisfying the two conditions of Lagrange's theorem. Then the graph.

1. $y=f(x)$ is continuous curve in $[a, b]$
2. At every point $x=c$, when $a<c<b$, on the curve $y=f(x)$, there is unique tangent to the curve. By Lagrange's theorem there exists at least one point $c \in(a, b) \ni f^{1}(c)=\frac{f(b)-f(a)}{b-a}$

Geometrically there exist at least one point c on the curve between A and B such that the tangent line is parallel to the chord $\stackrel{\leftrightarrow}{A B}$

1. Verify Lagrange's Mean value theorem for $f(x)=x^{3}-x^{2}-5 x+3$ in $[0,4]$

Sol: Let $f(x)=x^{3}-x^{2}-5 x+3$ is a polynomial in x.
\therefore It is continuous \& derivable for every value of x .
In particular, $f(x)$ is continuous $[0,4]$ \& derivable in $(0,4)$
Hence by Lagrange's Mean value theorem $\exists c \in(0,4)$ э
$\mathrm{f}^{1}(\mathrm{c})=\frac{f(4)-f(0)}{4-0}$
i.e., $3 \mathrm{c}^{2}-2 \mathrm{c}-5=\frac{f(4)-f(0)}{4}$

Now $f(4)=4^{3}-4^{2}-5 \cdot 4+3=64-16-20-3=67-36=31 \& f(0)=3$

$$
\frac{f(4)-f(0)}{4}=\frac{(31-3)}{4}=7
$$

From equation (1), we have

$$
\begin{aligned}
& 3 c^{2}-2 c-5=7=>3 c^{2}-2 c-12=0 \\
& c=\frac{2 \pm \sqrt{4+144}}{6}=\frac{2 \pm \sqrt{148}}{6}=\frac{1 \pm \sqrt{37}}{3}
\end{aligned}
$$

We see that $\frac{1+\sqrt{37}}{3}$ lies in open interval $(0,4) \&$ thus Lagrange's Mean value theorem is verified.

2. Verify Lagrange's Mean value theorem for $\mathbf{f}(\mathbf{x})=\log _{e} x$ in [1,e]

Sol: $-\mathrm{f}(\mathrm{x})=\log _{e} \mathrm{x}$
This function is continuous in closed interval $[1, e]$ \& derivable in ($1, e$). Hence L.M.V.T is applicable here. By this theorem, \exists a point c in open interval $(1, \mathrm{e})$ such that

$$
\begin{aligned}
& \mathrm{f}^{1}(\mathrm{c})=\frac{f(e)-f(1)}{e-1}=\frac{1-0}{e-1}=\frac{1}{e-1} \\
& \text { But }^{\mathrm{f}}(\mathrm{c})=\frac{1}{e-1}=>\frac{1}{c}=\frac{1}{e-1} \\
& \therefore \mathrm{c}=\mathrm{e}-1
\end{aligned}
$$

Note that (e-1) is in the interval (1,e).
Hence Lagrange's mean value theorem is verified.

Sol:- The function $\mathrm{f}(\mathrm{x})=|x|$ is continuous on $[-1,1]$
But Lagrange Mean value theorem is not applicable for the function $f(x)$ as its derivative does not exist in $(-1,1)$ at $x=0$.
4. If a<b, P.T $\frac{b-a}{1+b^{2}}<\operatorname{Tan}^{-1} b-\operatorname{Tan}^{-1} a<\frac{b-a}{1+a^{2}}$ using Lagrange's Mean value theorem. Deduce the following.
i). $\frac{\pi}{4}+\frac{3}{25}<\operatorname{Tan}^{-1} \frac{4}{3}<\frac{\pi}{4}+\frac{1}{6}$
ii). $\frac{5 \pi+4}{20}<\operatorname{Tan}^{-1} 2<\frac{\pi+2}{4}$

Sol: consider $f(x)=\operatorname{Tan}^{-1} x$ in $[a, b]$ for $0<a<b<1$
Since $f(x)$ is continuous in closed interval $[a, b]$ \& derivable in open interval (a,b).
We can apply Lagrange's Mean value theorem here.
Hence there exists a point c in $(\mathrm{a}, \mathrm{b}) \ni$
$\mathbf{f}^{1}(\mathrm{c})=\frac{f(b)-f(a)}{b-a}$
Here $\mathrm{f}^{1}(\mathrm{x})=\frac{1}{1+x^{2}}$ \& hence $\quad f^{1}(c)=\frac{1}{1+c^{2}}$
Thus $\exists \mathrm{c}, \mathrm{a}<\mathrm{c}<\mathrm{b}$ э

$$
\begin{equation*}
\frac{1}{1+c^{2}}=\frac{\operatorname{Tan}^{-1} b-\operatorname{Tan}^{-1} a}{b-a} \tag{1}
\end{equation*}
$$

We have $1+a^{2}<1+c^{2}<1+b^{2}$

$$
\begin{equation*}
\therefore \frac{1}{1+a^{2}}>\frac{1}{1+c^{2}}>\frac{1}{1+b^{2}} \tag{2}
\end{equation*}
$$

From (1) and (2), we have

$$
\frac{1}{1+a^{2}}>\frac{\operatorname{Tan}^{-1} b-\operatorname{Tan}^{-1} a}{b-a}>\frac{1}{1+b^{2}}
$$

or

$$
\begin{equation*}
\frac{b-a}{1+a^{2}}<\operatorname{Tan}^{-1} b-\operatorname{Tan}^{-1} a<\frac{b-a}{1+b^{2}} \tag{3}
\end{equation*}
$$

Hence the result

Deductions: -

(i) We have $\frac{b-a}{1+b^{2}}<\operatorname{Tan}^{-1} b-\operatorname{Tan}^{-1} a<\frac{b-a}{1+a^{2}}$

$$
\begin{aligned}
& \frac{\frac{4}{3}-1}{1+\frac{16}{9}}<\operatorname{Tan}^{-1}\left(\frac{4}{3}\right)-\operatorname{Tan}^{-1}(1)<\frac{\frac{4}{3}-1}{1+1^{2}}==>\frac{\frac{4-3}{3}}{\frac{25}{9}}<\operatorname{Tan}^{-1}\left(\frac{4}{3}\right)-\frac{\pi}{4}<\frac{4-3}{\frac{3}{2}} \\
& \Rightarrow \frac{3}{25}+\frac{\pi}{4}<\operatorname{Tan}^{-1}\left(\frac{4}{3}\right)<\frac{\pi}{4}+\frac{1}{6}
\end{aligned}
$$

(ii) Taking $b=2$ and $a=1$, we get

$$
\begin{aligned}
& \frac{2-1}{1+2^{2}}<\operatorname{Tan}^{-1} 2-\operatorname{Tan}^{-1} 1<\frac{2-1}{1+1^{2}} \Rightarrow \frac{1}{5}<\operatorname{Tan}^{-1} 2-\frac{\pi}{4}<\frac{1}{2} \\
& \Rightarrow \frac{1}{5}+\frac{\pi}{4}<\operatorname{Tan}^{-1} 2<\frac{2+\pi}{4} \\
& \Rightarrow \frac{4+5 \pi}{20}+<\operatorname{Tan}^{-1} 2<\frac{2+\pi}{4}
\end{aligned}
$$

5. Show that for any $x>0,1+x<e^{x}<1+x e^{x}$.

Sol: - Let $f(x)=e^{x}$ defined on $[0, x]$. Then $f(x)$ is continuous on $[0, x]$ \& derivable on ($0, x$).

By Lagrange's Mean value theorem \exists a real number $\mathrm{c} \epsilon(0, \mathrm{x})$ such that

$$
\begin{align*}
& \frac{f(x)-f(0)}{x-0}=f^{1}(c) \\
& \Rightarrow \frac{e^{x}-e^{0}}{x-0}=e^{c} \Rightarrow \frac{e^{x}-1}{x}=e^{c} \tag{1}
\end{align*}
$$

Note that $0<c<x=>e^{0}<e^{c}<e^{x}$ (e^{x} is an increasing function)

$$
\begin{aligned}
& \Rightarrow 1<\frac{e^{x}-1}{x}<e^{x} \text { From (1) } \\
& \Rightarrow>x<\mathrm{e}^{\mathrm{x}}-1<\mathrm{xe}^{\mathrm{x}} \\
& \Rightarrow 1+\mathrm{x}<\mathrm{e}^{\mathrm{x}}<1+\mathrm{xe}^{\mathrm{x}} .
\end{aligned}
$$

6. Calculate approximately $\sqrt[5]{245}$ by using L.M.V.T.

$$
\text { Sol:- Let } \mathrm{f}(\mathrm{x})=\sqrt[5]{x}=\mathrm{x}^{1 / 5} \& \mathrm{a}=243, \mathrm{~b}=245
$$

$$
\text { Then } f^{1}(x)=1 / 5 x^{-4 / 5} \& f^{1}(c)=1 / 5 c^{-4 / 5}
$$

By L.M.V.T, we have

$$
\begin{gathered}
\frac{f(b)-f(a)}{b-a}=f^{1}(c) \\
=>\frac{f(245)-f(243)}{245-243}=\frac{1}{5} c^{\frac{-4}{5}} \\
\Rightarrow \quad f(245)=\mathrm{f}(243)+2 / 5 \mathrm{c}^{-4 / 5} \\
\Rightarrow \quad \quad \mathrm{c} \text { lies } \mathrm{b} / \mathrm{w} 243 \& 245 \text { take } \mathrm{c}=243
\end{gathered}
$$

$$
=3+(2 / 5)(1 / 81)=3+2 / 405=3.0049
$$

7. Find the region in which $f(x)=1-4 x-x^{2}$ is increasing $\&$ the region in which it is decreasing using M.V.T. Sol: - Given $f(x)=1-4 x-x^{2}$
$\mathrm{f}(\mathrm{x})$ being a polynomial function is continuous on $[\mathrm{a}, \mathrm{b}]$ \& differentiable on (a,b) $\forall \mathrm{a}, \mathrm{b} \in \mathrm{R}$
$\therefore \mathrm{f}$ satisfies the conditions of L.M.V.T on every interval on the real line.

$$
f^{1}(x)=-4-2 x=-2(2+x) \forall x \in R
$$

$$
\begin{aligned}
& f^{1}(x)=0 \text { if } x=-2 \\
& \text { for } x<-2, f^{1}(x)>0 \text { \& for } x>-2, f^{1}(x)<0
\end{aligned}
$$

Hence $f(x)$ is strictly increasing on $(-\infty,-2)$ \& strictly decreasing on $(-2, \infty)$

8. Using Mean value theorem prove that Tan $x>x$ in $0<x<\pi / 2$

Sol:- Consider $\mathrm{f}(\mathrm{x})=\operatorname{Tan} \mathrm{x}$ in $[\xi, x]$ where $0<\xi<\mathrm{x}<\pi / 2$
Apply L.M.V.T to $f(x)$
\exists a points c such that $0<\xi<\mathrm{c}<\mathrm{x}<\pi / 2$ such that

$$
\begin{aligned}
& \qquad \frac{\text { Tan } x-\operatorname{Tan} \xi}{x-\xi}=\sec ^{2} c \Longrightarrow \\
& \text { Tan } \mathrm{x}-\operatorname{Tan} \xi=(\mathrm{x}-\xi) \sec ^{2} \mathrm{c} \\
& \text { Take } \xi \rightarrow 0+0 \text { then Tan } x=x \sec ^{2} x \\
& \text { But } \sec ^{2} \mathrm{c}>1 .
\end{aligned}
$$

Hence Tan x > x
9. If $f^{1}(x)=0$ Through out an interval [a,b], prove using M.V.T $f(x)$ is a constant in that interval.

Sol:- Let $\mathrm{f}(\mathrm{x})$ be function defined in $[\mathrm{a}, \mathrm{b}] \&$ let $\mathrm{f}^{1}(\mathrm{x})=0 \forall \mathrm{x}$ in $[\mathrm{a}, \mathrm{b}]$.
Then $f^{1}(t)$ is defined \& continuous in $[a, x]$ where $a \leq x \leq b$.
\& $f(t)$ exist in open interval (a, x).
By L.M.V.T \exists a point c in open interval $(\mathrm{a}, \mathrm{x}) ~ \ni$
$\frac{f(x)-f(a)}{x-a}=f^{1}(c)$
But it is given that $\mathrm{f}^{1}(\mathrm{c})=0$
$\therefore \mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{a})=0$
$\therefore \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{a}) \quad \forall \mathrm{x}$
Hence $f(x)$ is constant.

10 Using mean value theorem

ii) $\pi / 6+(\sqrt{3} / 15)<\sin ^{-1}(0.6)<\pi / 6+(1 / 6)$

iii) $\quad 1+\mathrm{x}<\mathrm{e}^{\mathrm{x}}<1+\mathrm{xe}^{\mathrm{x}} \quad \forall \mathrm{x}>0$
iv) $\quad \frac{v-u}{1+v^{2}}<\tan ^{(-1)} v-\tan ^{(-1)} u<\frac{v-u}{1+u^{2}}$ where $0<u<v$ hence deduce a) $\pi / 4+(3 / 25)<\tan ^{(-1)}(4 / 3)<\pi / 4+(1 / 6)$

III. Cauchy's Mean Value Theorem

If $f:[a, b] \rightarrow R, g:[a, b] \rightarrow R \ni$ (i) f, g are continuous on $[a, b]$ (ii) f, g are differentiable on (a,b)
(iii) $g^{1}(x) \neq 0 \forall x \in(a, b)$, then
$\exists a$ po int $c \in(a, b) \ni \frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}$

1. Find cof Cauchy's mean value theorem for

$$
f(x)=\sqrt{x} \quad \& \quad g(x)=\frac{1}{\sqrt{x}}
$$

$$
\text { in }[a, b] \text { where } 0<a<b
$$

Sol: - Clearly f, g are continuous on $[\mathrm{a}, \mathrm{b}] \subseteq \mathrm{R}^{+}$
We have $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ and $g^{1}(x)=\frac{-1}{2 x \sqrt{x}} \quad$ which exits on (a,b)
$\therefore \mathrm{f}, \mathrm{g}$ are differenti able on $(\mathrm{a}, \mathrm{b}) \subseteq \mathrm{R}^{+}$
Also $\mathrm{g}^{1}(\mathrm{x}) \neq 0, \forall \mathrm{x} \in(\mathrm{a}, \mathrm{b}) \subseteq \mathrm{R}^{+}$
Conditions of Cauchy's Mean value theorem are satisfied on (a, b) so $\exists \mathrm{c} \in(\mathrm{a}, \mathrm{b})$ э

$$
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{1}(c)}{g^{\prime}(c)}
$$

$$
\frac{\sqrt{b}-\sqrt{a}}{\frac{1}{\sqrt{b}}-\frac{1}{\sqrt{a}}}=\frac{\frac{1}{2 \sqrt{c}}}{\frac{-1}{2 c \sqrt{c}}} \Rightarrow \frac{\sqrt{b}-\sqrt{a}}{\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a b}}}=\frac{-2 c \sqrt{c}}{2 \sqrt{c}} \Rightarrow \sqrt{a b}=c
$$

Since $a, b>0, \sqrt{ } a b$ is their geometric mean and we have $a<\sqrt{ } a b<b$ $c \in(a, b)$ which verifies Cauchy's mean value theorem.

2. Verify Cauchy's Mean value theorem for $f(x)=e^{x} \& g(x)=e^{-x}$ in $[3,7]$ \&

find the value of c.

Sol: We are given $f(x)=e^{x} \& g(x)=e^{-x}$
$f(x) \& g(x)$ are continuous and derivable for all values of x.
$=>f$ \& g are continuous in [3,7]
$=>f \& g$ are derivable on $(3,7)$
Also ${ }^{1}(x)=e^{-x} \neq 0 \quad \forall x \in(3,7)$

$$
\frac{f(7)-f(3)}{g(7)-g(3)}=\frac{f^{1}(c)}{g^{1}(c)} \Longrightarrow \frac{e^{7}-e^{3}}{e^{-7}-e^{-3}}=\frac{e^{c}}{-e^{-c}} \Longrightarrow \frac{e^{7}-e^{3}}{\frac{1}{e^{7}}-\frac{1}{e^{3}}}=-e^{2 c}
$$

$$
\begin{aligned}
& \Rightarrow-e^{7+3}=-e^{2 c} \\
& \Rightarrow 2 c=10 \\
& \Rightarrow c=5 \in(3,7)
\end{aligned}
$$

Hence C.M.T. is verified

Partial Differentiation

Partial differential coefficients : The Partial differential coefficient of $f(x, y)$ with respect to x is the ordinary differential coefficient of $f(x, y)$ when y is regarded as a constant. It is written as
$\frac{\partial f}{\partial x}$ or $\partial f / \partial x$ or $D_{x} f$
Thus $\frac{\partial f}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}$
Again, the partial differential coefficient $\partial f / \partial y$ of $f(x, y)$ with respect to y is the ordinary differential coefficient of $f(x, y)$ when x is regarded as a constant.
Thus $\frac{\partial f}{\partial y}=\lim _{k \rightarrow 0} \frac{f(x . y+k)-f(x, y)}{k}$
Similarly, if f is a function of the n variables $x_{1}, x_{2}, \ldots \ldots \ldots x_{n}$, the partial differential coefficient of f with respect to x_{1} is the ordinary differential coefficient of f when all the variables except x_{1} are regarded as constants and is written as $\partial \mathrm{f} / \partial \mathrm{x}_{1}$. $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are also denoted by f_{x} and f_{y} respectively.
The partial differential coefficients of f_{x} and f_{y} are $f_{x x}, f_{x y}, f_{y x}, f_{y y}$ or $\frac{\partial^{2} f}{\partial x^{2}}, \frac{\partial^{2} f}{\partial x \partial y}, \frac{\partial^{2} f}{\partial y \partial x}, \frac{\partial^{2} f}{\partial y^{2}}$, respectively.
It should be specially noted that $\frac{\partial^{2} f}{\partial y \partial x}$ means $\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)$ and $\frac{\partial^{2} f}{\partial x \partial y}$ means $\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)$.
The student will be able to convince himself that in all ordinary cases
$\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} f}{\partial x \partial y}$

Example 1 : If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$ show that
$\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2} u=-\frac{9}{(x+y+x)^{2}}$

Solution : The given relation is $u=\log \left(x^{3}+y^{3+} x^{3}-3 x y z\right)$

Differentiate it w.r.t. \times partially, we get
$\frac{\partial u}{\partial x}=\frac{3 x^{2}-3 y z}{x^{3}+y^{3}+z^{3}-3 x y z}$
similarly $\frac{\partial u}{\partial y}=\frac{3 y^{2}-3 x z}{x^{3}+y^{3}+z^{3}-3 x y z}$
and $\frac{\partial u}{\partial z}=\frac{3 z^{2}-3 x y z}{x^{3}+y^{3}+z^{3}-3 x y z}$
$\therefore \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=\frac{3\left(x^{2}+y^{2}+z^{2}-y z-z x-x y\right)}{x^{3}+y^{3}+z^{3}-3 x y z}$
$=\frac{3\left(x^{2}+y^{2}+z^{2}-y z-x z-x y\right)}{(x+y+z)\left(x^{2}+y^{2}+z^{2}-y^{z}-z x-x y\right)}$
$=\frac{3}{x+y+z}$
Now $\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2} \mathbf{u}=\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right) \mathbf{u}$
$=\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)\left(\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}\right)$
$=\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)\left(\frac{3}{x+y+z}\right)$
$=3\left[\frac{\partial}{\partial x}\left(\frac{1}{x+y+z}\right)+\frac{\partial}{\partial y}\left(\frac{1}{x+y+z}\right)+\frac{\partial}{\partial z}\left(\frac{1}{x+y+z}\right)\right]$
$=3\left[-\frac{1}{(x+y+z)^{2}}+\frac{-1}{(x+y+z)^{2}}+\frac{-1}{(x+y+z)^{2}}\right]$
$=3\left[\frac{-3}{(x+y+z)^{2}}\right]$
$=-\frac{9}{(x+y+z)^{2}}$ Hence Proved.

Example 2: If $u=e^{x y z}$, show that
$\frac{\partial^{3} u}{\partial x \partial y \partial z}=\left(1+3 x y z+x^{2} y^{2} z^{2}\right) e^{x y z}$

Solution: Given $u=e^{x y z}$
$\therefore \frac{\partial u}{\partial z}=x y e^{x y z}$
$\frac{\partial^{2} u}{\partial y \partial z}=\frac{\partial}{\partial y}\left(x y e^{x y x}\right)=x \frac{\partial}{\partial y} y e^{x y}$
$=x\left[y \times z e^{x y z}+e^{x y z}\right]$
$=e^{x y z}\left(x^{2} y z+x\right)$
Hence $\frac{\partial^{3} u}{\partial x \partial y \partial z}=\frac{\partial}{\partial x}\left[e x y z\left(x^{2} y z+\infty\right)\right]$
$=e^{x y z}(2 x y z+1)+y z e^{x y z}\left(x^{2} y z+x\right)$
$=e^{x y z}\left[2 x y z+1+x^{2} y^{2} z^{2}+x y z\right]$
$=e^{x y^{2}}\left(1+3 x y z+x^{2} y^{2} z^{2}\right)$ Hence Proved.

Example 3: If $\frac{x^{2}}{a^{2}+u}+\frac{y^{2}}{b^{2}+u}+\frac{z^{2}}{c^{2}+u}=1$, prove that,
$\mathrm{u}_{\mathrm{x}}^{2}+\mathrm{u}_{\mathrm{y}}^{2}+\mathrm{u}_{\mathrm{x}}^{2}=2\left(\mathrm{x} \mathrm{u}_{\mathrm{x}}+\mathrm{yu} \mathrm{y}_{\mathrm{y}}+\mathrm{zu} \mathrm{z}_{\mathrm{z}}\right)$
Solution: Given $\frac{x^{2}}{a^{2}+u}+\frac{y^{2}}{b^{2}+u}+\frac{z^{2}}{c^{2}+u}=1$ \qquad
where u is a function of x, y and z,
Differentiating (i) partially with respect to x, we get
$\frac{\left(a^{2}+u\right) \cdot 2 x-x^{2} \frac{\partial u}{\partial x}}{\left(a^{2}+u\right)^{2}}+\frac{\left(b^{2}+u\right) \cdot 0-y^{2} \frac{\partial u}{\partial x}}{\left(b^{2}+u\right)^{2}}+\frac{\left(c^{2}+u\right) \cdot 0-z^{2} \frac{\partial u}{\partial x}}{\left(c^{2}+u\right)^{2}}=0$
or $\frac{2 x}{a^{2}+u}-\left[\frac{x^{2}}{\left(a^{2}+u\right)^{2}}+\frac{y^{2}}{\left(b^{2}+u\right)^{2}}+\frac{z^{2}}{\left(c^{2}+u\right)^{2}}\right] \frac{\partial u}{\partial x}=0$
or $\frac{\partial u}{\partial x}=\frac{2 x /\left(a^{2}+u\right)}{\left[x^{2} /\left(a^{2}+u\right)^{2}+y^{2} /\left(b^{2}+u\right)^{2}+z^{2} /\left(c^{2}+u\right)^{2}\right]}$
$=\frac{2 x / a^{2}+u}{\sum\left[x^{2} /\left(a^{2}+u\right)^{2}\right]}$
Similarly $\frac{\partial u}{\partial y}=\frac{2 y /\left(b^{2}+u\right)}{\sum\left[x^{2} /\left(a^{2}+u\right)^{2}\right]}$
and $\frac{\partial u}{\partial z}=\frac{2 z /\left(c^{2}+u\right)}{\sum\left[x^{2} /\left(a^{2}+u\right)^{2}\right]}$

$$
\begin{align*}
& \therefore\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial u}{\partial z}\right)^{2}=4 \frac{\left[x^{2} /\left(a^{2}+u\right)^{2}+y^{2} /\left(b^{2}+u\right)^{2}+z^{2} /\left(e^{2}+u\right)^{2}\right]}{\left[\sum\left\{x^{2} /\left(a^{2}+u\right)^{2}\right\}\right]^{2}} \\
& \text { or } u_{x}^{2}+u_{y}^{2}+u_{z}^{2}=\frac{4}{\sum\left[\left\{x^{2} /\left(a^{2}+u\right)^{2}\right\}\right]} \ldots \ldots \ldots \ldots \ldots \ldots .(\text { ii }) \tag{ii}\\
& \text { Also } x u_{x}+y u_{y}+z u_{z}==x\left(\frac{\partial u}{\partial x}\right)+y\left(\frac{\partial u}{\partial y}\right)+z\left(\frac{\partial u}{\partial z}\right) \\
& =\frac{1}{\sum\left[x^{2} /\left(a^{2}+u\right)^{2}\right]}\left[\frac{2 x^{2}}{\left(a^{2}+u\right)}+\frac{2 y^{2}}{\left(b^{2}+u\right)}+\frac{2 z^{2}}{\left(c^{2}+u\right)}\right] \\
& =\frac{2}{\sum\left[x^{2} /\left(a^{2}+u\right)^{2}\right]}[1] \ldots \ldots \ldots \ldots \ldots \ldots . \text { (iii) } \tag{iii}\\
& \text { From (i), (ii) (iii) and we have } \\
& u_{x}^{2}+u_{y}^{2}+u_{x}^{2}=2\left(x u_{x}+y u_{y}+\right.\text { zuz) Hence Proved. }
\end{align*}
$$

Example 4: If $u=f(r)$ and $x=r \cos \theta, y=r \sin \theta$ i.e. $r^{2}=x^{2}+y^{2}$, Prove that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f^{\prime \prime}(r)+\frac{1}{r} f(r)$

Solution : Given $u=f(r)$
Differentiating (i) partially w.r.t. x, we get

$$
\begin{array}{ll}
\frac{\partial u}{\partial x}=f^{\prime}(r) \cdot \frac{\partial r}{\partial x} \tag{i}\\
=f^{\prime}(r) \cdot \frac{x}{r} & \because r^{2}=x^{2}+y^{2} \\
& \Rightarrow 2 r \frac{\partial r}{\partial x}=2 x \\
& \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r}
\end{array}
$$

$$
\text { Similarly } \frac{\partial r}{\partial y}=\frac{y}{r}
$$

Differentiating above once again, we get

$$
\begin{align*}
& \begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial}{\partial x}\left[\frac{x^{\prime}(r)}{r}\right] \\
&=\frac{r\left[f^{\prime}(r) \cdot 1+x f^{\prime \prime}(r)(\partial r / \partial x)\right]-x f^{\prime}(r)(\partial r / \partial x)}{r^{2}} \\
& \text { or } \frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{r^{2}}\left[f^{\prime}(r)+x^{2} f^{\prime}(r)-\frac{x^{2}}{r} f^{\prime}(r)\right]
\end{aligned} \\
& \text { Similarly, } \frac{\partial^{2} u}{\partial y^{2}}=\frac{1}{r^{2}}\left[r f^{\prime}(r)+y^{2} f^{\prime \prime}(r)-\frac{y^{2}}{r} f(r)\right]
\end{align*}
$$

Adding (ii) and (iii), we get

$$
\begin{aligned}
& \frac{\partial u^{2}}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{1}{r^{2}}\left[2 r f^{\prime}(r)+\left(x^{2}+y^{2}\right) f^{\prime \prime}(r)-\frac{\left(x^{2}+y^{2}\right)}{r} f^{\prime}(r)\right] \\
& =\frac{1}{r^{2}}\left[2 r f^{\prime}(r)+r^{2} f^{\prime \prime}(r)-r f^{\prime}(r)\right] \\
& =\frac{1}{r} f(r)+f^{\prime}(r) \text {, Hence proved. }
\end{aligned}
$$

Example 5 : If $x^{x} y y^{y}=c$, show that at $x=y=z$,
$\frac{\partial^{2} z}{\partial x \partial y}=-(x \log e x)^{-1}$

Solution : Given $x^{x} y^{y} z^{z}=c$, where z is a function of x and y
Taking logarithms, $x \log x+y \log y+z \log z=\log c$
Differentiating (i) partially with respect to x, we get
$\left[x\left(\frac{1}{x}\right)+(\log x) 1\right]+\left[z\left(\frac{1}{z}\right)+(\log z) 1\right] \frac{\partial z}{\partial x}=0$
or $\frac{\partial z}{\partial x}=-\frac{(1+\log x)}{(1+\log z)}$
(ii)

Similarly from (i) we have
$\frac{\partial z}{\partial y}=-\frac{(1+\log y)}{(1+\log z)}$
$\therefore \frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right)$
$=\frac{\partial}{\partial x}\left[-\left(\frac{1+\log y}{1+\log z}\right)\right]$ From (iii)

$$
\begin{aligned}
& \text { or } \frac{\partial^{2} z}{\partial x \partial y}=-(1+\log y) \cdot \frac{\partial}{\partial x}\left[(1+\log z)^{-1}\right] \\
& =-(1+\log y) \cdot\left[-(1+\log z)^{-2} \cdot \frac{1}{z} \cdot \frac{\partial z}{\partial x}\right] \\
& \text { or } \frac{\partial^{2} z}{\partial x \partial y}=\frac{(1+\log y)}{z(1+\log z)^{2}} \cdot\left\{-\left(\frac{1+\log x}{1+\log z}\right)\right\}, \text { using (ii) } \\
& \text { At } x=y=z \text {, we have } \frac{\partial^{2} z}{\partial x \partial y}=-\frac{(1+\log x)^{2}}{x(1+\log x)^{3}}
\end{aligned}
$$

Substituting x for y and z
i.e. $\frac{\partial^{2} z}{\partial x \partial y}=-\frac{1}{x(1+\log x)}$
$=-\frac{1}{x(\log e+\log x)} \quad \therefore \log e=1$
$=-\frac{1}{x \log (e x)}$
$=-\{x \log (e x)\}^{-1}$ Hence Proved.

Chain rule of Partial Differentiation

Change of Variables : If u is a function of x, y and x, y are functions of t and r, then u is called a composite function of t and r.
Let $u=f(x, y)$ and $x=g(t, r), y=h(t, r)$ then the continuous first order partial derivatives are
$\frac{\partial u}{\partial t}=\frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial t}+\frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial t}$
$\frac{\partial u}{\partial r}=\frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial r}+\frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial r}$

This is called as Chain rule of Partial Differentiation.

Problems

Example 1:

If $u=u\left(\frac{y-x}{x y}, \frac{z-x}{x z}\right)$ show that $x^{2} \frac{\partial u}{\partial x}+y^{2} \frac{\partial u}{\partial y}+z^{2} \frac{\partial u}{\partial z}=0$

Solution : Here given $u=u\left(\frac{y-x}{x y}, \frac{z-x}{x z}\right)$
$=u(r, s)$
where $\mathrm{r}=\frac{\mathrm{y}-\mathrm{x}}{\mathrm{xy}}$ and $\mathrm{s}=\frac{\mathrm{z}-\mathrm{x}}{\mathrm{zx}}$
$\Rightarrow r=\frac{1}{v}-\frac{1}{y}$ and $s=\frac{1}{v}-\frac{1}{3}$.
we know that
$\frac{\partial u}{\partial x}=\frac{\partial u}{\partial r} \cdot \frac{\partial r}{\partial x}+\frac{\partial u}{\partial s} \cdot \frac{\partial s}{\partial x}$
$=\frac{\partial u}{\partial r}\left(-\frac{1}{x^{2}}\right)+\frac{\partial u}{\partial s}\left(-\frac{1}{x^{2}}\right) \quad \because r=\frac{1}{x}-\frac{1}{y}$
$\Rightarrow \frac{\partial r}{\partial x}=-\frac{1}{x^{2}}$
$=-\frac{1}{x^{2}} \frac{\partial u}{\partial r}-\frac{1}{x^{2}} \frac{\partial u}{\partial s}$
$\because s=\frac{1}{x}-\frac{1}{z}$
$\Rightarrow \frac{\partial s}{\partial x}=-\frac{1}{x^{2}}$
or $x^{2} \frac{\partial u}{\partial x}=-\frac{\partial u}{\partial r}-\frac{\partial u}{\partial s}$

Similarly $\frac{\partial u}{\partial y}=\frac{\partial u}{\partial r} \cdot \frac{\partial r}{\partial y}+\frac{\partial u}{\partial s} \cdot \frac{\partial s}{\partial y}$
$=\frac{\partial u}{\partial y} \cdot \frac{1}{y^{2}}+\frac{\partial u}{\partial s} \cdot 0$
from (i)
or $y^{2} \frac{\partial u}{\partial y}=\frac{\partial u}{\partial r}$
and $\frac{\partial u}{\partial z}=\frac{\partial u}{\partial r} \cdot \frac{\partial r}{\partial z}+\frac{\partial u}{\partial s} \cdot \frac{\partial s}{\partial z}$
$=\frac{\partial \mathrm{u}}{\partial \mathrm{r}} \cdot 0+\frac{\partial \mathrm{u}}{\partial \mathrm{s}} \cdot \frac{1}{\mathrm{z}^{2}}$
$\Rightarrow z^{2} \frac{\partial u}{\partial z}=\frac{\partial u}{\partial s}$
Adding (i) (ii) and (iii) we get
$x^{2} \frac{\partial u}{\partial x}+y^{2} \frac{\partial u}{\partial y}+z^{2} \frac{\partial u}{\partial z}=0$
Hence Proved.

Example 2:

If $u=u(y-z, z=x, x-y)$ Prove that $\quad \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$

Solution : Here given $u=u(y-z, z-x, x-y)$
Let $X=y-z, Y=z-x$ and $Z=x-y$.
Then $u=u(X, Y, Z)$, where X, Y, Z are function of x, y and z.
Then
$\frac{\partial u}{\partial x}=\frac{\partial u}{\partial X} \frac{\partial X}{\partial x}+\frac{\partial u}{\partial Y} \frac{\partial Y}{\partial x}+\frac{\partial u}{\partial Z} \frac{\partial Z}{\partial x}$
$\frac{\partial u}{\partial y}=\frac{\partial u}{\partial X} \frac{\partial X}{\partial y}+\frac{\partial u}{\partial Y} \frac{\partial Y}{\partial y}+\frac{\partial u}{\partial Z} \frac{\partial Z}{\partial y}$
and $\frac{\partial u}{\partial z}=\frac{\partial u}{\partial X} \frac{\partial X}{\partial z}+\frac{\partial u}{\partial Y} \frac{\partial Y}{\partial z}+\frac{\partial u}{\partial Z} \frac{\partial Z}{\partial z}$
with the help of (i), equations (ii), (iii) and (iv) gives.
$\frac{\partial u}{\partial x}=\frac{\partial u}{\partial X} 0+\frac{\partial u}{\partial Y}(-1)+\frac{\partial u}{\partial Z}(1)=-\frac{\partial u}{\partial Y}+\frac{\partial u}{\partial Z}$
$\frac{\partial u}{\partial y}=\frac{\partial u}{\partial X} \cdot 1+\frac{\partial u}{\partial Y} \cdot 0+\frac{\partial u}{\partial Z}(-1)=\frac{\partial u}{\partial X}-\frac{\partial u}{\partial Z}$.
and $\frac{\partial u}{\partial z}=\frac{\partial u}{\partial X}(-1)+\frac{\partial u}{\partial Y}(1)+\frac{\partial u}{\partial Z}(0)=-\frac{\partial u}{\partial X}+\frac{\partial u}{\partial Y}$
Adding (v), (vi) and (vii) we get $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$. Hence Proved.

Example 3: If z is a function of x and y and $x=e^{u}+e^{-v}, y=e^{-u}-e^{v}$,
Prove that $\frac{\partial z}{\partial u}-\frac{\partial z}{\partial v}=x \frac{\partial z}{\partial x}-y \frac{\partial z}{\partial y}$

Solution : Here z is a function of x and y, where x and y are functions of u and v.
$\therefore \frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u}$
and $\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v}$
Also given that
$\mathrm{x}=\mathrm{e}^{\mathrm{u}}+\mathrm{e}^{-\mathrm{v}}$ and $\mathrm{y}=\mathrm{e}^{-\mathrm{u}}-\mathrm{e}^{\mathrm{v}}$
$\therefore \frac{\partial \mathrm{x}}{\partial \mathrm{u}}=\mathrm{e}^{u}, \frac{\partial \mathrm{x}}{\partial \mathrm{v}}=-\mathrm{e}^{-\mathrm{v}}, \frac{\partial \mathrm{y}}{\partial \mathrm{u}}=-\mathrm{e}^{-\mathrm{u}}, \frac{\partial \mathrm{y}}{\partial \mathrm{v}}=-\mathrm{e}^{v}$
\therefore From (i) we get
$\frac{\partial z}{\partial u}=\frac{\partial z}{\partial x}\left(e^{u}\right)+\frac{\partial z}{\partial y}\left(-e^{-u}\right)$
and from (ii) we get
$\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x}\left(-\mathrm{e}^{-v}\right)+\frac{\partial z}{\partial y}\left(-\mathrm{e}^{-v}\right)$
Subtracting (iv) from (iii) we get

$$
\begin{aligned}
& \frac{\partial z}{\partial u}-\frac{\partial z}{\partial v}=\left(e^{u}+e^{-v}\right) \frac{\partial z}{\partial x}-\left(e^{-u}-e^{v}\right) \frac{\partial z}{\partial y} \\
& =x \frac{\partial z}{\partial x}-y \frac{\partial z}{\partial y} .
\end{aligned} \quad \text { Hence Proved. } . ~ l
$$

Example 4:

If $\mathrm{V}=\mathrm{f}(2 \mathrm{z}-3 \mathrm{y}, 3 \mathrm{y}-4 z, 4 z-2 x)$, compute the value of

Solution : Here given $V=f(2 x-3 y, 3 y-4 z, 4 z-2 x)$

Then $u=f(X, Y, Z)$, where X, Y, Z are function of x, y and z.
Then $V_{x}=\frac{\partial V}{\partial x}=\frac{\partial V}{\partial X} \frac{\partial X}{\partial x}+\frac{\partial V}{\partial Y} \frac{\partial Y}{\partial x}+\frac{\partial V}{\partial Z} \frac{\partial Z}{\partial x}$
$V_{y}=\frac{\partial V}{\partial y}=\frac{\partial V}{\partial X} \frac{\partial X}{\partial y}+\frac{\partial V}{\partial Y} \frac{\partial Y}{\partial y}+\frac{\partial V}{\partial Z} \frac{\partial Z}{\partial y}$
and $V_{z}=\frac{\partial V}{\partial z}=\frac{\partial V}{\partial X} \frac{\partial X}{\partial z}+\frac{\partial V}{\partial Y} \frac{\partial Y}{\partial z}+\frac{\partial V}{\partial Z} \frac{\partial Z}{\partial z}$
with the help of (i), equations (ii), (iii) and (iv) gives
$V_{x}=\frac{\partial V}{\partial X}(2)+\frac{\partial V}{\partial Y}(0)+\frac{\partial V}{\partial Z}(-2)$
or $V_{x}=2\left(\frac{\partial V}{\partial X}-\frac{\partial V}{\partial Z}\right)$
$\Rightarrow 6 V_{\mathrm{x}}=12\left(\frac{\partial \mathrm{~V}}{\partial \mathrm{X}}-\frac{\partial \mathrm{V}}{\partial \mathrm{Z}}\right)$
Now $V_{y}=\frac{\partial V}{\partial X}(-3)+\frac{\partial V}{\partial Y}(3)+\frac{\partial V}{\partial Z}(0)$
or $V_{y}=3\left(-\frac{\partial V}{\partial X}+\frac{\partial V}{\partial Y}\right)$
$\Rightarrow 4 V_{3}=12\left(-\frac{\partial V}{\partial X}+\frac{\partial V}{\partial Y}\right)$
and $V_{r}=\frac{\partial V}{\partial X}(0)+\frac{\partial V}{\partial Y}(-4)+\frac{\partial V}{\partial Z}(4)$
or $\mathrm{V}_{\mathrm{z}}=4\left(-\frac{\partial \mathrm{V}}{\partial \mathrm{Y}}+\frac{\partial \mathrm{V}}{\partial \mathrm{Z}}\right)$
$\Rightarrow 3 \mathrm{~V}_{\mathrm{z}}=12\left(-\frac{\partial \mathrm{V}}{\partial \mathrm{Y}}+\frac{\partial \mathrm{V}}{\partial \mathrm{Z}}\right)$
Adding (v), (vi) and (vii) we get
$6 \mathrm{~V}_{\mathrm{x}}+4 \mathrm{~V}_{\mathrm{y}}+3 \mathrm{~V}_{\mathrm{z}}=0 \quad$ Answer.

Total Differentiation

Introduction : In partial differentiation of a function of two or more variables, only one variable varies. But in total differentiation, increments are given in all the variables.
Total differential Coefficient : If $u=f(x, y)$
where $x=\phi(t)$, and $y=\Psi(t)$ then we can find the value of u in terms of t by substituting from the last two equations in the first equation. Hence we can regard u as a function of the single variable t, and find the ordinary differential coefficient $\frac{\mathrm{du}}{\mathrm{dt}}$.
Then $\frac{d u}{d t}$ is called the total differential coefficient of u, to distinguish it from the partial differential coefficient $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$.

Hence
$\frac{d u}{d t}=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}$
i.e. $\frac{d u}{d t}=\frac{\partial u}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial u}{\partial y} \cdot \frac{d y}{d t}$

Similarly, if $u=f\left(x_{1}, x_{2} \ldots \ldots \ldots x_{n}\right)$ and $x_{1}, x_{2} \ldots \ldots \ldots \ldots, x_{n}$ are all functions of t, we can prove that

$$
\frac{\mathrm{du}}{\mathrm{dt}}=\frac{\partial \mathrm{u}}{\partial \mathrm{x}_{1}} \cdot \frac{\mathrm{~d} \mathrm{x}_{1}}{\mathrm{dt}}+\frac{\partial \mathrm{u}}{\partial \mathrm{x}_{2}} \cdot \frac{\mathrm{dx}_{2}}{\mathrm{dt}}+\ldots \ldots \ldots \ldots \ldots \ldots . .+\frac{\partial \mathrm{u}}{\partial \mathrm{x}_{\mathrm{n}}} \cdot \frac{\mathrm{dx}_{\mathrm{n}}}{\mathrm{dt}}
$$

An important case : By supposing t to be the same, as x in the formula for two variables, we get the following proposition :
When $f(x, y)$ is a function of x and y, and y is a function of x, the total (i.e., the ordinary) differential coefficient of f with respect to x is given by
$\frac{d f}{d x}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d x}$
Now, if we have an implicit relation between x and y of the form $f(x, y)=C$
where C is a constant and y is a function of x , the above formula becomes
$0=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d x}$
Which gives the important formula
$\frac{d y}{d x}=-\frac{\partial f}{\partial x} / \frac{\partial f}{\partial y}$
Again, if f is a function of n variables x_{1}, x_{2}, x_{3}, \qquad ..x_{n}, and x_{2}, x_{3}. \qquad .x_{n} are all functions of x_{1}, the total (i.e. the ordinary) differential coefficient of f with respect to x_{1} is given by

$$
\frac{d f}{d x_{1}}=\frac{\partial f}{\partial x_{1}}+\frac{\partial f}{\partial x_{2}} \cdot \frac{d x_{2}}{d x_{1}}+\frac{\partial f}{\partial x_{3}} \cdot \frac{d x_{3}}{d x_{1}}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots+\frac{\partial f}{\partial x_{n}} \cdot \frac{d x_{n}}{d x_{1}}
$$

Example 1:

If $u=x \log x y$, where $x^{3}+y^{3}+3 x y=1$, find $\frac{d u}{d x}$.
Solution : Given $u=x \log x y$
we know $\frac{d u}{d x}=\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y} \frac{d y}{d x}$
Now from (i) $\frac{\partial u}{\partial x}=x \cdot \frac{1}{x y} y+\log x y$
$=1+\log \mathrm{xy}$
and $\frac{\partial u}{\partial y}=x \frac{1}{x y} x=\frac{x}{y}$
Again, we are given $x^{3}+y^{3}+3 x y=1$, whence differentiating, we get
$3 x^{2}+3 y^{2} \frac{d y}{d x}+3\left(x \frac{d y}{d x}+y \cdot 1\right)=0$
or $\frac{d y}{d x}=-\frac{\left(x^{2}+y\right)}{\left(y^{2}+x\right)}$
Substituting these values in (ii) we get
$\frac{d u}{d x}=(1+\log x y)+\frac{x}{y}\left[-\frac{\left(x^{2}+y\right)}{\left(y^{2}+x\right)}\right]$ Answer.

Example 2:

If $f(x, y)=0, \phi(y, z)=0$ show that $\quad \frac{\partial f}{\partial y} \frac{\partial \phi}{\partial z} \frac{d z}{d x}=\frac{\partial f}{\partial x} \frac{\partial \phi}{\partial y}$
Solution: If $f(x, y)=0$ then $\frac{d y}{d x}=-\left(\frac{\partial f}{\partial x}\right) /\left(\frac{\partial f}{\partial y}\right)$.
if $\phi(y, z)=0$, then $\frac{d z}{d y}=-\left(\frac{\partial \phi}{\partial y}\right) /\left(\frac{\partial \phi}{\partial z}\right)$
Multiplying (i) and (ii), we have

$$
\begin{aligned}
& \frac{d y}{d x} \cdot \frac{d z}{d y}=\left(\frac{\partial f}{\partial x}\right)\left(\frac{\partial \phi}{\partial y}\right) /\left(\frac{\partial f}{\partial y}\right) \cdot\left(\frac{\partial \phi}{\partial z}\right) \\
& \text { or }\left(\frac{\partial f}{\partial y}\right) \cdot\left(\frac{\partial \phi}{\partial z}\right) \frac{d z}{d x}=\left(\frac{\partial f}{\partial x}\right) /\left(\frac{\partial \phi}{\partial y}\right) . \text { Hence Proved }
\end{aligned}
$$

Example 3:

If the curves $f(x, y)=0$ and $\phi(x, y)=0$ touch, show that at the point of contact $\frac{\partial f}{\partial x} \cdot \frac{\partial \phi}{\partial y}-\frac{\partial f}{\partial y} \frac{\partial \phi}{\partial x}=0$

Solution : For the curve $f(x, y)=0$, we have
$\frac{d y}{d x}=-\left(\frac{\partial f}{\partial x}\right) /\left(\frac{\partial f}{\partial y}\right)$ and for the curve $\phi(x, y)=0, \frac{d y}{d x}=-\left(\frac{\partial \phi}{\partial x}\right) /\left(\frac{\partial \phi}{\partial y}\right)$
Also if two curves touch each other at a point then at that point the values of (dy/dx) for the two curves must be the same,
Hence at the point of contact
$-\left(\frac{\partial f}{\partial x}\right) /\left(\frac{\partial f}{\partial y}\right)=-\left(\frac{\partial \phi}{\partial x}\right) /\left(\frac{\partial \phi}{\partial y}\right)$
or $\left(\frac{\partial f}{\partial x}\right) \cdot\left(\frac{\partial \phi}{\partial y}\right)-\left(\frac{\partial \phi}{\partial x}\right)\left(\frac{\partial f}{\partial y}\right)=0$. Hence Proved

Example 4:

If $\phi(x, y, z)=0$ show that $\quad\left(\frac{\partial y}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial x}\right)_{y}\left(\frac{\partial x}{\partial y}\right)_{z}=-1$
Solution : The given relation defines y as a function of x and z. treating x as constant
$\left(\frac{\partial y}{\partial z}\right)_{x}=-\frac{\partial \phi / \partial z}{\partial \phi / \partial y}$.
The given relation defines z as a function of x and y. Treating y as constant

$$
\begin{equation*}
\left(\frac{\partial z}{\partial x}\right)_{y}=-\frac{\partial \phi / \partial x}{\partial \phi / \partial z} . \tag{ii}
\end{equation*}
$$

Similarly, $\left(\frac{\partial x}{\partial z}\right)_{z}=-\frac{\partial \phi / \partial y}{\partial \phi / \partial x}$
Multiplying (i), (ii) and (iii) we get

$$
\left(\frac{\partial y}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial x}\right)_{y}\left(\frac{\partial x}{\partial y}\right)_{z}=-1
$$

Euler's Theorem on Homogeneous Functions:

Statement: If $f(x, y)$ is a homogeneous function of x and y of degree n, then
$x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=n f$

Proof : Since $f(x, y)$ is a homogeneous function of degree n, it can be expressed in the form
$f(x, y)=x^{n} F(y / x)$
$\therefore \frac{\partial f}{\partial x}=\frac{\partial}{\partial x}\left\{x^{n} F(y / x)\right\}=n x^{n-1} F(y / x)+x^{n} F^{\prime}\left(\frac{y}{x}\right)\left(\frac{-y}{x^{2}}\right)$
or $x \frac{\partial f}{\partial x}=n x^{n} F\left(\frac{y}{x}\right)-y x^{n-1} F^{\prime}\left(\frac{y}{x}\right)$
Again from (i), we have
$\frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left\{x^{n} F(y / x)\right\}$
$=x^{n} F^{\prime}(y / x) \cdot \frac{1}{x}$
or $y \frac{\partial f}{\partial y}=y x^{n-1} F^{\prime}(y / x)$.
Adding (ii) and (iii), we get
$x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=n x^{n} F(y / x)$
$=n f$ using(i) Hence Proved.
Note. In general if $f\left(x_{1}, x_{2} \ldots \ldots \ldots \ldots . x_{n}\right)$ be a homogeneous function of degree n, then by Euler's theorem, we have

$$
x_{1} \frac{\partial f}{\partial x_{1}}+x_{2} \frac{\partial f}{\partial x_{2}}+\ldots \ldots \ldots . . . x_{n} \frac{\partial f}{\partial x_{n}}=n f
$$

Solution: We are given that
$u=\log \left(\frac{x^{2}+y^{2}}{x+y}\right)$
$\therefore e^{u}=\frac{x^{2}+y^{2}}{x+y}=f($ say $)$
Clearly f is a homogeneous function in x and y of degree 2-1 i.e. 1
\therefore By Euler's theorem for f , we should have
$x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=f$
$\mathrm{x} \frac{\partial}{\partial \mathrm{x}}\left(\mathrm{e}^{\mathrm{u}}\right)+\mathrm{y} \frac{\partial}{\partial \mathrm{y}}\left(\mathrm{e}^{u}\right)=\mathrm{e}^{u} \quad \because \mathrm{f}=\mathrm{e}^{\mathrm{u}}$
or $x e^{u} \frac{\partial u}{\partial x}+y e^{u} \frac{\partial u}{\partial y}=e^{u}$
or $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=1$ Hence Proved.

Example 2: If $u=\sin ^{-1}\left\{\frac{x+y}{\sqrt{x}+\sqrt{y}}\right\}$, show that $\quad x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{2} \tan u$

Solution : Here $u=\sin ^{-1}\left\{\frac{x+y}{\sqrt{x}+\sqrt{y}}\right\}$
$\Rightarrow \sin u=\frac{x+y}{\sqrt{x}+\sqrt{y}}=f$ (say)
Here f is a homogeneous function in x and y of degree $\left(1-\frac{1}{2}\right)$ i.e $\frac{1}{2}$
\therefore By Euler's theorem for f , we have
$x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=\frac{1}{2} f$
or $x \frac{\partial}{\partial x}(\sin u)+y \frac{\partial}{\partial y}(\sin u)=\frac{1}{2} \sin u$
$\therefore \mathrm{f}=\sin \mathrm{u}$
or $\mathrm{x} \cos \mathrm{u} \frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\mathrm{y} \cos \mathrm{u} \frac{\partial \mathrm{u}}{\partial \mathrm{y}}=\frac{1}{2} \sin \mathrm{u}$
or $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{2} \tan u$.
Hence Proved

Example 3:

If $u=\tan ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$, then prove that $\quad x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{2} \sin 2 u$
Solution : Here $\tan u=\frac{x^{2}+y^{2}}{x+y}=f$ (say)
Then for $\frac{x^{2}+y^{2}}{x+y}$ is a homogeneous function in x and y of degree 2-1 i.e 1 .
\therefore By Euler's theorem for f , we have
$x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=1 . f$
or $x \frac{\partial}{\partial x}(\tan u)+y \frac{\partial}{\partial y}(\tan u)=\tan u$
$\because f=\tan u$
or $x \sec ^{2} u \frac{\partial u}{\partial x}+y \sec ^{2} u \frac{\partial u}{\partial y}=\tan u$
or $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{\tan u}{\sec ^{2} u}=\sin u \cos u=\frac{1}{2} \sin 2 u$. \quad Hence Proved

Example 4:

If u be a homogeneous function of degree n, then prove that
(i) $x \frac{\partial^{2} u}{\partial x^{2}}+y \frac{\partial^{2} u}{\partial x \partial y}=(n-1) \frac{\partial u}{\partial x}$
(ii) $x \frac{\partial^{2} u}{\partial x \partial y}+y \frac{\partial^{2} u}{\partial y^{2}}=(n-1) \frac{\partial u}{\partial y} \quad$ (iii) $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=n(n-1) u$

Solution : Since \mathbf{u} is a homogenous function of degree n , therefore by Euler's theorem
$x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=n u$
Differentiating (i) partially w.r.t. x, we get
$x \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial u}{\partial x} \cdot 1+y \frac{\partial^{2} u}{\partial x \partial y}=n \frac{\partial u}{\partial x}$
or $x \frac{\partial^{2} u}{\partial x^{2}}+y \frac{\partial^{2} u}{\partial x \partial y}=n \frac{\partial u}{\partial x}-\frac{\partial u}{\partial x}$
or $x \frac{\partial^{2} u}{\partial x^{2}}+y \frac{\partial^{2} u}{\partial x \partial y}=(n-1) \frac{\partial u}{\partial x}$.
which prove the result (i)

Now differentiating (i) partially w.r.t. y, we get
$x \frac{\partial^{2} u}{\partial y \partial x}+y \frac{\partial^{2} u}{\partial y^{2}}+1 \cdot \frac{\partial u}{\partial y}=n \frac{\partial u}{\partial y}$
or $x \frac{\partial^{2} u}{\partial y \partial x}+y \frac{\partial^{2} u}{\partial y^{2}}=n \frac{\partial u}{\partial y}-\frac{\partial u}{\partial y}$
or $x \frac{\partial^{2} u}{\partial y \partial x}+y \frac{\partial^{2} u}{\partial y^{2}}=(n-1) \frac{\partial u}{\partial y}$.
Which proves the result (ii)

Multiplying (2) by x and (3) by y and then adding, we get
$x \frac{\partial^{2} u}{\partial x^{2}}+x y \frac{\partial^{2} u}{\partial x \partial y}+x y \frac{\partial^{2} u}{\partial y \partial x}+y^{2} \frac{\partial^{*} u}{\partial y^{2}}=(n-1)\left\{x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}\right\}$
or $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=(n-1) n u$
which proves the result (iii). Hence Proved

Example 5:

```
If \(\mathbf{u}(x, y, z)=\log (\tan x+\tan y+\tan z)\) Prove that
    \(\sin 2 x \frac{\partial u}{\partial x}+\sin 2 y \frac{\partial u}{\partial y}+\sin 2 z \frac{\partial u}{\partial z}=2\)
```

Solution : we have
$u(x, y, z)=\log (\tan x+\tan y+\tan z)$.
Differentiating (i) w.r.t. ' x ' partially, we get
$\frac{\partial u}{\partial x}=\frac{\sec ^{2} x}{\tan x+\tan y+\tan z}$
Differentiating (i) w.r.t. ' y ' partially we get
$\frac{\partial u}{\partial y}=\frac{\sec ^{2} y}{\tan x+\tan y+\tan z}$
Again differentiating (i) w.r.t ' z ' partially we get
$\frac{\partial u}{\partial z}=\frac{\sec ^{2} z}{\tan x+\tan y+\tan z}$.
Multiplying (ii), (iii) and (iv) by $\sin 2 x, \sin 2 y$ and $\sin 2 z$ respectively and adding them, we get
$\sin 2 x \frac{\partial u}{\partial x}+\sin 2 y \frac{\partial u}{\partial y}+\sin 2 z \frac{\partial u}{\partial z}=\frac{\sin 2 x \sec ^{2} x+\sin 2 y \sec ^{2} y+\sin 2 z \sec ^{2} z}{\tan x+\tan y+\tan z}$
$=\frac{2 \sin x \cos x \cdot \sec ^{2} x+2 \sin y \cos y \cdot \sec ^{2} y+2 \sin z \cos z \cdot \sec ^{2} z}{\tan x+\tan y+\tan z}$
$=\frac{2(\tan x+\tan y+\tan z)}{\tan x+\tan y+\tan z}$
$=2$
$\Rightarrow \sin 2 x \frac{\partial u}{\partial x}+\sin 2 y \frac{\partial u}{\partial y}+\sin 2 z \frac{\partial u}{\partial z}=2$. Hence Proved

** Maximum \& Minimum for function of a single Variable:

To find the Maxima \& Minima of $\mathrm{f}(\mathrm{x})$ we use the following procedure.
(i) Find $f^{1}(x)$ and equate it to zero
(ii) Solve the above equation we get $\mathrm{x}_{0}, \mathrm{x}_{1}$ as roots.
(iii) Then find $\mathrm{f}^{11}(\mathrm{x})$.

If $\mathrm{f}^{11}(\mathrm{x})_{(x=x 0)}>0$, then $\mathrm{f}(\mathrm{x})$ is minimum at x_{0}
If $\mathrm{f}^{11}(\mathrm{x})_{(\mathrm{x}=\mathrm{x} 0)},<0, \mathrm{f}(\mathrm{x})$ is maximum at x_{0}. Similarly we do this for other stationary points.

1. Find the max \& min of the function $f(x)=x^{5}-3 x^{4}+5(08 \quad S-1)$

Sol: Given $f(x)=x^{5}-3 x^{4}+5$

$$
\mathrm{f}^{1}(\mathrm{x})=5 \mathrm{x}^{4}-12 \mathrm{x}^{3}
$$

for maxima or minima $f^{1}(x)=0$

$$
\begin{aligned}
& 5 \mathrm{x}^{4}-12 \mathrm{x}^{3}=0 \\
& \mathrm{x}=0, \mathrm{x}=12 / 5 \\
& \mathrm{f}^{11}(\mathrm{x})=20 \mathrm{x}^{3}-36 \mathrm{x}^{2}
\end{aligned}
$$

At $\quad x=0 \Rightarrow f^{11}(x)=0$. So f is neither maximum nor minimum at $x=0$
At $x=(12 / 5) \Rightarrow f^{11}(x)=20(12 / 5)^{3}-36(12 / 5)$

$$
=144(48-36) / 25=1728 / 25>0
$$

So $f(x)$ is minimum at $x=12 / 5$
The minimum value is $\mathrm{f}(12 / 5)=(12 / 5)^{5}-3(12 / 5)^{4}+5$

Maxima \& Minima for functions of two Variables:

Working procedure:

1. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ Equate each to zero. Solve these equations for $\mathrm{x} \& \mathrm{y}$ we get the pair of values $\left(a_{1}, b 1\right)\left(a_{2}, b_{2}\right)\left(a_{3}, b_{3}\right)$ \qquad
2. Find $l=\frac{\partial^{2} f}{\partial x^{2}}, m=\frac{\partial^{2} f}{\partial x \partial y}, \mathrm{n}=\frac{\partial^{2} f}{\partial y^{2}}$
3. i. If $l \mathrm{n}-\mathrm{m}^{2}>0$ and $l<0$ at $\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ then $\mathrm{f}(\mathrm{x}, \mathrm{y})$ is maximum at $\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ and maximum value is $f\left(a_{1}, b_{1}\right)$
ii. If $l \mathrm{n}-\mathrm{m}^{2}>0$ and $l>0$ at $\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ then $\mathrm{f}(\mathrm{x}, \mathrm{y})$ is minimum at $\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ and minimum value is $f\left(a_{1}, b_{1}\right)$.
iii. If $l \mathrm{n}-\mathrm{m}^{2}<0$ and at $\left(\mathrm{a}_{1}, \mathrm{~b} 1\right)$ then $\mathrm{f}(\mathrm{x}, \mathrm{y})$ is neither maximum nor minimum at $\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$. In this case $\left(a_{1}, b 1\right)$ is saddle point.
iv. If $l \mathrm{n}-\mathrm{m}^{2}=0$ and at $\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$, no conclusion can be drawn about maximum or minimum and needs further investigation. Similarly we do this for other stationary points.

1. Locate the stationary points $\boldsymbol{\&}$ examine their nature of the following functions.

$$
u=x^{4}+y^{4}-2 x^{2}+4 x y-2 y^{2}, \quad(x>0, y>0)
$$

Sol: Given $u(x, y)=x^{4}+y^{4}-2 x^{2}+4 x y-2 y^{2}$

$$
\begin{align*}
& \text { For maxima \& minima } \frac{\partial u}{\partial x}=0, \frac{\partial u}{\partial y}=0 \\
& \frac{\partial u}{\partial x}=4 x^{3}-4 x+4 y=0 \Rightarrow x^{3}-x+y=0 \tag{1}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial \mathrm{x}}{\partial y}=4 \mathrm{y}^{3}+4 \mathrm{x}-4 \mathrm{y}=0 \Rightarrow \mathrm{y}^{3}+\mathrm{x}-\mathrm{y}=0 \tag{2}
\end{equation*}
$$

Adding (1) \& (2),

$$
\begin{gathered}
x^{3}+y^{3}=0 \\
\Rightarrow x=-y \text {------------------> (3) } \\
\text { (1) } \Rightarrow x^{3}-2 x \Rightarrow x=0, \sqrt{2},-\sqrt{2}
\end{gathered}
$$

Hence (3) $\quad \Rightarrow \mathrm{y}=0,-\sqrt{2}, \sqrt{2}$

$$
\begin{aligned}
& \mathrm{l}=\frac{\partial^{2} u}{\partial x^{2}}=12 \mathrm{x}^{2}-4, \mathrm{~m}=\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right)=4 \& \mathrm{n}=\frac{\partial^{2} u}{\partial y^{2}}=12 \mathrm{y}^{2}-4 \\
& \ln -\mathrm{m}^{2}=\left(12 \mathrm{x}^{2}-4\right)\left(12 \mathrm{y}^{2}-4\right)-16
\end{aligned}
$$

At $(-\sqrt{2}, \quad \sqrt{2}), \ln -\mathrm{m}^{2}=(24-4)(24-4)-16=(20)(20)-16>0$ and $\mathrm{l}=20>0$
The function has minimum value at $(-\sqrt{2}, \quad \sqrt{2})$
At $(0,0), \ln -m^{2}=(0-4)(0-4)-16=0$
$(0,0)$ is not a extreme value.
2. Investigate the maxima \& minima, if any, of the function $f(x)=x^{3} y^{2}(1-x-y)$.

Sol: Given

$$
f(x)=x^{3} y^{2}(1-x-y) \quad=x^{3} y^{2}-x^{4} y^{2}-x^{3} y^{3}
$$

$$
\frac{\partial f}{\partial x}=3 \mathrm{x}^{2} \mathrm{y}^{2}-4 \mathrm{x}^{3} \mathrm{y}^{2}-3 \mathrm{x}^{2} \mathrm{y}^{3} \quad \frac{\partial f}{\partial y}=2 \mathrm{x}^{3} \mathrm{y}-2 \mathrm{x}^{4} \mathrm{y}-3 \mathrm{x}^{3} \mathrm{y}^{2}
$$

For maxima \& minima $\frac{\partial_{f}}{\partial x}=0$ and $\frac{\partial f}{\partial y}=0$

$$
\begin{equation*}
\Rightarrow 3 x^{2} y^{2}-4 x^{3} y^{2}-3 x^{2} y^{3}=0 \Rightarrow x^{2} y^{2}(3-4 x-3 y)=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\Rightarrow 2 x^{3} y-2 x^{4} y-3 x^{3} y^{2}=0 \Rightarrow x^{3} y(2-2 x-3 y)=0 \tag{2}
\end{equation*}
$$

From (1) \& (2) $\quad 4 x+3 y-3=0$

$$
\begin{gathered}
2 x+3 y-2=0 \\
2 x=1 \Rightarrow x=1 / 2 \\
4(1 / 2)+3 y-3=0 \Rightarrow 3 y=3-2, y=(1 / 3)
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{l}=\frac{\partial^{2} f}{\partial x^{2}}=6 x y^{2}-12 \mathrm{x}^{2} \mathrm{y}^{2}-6 x y^{3} \\
& \left(\frac{\partial^{2} f}{\partial x^{2}}\right)(1 / 2,1 / 3)=6(1 / 2)(1 / 3)^{2}-12(1 / 2)^{2}(1 / 3)^{2}-6(1 / 2)(1 / 3)^{3}=1 / 3-1 / 3-1 / 9=-1 / 9 \\
& \mathrm{~m}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=6 \mathrm{x}^{2} \mathrm{y}-8 \mathrm{x}^{3} \mathrm{y}-9 \mathrm{x}^{2} \mathrm{y}^{2} \\
& \left(\frac{\partial^{2} f}{\partial x \partial y}\right)(1 / 2,1 / 3)=6(1 / 2)^{2}(1 / 3)-8(1 / 2)^{3}(1 / 3)-9(1 / 2)^{2}(1 / 3)^{3}=\frac{6-4-3}{12}=\frac{-1}{12} \\
& \mathrm{n}=\frac{\partial^{2} f}{\partial y^{2}}=2 \mathrm{x}^{3}-2 \mathrm{x}^{4}-6 \mathrm{x}^{3} \mathrm{y} \\
& \left(\frac{\partial^{2} f}{\partial y^{2}}\right)(1 / 2,1 / 3)=2(1 / 2)^{3}-2(1 / 2)^{4}-6(1 / 2)^{3}(1 / 3)=\frac{1}{4}-\frac{1}{8}-\frac{1}{4}=-\frac{1}{8}
\end{aligned}
$$

$$
\ln -\mathrm{m}^{2}=(-1 / 9)(-1 / 8)-(-1 / 12)^{2}=\frac{1}{72}-\frac{1}{144}=\frac{2-1}{144}=\frac{1}{144}>0 \text { and } 1=\frac{-1}{9}<0
$$

The function has a maximum value at $(1 / 2,1 / 3)$
\therefore Maximum value is $f\left(\frac{1}{2}, \frac{1}{3}\right)=\left(\frac{1}{8} \times \frac{1}{9}\right)\left(1-\frac{1}{2}-\frac{1}{3}\right)=\frac{1}{72}\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{1}{432}$

3. Find three positive numbers whose sum is $\mathbf{1 0 0}$ and whose product is maximum.

Sol: Let $\mathrm{x}, \mathrm{y}, \mathrm{z}$ be three +ve numbers.
Then $x+y+z=100$

$$
\Rightarrow \quad z=100-x-y
$$

Let $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{xyz}=\mathrm{xy}(100-\mathrm{x}-\mathrm{y})=100 \mathrm{xy}-\mathrm{x}^{2} \mathrm{y}-\mathrm{xy}^{2}$
For maxima or minima $\frac{\partial_{f}}{\partial x}=0$ and $\frac{\partial_{f}}{\partial y}=0$

$$
\begin{align*}
& \frac{\partial_{f}}{\partial x}=100 \mathrm{y}-2 \mathrm{xy}-\mathrm{y}^{2}=0 \Rightarrow \mathrm{y}(100-2 \mathrm{x}-\mathrm{y})=0 \tag{1}\\
& \frac{\partial_{f}}{\partial y}=100 \mathrm{x}-\mathrm{x}^{2}-2 \mathrm{xy}=0 \Rightarrow \mathrm{x}(100-\mathrm{x}-2 \mathrm{y})=0 \tag{2}
\end{align*}
$$

From (1) \& (2)

$$
\begin{aligned}
& 100-2 x-y=0 \\
& 200-2 x-4 y=0 \\
& -100+3 y=0=------3 y=100 \quad \Rightarrow y=100 / 3 \\
& 100-x-(200 / 3)=0 \quad \Rightarrow x=100 / 3
\end{aligned}
$$

$$
1=\frac{\partial^{2} f}{\partial x^{2}}=-2 \mathrm{y}
$$

$$
\left(\frac{\partial^{2} f}{\partial x \partial y}\right)(100 / 3,100 / 3)=100-(200 / 3)-(200 / 3)=-(100 / 3)
$$

$$
\mathrm{n}=\frac{\partial^{2} f}{\partial y^{2}}=-2 \mathrm{x}
$$

$$
\left(\frac{\partial^{2} f}{\partial y^{2}}\right)(100 / 3,100 / 3)=-200 / 3
$$

$$
\ln -\mathrm{m}^{2}=(-200 / 3)(-200 / 3)-(-100 / 3)^{2}=(100)^{2} / 3
$$

The function has a maximum value at $(100 / 3,100 / 3)$
i.e. at $\mathrm{x}=100 / 3, \mathrm{y}=100 / 3 \quad \therefore \mathrm{z}=100-\frac{100}{3}-\frac{100}{3}=\frac{100}{3}$

The required numbers are $x=100 / 3, y=100 / 3, z=100 / 3$
4. Find the maxima \& minima of the function $f(x)=2\left(x^{2}-y^{2}\right)-x^{4}+y^{4}$

Sol: Given $f(x)=2\left(x^{2}-y^{2}\right)-x^{4}+y^{4}=2 x^{2}-2 y^{2}-x^{4}+y^{4}$
For maxima \& minima $\frac{\partial_{f}}{\partial x}=0$ and $\frac{\partial_{f}}{\partial y}=0$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=4 \mathrm{x}-4 \mathrm{x}^{3}=0 \Rightarrow 4 \mathrm{x}\left(1-\mathrm{x}^{2}\right)=0 \Rightarrow \mathrm{x}=0, \mathrm{x}= \pm 1 \\
& \frac{\partial f}{\partial y}=-4 \mathrm{y}+4 \mathrm{y}^{3}=0 \quad \Rightarrow-4 \mathrm{y}\left(1-\mathrm{y}^{2}\right)=0 \quad \Rightarrow \mathrm{y}=0, \mathrm{y}= \pm 1 \\
& \mathrm{l}=\left(\frac{\partial^{2} f}{\partial x^{2}}\right)=4-12 \mathrm{x}^{2} \\
& \mathrm{~m}=\left(\frac{\partial^{2} f}{\partial x \partial y}\right)=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=0 \\
& \mathrm{n}=\left(\frac{\partial^{2} f}{\partial y^{2}}\right)=-4+12 \mathrm{y}^{2}
\end{aligned}
$$

we have $\ln -\mathrm{m}^{2}=\left(4-12 \mathrm{x}^{2}\right)\left(-4+12 \mathrm{y}^{2}\right)-0$

$$
\begin{aligned}
& =-16+48 x^{2}+48 y^{2}-144 x^{2} y^{2} \\
& =48 x^{2}+48 y^{2}-144 x^{2} y^{2}-16
\end{aligned}
$$

i) $\quad \operatorname{At}(0, \pm 1)$
$\ln -\mathrm{m}^{2}=0+48-0-16=32>0$
$1=4-0=4>0$
f has minimum value at $(0, \pm 1)$
$f(x, y)=2\left(x^{2}-y^{2}\right)-x^{4}+y^{4}$
$\mathrm{f}(0, \pm 1)=0-2-0+1=-1$
The minimum value is ' -1 '.
ii) $\quad \operatorname{At}(\pm 1,0)$

$$
1=4-12=-8<0
$$

f has maximum value at $(\pm 1,0)$
$f(x, y)=2\left(x^{2}-y^{2}\right)-x^{4}+y^{4}$
$f(\pm 1,0)=2-0-1+0=1$
The maximum value is ' 1 '.
iii)

$$
\begin{aligned}
& \text { At }(0,0),(\pm 1, \pm 1) \\
& \ln -\mathrm{m}^{2}<0 \\
& \mathrm{l}=4-12 \mathrm{x}^{2} \\
& \quad(0,0) \&(\pm 1, \pm 1) \text { are saddle points. }
\end{aligned}
$$

f has no $\max \& \min$ values at $(0,0),(\pm 1, \pm 1)$.
*Extremum : A function which have a maximum or minimum or both is called 'extremum'
*Extreme value :- The maximum value or minimum value or both of a function is
Extreme value.
*Stationary points: - To get stationary points we solve the equations $\frac{\partial_{f}}{\partial x}=0$ and

$$
\frac{\partial_{f}}{\partial_{y}}=0 \text { i.e the pairs }\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right),\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right)
$$

\qquad are called

Stationary.

*Maxima \& Minima for a function with constant condition :Lagranges Method

$$
\begin{equation*}
\text { Suppose } f(x, y, z)=0 \tag{1}
\end{equation*}
$$

$\varnothing(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$ \qquad
$\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})+\gamma \varnothing(\mathrm{x}, \mathrm{y}, \mathrm{z})$ where γ is called Lagrange's constant.

1. $\frac{\partial F}{\partial x}=0 \Rightarrow \frac{\partial f}{\partial x}+\gamma \frac{\partial \emptyset}{\partial x}=0$ \qquad

$$
\begin{align*}
& \frac{\partial F}{\partial y}=0 \quad \Rightarrow \frac{\partial f}{\partial y}+\gamma \frac{\partial \emptyset}{\partial y}=0- \tag{4}\\
& \frac{\partial F}{\partial z}=0 \Rightarrow \frac{\partial f}{\partial z}+\gamma \frac{\partial \emptyset}{\partial z}=0
\end{align*}
$$

\qquad
2. Solving the equations (2) (3) (4) \& (5) we get the stationary point (x, y, z).
3. Substitute the value of x, y, z in equation (1) we get the extremum.

Problem:

1. Find the minimum value of $x^{2}+y^{2}+z^{2}$, given $x+y+z=3 a(' 08 S-2)$

Sol: $u=x^{2}+y^{2}+z^{2}$

$$
\varnothing=x+y+z-3 a=0
$$

Using Lagrange's function

$$
\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{u}(\mathrm{x}, \mathrm{y}, \mathrm{z})+\gamma \emptyset(\mathrm{x}, \mathrm{y}, \mathrm{z})
$$

For maxima or minima

$$
\begin{align*}
& \frac{\partial F}{\partial x}=\frac{\partial u}{\partial x}+\gamma \frac{\partial \emptyset}{\partial x}=2 \mathrm{x}+\gamma=0- \tag{1}\\
& \frac{\partial F}{\partial y}=\frac{\partial u}{\partial y}+\gamma \frac{\partial \emptyset}{\partial y}=2 \mathrm{y}+\gamma=0 \tag{2}\\
& \frac{\partial F}{\partial z}=\frac{\partial u}{\partial z}+\gamma \frac{\partial \emptyset}{\partial z}=2 \mathrm{z}+\gamma=0 .
\end{align*}
$$

From (1) , (2) \& (3)
$\gamma=-2 \mathrm{x}=-2 \mathrm{y}=-2 \mathrm{z}$
$x=y=z$
$\varnothing=\mathrm{x}+\mathrm{x}+\mathrm{x}-3 \mathrm{a}=0 \quad x=\mathrm{a}$
$x=y=z=a$
Minimum value of $u=a^{2}+a^{2}+a^{2}=3 a^{2}$

MODULE-III

HIGHER ORDER LINEAR

DIFFERENTIAL EQUATIONS AND

THEIR APPLICATIONS

Definition: An equation of the form $\frac{d^{n} y}{d x^{n}}+\mathrm{P}_{1}(\mathrm{x}) \cdot \frac{d^{n-1} y}{d x^{n-1}}+\mathrm{P}_{2}(\mathrm{x}) \cdot \frac{d^{n-2} y}{d x^{n-2}}+\cdots-\cdots--+$
$P_{n}(x) . y=Q(x)$ Where $P_{1}(x), P_{2}(x), P_{3}(x) \ldots \ldots . . P_{n}(x)$ and $Q(x)$ (functions of x) continuous is called a linear differential equation of order n.

LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

Def: An equation of the form $\frac{d^{n} y}{d x^{n}}+\mathrm{P}_{1} \cdot \frac{d^{n-1} y}{d x^{n-1}}+\mathrm{P}_{2} \cdot \frac{d^{n-2} y}{d x^{n-2}}+\ldots-\ldots+\mathrm{P}_{\mathrm{n}} \cdot \mathrm{y}=\mathrm{Q}(\mathrm{x})$ where $\mathrm{P}_{1}, \mathrm{P}_{2}$, $P_{3, \ldots} . P_{n}$, are real constants and $Q(x)$ is a continuous function of x is called an linear differential equation of order ' n ' with constant coefficients.
Note:

1. Operator $\mathrm{D}=\frac{d}{d x} ; \mathrm{D}^{2}=\frac{d^{2}}{d x^{2}} ; \ldots \ldots \ldots \ldots \ldots \ldots \ldots \mathrm{D}^{\mathrm{n}}=\frac{d^{n}}{d x^{n}}$

$$
\mathrm{Dy}=\frac{d y}{d x} ; \mathrm{D}^{2} \mathrm{y}=\frac{d^{2} y}{d x^{2}} ; \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \mathrm{D}^{\mathrm{n}} \mathrm{y}=\frac{d^{n} y}{d x^{n}}
$$

2. Operator $\frac{1}{D} Q=\int Q$ ie $D^{-1} Q$ is called the integral of Q.

To find the general solution of $f(D) . \mathbf{y}=\mathbf{0}$:

Where $f(D)=D^{n}+P_{1} D^{n-1}+P_{2} D^{n-2}+--------+P_{n}$ is a polynomial in D.
Now consider the auxiliary equation : $\mathrm{f}(\mathrm{m})=0$
i.e $f(m)=m^{n}+P_{1} m^{n-1}+P_{2} m^{n-2}+--------+P_{n}=0$
where $\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3} \ldots \ldots \ldots \ldots \ldots \mathrm{p}_{\mathrm{n}}$ are real constants.
Let the roots of $f(m)=0$ be $m_{1}, m_{2}, m_{3}, \ldots . . m_{n}$.
Depending on the nature of the roots we write the complementary function as follows:

Consider the following table

S.No	Roots of A.E f(m) =0	Complementary function(C.F)
1.	$\mathrm{m}_{1}, \mathrm{~m}_{2}, . . \mathrm{m}_{\mathrm{n}}$ are real and distinct.	$y_{c}=c_{1} e^{m_{1} \mathrm{x}}+\mathrm{c}_{2} \mathrm{e}^{m_{2} \mathrm{x}}+\ldots+\mathrm{c}_{\mathrm{n}} \mathrm{e}^{m_{n} \mathrm{x}}$
2.	$\mathrm{m}_{1}, \mathrm{~m}_{2}, . . \mathrm{m}_{\mathrm{n}}$ are and two roots are equal i.e., m_{1}, m_{2} are equal and real(i.e repeated twice) \& the rest are real and different.	$y_{c}=\left(c_{1}+c_{2} x\right) e^{m_{1} x}+c_{3} e^{m_{3} x}+\ldots+c_{n} e^{m_{n} x}$
3.	$\mathrm{m}_{1}, \mathrm{~m}_{2}, . . \mathrm{m}_{\mathrm{n}}$ are real and three roots are equal i.e., $\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}$ are equal and real(i.e repeated thrice) \&the rest are real and different.	$y_{c}=\left(c_{1}+c_{2} x+c_{3} x^{2}\right) e^{m_{1} x}+c_{4} e^{m_{4} x}+\ldots+c_{n} e^{m_{n} x}$
4.	Two roots of A.E are complex say $\alpha_{+\mathrm{i}} \beta \alpha_{-\mathrm{i}} \beta$ and rest are real and distinct.	$\mathrm{y}_{\mathrm{c}}=e^{\alpha x}\left(\mathrm{c}_{1} \cos \beta \mathrm{x}+\mathrm{c}_{2} \sin \beta \mathrm{x}\right)+\mathrm{c}_{3} \mathrm{e}^{\mathrm{m}_{3} \mathrm{x}}+\ldots+\mathrm{c}_{\mathrm{n}} \mathrm{e}^{\mathrm{m}}{ }_{\mathrm{n}}{ }^{\mathrm{x}}$
5.	If $\alpha_{ \pm i} \beta$ are repeated twice $\&$ rest are real and distinct	$\begin{aligned} & \left.\mathrm{y}_{\mathrm{c}}=e^{\alpha \mathrm{x}}\left[\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}\right) \cos \beta \mathrm{x}+\left(\mathrm{c}_{3}+\mathrm{c}_{4} \mathrm{x}\right) \sin \beta \mathrm{x}\right)\right]+\mathrm{c}_{5} \mathrm{e}^{\mathrm{m}_{5} \mathrm{x}} \\ & +\ldots+\mathrm{c}_{\mathrm{n}} \mathrm{e}^{\mathrm{m}_{\mathrm{n}} \mathrm{x}} \end{aligned}$
6.	If $\alpha_{ \pm i} \beta$ are repeated thrice $\&$ rest are real and distinct	$\begin{aligned} & \mathrm{y}_{\mathrm{c}}=e^{\alpha \mathrm{x}}\left[\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}+\mathrm{c}_{3} \mathrm{x}^{2}\right) \cos \beta \mathrm{x}+\left(\mathrm{c}_{4}+\mathrm{c}_{5} \mathrm{x}+\mathrm{c}_{6} \mathrm{x}^{2}\right) \sin \beta\right. \\ & \mathrm{x})]+\mathrm{c}_{7} \mathrm{e}^{\mathrm{m}_{7} \mathrm{x}}+\ldots \ldots \ldots+\mathrm{c}_{\mathrm{n}} \mathrm{e}^{\mathrm{m}_{\mathrm{n}} \mathrm{x}} \end{aligned}$
7.	If roots of A.E. irrational say $\alpha \pm \sqrt{\beta}$ and rest are real and distinct.	$y_{c}=e^{\alpha x}\left[c_{1} \cosh \sqrt{\beta} x+c_{2} \sinh \sqrt{\beta} x\right]+c_{3} e^{m_{3} x}+\ldots \ldots . .+c_{n} e^{m_{n} x}$

Solve the following Differential equations :

1. Solve $\frac{d^{3} y}{d x^{3}}-\mathbf{3} \frac{d y}{d x}+\mathbf{2 y}=\mathbf{0}$

Sol: Given equation is of the form $f(D) \cdot y=0$
Where $f(D)=\left(D^{3}-3 D+2\right) y=0$
Now consider the auxiliary equation $\mathrm{f}(\mathrm{m})=0$

$$
\begin{aligned}
\mathrm{f}(\mathrm{~m})=\mathrm{m}^{3}-3 \mathrm{~m}+2=0 & \Rightarrow(\mathrm{~m}-1)(\mathrm{m}-1)(\mathrm{m}+2)=0 \\
& \Rightarrow \mathrm{~m}=1,1,-2
\end{aligned}
$$

Since m_{1} and m_{2} are equal and m_{3} is -2
We have $y_{c}=\left(c_{1}+c_{2} x\right) e^{x}+c_{3} e^{-2 x}$
2. Solve ($\left.D^{4}-\mathbf{2} D^{\mathbf{3}}-\mathbf{3} D^{\mathbf{2}}+\mathbf{4 D}+\mathbf{4}\right) \mathbf{y}=\mathbf{0}$

Sol: Given $f(D)=\left(D^{4}-2 D^{3}-3 D^{2}+4 D+4\right) y=0$
\Rightarrow A.equation $f(m)=\left(m^{4}-2 m^{3}-3 m^{2}+4 m+4\right)=0$
$\Rightarrow(\mathrm{m}+1)^{2}(\mathrm{~m}-2)^{2}=0$
$\Rightarrow \mathrm{m}=-1,-1,2,2$
$\Rightarrow y_{c}=\left(c_{1}+c_{2} x\right) e^{-x}+\left(c_{3}+c_{4} x\right) e^{2 x}$
3. Solve $\left(D^{4}+8 D^{2}+16\right) y=0$

Sol: Given $f(D)=\left(D^{4}+8 D^{2}+16\right) y=0$
Auxiliary equation $\mathrm{f}(\mathrm{m})=\left(\mathrm{m}^{4}+8 \mathrm{~m}^{2}+16\right)=0$

$$
\begin{aligned}
& \Rightarrow\left(\mathrm{m}^{2}+4\right)^{2}=0 \\
& \Rightarrow(\mathrm{~m}+2 \mathrm{i})^{2}(\mathrm{~m}+2 \mathrm{i})^{2}=0 \\
& \Rightarrow \mathrm{~m}=2 \mathrm{i}, 2 \mathrm{i},-2 \mathrm{i},-2 \mathrm{i}
\end{aligned}
$$

$$
\left.Y_{c}=e^{0 x}\left[\left(c_{1}+c_{2} x\right) \cos 2 x+\left(c_{3}+c_{4} x\right) \sin 2 x\right)\right]
$$

4. Solve $\mathbf{y}^{11}+6 y^{1}+9 y=0 ; y(0)=-4, y^{1}(0)=14$

Sol: Given equation is $y^{11}+6 y^{1}+9 y=0$
Auxiliary equationf(D) $\mathrm{y}=0 \Rightarrow\left(\mathrm{D}^{2}+6 \mathrm{D}+9\right) \mathrm{y}=0$
A.equation $\mathrm{f}(\mathrm{m})=0 \Rightarrow\left(\mathrm{~m}^{2}+6 \mathrm{~m}+9\right)=0$

$$
\begin{equation*}
\Rightarrow \mathrm{m}=-3,-3 \tag{1}
\end{equation*}
$$

$y_{c}=\left(c_{1}+c_{2} x\right) e^{-3 x}$
Differentiate of (1) w.r.to $x \Rightarrow y^{1}=\left(c_{1}+c_{2} x\right)\left(-3 e^{-3 x}\right)+c_{2}\left(e^{-3 x}\right)$
Given $\mathrm{y}_{1}(0)=14 \Rightarrow \mathrm{c}_{1}=-4 \& \mathrm{c}_{2}=2$
Hence we get $y=(-4+2 x)\left(e^{-3 x}\right)$
5. Solve $4 y^{111}+4 y^{11}+y^{1}=0$

Sol: Given equation is $4 y^{111}+4 y^{11}+y^{1}=0$
That is $\left(4 D^{3}+4 D^{2}+D\right) y=0$
Auxiliary equation $\mathrm{f}(\mathrm{m})=0$

$$
\begin{aligned}
& 4 m^{3}+4 m^{2}+m=0 \\
& m\left(4 m^{2}+4 m+1\right)=0 \\
& m(2 m+1)^{2}=0 \\
& m=0,-1 / 2,-1 / 2 \\
& y=c_{1}+\left(c_{2}+c_{3} x\right) e^{-x / 2}
\end{aligned}
$$

6. Solve $\left(D^{2}-3 D+4\right) \mathbf{y}=0$

Sol: Given equation $\left(D^{2}-3 D+4\right) y=0$
A.E. $\mathrm{f}(\mathrm{m})=0$

$$
\begin{aligned}
& \mathrm{m}^{2}-3 \mathrm{~m}+4=0 \\
& \mathrm{~m}=\frac{3 \pm \sqrt{9-16}}{2}=\frac{3 \pm i \sqrt{7}}{2} \\
& \alpha \pm i \beta=\frac{3 \pm i \sqrt{7}}{2}=\frac{3}{2} \pm i \frac{\sqrt{7}}{2} \\
& \mathrm{y}=e^{\frac{3}{2} x}\left(\mathrm{c}_{1} \cos \frac{\sqrt{7}}{2} \mathrm{x}+\mathrm{c}_{2} \sin \frac{\sqrt{7}}{2} \mathrm{x}\right)
\end{aligned}
$$

General solution of $f(D) \mathbf{y}=\mathbf{Q}(\mathbf{x})$

Is given by $y=y_{c}+y_{p}$
i.e. $\mathrm{y}=\mathrm{C} . \mathrm{F}+\mathrm{P} . \mathrm{I}$

Where the P.I consists of no arbitrary constants and P.I of $f(D) y=Q(x)$
Is evaluated as P.I $=\frac{1}{f(D)} \cdot \mathrm{Q}(\mathrm{x})$
Depending on the type of function of $\mathrm{Q}(\mathrm{x})$.
P.I is evaluated as follows:

1. P.I of $f(D) y=Q(x)$ where $Q(x)=e^{a x}$ for (a) $\neq 0$

Case1: P.I $=\frac{1}{f(D)} \cdot \mathrm{Q}(\mathrm{x})=\frac{1}{f(D)} \mathrm{e}^{\mathrm{ax}}=\frac{1}{f(a)} \mathrm{e}^{\mathrm{ax}}$

$$
\text { Provided } f(a) \neq 0
$$

Case 2: If $f(a)=0$ then the above method fails. Then

$$
\text { if } f(D)=(D-a)^{k} \emptyset_{(D)}
$$

(i.e ' a ' is a repeated root k times).

Then P.I $=\frac{1}{\emptyset(a)} \mathrm{e}^{\mathrm{ax}} \cdot \frac{1}{k!} \mathrm{x}^{\mathrm{k}}$ provided $\emptyset(\mathrm{a}) \neq 0$
2. P.I of $f(D) y=Q(x)$ where $Q(x)=\sin$ ax or $Q(x)=\cos a x$ where ' a ' is constant then $P . I=$ $\frac{1}{f(D)} . \mathbf{Q}(\mathbf{x})$.

Case 1: In $\mathrm{f}(\mathrm{D})$ put $\mathrm{D}^{2}=-\mathrm{a}^{2} \ni \mathrm{f}\left(-\mathrm{a}^{2}\right) \neq 0$ then P. $\mathrm{I}=\frac{\sin a x}{f\left(-a^{2}\right)}$
Case 2: If $f\left(-a^{2}\right)=0$ then $D^{2}+a^{2}$ is a factor of $\emptyset\left(D^{2}\right)$ and hence it is a factor of $f(D)$. Then let $f(D)=\left(D^{2}+a^{2}\right) \cdot \Phi\left(D^{2}\right)$.

Then $\frac{\sin a x}{f(D)}=\frac{\sin a x}{\left(D^{2}+a^{2}\right) \Phi\left(D^{2}\right)}=\frac{1}{\Phi\left(-a^{2}\right)} \frac{\sin a x}{D^{2}+a^{2}}=\frac{1}{\Phi\left(-a^{2}\right)} \frac{-x \cos a x}{2 a}$
$\frac{\cos a x}{f(D)}=\frac{\cos a x}{\left(D^{2}+a^{2}\right) \Phi\left(D^{2}\right)}=\frac{1}{\Phi\left(-a^{2}\right)} \frac{\cos a x}{D^{2}+a^{2}}=\frac{1}{\Phi\left(-a^{2}\right)} \frac{x \sin a x}{2 a}$
3. P.I for $f(D) y=Q(x)$ where $Q(x)=x^{k}$ where k is a positive integer $f(D)$ can be express as $\mathbf{f}(\mathbf{D})=[1 \pm \emptyset(D)]$
Express $\frac{1}{f(D)}=\frac{1}{1 \pm \emptyset(D)}=[1 \pm \emptyset(D)]^{-1}$
Hence P.I $=\frac{1}{1 \pm \varnothing(D)} Q(x)$.

$$
=[1 \pm \emptyset(D)]^{-1} \cdot \mathrm{x}^{\mathrm{k}}
$$

4. P.I of $f(D) y=Q(x)$ when $Q(x)=e^{a x} V$ where' ' a ' is a constant and V is function of x. where $V=\sin$ ax or \cos ax or x^{k}

$$
\begin{aligned}
\text { Then P.I } & =\frac{1}{f(D)} \mathrm{Q}(\mathrm{x}) \\
& =\frac{1}{f(D)} \mathrm{e}^{\mathrm{ax}} \mathrm{~V} \\
& =\mathrm{e}^{\mathrm{ax}}\left[\frac{1}{f(D+a)}(\mathrm{V})\right]
\end{aligned}
$$

$\& \frac{1}{f(D+a)} \mathrm{V}$ is evaluated depending on V .
5. P.I of $f(D) y=Q(x)$ when $Q(x)=x V$ where V is a function of x.

Then P.I $=\frac{1}{f(D)} \mathbf{Q}(\mathbf{x})$

$$
\begin{aligned}
& =\frac{1}{f(D)} \times \mathrm{V} \\
& =\left[\mathrm{x}-\frac{1}{f(D)} \mathrm{f}^{\mathrm{l}}(\mathrm{D})\right] \frac{1}{f(D)} \mathrm{V}
\end{aligned}
$$

6. i. P.I. of $f(D) y=Q(x)$ where $Q(x)=x^{m} v$ where v is a function of x.

Then P.I. $=\frac{1}{f(D)} \times Q(x)=\frac{1}{f(D)} x^{m} v=I . P . o f \frac{1}{f(D)} x^{m}(\cos a x+i \sin a x)$
$=I . P . o f \frac{1}{f(D)} x^{m} e^{i a x}$
ii. P.I. $=\frac{1}{f(D)} x^{m} \cos a x=R . P . o f \frac{1}{f(D)} x^{m} e^{i a x}$

Formulae

1. $\frac{1}{1-D}=(1-\mathrm{D})^{-1}=1+\mathrm{D}+\mathrm{D}^{2}+\mathrm{D}^{3}+$ \qquad
2. $\frac{1}{1+D}=(1+\mathrm{D})^{-1}=1-\mathrm{D}+\mathrm{D}^{2}-\mathrm{D}^{3}+$ \qquad
3. $\frac{1}{(1-D)^{2}}=(1-D)^{-2}=1+2 D+3 D^{2}+4 D^{3}+$ \qquad
4. $\frac{1}{(1+D)^{2}}=(1+D)^{-2}=1-2 D+3 D^{2}-4 D^{3}+$ \qquad
5. $\frac{1}{(1-D)^{2}}=(1-D)^{-3}=1+3 D+6 D^{2}+10 D^{3}+$ \qquad
6. $\frac{1}{(1+D)^{\mathrm{a}}}=(1+D)^{-3}=1-3 D+6 D^{2}-10 D^{3}+$ \qquad
I. HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS:
7. Find the Particular integral of $f(D) y=e^{a x}$ when $f(a) \neq 0$
8. Solve the D.E $\left(D^{2}+5 D+6\right) y=e^{x}$
9. Solve $y^{11}+4 y^{1}+4 y=4 e^{3 x} ; y(0)=-1, y^{1}(0)=3$
10. Solve $y^{11}+4 y^{1}+4 y=4 \cos x+3 \sin x, y(0)=1, y^{1}(0)=0$
11. Solve $\left(D^{2}+9\right) y=\cos 3 x$
12. Solve $y^{111}+2 y^{11}-y^{1}-2 y=1-4 x^{3}$
13. Solve the D.E $\left(D^{3}-7 D^{2}+14 D-8\right) y=e^{x} \cos 2 x$
14. Solve the D.E $\left(D^{3}-4 D^{2}-D+4\right) y=e^{3 x} \cos 2 x$
15. Solve $\left(D^{2}-4 D+4\right) y=x^{2} \sin x+e^{2 x}+3$
16. Apply the method of variation parameters to solve $\frac{d^{2} y}{d x^{2}}+\mathrm{y}=$ cosec x
17. Solve $\frac{d x}{d t}=3 \mathrm{x}+2 \mathrm{y}, \frac{d y}{d t}+5 \mathrm{x}+3 \mathrm{y}=0$
18. Solve $\left(D^{2}+D-3\right) y=x^{2} e^{-3 x}$
19. Solve $\left(D^{2}-D-2\right) y=3 e^{2 x}, y(0)=0, y^{1}(0)=-2$

SOLUTIONS:

1) Particular integral of $\mathbf{f}(\mathbf{D}) \mathbf{y}=e^{a x}$ when $\mathbf{f}(\mathbf{a}) \neq \mathbf{0}$

Working rule:
Case (i):
In $f(D)$, put $D=a$ and Particular integral will be calculated.
Particular integral $=\frac{1}{f(D)} e^{a x}=\frac{1}{f(a)} e^{a x}$ provided $\mathrm{f}(\mathrm{a}) \neq 0$
Case (ii) :
If $f(a)=0$, then above method fails. Now proceed as below.
If $f(D)=(D-a)^{k} \phi_{(D)}$
i.e. 'a' is a repeated root k times, then

Particular integral $=\frac{e^{a x}}{\phi(\mathrm{a})} \cdot \frac{x^{k}}{k!}$ provided $\phi(\mathrm{a}) \neq 0$

2. Solve the Differential equation $\left(D^{2}+5 D+6\right) y=e^{x}$

Sol : Given equation is $\left(D^{2}+5 D+6\right) y=e^{x}$

$$
\text { Here } Q(x)=e^{x}
$$

Auxiliary equation is $f(m)=m^{2}+5 m+6=0$

$$
\begin{aligned}
& m^{2}+3 m+2 m+6=0 \\
& m(m+3)+2(m+3)=0 \\
& m=-2 \text { or } m=-3
\end{aligned}
$$

The roots are real and distinct

$$
\text { C.F }=y_{c}=c_{1} e^{-2 x}+c_{2} e^{-3 x}
$$

$$
\text { Particular Integral }=\mathrm{y}_{\mathrm{p}}=\frac{1}{f(D)} \cdot \mathrm{Q}(\mathrm{x})
$$

$$
=\frac{1}{D 2+5 D+6} \mathrm{e}^{\mathrm{x}}=\frac{1}{(D+2)(D+3)} \mathrm{e}^{\mathrm{x}}
$$

Put $D=1$ in $f(D)$

$$
\text { Particular Integral }=y_{\mathrm{p}}=\frac{1}{12} \cdot \mathrm{e}^{\mathrm{x}}
$$

General solution is $\mathrm{y}=\mathrm{y}_{\mathrm{c}}+\mathrm{y}_{\mathrm{p}}$

$$
y=c_{1} e^{-2 x}+c_{2} e^{-3 x}+\frac{e^{x}}{12}
$$

3) Solve $y^{11}-4 y^{1}+3 y=4 e^{3 x}, y(0)=-1, y^{1}(0)=3$

Sol : Given equation is $y^{11}-4 y^{1}+3 y=4 e^{3 x}$

$$
\text { i.e. } \frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+3 \mathrm{y}=4 \mathrm{e}^{3 \mathrm{x}}
$$

it can be expressed as
$D^{2} y-4 D y+3 y=4 e^{3 x}$
$\left(D^{2}-4 D+3\right) y=4 e^{3 x}$
Here $Q(x)=4 e^{3 x} ; f(D)=D^{2}-4 D+3$
Auxiliary equation is $f(m)=m^{2}-4 m+3=0$
$m^{2}-3 m-m+3=0$
$m(m-3)-1(m-3)=0 \Rightarrow m=3$ or 1
The roots are real and distinct.
C.F $=y_{c}=c_{1} \mathrm{e}^{3 \mathrm{x}}+\mathrm{c}_{2} \mathrm{e}^{\mathrm{x}}----\rightarrow$ (2)
P.I. $=\mathrm{y}_{\mathrm{p}}=\frac{1}{f(D)} \cdot \mathrm{Q}(\mathrm{x})$
$=\mathrm{y}_{\mathrm{p}}=\frac{1}{D^{2}-4 D+3} \cdot 4 \mathrm{e}^{3 \mathrm{x}}$
$=y_{\mathrm{p}}=\frac{1}{(D-1)(D-3)} \cdot 4 \mathrm{e}^{3 \mathrm{x}}$
Put $\mathrm{D}=3$
$y_{p}=\frac{4 e^{3 x}}{(3-1)(D-3)}=\frac{4}{2} \frac{e^{3 x}}{(D-3)}=2 \frac{x^{1}}{1!} e^{3 x}=2 x e^{3 x}$
General solution is $y=y_{c}+y_{p}$
$y=c_{1} e^{3 x}+c_{2} e^{x}+2 x e^{3 x}$
Equation (3) differentiating with respect to ' x '
$y^{1}=3 c_{1} e^{3 x}+c_{2} e^{x}+2 e^{3 x}+6 x e^{3 x}$
By data, $\mathrm{y}(0)=-1, \mathrm{y}^{1}(0)=3$
From (3), $-1=\mathrm{c}_{1}+\mathrm{c}_{2}$
From (4), $3=3 \mathrm{c}_{1}+\mathrm{c}_{2}+2$

$$
\begin{equation*}
3 c_{1}+c_{2}=1 \tag{6}
\end{equation*}
$$

\qquad
Solving (5) and (6) we get $c_{1}=1$ and $c_{2}=-2$
(4). Solve $y^{11}+4 y^{1}+4 y=4 \cos x+3 \sin x, y(0)=0, y^{1}(0)=0$

Sol: Given differential equation in operator form

$$
\left(D^{2}+4 D+4\right) y=4 \cos x+3 \sin x
$$

A.E is $m^{2}+4 m+4=0$

$$
(m+2)^{2}=0 \quad \text { then } m=-2,-2
$$

\therefore C.F is $y_{c}=\left(c_{1}+c_{2} x\right) e^{-2 x}$

> P.I is $=\mathrm{y}_{\mathrm{p}}=\frac{4 \cos x+3 \sin x}{\left(D^{2}+4 \mathrm{D}+4\right)} \quad$ put $D^{2}=-1$
> $\mathrm{y}_{\mathrm{p}}=\frac{4 \cos x+3 \sin x}{(4 \mathrm{D}+3)}=\frac{(4 \mathrm{D}-3)(4 \cos x+3 \sin x)}{(4 \mathrm{D}-3)(4 \mathrm{D}+3)}$
> $=\frac{(4 \mathrm{D}-3)(4 \cos x+3 \sin x)}{16 D^{2}-9}$

Put $D^{2}=-1$
$\therefore \mathrm{y}_{\mathrm{p}}=\frac{(4 \mathrm{D}-3)(4 \cos x+3 \sin x)}{-16-9}$
$=\frac{-16 \sin x+12 \cos x-12 \cos x-9 \sin x)}{-25}=\frac{-25 \sin x}{-25}=\sin x$
\therefore General equation is $y=y_{c}+y_{p}$
$y=\left(c_{1}+c_{2} x\right) e^{-2 x}+\sin x$

By given data, $\mathrm{y}(0)=0^{*}{ }^{*} \mathrm{c}_{1}=0$ and
Diff (1) w.r.. t. $y^{1}=\left(c_{1}+c_{2} x\right)(-2) e^{-2 x}+e^{-2 x}\left(c_{2}\right)+\cos x$
given $y^{1}(0)=0$
(2) $\Rightarrow-2 c_{1}+c_{2}+1=0 \quad{ }^{*} c_{2}=-1$
\therefore Required solution is $y=-x e^{-2 x}+\sin x$

5. Solve $\left(D^{2}+9\right) y=\cos 3 x$

Sol:Given equation is $\left(D^{2}+9\right) y=\cos 3 x$
A. E is $m^{2}+9=0$

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{c}}=\mathrm{C} . \mathrm{F}=\mathrm{c}_{1} \cos 3 \mathrm{x}+\mathrm{c}_{2} \sin 3 \mathrm{x} \\
& \mathrm{y}_{\mathrm{c}}=\mathrm{P} . \mathrm{I}=\frac{\cos 3 x}{D^{2}+9}=\frac{\cos 3 x}{D^{2}+3^{2}} \\
& =\frac{x}{2(3)} \sin 3 \mathrm{x}=\frac{x}{6} \sin 3 \mathrm{x}
\end{aligned}
$$

General equation is $y=y_{c}+y_{p}$

$$
\mathrm{y}=\mathrm{c}_{1} \cos 3 \mathrm{x}+\mathrm{c}_{2} \cos 3 \mathrm{x}+\frac{x}{6} \sin 3 \mathrm{x}
$$

6. Solve $y^{111}+2 y^{11}-y^{1}-2 y=1-4 x^{3}$

Sol:Given equation can be written as

$$
\begin{aligned}
& \left(D^{3}+2 D^{2}-\mathrm{D}-2\right) \mathrm{y}=1-4 \mathrm{x}^{3} \\
& \text { A.E is }\left(m^{3}+2 m^{2}-\mathrm{m}-2\right)=0 \\
& \left(m^{2}-1\right)(\mathrm{m}+2)=0 \\
& m^{2}=1 \text { or } \mathrm{m}=-2 \\
& \mathrm{~m}=1,-1,-2 \\
& \text { C.F }=\mathrm{c}_{1} e^{x}+\mathrm{c}_{2} e^{-x}+\mathrm{c}_{3} e^{-2 x} \\
& \text { P.I }=\frac{1}{\left(D^{3}+2 D^{2}-\mathrm{D}-2\right)}\left(1-4 x^{3}\right) \\
& \quad=\frac{-1}{2\left[1-\frac{\left(D^{3}+2 D^{2}-\mathrm{D}\right)}{2}\right]}\left(1-4 x^{3}\right) \\
& \quad=\frac{-1}{2}\left[1-\frac{\left(D^{3}+2 D^{2}-\mathrm{D}\right)}{2}\right]^{-1}\left(1-4 x^{3}\right) \\
& =\frac{-1}{2}\left[1+\frac{\left(D^{3}+2 D^{2}-\mathrm{D}\right)}{2}+\frac{\left(D^{3}+2 D^{2}-\mathrm{D}\right)^{2}}{4}+\frac{\left(D^{3}+2 D^{2}-\mathrm{D}\right)^{3}}{8}+\ldots . .\right]\left(1-4 x^{3}\right) \\
& \\
& =\frac{-1}{2}\left[1+\frac{1}{2}\left(D^{3}+2 D^{2}-D\right)+\frac{1}{4}\left(D^{2}-4-\frac{5}{8}\left(D^{3}\right)+\frac{5}{4}\left(D^{2}\right)+\frac{1}{8}\left(-D^{3}\right)\right]\left(1-4 x^{3}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-1}{2}\left[\left(1-4 x^{3}\right)-\frac{5}{8}(-24)+\frac{5}{4}(-24 x)-\frac{1}{2}\left(-12 x^{2}\right)\right. \\
& =\frac{-1}{2}\left[-4 x^{3}+6 x^{2}-30 x+16\right]= \\
& =\left[2 x^{3}-3 x^{2}+15 x-8\right]
\end{aligned}
$$

The general solution is
$y=C . F+P . I$
$\mathrm{y}=\mathrm{c}_{1} e^{x}+\mathrm{c}_{2} e^{-x}+\mathrm{c}_{3} e^{-2 x}+\left[2 \mathrm{x}^{3}-3 \mathrm{x}^{2}+15 \mathrm{x}-8\right]$
7. Solve $\left(D^{3}-7 D^{2}+14 \mathrm{D}-8\right) \mathrm{y}=e^{x} \cos 2 \mathrm{x}$

Given equation is
$\left(D^{3}-7 D^{2}+14 \mathrm{D}-8\right) \mathrm{y}=e^{x} \cos 2 \mathrm{x}$
A.E is $\left(m^{3}-7 m^{2}+14 m-8\right)=0$
$(m-1)(m-2)(m-4)=0$

Then $m=1,2,4$
C.F $=\mathrm{c}_{1} e^{x}+\mathrm{c}_{2} e^{2 x}+\mathrm{c}_{3} e^{4 x}$
P.I $=\frac{e^{x} \cos 2 x}{\left(D^{3}-7 D^{2}+14 \mathrm{D}-8\right)}$
$=e^{x} \cdot \frac{1}{(D+1)^{3}-7(D+1)^{2}+14(D+1)-8} \cdot \cos 2 x$
$\left[\because P . I=\frac{1}{f(D)} e^{a x} v=e^{a x} \frac{1}{f(D+a)} v\right\rceil$
$=e^{x} \cdot \frac{1}{\left(D^{3}-4 D^{2}+3 \mathrm{D}\right)} \cdot \cos 2 \mathrm{x}$
$=e^{x} \cdot \frac{1}{(-4 D+3 \mathrm{D}+16)} \cdot \cos 2 \mathrm{x}\left(\right.$ Replacing D^{2} with $\left.-2^{2}\right)$
$=e^{x} \cdot \frac{1}{(16-\mathrm{D})} \cdot \cos 2 \mathrm{x}$
$=e^{x} \cdot \frac{16+D}{(16-\mathrm{D})(16+\mathrm{D})} \cdot \cos 2 \mathrm{x}$
$=e^{x} \cdot \frac{16+D}{256-D^{2}} \cdot \cos 2 x$

$$
\begin{aligned}
& =e^{x} \cdot \frac{16+D}{256-(-4)} \cdot \cos 2 x \\
& =\frac{e^{x}}{260}(16 \cos 2 x-2 \sin 2 x) \\
& =\frac{2 e^{x}}{260}(8 \cos 2 x-\sin 2 x) \\
& =\frac{e^{x}}{130}(8 \cos 2 x-\sin 2 x)
\end{aligned}
$$

General solution is $y=y_{c}+y_{p}$

$$
y=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{4 x}+\frac{e^{x}}{130}(8 \cos 2 x-\sin 2 x)
$$

8. Solve $\left(D^{2}-4 D+4\right) y=x^{2} \sin x+e^{2 x}+3$

Sol:Given $\left(D^{2}-4 D+4\right) y=x^{2} \sin x+e^{2 x}+3$

$$
\begin{aligned}
& \text { A.E is }\left(m^{2}-4 m+4\right)=0 \\
& (m-2)^{2}=0 \text { then } m=2,2 \\
& \text { C.F. }=\left(c_{1}+c_{2} x\right) e^{2 x} \\
& \begin{aligned}
& \text { P.I }=\frac{x^{2} \sin x+e^{2 x}+3}{(D-2)^{2}}=\frac{1}{(D-2)^{2}}\left(x^{2} \sin x\right)+\frac{1}{(D-2)^{2}} e^{2 x}+\frac{1}{(D-2)^{2}}(3) \\
& \text { Now } \frac{1}{(D-2)^{2}}\left(x^{2} \sin x\right)=\frac{1}{(D-2)^{2}}\left(x^{2}\right) \\
& \qquad \quad=I . P \text { of } \frac{1}{(D-2)^{2}}\left(x^{2}\right)\left(e^{i x}\right) \\
&\left.=I . P \text { of } e^{i x}\right)
\end{aligned}
\end{aligned}
$$

On simplification, we get

$$
\begin{aligned}
& \frac{1}{(D+i-2)^{2}}\left(x^{2} \sin x\right)=\frac{1}{625}[(220 \mathrm{x}+244) \cos \mathrm{x}+(40 \mathrm{x}+33) \sin \mathrm{x}] \\
& \text { and } \frac{1}{(D-2)^{2}}\left(e^{2 x}\right)=\frac{x^{2}}{2}\left(e^{2 x}\right), \\
& \frac{1}{(D-2)^{2}}(3)=\frac{3}{4} \\
& \text { P.I }=\frac{1}{625}[(220 \mathrm{x}+244) \cos \mathrm{x}+(40 \mathrm{x}+33) \sin \mathrm{x}]+\frac{x^{2}}{2}\left(e^{2 x}\right)+\frac{3}{4} \\
& \mathrm{y}=\mathrm{y}_{\mathrm{c}}+\mathrm{y}_{\mathrm{p}}
\end{aligned}
$$

Variation of Parameters :

Working Rule :

1. Reduce the given equation of the form $\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=R$
2. Find C.F.
3. Take P.I. $\mathrm{y}_{\mathrm{p}}=\mathrm{Au}+\mathrm{Bv}$ where $\mathrm{A}=-\int \frac{v R d x}{u v^{1}-v u^{1}}$ and $B=\int \frac{u R d x}{u v^{1}-v u^{1}}$
4. Write the G.S. of the given equation $y=y_{c}+y_{p}$
5. Apply the method of variation of parameters to solve $\frac{d^{2} y}{d x^{2}}+\mathbf{y}=\operatorname{cosec} x$

Sol: Given equation in the operator form is $\left(D^{2}+1\right) y=\operatorname{cosec} x$
A.E is $\left(m^{2}+1\right)=0$
$\therefore m= \pm i$

The roots are complex conjugate numbers.

$$
\begin{aligned}
& \therefore \text { C.F. is } \mathrm{y}_{\mathrm{c}}=\mathrm{c}_{1} \cos \mathrm{x}+\mathrm{c}_{2} \sin \mathrm{x} \\
& \text { Let } \mathrm{y}_{\mathrm{p}}=\mathrm{A} \cos \mathrm{x}+\mathrm{B} \sin \mathrm{x} \text { be P.I. of (1) } \\
& \mathrm{u} \frac{d v}{d x}-\mathrm{v} \frac{d u}{d x}=\cos ^{2} x+\sin ^{2} x=1
\end{aligned}
$$

A and B are given by

$$
\begin{aligned}
& \mathrm{A}=-\int \frac{v R d x}{u v^{1}-v u^{1}}=-\int \frac{\sin x \operatorname{cosec} x}{1} \mathrm{~d} \mathrm{x}=-\int d x=-\mathrm{x} \\
& \mathrm{~B}=\int \frac{u R d x}{u v^{1}-v u^{1}}=\int \cos x \cdot \operatorname{cosec} x d x=\int \cot x d x=\log (\sin \mathrm{x})
\end{aligned}
$$

${ }^{*} y_{p}=-x \cos x+\sin x . \log (\sin x)$

$$
\begin{aligned}
& \therefore \text { General solution is } y=y_{c}+y_{p} . \\
& y=c_{1} \cos x+c_{2} \sin x-x \cos x+\sin x . \log (\sin x)
\end{aligned}
$$

10. Solve $\left(4 D^{2}-4 D+1\right) y=100$

Sol:A.E is $\left(4 m^{2}-4 m+1\right)=0$

$$
(2 m-1)^{2}=0 \text { then } m=\frac{11}{2 \cdot \frac{1}{2}}
$$

$$
\text { P.I }=\frac{100}{\left(4 D^{2}-4 \mathrm{D}+1\right)}=\frac{100 e^{0 . x}}{(2 \mathrm{D}-1)^{2}}=\frac{100}{(0-1)^{2}}=100
$$

Hence the general solution is $y=C . F+P . I$

$$
\mathrm{y}=\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}\right) e^{\frac{x}{2}}+100
$$

Applications of Differential Equations:

11. The differential equation satisfying a beam uniformly loaded ($\mathrm{w} \mathrm{kg} /$ meter) with one end fixed and the second end subjected to tensile force p is given by

$$
\text { El } \frac{d^{2} y}{d x^{2}}=\text { py }-\frac{1}{2} \mathrm{w} X^{2}
$$

Show that the elastic curve for the beam with conditions $\mathrm{y}=0=\frac{d y}{d x}$ at $\mathrm{x}=0$ is given by $\mathrm{y}=\frac{w}{n^{2} p}$ $(1-\operatorname{coshn} x)+\frac{w x^{2}}{2 p}$ where $n^{2}=\frac{p}{E I}$

Sol:The given differential equation can be written as
$\frac{d^{2} y}{d x^{2}}-\frac{p}{E I} y=\frac{-1}{2 E I} W X^{2}$ (or)
$\frac{d^{2} y}{d x^{2}}-n^{2} y=\frac{-w}{2 E I} x^{2}$ (or)

$$
\begin{equation*}
\left(D^{2}-n^{2}\right) y=\frac{-w}{2 E I} x^{2} \tag{1}
\end{equation*}
$$

The auxiliary equation is $\left(m^{2}-n^{2}\right)=0 \Rightarrow m=n$ and $m=-n$

$$
\begin{aligned}
& \therefore \mathrm{C} . \mathrm{F}=\mathrm{y}_{\mathrm{c}}=\mathrm{c}_{1} e^{n x}+\mathrm{c}_{2} e^{-n x} \\
& \text { P.I }=\frac{1}{\left(D^{2}-n^{2}\right)}\left(\frac{-w}{2 E I} x^{2}\right)
\end{aligned}
$$

$$
=\frac{w}{2 E I}\left(\frac{1}{\left(n^{2}-D^{2}\right)} x^{2}\right)
$$

$$
=\frac{w}{2 E I}\left(\frac{1}{\left(n^{2}\left(1-\frac{D^{2}}{n^{2}}\right)\right)} x^{2}\right)
$$

$$
=\frac{w}{2 E I n^{2}}\left(1-\frac{D^{2}}{n^{2}}\right)^{-1} \cdot x^{2}
$$

$$
=\frac{w}{2 E L \cdot n^{2}}\left(1+\frac{D^{2}}{n^{2}}+-\cdots---\right) \cdot x^{2}
$$

$$
=\frac{w}{2 E I n^{2}}\left(X^{2}+\frac{2}{n^{2}}\right)
$$

\therefore The general solution of equation (1) is given by $y=C . F+P . I$

$$
\mathrm{y}=\mathrm{c}_{1} e^{n x}+\mathrm{c}_{2} e^{-n x}+\frac{w}{2 E I n^{2}}\left(X^{2}+\frac{2}{n^{2}}\right)
$$

12. A condenser of capacity ' C ' discharged through an inductance L and resistance R in series and the charge q at time t satisfies the equation $\frac{d^{2} q}{d t^{2}}+\mathrm{R} \frac{d q}{d t}+\frac{q}{C}=0$. Given that $\mathrm{L}=0.25 \mathrm{H}, \mathrm{R}=250 \mathrm{ohms}, \mathrm{c}=2 * 10^{-6}$ farads, and that when $t=0$, change q is 0.002 coulombs and the current $\frac{d q}{d t}=0$, obtain the value of ' q ' in terms of t.

Sol:

Given differential equation is

$$
\begin{equation*}
\mathrm{L} \frac{d^{2} q}{d t^{2}}+\mathrm{R} \frac{d q}{d t}+\frac{q}{C}=0 \text { or } \frac{d^{2} q}{d t^{2}}+\frac{R}{L} \frac{d q}{d t}+\frac{q}{L C}=0- \tag{1}
\end{equation*}
$$

Substituting the given values in (1), we get
$\frac{d^{2} q}{d t^{2}}+\frac{250}{0.25} \frac{d q}{d t}+\frac{q}{0.25 * 2 * 10^{-6}}=0 \quad$ or
$\frac{d^{2} q}{d t^{2}}+1000 \frac{d q}{d t}+2 * 10^{6} q=0$
or

$$
\left(D^{2}+1000 D+2 * 10^{6}\right) q=0
$$

$$
\text { Its A.E is } m^{2}+1000 m+2 * 10^{6}=0
$$

$$
\therefore \mathrm{m}=\frac{-1000 \pm \sqrt{10^{6}-8 \times 10^{6}}}{2}=\frac{-1000 \pm 1000 \sqrt{7 i}}{2}
$$

$$
=-500 \pm 1323 i
$$

Thus the solution is $\mathrm{q}=e^{-500 t}\left(\mathrm{c}_{1} \cos 1323 \mathrm{t}+\mathrm{c}_{2} \sin 1323 \mathrm{t}\right)$

When $t=0, q=0.002 \quad$ since $c_{1}=0.002$

Now $\frac{d q}{d t}=-500 e^{-500 t}\left(c_{1} \cos 1323 t+c_{2} \sin 1323 t\right)+e^{-500 t} \times 1323\left(-c_{1} \sin 1323 t+c_{2} \cos 1323 t\right)$

When $t=0, \frac{d q}{d t}=0$

There fore $\mathrm{c}_{2}=0.0008$

Hence the required solution is $q=e^{-500 t}(0.002 \cos 1323 t+0.0008 \sin 1323 t)$
13. A particle is executing S.H.M, with amplitude 5 meters and time 4 seconds. Find the time required by the particle in passing between points which are at distances 4 and 2 meters from the Centre of force and are on the same side of it.

Sol: The equation of S.H.M is $\frac{d^{2} x}{d t^{2}}=-\mu^{2} X$

Give time period $=\frac{2 \pi}{\mu}=4$
$\mu=\frac{\pi}{2}$

We have the solution of (1) is $x=\operatorname{acos} \mu_{t}$

$$
\begin{array}{r}
a=5, \mu=\frac{\pi}{2} \\
x=5 \cos \frac{\pi}{2} t \tag{2}
\end{array}
$$

Let the times when the particle is at distances of 4 meters and 2 meters from the centre of motion respectively be $t_{1} \sec$ and $t_{2} \mathrm{sec}$
$\therefore \mathrm{t}_{1}=\frac{2}{\pi} \cos ^{-1}\left(\frac{4}{5}\right) \quad$ since $\left[4=5 \cos \left(\frac{\pi}{2} t_{1}\right)\right]$ and $\mathrm{t}_{2}=\frac{2}{\pi} \cos ^{-1}\left(\frac{2}{5}\right) \quad$ since $\left[2=5 \cos \left(\frac{\pi}{2} t_{2}\right)\right]$
time required in passing through these points

$$
t_{2}-t_{1}=\frac{2}{\pi}\left[\cos ^{-1}\left(\frac{2}{5}\right)-\cos ^{-1}\left(\frac{4}{5}\right)\right]=0.33 \mathrm{sec}
$$

differentiating (2) w.r.to ' t '
$\frac{d x}{d t}=\frac{-5 \pi}{2} \sin \frac{\pi}{2} t$

$$
=\frac{-5 \pi}{2} \sqrt{1-\frac{x^{2}}{25}}
$$

$\frac{d x}{d t}=\frac{-\pi}{2} \sqrt{25-x^{2}}$

When $\mathrm{x}=4$ meters $\mathrm{v}=\frac{\pi}{2} \sqrt{5^{2}-4^{2}}=4.71 \mathrm{~m} / \mathrm{sec}$

When $\mathrm{x}=2$ meters $\mathrm{v}=\frac{\pi}{2} \sqrt{21} \mathrm{~m} / \mathrm{sec}$
14. A body weighing 10kgs is hung from a spring. A pull of 20 kgs will stretch the spring to 10 cms . The body is pulled down to 20 cm s below the static equilibrium position and then released. Find the displacement of the body from its equilibrium position at time t seconds the maximum velocity and the period of oscillation.

Sol:Let 0 be the fixed end and A be the other end of the spring. Since load of 20 kg attached to A stretches the spring by 0.1 m .

Let $e(A B)$ be the elongation produced by the mass ' m ' hanging in equilibrium.

If ' k ' be the restoring force per unit stretch of the spring due to elasticity, then for the equilibrium at B

$$
\begin{aligned}
& \mathrm{Mg}=\mathrm{T}=\mathrm{ke} \\
& 20=\mathrm{T}_{0}=\mathrm{k} * 0.1 \\
& \mathrm{~K}=200 \mathrm{~kg} / \mathrm{m}
\end{aligned}
$$

Let B be the equilibrium position when 10kg weight is

$$
10=T_{B}=k * A B \Rightarrow A B=\frac{10}{200}=0.05 m
$$

Now the weight is pulled down to c, where $B C=0.2$. After any time t of its release from c, let the weight be at p, where $B P=x$.

Then the tension $T=k * A P$

$$
=200(0.05+x)=10+200 x
$$

\therefore The equation of motion of the body is
$\frac{w}{g} \frac{d^{2} x}{d t^{2}}=\mathrm{w}-\mathrm{T} \quad$ where $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{sec}^{2}$

$$
\begin{aligned}
& =\frac{10}{9.8} \frac{d^{2} x}{d t^{2}} \\
& =10-(10+200 \mathrm{x}) \\
& \quad \Rightarrow \quad \frac{d^{2} x}{d t^{2}}=-\mu^{2} \mathrm{x}
\end{aligned}
$$

$$
\text { where } \mu=14
$$

This shows that the motion of the body in simple harmonic about B as centre and the period of oscillation $=$ $\frac{2 \pi}{\mu}=0.45 \mathrm{sec}$

Also the amplitude of motion being $B C=0.2 m$, the displacement of the body from B at time t is given by $x=$ 0.2 cosect
$X=0.2 \operatorname{cosect}=0.2 \cos 14 t \mathrm{~m}$.

Maximum velocity $=\mu$ (amplitude) $=14 * 0.2=2.8 \mathrm{~m} / \mathrm{sec}$

MODULE -IV Multiple Integrals

Multiple Integrals

Double Integral :

I. When $\mathrm{y}_{1}, \mathrm{y}_{2}$ are functions of x and x_{1} and x_{2} are constants. $\mathrm{f}(\mathrm{x}, \mathrm{y})$ is first integrated w.r.t y keeping ' x ' fixed between limits y_{1}, y_{2} and then the resulting expression is integrated w.r.t ' x ' with in the limits $\mathrm{x}_{1}, \mathrm{x}_{2}$ i.e.,
$\iint_{R} f(x, y) d x d y=$

$$
\int_{x=x_{1}}^{x=x_{2}} \int_{y=\phi_{1}(x)}^{y=\phi_{2}(x)} f(x, y) d y d x
$$

II. When x_{1}, x_{2} are functions of y and y_{1}, y_{2} are constants, $f(x, y)$ is first integrated w.r.t ' x ' keeping ' y ' fixed, with in the limits x_{1}, x_{2} and then resulting expression is integrated w.r.t ' y ' between the limits $\mathrm{y}_{1}, \mathrm{y}_{2}$ i.e.,

$$
\iint_{R} f(x, y) d x d y=\quad \int_{y=y_{1}}^{y=y_{2}} \int_{x=\phi_{1}(y)}^{x=\phi_{2}(y)} f(x, y) d x d y
$$

III. When $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{y}_{1}, \mathrm{y}_{2}$ are all constants. Then

$$
\iint_{R} f(x, y) d x d y=\quad \int_{y_{1}}^{y_{2}} \int_{x_{1}}^{x_{2}} f(x, y) d x d y=\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} f(x, y) d y d x
$$

Problems

1. Evaluate $\int_{1}^{2} \int_{1}^{3} x y^{2} d x d y$

Sol. $\quad \int_{1}^{2}\left[\int_{1}^{3} x y^{2} d x\right] d y$
$=\int_{1}^{2}\left[y^{2} \cdot \frac{x^{2}}{2}\right]_{1}^{3} d y=\int_{1}^{2} \frac{y^{2}}{2} d y[9-1]$
$=\frac{8}{2} \int_{1}^{2} y^{2} d y=4 \cdot \int_{1}^{2} y^{2} d y$
$=4 \cdot\left[y^{3} / 3\right]_{1}^{2}=\frac{4}{3}[8-1]=\frac{4.7}{3}=\frac{28}{3}$
2. Evaluate $\int_{0}^{2} \int_{0}^{x} y d y d x$

Sol. $\quad \int_{x=0}^{2} \int_{y=0}^{x} y d y d x=\int_{x=0}^{2}\left\lceil\int_{y=0}^{x} y d y \mid d x\right.$
$=\int_{x=0}^{2}\left[\frac{\left.y^{2}\right\rceil^{x}}{2}\right]_{0}^{2} d x=\int_{x=0}^{2} \frac{1}{2}\left(x^{2}-0\right) d x=\frac{1}{2} \int_{x=0}^{2} x^{2} d x=\frac{1}{2}\left[\frac{x^{3}}{3}\right]_{0}^{2}=\frac{1}{6}(8-0)=\frac{8}{6}=\frac{4}{3}$
3. Evaluate $\int_{0}^{5} \int_{0}^{x^{2}} x\left(x^{2}+y^{2}\right) d x d y$

Sol.

$$
\begin{aligned}
& \int_{x=0}^{5} \int_{y=0}^{x^{2}} x\left(x^{2}+y^{2}\right) d y d x=\int_{x=0}^{5}\left[x^{3} y+\frac{x y^{3}}{3}\right]_{y=0}^{x^{2}} d x \\
& =\int_{x=0}^{5}\left[x^{3} \cdot x^{2}+\frac{x\left(x^{2}\right)^{3}}{3}\right] d x=\int_{x=0}^{5}\left(x^{5}+\frac{x^{7}}{3}\right) d x=\left[\frac{x^{6}}{6}+\frac{1}{3} \cdot \frac{x^{8}}{8}\right]_{0}^{5}=\frac{5^{6}}{6}+\frac{5^{8}}{24}
\end{aligned}
$$

4. Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1+x^{2}}} \frac{d y d x}{1+x^{2}+y^{2}}$

Sol: $\int_{0}^{1} \int_{0}^{\sqrt{1+x^{2}}} \frac{d y d x}{1+x^{2}+y^{2}}=\int_{x=0}^{1}\left[\left.\int_{y=0}^{\sqrt{1+x^{2}}} \frac{1}{\left(1+x^{2}\right)+y^{2}} d y \right\rvert\, d x\right.$
$=\int_{x=0}^{1}\left[\int_{y=0}^{\sqrt{1+x^{2}}} \frac{1}{\left(\sqrt{1+x^{2}}\right)^{2}+y^{2}} d y \left\lvert\, d x=\int_{x=0}^{1} \frac{1}{\sqrt{1+x^{2}}}\left[\operatorname{Tan}^{-1} \frac{y}{\sqrt{1+x^{2}}}\right]_{y=0}^{\sqrt{1+x^{2}}} d x\left[\because \int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1}(x / a)\right]\right.\right.$
$=\int_{x=0}^{1} \frac{1}{\sqrt{1+x^{2}}}\left[\operatorname{Tan}^{-1} 1-\operatorname{Tan}^{-1} 0\right] d x$ or $\frac{\pi}{4}\left(\sinh ^{-1} \mathrm{x}\right)_{0}^{1}=\frac{\pi}{4}\left(\sinh ^{-1} 1\right)$
$=\frac{\pi}{4} \int_{x=0}^{1} \frac{1}{\sqrt{1+x^{2}}} d x=\frac{\pi}{4}\left[\log \left(x+\sqrt{x^{2}+1}\right)\right]_{x=0}^{1}$
$=\frac{\pi}{4} \log (1+\sqrt{2})$
5. Evaluate $\int_{0}^{4} \int_{0}^{x^{2}} e^{y / x} d y d x$

Answer: $3 e^{4}-7$

6. Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}}\left(x^{2}+y^{2}\right) d x d y$

Answer: 3/35
. Evaluate $\int_{0}^{2} \int_{0}^{x} e^{(x+y)} d y d x$
Ans: $\frac{e^{4}-e^{2}}{2}$
8. Evaluate $\int_{0}^{2} \int_{-1}^{1} x^{2} y^{2} d x d y$

Ans: $\frac{\pi^{3}}{36}$

Sol: $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y=\int_{0}^{\infty} e^{-y^{2}}\left\lceil\int_{0}^{\infty} e^{-x^{2}} d x\right\rfloor d y$

$=\int_{0}^{\infty} e^{-y^{2}} \frac{\sqrt{\pi}}{2} d y \quad \because \int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$
$=\frac{\sqrt{\pi}}{2} \int_{0}^{\infty} e^{-y^{2}} d y=\frac{\sqrt{\pi}}{2} \cdot \frac{\sqrt{\pi}}{2}=\frac{\pi}{4}$
Alter:
$\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y=\int_{\theta=0}^{\frac{\pi}{2}} \int_{r=0}^{\infty} e^{-r^{2}} r d r d \theta$ $\left(\because x^{2}+y^{2}=r^{2}\right)$
(changing to polar coordinates taking $x=r \cos \theta, y=r \sin \theta$)
$=\int_{0}^{\pi / 2}\left\lceil\frac{e^{-r^{2}}}{-2}\right]_{0}^{\infty} d \theta=\int_{0}^{\pi / 2}\left\lceil\frac{0-1}{-2}\right\rceil d \theta$
$=\frac{1}{2}(\theta)_{0}^{\pi / 2}=\frac{1}{2}(\pi / 2-0)$
$=\frac{\pi}{4}$
10. Evaluate $\iint x y(x+y) d x d y$ over the region R bounded by $\mathrm{y}=\mathrm{x}^{2}$ and $\mathrm{y}=\mathrm{x}$

Sol: $y=x^{2}$ is a parabola through $(0,0)$ symmetric about y-axis $y=x$ is a straight line through $(0,0)$ with slope1.
Let us find their points of intersection solving $\mathrm{y}=\mathrm{x}^{2}, \mathrm{y}=\mathrm{x}$ we get $x^{2}=\mathrm{x} \Rightarrow \mathrm{x}=0,1$ Hence $\mathrm{y}=0,1$
\therefore The point of intersection of the curves are $(0,0),(1,1)$
Consider $\iint_{R} x y(x+y) d x d y$
For the evaluation of the integral, we first integrate w.r.t ' y ' from $y=x^{2}$ to $y=x$ and then w.r.t. ' x ' from $x=0$ to $x=1$
$\int_{x=0}^{1}\left[\int_{y=x^{2}}^{x} x y(x+y) d y\right] d x=\int_{x=0}^{1}\left[\int_{y=x^{2}}^{x}\left(x^{2} y+x y^{2}\right) d y\right] d x$
$=\int_{x=0}^{1}\left(x^{2} \frac{y^{2}}{2}+\frac{x y^{3}}{3}\right)_{y=x^{2}}^{x} d x$

$=\int_{x=0}^{1}\left(\frac{x^{4}}{2}+\frac{x^{4}}{2}-\frac{x^{6}}{2}-\frac{x^{7}}{2}\right) d x$
$=\int_{x=0}^{1}\left(\frac{5 x^{4}}{6}-\frac{x^{6}}{2}-\frac{x^{7}}{3}\right) d x$
$=\left(\frac{5}{6} \cdot \frac{x^{5}}{5}-\frac{x^{7}}{14}-\frac{x^{8}}{24}\right)_{0}^{1}$

$$
=\frac{1}{6}-\frac{1}{14}-\frac{1}{24}=\frac{28-12-7}{168}=\frac{28-19}{168}=\frac{9}{168}=\frac{3}{56}
$$

11. Evaluate $\iint_{R} x y d x d y$ where R is the region bounded by x-axis and $x=2$ a and the curve $x^{2}=4$ ay.

Sol. The line $x=2 a$ and the parabola $x^{2}=4 a y$ intersect at $B(2 a, a)$
\therefore The given integral $=\iint_{R} x y d x d y$
Let us fix ' y '
For a fixed ' y ', x varies from $2 \sqrt{a y}$ to 2 a . Then y varies from 0 to a.
Hence the given integral can also be written as
$\int_{y=0}^{a} \int_{x=2 \sqrt{a y}}^{x=2 a} x y d x d y=\int_{y=0}^{a}\left[\int_{x=2 \sqrt{a y}}^{x=2 a} x d x\right\rfloor y d y$
$=\int_{y=0}^{a}\left[\frac{x^{2}}{2}\right]_{x=2 \sqrt{a y}}^{2 a} y d y$

$=\int_{y=0}^{a}\left[2 a^{2}-2 a y\right] y d y$
$=\left\lceil\frac{2 a^{2} y^{2}}{2}-\frac{2 a y^{3}}{3}\right]_{0}^{a}=a^{4}-\frac{2 a^{4}}{3}=\frac{3 a^{4}-2 a^{4}}{3}=\frac{a^{4}}{3}$
12. Evaluate $\int_{0}^{1} \int_{0}^{\pi / 2} r \sin \theta d \theta d r$

Sol. $\int_{r=0}^{1} r\left[\int_{\theta=0}^{\pi / 2} \sin \theta d \theta\right] d r$
$=\int_{r=0}^{1} r(-\cos \theta)_{\theta=0}^{\pi / 2} d r$
$=\int_{r=0}^{1}-r(\cos \pi / 2-\cos 0) d r$
$=\int_{r=0}^{1}-r(0-1) d r=\int_{0}^{1} r d r=\left(\frac{r^{2}}{2}\right)_{0}^{1}=\frac{1}{2}-0=\frac{1}{2}$

For
Which $x+y \leq 1$
Sol. $\iint_{R}\left(x^{2}+y^{2}\right) d x d y=\int_{x=0}^{1} d x \int_{y=0}^{y=1-x}\left(x^{2}+y^{2}\right) d y$

$=\int_{x=0}^{1}\left(x^{2} y+\frac{y^{3}}{3}\right)_{0}^{1-x} d x$
$=\int_{x=0}^{1}\left(x^{2}-x^{3}+\frac{1}{3}(1-x)^{3}\right) d x=\left[\frac{x^{3}}{3}-\frac{x^{4}}{4}-\frac{1}{12}(1-x)^{4}\right]_{0}^{1}$
$=\frac{1}{3}-\frac{1}{4}-0+\frac{1}{12}=\frac{1}{6}$
14. Evaluate $\iint\left(x^{2}+y^{2}\right) d x d y$ over the area bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Sol. Given ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
i.e., $\frac{y^{2}}{b^{2}}=1-\frac{x^{2}}{a^{2}}=\frac{1}{a^{2}}\left(a^{2}-x^{2}\right)($ or $) y^{2}=\frac{b^{2}}{a^{2}}\left(a^{2}-x^{2}\right)$
$\therefore y= \pm \frac{b}{a} \sqrt{a^{2}-x^{2}}$
Hence the region of integration R can be expressed as
$-a \leq x \leq a, \frac{-b}{a} \sqrt{a^{2}-x^{2}} \leq y \leq \frac{b}{a} \sqrt{a^{2}-x^{2}}$
$\therefore \iint_{R}\left(x^{2}+y^{2}\right) d x d y=\int_{x=-a}^{a} \int_{y=-b / a \sqrt{a^{2}-x^{2}}}^{b / \sqrt{a^{2}-x^{2}}}\left(x^{2}+y^{2}\right) d x d y$
$=2 \int_{x=-a}^{a} \int_{y=0}^{b / \sqrt{a^{2}-x^{2}}}\left(x^{2}+y^{2}\right) d x d y=2 \int_{-a}^{a}\left(x^{2} y+y^{3} / 3\right)_{0}^{b / a \sqrt{a^{2}-x^{2}}}$

$=2 \int_{-a}^{a}\left[x^{2} \cdot b / a \sqrt{a^{2}-x^{2}}+\frac{b^{3}}{3 a^{3}}\left(a^{2}-x^{2}\right)^{3 / 2}\right] d x$
$=4 \int_{0}^{a}\left\lceil b / a x^{2} \sqrt{a^{2}-x^{2}}+\frac{b^{3}}{3 a^{3}}\left(a^{2}-x^{2}\right)^{3 / 2}\right] d x$
$\frac{x}{a}=\sin \theta \Rightarrow \theta=\sin ^{-1} \frac{x}{a}$
$x \rightarrow 0, \theta \rightarrow 0$
$x \rightarrow a, \theta \rightarrow \frac{\pi}{2}$
$=4 \int_{0}^{\pi / 2}\left[b / a \cdot a^{2} \sin ^{2} \theta \cdot a \cos \theta+\frac{b^{3}}{3 a^{3}} \cdot a^{3} \cos ^{3} \theta\right] a \cos \theta d \theta$
$=4 \int_{0}^{\pi / 2}\left[a^{3} b \sin ^{2} \theta \cos ^{2} \theta+\frac{a b^{3}}{3} \cos ^{4} \theta\right] d \theta=4\left[a^{3} b \cdot \frac{1}{4} \frac{1}{2} \cdot \frac{\pi}{2}+\frac{a b^{3}}{3} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}\right]$
$\left[\because \int_{0}^{\frac{\pi}{2}} \sin ^{m} \theta \cos ^{n} \theta d \theta=\frac{n-1}{m+n} \cdot \frac{n-3}{m+n-2} \ldots \ldots \ldots \frac{\frac{1}{2} \cdot \frac{\pi}{2}}{m}\right]$
$=\frac{4 \pi}{16}\left(a^{3} b+a b^{3}\right)=\frac{\pi a b}{4}\left(a^{2}+b^{2}\right)$

Double integrals in polar co-ordinates:

1. Evaluate $\int_{0}^{\pi / 4} \int_{0}^{a \sin \theta} \frac{r d r d \theta}{\sqrt{a^{2}-r^{2}}}$

Sol. $\int_{0}^{\pi / 4} \int_{0}^{a \sin \theta} \frac{r d r d \theta}{\sqrt{a^{2}-r^{2}}}=\int_{0}^{\pi / 4}\left\{\int_{0}^{a \sin \theta} \frac{r}{\sqrt{a^{2}-r^{2}}} d r\right\} d \theta=-1 / 2 \int_{0}^{\pi / 4}\left\{\int_{0}^{a \sin \theta} \frac{-2 r}{\sqrt{a^{2}-r^{2}}} d r\right\} d \theta$
$=\frac{-1}{2} \int_{0}^{\pi / 4} 2\left(\sqrt{a^{2}-r^{2}}\right)_{0}^{a \sin \theta} d \theta=(-1) \int_{0}^{\pi / 4} 2\left[\sqrt{a^{2}-a^{2} \sin ^{2} \theta}-\sqrt{a^{2}-0}\right] d \theta$
$=(-a) \int_{0}^{\pi / 4}(\cos \theta-1) d \theta=(-a)(\sin \theta-\theta)_{0}^{\pi / 4}$
$=(-a)[[\sin \pi / 4-\pi / 4]-(0-0)]$
$=(-a)[1 / \sqrt{2}-\pi / 4]=2[\pi / 4-1 / \sqrt{2}]$
2. Evaluate $\int_{0}^{\pi} \int_{0}^{a \sin \theta} r d r d \theta$
3. Evaluate $\int_{0}^{\infty} \int_{0}^{\pi / 2} e^{-r^{2}} r d \theta d r$
4. Evaluate $\int_{0}^{\pi} \int_{0}^{a(1+\cos \theta)} r d r d \theta$

Ans: $\frac{a^{2} \pi}{4}$
Ans: $\frac{\pi}{4}$
Ans: $\frac{3 \pi a^{2}}{4}$

Change of order of Integration:

1. Change the order of Integration and evaluate $\int_{x=0}^{4 a} \int_{y=x^{2} / 4 a}^{2 \sqrt{a x}} d y d x$

Sol. In the given integral for a fixed x, y varies from $\frac{x^{2}}{4 a}$ to $2 \sqrt{a x}$ and then x varies from 0 to 4 a . Let us draw the curves $y=\frac{x^{2}}{4 a}$ and $y=2 \sqrt{a x}$

he region of integration is the shaded region in diagram.
The given integral is $=\int_{x=0}^{4 a} \int_{y=x^{2} / 4 a}^{2 \sqrt{a x}} d y d x$

Changing the order of integration, we must fix y first, for a fixed y, x varies from $\frac{y^{2}}{4 a}$ to $\sqrt{4 a y}$ and then y varies from 0 to 4a.

Hence the integral is equal to
$\int_{y=0}^{4 a} \int_{x=y^{2}}^{2 \sqrt{a y}} / 4 a \cdot d x d y=\int_{y=0}^{4 a}\left[\int_{x=y^{2}}^{2 \sqrt{a y}} / 4 a\right] d x$
$=\int_{y=0}^{4 a}[x]_{x=y^{2}}^{2 \sqrt{a y}} / 4 a<\int_{y=0}^{4 a}\left[2 \sqrt{a y}-y^{2} / 4 a\right]^{d y}$
$=\left[2 \sqrt{a} \cdot \frac{y^{3 / 2}}{3 / 2}-\left.\frac{1}{4 a} \cdot \frac{y^{3}}{3}\right|_{0} ^{4 a}\right.$
$=\frac{4}{3} \cdot \sqrt{a} \cdot 4 a \sqrt{4 a}-\frac{1}{12 a} \cdot 64 a^{3}$
$=\frac{32}{3} a^{2}-\frac{16}{3} a^{2}=\frac{16}{3} a^{2}$
2. Change the order of integration and evaluate $=\int_{0}^{a} \int_{x / a}^{\sqrt{7 / a}}\left(x^{2}+y^{2}\right) d x d y$

Sol. In the given integral for a fixed x, y varies from $\frac{x}{a}$ to $\sqrt{\frac{x}{a}}$ and then x varies from 0 to a
Hence we shall draw the curves $y=\frac{x}{a}$ and $y=\sqrt{\frac{x}{a}}$
i.e. $a y=x$ and $a y^{2}=x$

we get $a y=a y^{2}$
$\Rightarrow a y-a y^{2}=0$
$\Rightarrow a y(1-y)=0$
$\Rightarrow y=0, y=1$
If $y=0, x=0$ if $y=1, x=a$
The shaded region is the region of integration. The given integral is $\int_{x=0}^{a} \int_{y=x / a}^{y=\sqrt{7 / a}}\left(x^{2}+y^{2}\right) d x d y$

Changing the order of integration, we must fix y first. For a fixed y, x varies from ay^{2} to ay and then y varies from 0 to 1.

Hence the given integral, after change of the order of integration becomes
$\int_{y=0}^{1} \int_{x=a y^{2}}^{a y}\left(x^{2}+y^{2}\right) d x d y$
$=\int_{y=0}^{1}\left[\int_{x=a y^{2}}^{a y}\left(x^{2}+y^{2}\right) d x\right] d y$
$=\int_{y=0}^{1}\left(\frac{x^{3}}{3}+x y^{2}\right)_{x=a y^{2}}^{a y} d y$
$=\int_{y=0}^{1}\left(\frac{a^{3} y^{3}}{3}+a y^{3}-\frac{a^{3} y^{6}}{3}-a y^{4}\right) d y$
$=\left(\frac{a^{3} y^{4}}{12}+\frac{a y^{4}}{4}-\frac{a^{3} y^{7}}{21}-\frac{a y^{5}}{5}\right)_{y=0}^{1}$
$=\frac{a^{3}}{12}+\frac{a}{4}-\frac{a^{3}}{21}-\frac{a}{5}=\frac{a^{3}}{28}+\frac{a}{20}$
3. Change the order of integration in $\int_{0}^{1-x} x y d x d y$ and hence evaluate the double integral.

Sol. In the given integral for a fixed x, y varies from x^{2} to $2-x$ and then x varies from 0 to 1 . Hence we shall draw the curves $y=x^{2}$ and $y=2-x$

The line $y=2-x$ passes through $(0,2),(2,0$
Solving $y=x^{2}, y=2-x$

Then we get $x^{2}=2-x$

$\Rightarrow x^{2}+x-2=0$
$\Rightarrow x^{2}+2 x-x-2=0$
$\Rightarrow x(x+2)-1(x+2)=0$
$\Rightarrow(x-1)(x+2)=0$
$\Rightarrow x=1,-2$

If $x=1, y=1$
If $x=-2, y=4$
Hence the points of intersection of the curves are $\quad(-2,4)(1,1)$
The Shaded region in the diagram is the region of intersection.
Changing the order of integration, we must fix y, for the region with in OACO for a fixed y, x varies from
0 to \sqrt{y}
Then y varies from 0 to 1
For the region within $C A B C$, for a fixed y, x varies from 0 to $2-y$, then y varies from 1 to 2
Hence $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d y d x=\iint_{O A C O} x y d x d y+\iint_{C A B C} x y d x d y$
$=\int_{y=0}^{1}\left\lceil\int_{x=0}^{\sqrt{y}} x d x\right\rceil y d y+\int_{y=1}^{2}\left\lceil\int_{x=0}^{2-y} x d x\right]^{y d y}$

$$
\begin{aligned}
& =\int_{y=0}^{1}\left(\frac{x^{2}}{2}\right)_{x=0}^{\sqrt{y}} y d y+\int_{y=1}^{2}\left(\frac{x^{2}}{2}\right)_{x=0}^{2-y} y d y \\
& =\int_{y=0}^{1} \frac{y}{2} \cdot y d y+\int_{y=1}^{2} \frac{(2-y)^{2}}{2} y d y \\
& =\frac{1}{2} \int_{y=0}^{1} y^{2} d y+\frac{1}{2} \cdot \int_{y=1}^{2}\left(4 y-4 y^{2}+y^{3}\right) d y \\
& =\frac{1}{2} \cdot\left(\frac{y^{3}}{3}\right)_{0}^{1}+\frac{1}{2} \cdot\left[\frac{4 y^{2}}{2}-\frac{4 y^{3}}{3}+\frac{\left.y^{4}\right\rceil^{2}}{4}\right]_{1}^{2} \\
& =\frac{1}{2} \cdot \frac{1}{3}+\frac{1}{2}[2 \cdot 4-2 \cdot 1-4 / 3(8-1)+1 / 4(16-1)] \\
& =\frac{1}{6}+\frac{1}{2}\left\lceil 6-\frac{28}{3}+\frac{15}{4}\right]=\frac{1}{6}+\frac{1}{2}\left[\frac { 7 2 - 1 1 2 + 4 5 } { 2 } \left[\frac{1}{12}+\frac{1}{2}\left[\frac{5}{12}\right]=\frac{4+5}{24}=\frac{9}{24}=\frac{3}{8}\right.\right.
\end{aligned}
$$

4. Changing the order of integration $\int_{0}^{a} \int_{x^{2} / a}^{2 a-x} x y^{2} d y d x$
5. Change of the order of integration $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} y^{2} d x d y \quad$ Ans: $\frac{\pi}{16}$

Hint : Now limits are $y=0$ to 1 and $x=0$ to $\sqrt{1-y^{2}}$
put $y=\sin \theta$
$\sqrt{1-y^{2}}=\cos \theta$
$d y=\cos \theta d \theta$
$=\int_{0}^{1} y^{2} \sqrt{1-y^{2}} d y$
$=\int_{0}^{\pi / 2} \sin ^{2} \theta \cos ^{2} \theta d \theta=\int_{0}^{\pi / 2} \sin ^{2} \theta d \theta-\int_{0}^{\pi / 2} \sin ^{4} \theta d \theta$
$=\frac{1}{2}(\pi / 2)-\frac{3}{4} \cdot \frac{1}{2}(\pi / 2)=\pi / 16$

Change of variables:

The variables x, y in $\iint_{R} f(x, y) d x d y$ are changed to u, v with the help of the relations $x=f_{1}(u, v), y=f_{2}(u, v)$ then the double integral is transferred into

$$
\iint_{R^{1}} f\left[f_{1}(u, v), f_{2}(u, v)\right]\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

Changing from Cartesian to polar co-ordinates

$x=r \cos \theta, y=r \sin \theta$
$\partial\left(\frac{(x, y)}{(r, \theta)}\right)=\left|\begin{array}{ll}\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}\end{array}\right|=\left|\begin{array}{cc}\cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta\end{array}\right|$
$=r\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=r \therefore \iint_{R} f(x, y) d x d y=\iint_{R_{1}} f(r \cos \theta, r \sin \theta) r d r d \theta$
Note : In polar form dx dy is replaced by $r d r d \theta$

Problems:

1. Evaluate the integral by changing to polar co-ordinates $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$

Sol. The limits of x and y are both from 0 to ∞.
\therefore The region is in the first quadrant where r varies from 0 to ∞ and θ varies from 0 to $\pi / 2$
Substituting $x=r \cos \theta, y=r \sin \theta$ and $d x d y=r d r d \theta$
Hence $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y=\int_{\theta=0}^{\pi / 2} \int_{r=0}^{\infty} e^{-r^{2}} r d r d \theta$
Putr ${ }^{2}=t$
$\Rightarrow 2 r d r=d t$
$\Rightarrow r d r=d t / 2$
Where $r=0 \Rightarrow t=0$ and $r=\infty \Rightarrow t=\infty$
$\therefore \int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y=\int_{\theta=0}^{\pi / 2} \int_{t=0}^{\infty} \frac{1}{2} e^{-t} d t d \theta$
$=\int_{0}^{\pi / 2} \frac{-1}{2}\left(e^{-t}\right)_{0}^{\infty} d \theta$
$=\frac{-1}{2} \int_{0}^{\pi / 2}(0-1) d \theta \Rightarrow \frac{1}{2}(\theta)_{0}^{\pi / 2}=\frac{1}{2} \pi / 2=\pi / 4$
2. Evaluate the integral by changing to polar co-ordinates $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}}\left(x^{2}+y^{2}\right) d x d y$

Sol.The limits for x are $\mathrm{x}=0$ to $x=\sqrt{a^{2}-y^{2}}$

$$
\Rightarrow x^{2}+y^{2}=a^{2}
$$

\therefore The given region is the first quadrant of the circle.
By changing to polar co-ordinates
$x=r \cos \theta, y=r \sin \theta, d x d y=r d r d \theta$
Here ' r ' varies from 0 to a and ' θ ' varies from 0 to $\pi / 2$

$=\pi / 8 a^{4}$
3. Show that $\int_{0}^{4 a} \int_{y^{2} / 4 a}^{y} \frac{x^{2}-y^{2}}{x^{2}+y^{2}} d x d y=8 a^{2}\left(\frac{\pi}{2}-\frac{5}{3}\right)$

Sol. The region of integration is given by $x=y^{2} / 4 a, x=y$ and $\mathrm{y}=0, \mathrm{y}=4 \mathrm{a}$

i.e., The region is bounded by the parabola $y^{2}=4 a x$ and the straight line $x=y$.

Let $x=r \cos \theta, y=r \sin \theta$.Then $d x d y=r d r d \theta$
The limits for r are $r=0$ at O and for P on the parabola
$r^{2} \sin ^{2} \theta=4 a(r \cos \theta) \Rightarrow r=\frac{4 a \cos \theta}{\sin ^{2} \theta}$
For the line $\mathrm{y}=\mathrm{x}$, slope $\mathrm{m}=1$ i.e., $\operatorname{Tan} \theta=1, \theta=\pi / 4$
The limits for $\theta: \pi / 4 \rightarrow \pi / 2$
Also $x^{2}-y^{2}=r^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)$ and $x^{2}+y^{2}=r^{2}$
$\therefore \int_{0}^{4 a} \int_{y^{2} / 4 a}^{y} \frac{x^{2}-y^{2}}{x^{2}+y^{2}} d x d y=\int_{\theta=\pi / 4}^{\pi / 2} \int_{r=0}^{4 a \cos \theta / \sin ^{2} \theta}\left(\cos ^{2} \theta-\sin ^{2} \theta\right) r d r d \theta$
$=\int_{\theta=\pi / 4}^{\pi / 2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\left(\frac{r^{2}}{2}\right)_{0}^{4 a \cos \theta / \sin ^{2} \theta} d \theta$
$=8 a^{2} \int_{\pi / 4}^{\pi / 2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \frac{\cos ^{2} \theta}{\sin ^{4} \theta} d \theta=8 a^{2} \int_{\pi / 4}^{\pi / 2}\left(\cos ^{4} \theta-\cot ^{2} \theta\right) d \theta=8 a^{2}\left[\frac{3 \pi-8}{12}+\frac{\pi}{4}-1\right\rceil=8 a^{2}\left(\frac{\pi}{2}-\frac{5}{3}\right)$

Triple integrals:

If x_{1}, x_{2} are constants. y_{1}, y_{2} are functions of x and z_{1}, z_{2} are functions of x and y, then $f(x, y, z)$ is first integrated w.r.t. ' z ' between the limits z_{1} and z_{2} keeping x and y fixed. The resulting expression is integrated w.r.t ' y ' between the limits y_{1} and y_{2} keeping x constant. The resulting expression is integrated w.r.t. ' x ' from x_{1} to x_{2}

$$
\iiint_{v} f(x, y, z) d x d y d z=\int_{x=a}^{b} \int_{y=g_{1}(x)}^{y=g_{2}(x)} \int_{z=f_{1}(x, y)}^{z=f_{2}(x, y)} f(x, y, z) d z d y d x
$$

Problems

1. Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} x y z d x d y d z$

Sol. $\int_{x=0}^{1} \int_{y=0}^{\sqrt{1-x^{2}}} \int_{z=0}^{\sqrt{1-x^{2}-y^{2}}} x y z d x d y d z$
$=\int_{x=0}^{1} d x \int_{y=0}^{\sqrt{1-x^{2}}} d y \int_{z=0}^{\sqrt{1-x^{2}-y^{2}}} x y z d z$
$=\int_{x=0}^{1} d x \int_{y=0}^{\sqrt{1-x^{2}}} x y\left(\frac{z^{2}}{2}\right)_{z=0}^{\sqrt{1-x^{2}-y^{2}}} d y$
$=\frac{1}{2} \int_{x=0}^{1} d x \int_{y=0}^{\sqrt{1-x^{2}}} x y\left(1-x^{2}-y^{2}\right) d y$
$=\frac{1}{2} \int_{x=0}^{1} d x \int_{y=0}^{\sqrt{1-x^{2}}} x\left[\left(1-x^{2}\right) y-y^{3}\right] d y$
$=\frac{1}{2} \int_{x=0}^{1} x\left[\left(1-x^{2}\right) \frac{y^{2}}{2}-\frac{y^{4}}{4}\right]_{0}^{\sqrt{1-x^{2}}} d x$
$=\frac{1}{2} \cdot \int_{x=0}^{1} x\left[\frac{y^{2}}{2}-\frac{x^{2} y^{2}}{2}-\frac{y^{4}}{4}\right]_{0}^{\sqrt{1-x^{2}}} d x$
$=\frac{1}{8} \cdot \int_{x=0}^{1} x\left[2\left(1-x^{2}\right)-2 x^{2}\left(1-x^{2}\right)-\left(1-x^{2}\right)^{2}\right] d x$
$=\frac{1}{8} \int_{x=0}^{1}\left(x-2 x^{3}+x^{5}\right) d x=\frac{1}{8}\left[\frac{x^{2}}{2}-\frac{2 x^{4}}{4}+\frac{x^{6}}{6}\right]_{0}^{1}$
$=\frac{1}{8}\left(\frac{1}{2}-\frac{1}{2}+\frac{1}{6}\right)=\frac{1}{48}$
2. Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z}(x+y+z) d x d y d z$

Sol: $\quad \int_{-1} \int_{0} \int_{x-z}(x+y+y) d x d y d z$
$=\int_{-1}^{1} \int_{0}^{z}\left[\left(x y+y^{2} / 2+z y\right)_{x-z}^{x+z}\right\rceil d x d z$
$=\int_{-1}^{1} \int_{0}^{z} x(x+z)-x(x-z)+\left[\frac{x+z}{2}\right]^{2}-\left[\frac{x-z}{2}\right]^{2}+z(x+z)-z(x-z) d x d z$
$=\int_{-1}^{1} \int_{0}^{z} \int^{\left.2 z(x+z)+\frac{1}{2} 4 x z\right]^{d x d z}}$

$$
=2 \int_{-1}^{1}\left[z \cdot \frac{x^{2}}{2}+z^{2} x+z \cdot \frac{x^{2}}{2}\right]_{0}^{2} d z=2 \cdot \int_{-1}^{1}\left[\frac{z^{3}}{2}+z^{3}+\frac{z^{3}}{2}\right] d z=4 \cdot\left(\frac{z^{4}}{4}\right)_{-1}^{1}=0
$$

Definition of an double Integral

Just as we can take partial derivative by considering only one of the variables a true variable and holding the rest of the variables constant, we can take a "partial integral". We indicate which the true variable is by writing "dx", "dy", etc. Also as with partial derivatives, we can take two "partial integrals" taking one variable at a time. In practice, we will either take x first then y or y first then x . We call this an iterated integral or a double integral.

Let $f(x, y)$ be a function of two variables defined on a region R bounded below and above by

$$
\mathrm{y}=\mathrm{g}_{1}(\mathrm{x}) \quad \text { and } \quad \mathrm{y}=\mathrm{g}_{2}(\mathrm{x})
$$

and to the left and right by

$$
\mathrm{x}=\mathrm{a} \quad \text { and } \quad \mathrm{x}=\mathrm{b}
$$

then the double integral (or iterated integral) of $f(x, y)$ over R is defined by

$$
\iint_{R} f(x, y) d y d x=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x=\int_{a}^{b}\left[\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y\right] d x
$$

Example 1

Find the double integral of $f(x, y)=6 x^{2}+2 y$ over R where R is the region between $\mathrm{y}=\mathrm{x}^{2}$ and $\mathrm{y}=4$.

Solution

First we have that the inside limits of integration are x^{2} and 4. The region is bounded from the left by $\mathrm{x}=-2$ and from the right by $\mathrm{x}=2$ as indicated by the picture below.

We now integrate

$$
\begin{aligned}
& \int_{-2}^{2} \int_{x^{2}}^{4}\left(6 x^{2}+2 y\right) d y d x=\int_{-2}^{4}\left[6 x^{2} y+y^{2}\right]_{x^{2}}^{\prime} d x \\
& =\left\lceil^{2}\left(24 x^{2}+16\right)-\left(6 x^{4}+x^{4}\right) d x=\left\lceil 8 x^{3}+16 x-\frac{7}{5} x^{5}\right\rceil^{2}=102.4\right.
\end{aligned}
$$

Example 2

Find the double integral of $f(x, y)=3 y$ over the triangle with vertices $(-1,1),(0,0)$, and (1,1).

Solution

If we try to integrate with respect y first, we will have to cut the region into two pieces and perform two iterated integrals. Instead we integrate with respect to x first. The region is bounded on the left and the right by $\mathrm{x}=-\mathrm{y}$ and $\mathrm{x}=\mathrm{y}$. The lowest the region gets is $\mathrm{y}=0$ and the highest is $\mathrm{y}=1$. The integral is

$$
\begin{aligned}
& \int_{0}^{1} \int_{-y}^{y} 3 y d x d y=\int_{0}^{1}[3 x y]_{-y}^{y} d y \\
& =\int_{0}^{1} 6 y^{2} d y=\left[2 y^{3}\right]_{0}^{1}=2
\end{aligned}
$$

Example 3

Evaluate the integral

$$
\int_{0}^{1} \int_{3 y}^{3} \mathrm{e}^{x^{2}} d x d y
$$

Solution

Try as you may, you will not find an antiderivative of $e^{x^{2}}$ and we don't want to get into power series expansions. We have another choice. The picture below shows the region.

We can switch the order of integration. The region is bounded above and below by y $=1 / 3$ x and $\mathrm{y}=0$. The double integral with respect to y first and then with respect to x is

$$
\int_{0}^{3} \int_{0}^{x / 3} \mathrm{e}^{x^{2}} d y d x
$$

The integrand is just a constant with respect to y so we get

$$
\int_{0}^{3}\left[e^{x^{2}} y\right]_{0}^{x / 3} d x=\int_{0}^{3} \frac{x}{3} e^{x^{2}} d x
$$

This integral can be performed with simple u-substitution.

$$
u=x^{2} \quad d u=2 x d x
$$

and the integral becomes

$$
\frac{1}{6} \int_{0}^{9} e^{u} d u=\left[\frac{1}{6} e^{u}\right]_{0}^{9}=\frac{1}{6} e^{9}-\frac{1}{6}
$$

Area and Double Integrals

If a region R is bounded below by $\mathrm{y}=\mathrm{g}_{1}(\mathrm{x})$ and above by $\mathrm{y}=\mathrm{g}_{2}(\mathrm{x})$, and $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$, then the area is given by

Example

$$
\text { Area }=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} d y d x
$$

Set up the double integral that gives the area between $y=x^{2}$ and $y=x^{3}$. Then use a computer or calculator to evaluate this integral.

Solution

The picture below shows the region

We set up the integral

$$
\int_{0}^{1} \int_{x^{3}}^{x^{2}} d y d x
$$

A computer gives the answer of $1 / 12$.

Calculation of Volumes Using Triple Integrals

$$
\iiint_{E} f(x, y, z) d V=\int_{r}^{s} \int_{c}^{d} \int_{a}^{b} f(x, y, z) d x d y d z
$$

Example 1 Evaluate the following integral.

$$
\begin{aligned}
& \iint_{E} 8 x y z d V \\
& B=[2,3] \times[1,2] \times[0,1]
\end{aligned}
$$

Solution

Just to make the point that order doesn't matter let's use a different order from that listed above. We'll do the integral in the following order.

$$
\begin{aligned}
\iiint_{B} 8 x y z d V & =\int_{1}^{2} \int_{2}^{3} \int_{0}^{1} 8 x y z d z d x d y \\
& =\left.\int_{1}^{2} \int_{2}^{3} 4 x y z^{2}\right|_{0} ^{1} d x d y \\
& =\int_{1}^{2} \int_{2}^{3} 4 x y d x d y \\
& =\left.\int_{1}^{2} 2 x^{2} y\right|_{2} ^{3} d y \\
& =\int_{1}^{2} 10 y d y=15
\end{aligned}
$$

Example 1 Evaluate $\iint_{\bar{E}} y d V$ where E is the region that lies below the plane $z=x+2$ above the $x y$-plane and between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.

Solution

There really isn't too much to do with this one other than do the conversions and then evaluate the integral.

We'll start out by getting the range for z in terms of cylindrical coordinates.

$$
0 \leq z \leq x+2 \quad \Rightarrow \quad 0 \leq z \leq r \cos \theta+2
$$

Remember that we are above the $x y$-plane and so we are above the plane $z=0$
Next, the region D is the region between the two circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$ in the $x y$ plane and so the ranges for it are,

$$
0 \leq \theta \leq 2 \pi \quad 1 \leq r \leq 2
$$

Here is the integral.

$$
\begin{aligned}
\iiint_{E} y d V & =\int_{0}^{2 x} \int_{1}^{2} \int_{0}^{r \cos \theta+2}(r \sin \theta) r d z d r d \theta \\
& =\int_{0}^{2 x} \int_{1}^{2} r^{2} \sin \theta(r \cos \theta+2) d r d \theta \\
& =\int_{0}^{2 x} \int_{1}^{2} \frac{1}{2} r^{3} \sin (2 \theta)+2 r^{2} \sin \theta d r d \theta \\
& =\left.\int_{0}^{2 x}\left(\frac{1}{8} r^{4} \sin (2 \theta)+\frac{2}{3} r^{3} \sin \theta\right)\right|_{1} ^{2} d \theta \\
& =\int_{0}^{2 x} \frac{15}{8} \sin (2 \theta)+\frac{14}{3} \sin \theta d \theta \\
& =\left.\left(-\frac{15}{16} \cos (2 \theta)-\frac{14}{3} \cos \theta\right)\right|_{0} ^{2 x} \\
& =0
\end{aligned}
$$

MODULE-V

VECTOR CALCULUS

Vector Calculus and Vector Operators

INTRODUCTION

In this chapter, vector differential calculus is considered, which extends the basic concepts of differential calculus, such as, continuity and differentiability to vector functions in a simple and natural way. Also, the new concepts of gradient, divergence and curl are introduced.

DIFFERENTIATION OF A VECTOR FUNCTION

Let S be a set of real numbers. Corresponding to each scalar $t \varepsilon S$, let there be associated a unique vector \bar{f}. Then \bar{f} is said to be a vector (vector valued) function. S is called the domain of \bar{f}. We write \bar{f} $=\bar{f}(\mathrm{t})$.

Let $\bar{i}, \bar{j}, \bar{k}$ be three mutually perpendicular unit vectors in three dimensional space. We can write $\bar{f}=\bar{f}(\mathrm{t})=f_{1}(t) \bar{i}+f_{2}(t) \bar{j}+f_{3}(t) \bar{k}$, where $f_{1}(t), f_{2}(t), f_{3}(t)$ are real valued functions (which are called components of \bar{f}). (we shall assume that $\bar{i}, \bar{j}, \bar{k}$ are constant vectors).

1. Derivative:

Let \bar{f} be a vector function on an interval $/$ and $\mathrm{a} \in I$. Then $L t_{t \rightarrow a} \frac{f(t)-f(a)}{t-a}$, if exists, is called the derivative of \bar{f} at a and is denoted by $\bar{f}^{1}(\mathrm{a})$ or $\left(\frac{d \bar{f}}{d t}\right)$ at $\mathrm{t}=\mathrm{a}$. We also say that \bar{f} is differentiable at t $=$ a if $f^{1}(a)$ exists.

2. Higher order derivatives

Let \bar{f} be differentiable on an interval I and $\bar{f}^{1}=\frac{d \bar{f}}{d t}$ be the derivative of \bar{f}. If $L t_{t \rightarrow a} \frac{\bar{f}^{1}(t)-\bar{f}^{1}(a)}{t-a}$ exists for every a $\in I_{1} \subset I$. It is denoted by $\bar{f}^{11}=\frac{d^{2} \bar{f}}{d t^{2}}$.

Similarly we can define $\bar{f}^{111}(t)$ etc.

We now state some properties of differentiable functions (without proof)
(1) Derivative of a constant vector is \bar{a}.

If \bar{a} and \bar{b} are differentiable vector functions, then
(2). $\frac{d}{d t}(\bar{a} \pm \bar{b})=\frac{d \bar{a}}{d t} \pm \frac{d \bar{b}}{d t}$
(3). $\frac{d}{d t}(\bar{a} \cdot \bar{b})=\frac{d \bar{a}}{d t} \cdot \bar{b}+\bar{a} \cdot \frac{d \bar{b}}{d t}$
(4). $\frac{d}{d t}(\bar{a} \times \bar{b})=\frac{d \bar{a}}{d t} \times \bar{b}+\bar{a} \times \frac{d \bar{b}}{d t}$
(5). If \bar{f} is a differentiable vector function and ϕ is a scalar differential function, then $\frac{d}{d t}(\phi \bar{f})=\phi \frac{d \bar{f}}{d t}+\frac{d \phi}{d t} \bar{f}$
(6). If $\bar{f}=f_{1}(t) \bar{i}+f_{2}(t) \bar{j}+f_{3}(t) \bar{k}$ where $f_{1}(t), f_{2}(t), f_{3}(t)$ are cartesian components of the vector \bar{f}, then $\frac{d \bar{f}}{d t}=\frac{d f_{1}}{d t} \bar{i}+\frac{d f_{2}}{d t} \bar{j}+\frac{d f_{3}}{d t} \bar{k}$
(7). The necessary and sufficient condition for $\bar{f}(\mathrm{t})$ to be constant vector function is $\frac{d \bar{f}}{d t}=\overline{0}$.

3. Partial Derivatives

Partial differentiation for vector valued functions can be introduced as was done in the case of functions of real variables. Let \bar{f} be a vector function of scalar variables p, q, Then we write $\bar{f}=\bar{f}$ (p, q, t). Treating t as a variable and p, q as constants, we define

$$
L t_{\delta t \rightarrow 0} \frac{\bar{f}(p, q, t+\delta t)-\bar{f}(p, q, t)}{\delta t}
$$

if exists, as partial derivative of \bar{f} w.r.t. t and is denote by $\frac{\partial \bar{f}}{\partial t}$
Similarly, we can define $\frac{\partial \bar{f}}{\partial p}, \frac{\partial \bar{f}}{\partial q}$ also. The following are some useful results on partial differentiation.

4. Properties

1) $\frac{\partial}{\partial t}(\phi \bar{a})=\frac{\partial \phi}{\partial t} \bar{a}+\phi \frac{\partial \bar{a}}{\partial t}$
2). If λ is a constant, then $\frac{\partial}{\partial t}(\lambda \bar{a})=\lambda \frac{\partial \bar{a}}{\partial t}$
3). If $\bar{c} \quad$ is a constant vector, then $\frac{\partial}{\partial t}(\phi \bar{c})=\bar{c} \frac{\partial \phi}{\partial t}$
4). $\frac{\partial}{\partial t}(\bar{a} \pm \bar{b})=\frac{\partial \bar{a}}{\partial t} \pm \frac{\partial \bar{b}}{\partial t}$
5). $\frac{\partial}{\partial t}(\bar{a} \cdot \bar{b})=\frac{\partial \bar{a}}{\partial t} \cdot \bar{b}+\bar{a} \cdot \frac{\partial \bar{b}}{\partial t}$
6). $\frac{\partial}{\partial t}(\bar{a} \times \bar{b})=\frac{\partial \bar{a}}{\partial t} \times \bar{b}+\bar{a} \times \frac{\partial \bar{b}}{\partial t}$
7). Let $\bar{f}=f_{1} \bar{i}+f_{2} \bar{j}+f_{3} \bar{k}$, where f_{1}, f_{2}, f_{3} are differential scalar functions of more than one variable, Then $\frac{\partial \bar{f}}{\partial t}=\bar{i} \frac{\partial f_{1}}{\partial t}+\bar{j} \frac{\partial f_{2}}{\partial t}+\bar{k} \frac{\partial f_{3}}{\partial t}$ (treating $\bar{i}, \bar{j}, \bar{k}$ as fixed directions)

5. Higher order partial derivatives

$$
\text { Let } \bar{f}=\bar{f}(p, q, t) \text {. Then } \frac{\partial^{2} \bar{f}}{\partial t^{2}}=\frac{\partial}{\partial t}\left(\frac{\partial \bar{f}}{\partial t}\right), \frac{\partial^{2} \bar{f}}{\partial p \partial t}=\frac{\partial}{\partial p}\left(\frac{\partial \bar{f}}{\partial t}\right) \text { etc. }
$$

6.Scalar and vector point functions: Consider a region in three dimensional space. To each point $p(x, y, z)$, suppose we associate a unique real number (called scalar) say ϕ. This $\phi(x, y, z)$ is called a scalar point function. Scalar point function defined on the region. Similarly if to each point $p(x, y, z)$ we associate a unique
vector $\bar{f}(x, y, z), \bar{f}$ is called a vector point function.

Examples:

For example take a heated solid. At each point $p(x, y, z)$ of the solid, there will be temperature $\mathrm{T}(x, y, z)$. This T is a scalar point function.

Suppose a particle (or a very small insect) is tracing a path in space. When it occupies a position $\mathrm{p}(x, y, z)$ in space, it will be having some speed, say, v. This speed v is a scalar point function.

Consider a particle moving in space. At each point P on its path, the particle will be having a velocity \bar{v} which is vector point function. Similarly, the acceleration of the particle is also a vector point function.

In a magnetic field, at any point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ there will be a magnetic force $f(x, y, z)$. This is called magnetic force field. This is also an example of a vector point function.

7. Tangent vector to a curve in space.

Consider an interval [a,b].
Let $\mathrm{x}=\mathrm{x}(\mathrm{t}), \mathrm{y}=\mathrm{y}(\mathrm{t}), \mathrm{z}=\mathrm{z}(\mathrm{t})$ be continuous and derivable for $\mathrm{a} \leq \mathrm{t} \leq \mathrm{b}$.
Then the set of all points $(x(t), y(t), z(t))$ is called a curve in a space.
Let $A=(x(a), y(a), z(a))$ and $B=(x(b), y(b), z(b))$. These A, B are called the end points of the curve. If $A=B$, the curve in said to be a closed curve.

Let P and Q be two neighbouring points on the curve.
Let $\overline{O P}=\bar{r}(t), \overline{O Q}=\bar{r}(t+\delta t)=\bar{r}+\delta \bar{r} . T$ hen $\delta \bar{r}=\overline{O Q}-\overline{O P}=\overline{P Q}$
Then $\frac{\delta \bar{r}}{\delta t}$ is along the vector $\mathrm{P} \overline{\mathrm{Q} . \text { As }} \mathrm{Q} \rightarrow \mathrm{P}, \mathrm{PQ}$ and hence $\frac{P Q}{\delta t}$ tends to be along the tangent to the curve at P.

Hence $\operatorname{lt}_{\delta t \rightarrow 0} \frac{\delta \bar{r}}{\delta t}=\frac{d \bar{r}}{d t}$ will be a tangent vector to the curve at P . (This $\frac{d \bar{r}}{d t}$ may not be a unit vector)
Suppose arc length $A P=s$. If we take the parameter as the arc length parameter, we can observe that $\frac{d \bar{r}}{d s}$ is unit tangent vector at P to the curve.

VECTOR DIFFERENTIAL OPERATOR

Def. The vector differential operator ∇ (read as del) is defined as
$\nabla \equiv \bar{i} \frac{\partial}{\partial x}+\bar{j} \frac{\partial}{\partial y}+\bar{k} \frac{\partial}{\partial z}$. This operator possesses properties analogous to those of ordinary vectors as well as differentiation operator. We will define now some quantities known as "gradient", "divergence" and "curl"
involving this operator ∇. We must note that this operator has no meaning by itself unless it operates on some function suitably.

GRADIENT OF A SCALAR POINT FUNCTION

Let $\phi(x, y, z)$ be a scalar point function of position defined in some region of space. Then the vector function $\bar{i} \frac{\partial \phi}{\partial x}+\bar{j} \frac{\partial \phi}{\partial y}+\bar{k} \frac{\partial \phi}{\partial z}$ is known as the gradient of ϕ or $\nabla \phi$

$$
\nabla \phi=\left(\bar{i} \frac{\partial}{\partial x}+\bar{j} \frac{\partial}{\partial y}+\bar{k} \frac{\partial}{\partial z}\right) \phi=\bar{i} \frac{\partial \phi}{\partial x}+\bar{j} \frac{\partial \phi}{\partial y}+\bar{k} \frac{\partial \phi}{\partial z}
$$

Properties:
(1) If f and g are two scalar functions then $\operatorname{grad}(f \pm g)=\operatorname{grad} f \pm \operatorname{grad} g$
(2) The necessary and sufficient condition for a scalar point function to be constant is that $\nabla \mathrm{f}=0$
(3) $\operatorname{grad}(\mathrm{fg})=f(\operatorname{grad} \mathrm{~g})+\mathrm{g}(\operatorname{grad} \mathrm{f})$
(4) If c is a constant, $\operatorname{grad}(\mathrm{c} f)=c(\operatorname{grad} f)$
(5) $\operatorname{grad}\left(\frac{f}{g}\right)=\frac{g\left(\begin{array}{ll}\operatorname{grad} & f\end{array}\right)-f\left(\begin{array}{ll}\operatorname{grad} & g\end{array}\right)}{g^{2}},(g \neq 0)$
(6) Let $r=x i+y j+z k$. Then $d \bar{r}=d x i+d y j+d z k$ if ϕ is any scalar point function, then $d \phi=\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y+\frac{\partial \phi}{\partial z} d z=\left(\bar{i} \frac{\partial \Phi}{\partial x}+\bar{j} \frac{\partial \Phi}{\partial y}+\bar{k} \frac{\partial \Phi}{\partial z}\right) \cdot(\bar{i} d x+\bar{j} d y+\bar{k} d z)=\nabla \Phi . d \bar{r}$

DIRECTIONAL DERIVATIVE

Let $\phi(x, y, z)$ be a scalar function defined throughout some region of space. Let this function have a value ϕ at a point P whose position vector referred to the origin O is $\overline{O P}=\bar{r}$. Let $\phi+\Delta \phi$ be the value of the function at neighboring point Q . If $\overline{O Q}=\bar{r}+\Delta \bar{r}$. Let Δr be the length of $\Delta \bar{r}$
gives a measure of the rate at which ϕ change when we move from P to Q. The limiting value of Δr
$\frac{\Delta \phi}{\Delta \mathrm{r}}$ as $\Delta \mathrm{r} \rightarrow 0$ is called the derivative of ϕ in the direction of $\overline{P Q}$ or simply directional derivative of ϕ at P and is denoted by $\mathrm{d} \phi / \mathrm{dr}$.

Theorem 1: The directional derivative of a scalar point function ϕ at a point $P(x, y, z)$ in the direction of a unit vector \bar{e} is equal to $\bar{e} . \operatorname{grad} \phi=\bar{e} \cdot \nabla \phi$.

Level Surface
If a surface $\phi(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{c}$ be drawn through any point $P(\bar{r})$, such that at each point on it, function has the same value as at P, then such a surface is called a level surface of the function ϕ through P.
e.g. : equipotential or isothermal surface.

The physical interpretation of $\nabla \phi$

The gradient of a scalar function $\phi(\mathrm{x}, \mathrm{y}, \mathrm{z})$ at a point $P(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is a vector along the normal to the level surface $\phi(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{c}$ at P and is in increasing direction. Its magnitude is equal to the greatest rate of increase of ϕ. Greatest value of directional derivative of $\bar{\Phi}$ at a point $\mathbf{P}=|\boldsymbol{g r a d} \phi|$ at that point.

SOLVED PROBLEMS

1: If $a=x+y+z, b=x^{2}+y^{2}+z^{2}, c=x y+y z+z x$, prove that $[\operatorname{grad} a, \operatorname{grad} b, \operatorname{grad} c]=0$.
Sol:- Given $a=x+y+z$
There fore $\frac{\partial a}{\partial x}=1, \frac{\partial a}{\partial y}=1, \frac{\partial a}{\partial z}=1$
Grad $\mathrm{a}=\nabla \mathrm{a}=\sum \bar{i} \frac{\partial a}{\partial x}=\bar{i}+\bar{j}+\bar{k}$
Given $b=x^{2}+y^{2}+z^{2}$
Therefore $\frac{\partial b}{\partial x}=2 x, \frac{\partial b}{\partial y}=2 y, \frac{\partial b}{\partial z}=2 z$
Grad $\mathrm{b}=\nabla \mathrm{b}=\bar{i} \frac{\partial b}{\partial x}+\bar{j} \frac{\partial b}{\partial y}+\bar{z} \frac{\partial b}{\partial z}=2 x \bar{i}+2 y \bar{j}+2 z \bar{k}$
Again $c=x y+y z+z x$
Therefore $\frac{\partial c}{\partial x}=y+z, \frac{\partial c}{\partial y}=z+x, \frac{\partial c}{\partial z}=y+x$
$\operatorname{Grad} \mathrm{c}=\bar{i} \frac{\partial c}{\partial x}+\bar{j} \frac{\partial c}{\partial y}+\bar{z} \frac{\partial c}{\partial z}=(y+z) \bar{i}+(z+x) \bar{j}+(x+y) \bar{k}$
[grad $\mathrm{a}, \operatorname{grad} \mathrm{b}, \operatorname{grad} \mathrm{c}]=\left|\begin{array}{lll}1 & 1 & 1 \\ 2 x & 2 y & 2 z \\ y+z & z+x & x+y\end{array}\right|=0$, (on simplifica tion $)$
$[\operatorname{grad} a, \operatorname{grad} b, \operatorname{grad} c]=0$

2: Show that $\nabla[\mathrm{f}(\mathrm{r})]=\frac{f^{i}(r)}{r} \bar{r}$ where $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$.
Sol:- Since $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$, we have $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$
Differentiating w.r.t. ' x ' partially, we get
$2 \mathrm{r} \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r}$. Similarly $\frac{\partial r}{\partial y}=\frac{y}{r}, \frac{\partial r}{\partial z}=\frac{z}{r}$

$$
\begin{aligned}
\nabla[\mathrm{f}(\mathrm{r})] & =\left(\bar{i} \frac{\partial}{\partial x}+\bar{j} \frac{\partial}{\partial y}+\bar{k} \frac{\partial}{\partial z}\right) f(r)=\sum \bar{i}^{1}(r) \frac{\partial r}{\partial x}=\sum \bar{i}^{1}(r) \frac{x}{r} \\
& =\frac{f^{1}(r)}{r} \sum \bar{i} x=\frac{f^{1}(r)}{r} \cdot \bar{r}
\end{aligned}
$$

Note : From the above result, $\nabla(\log r)=\frac{1}{r^{2}} \bar{r}$
3: Prove that $\nabla\left(\mathrm{r}^{\mathrm{n}}\right)=\mathrm{nr}{ }^{\mathrm{n}-2} \bar{r}$.
Sol:- Let $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$ and $\mathrm{r}=|\bar{r}|$. Then we have $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$ Differentiating w.r.t. x partially, we have $2 r \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r}$.Similarly $=\frac{\partial r}{\partial y}=\frac{y}{r}$ and $\frac{\partial r}{\partial z}=\frac{z}{r}$
$\nabla\left(\mathrm{r}^{\mathrm{n}}\right)=\sum \bar{i} \frac{\partial}{\partial x}\left(r^{n}\right)=\sum \bar{i} n r^{n-1} \frac{\partial r}{\partial x}=\sum \bar{i} n r^{n-1} \frac{x}{r}=n r^{n-2} \sum \bar{i} x=n r^{n-2}(\bar{r})$
Note : From the above result, we can have
(1). $\nabla\left(\frac{1}{r}\right)=-\frac{\bar{r}}{r^{3}}$, taking $\mathrm{n}=-1(2) \operatorname{grad} \mathrm{r}=\frac{\bar{r}}{r}$, taking $\mathrm{n}=1$

4: Find the directional derivative of $f=x y+y z+z x$ in the direction of vector $\bar{i}+2 \bar{j}+2 \bar{k}$ at the point (1,2,0). Sol:- Given $f=x y+y z+z x$.

$$
\operatorname{Grad} \mathrm{f}=\bar{i} \frac{\partial f}{\partial x}+\bar{j} \frac{\partial f}{\partial y}+\bar{z} \frac{\partial f}{\partial z}=(y+z) \bar{i}+(z+x) \bar{j}+(x+y) \bar{k}
$$

If \bar{e} is the unit vector in the direction of the vector $\bar{i}+2 \bar{j}+2 \bar{k}$, then

$$
\bar{e}=\frac{\bar{i}+2 \bar{j}+2 \bar{k}}{\sqrt{1^{2}+2^{2}+2^{2}}}=\frac{1}{3}(\bar{i}+2 \bar{j}+2 \bar{k})
$$

Directional derivative of f along the given direction $=\bar{e} . \nabla f$
$=\frac{1}{3}(\bar{i}+2 \bar{j}+2 \bar{k}) \cdot[(y+z) \bar{i}+(z+x) \bar{j}+(x+y \bar{k})] a t(1,2,0)$
$=\frac{1}{3}[(y+z)+2(z+x)+2(x+y)](1,2,0)=\frac{10}{3}$
5: Find the directional derivative of the function $x y^{2}+y z^{2}+z x^{2}$ along the tangent to the curve $x=t, y=t^{2}, z=t^{3}$ at the point $(1,1,1)$.
Sol: - Here $f=\mathrm{xy}^{2}+\mathrm{yz}^{2}+\mathrm{zx}^{2}$

$$
\nabla f=\bar{i} \frac{\partial f}{\partial x}+\bar{j} \frac{\partial f}{\partial y}+\bar{k} \frac{\partial f}{\partial z}=\left(y^{2}+2 x z\right) \bar{i}+\left(z^{2}+2 x y\right) \bar{j}+\left(x^{2}+2 y z\right) \bar{k}
$$

At $(1,1,1), \quad \nabla f=3 \bar{i}+3 \bar{j}+3 \bar{k}$
Let \bar{r} be the position vector of any point on the curve $\mathrm{x}=\mathrm{t}, \mathrm{y}=\mathrm{t}^{2}, \mathrm{z}=\mathrm{t}^{3}$. Then

$$
\begin{aligned}
& \bar{r}=x \bar{i}+y \bar{j}+z \bar{k}=t \bar{i}+t^{2} \bar{j}+t^{3} \bar{k} \\
& \frac{\partial \bar{r}}{\partial t}=\bar{i}+2 t \bar{j}+3 t^{2} \bar{k}=(\bar{i}+2 \bar{j}+3 \bar{k}) \text { at }(1,1,1)
\end{aligned}
$$

We know that $\frac{\partial \bar{r}}{\partial t}$ is the vector along the tangent to curve.
Unit vector along the tangent $=\bar{e} \bar{e}-\frac{\bar{i}+2 \bar{j}+3 \bar{k}}{\sqrt{1+2^{2}+3^{2}}}=\frac{\bar{i}+2 \bar{j}+3 \bar{k}}{\sqrt{14}}$

Directional derivative along the tangent $=\nabla f . \bar{e}$

$$
=\frac{1}{\sqrt{14}}(\bar{i}+2 \bar{j}+3 \bar{k}) \cdot 3(\bar{i}+\bar{j}+\bar{k}) \frac{3}{\sqrt{14}}(1+2+3)=\frac{18}{\sqrt{14}}
$$

line $\overline{P Q}$ where $\mathrm{Q}=(5,0,4)$.

Sol:- The position vectors of P and Q with respect to the origin are $\overline{O P}=\bar{i}+2 \bar{j}+3 \bar{k}$ and $\overline{O Q}=5 \bar{i}+4 \bar{k}$

$$
\overline{P Q}=\overline{O Q}-\overline{O P}=4 \bar{i}-2 \bar{j}+\bar{k}
$$

Let \bar{e} be the unit vector in the direction of $\overline{P Q}$. Then $\bar{e}=\frac{4 \bar{i}-2 \bar{j}+\bar{k}}{\sqrt{21}}$
$\operatorname{grad} f=\bar{i} \frac{\partial f}{\partial x}+\bar{j} \frac{\partial f}{\partial y}+\bar{k} \frac{\partial f}{\partial z}=2 x \bar{i}-2 y \bar{j}+4 z \bar{k}$
The directional derivative of \bar{f} at $\mathrm{P}(1,2,3)$ in the direction of $\overline{P Q}=\bar{e} . \nabla f$

$$
=\frac{1}{\sqrt{21}}(4 \bar{i}-2 \bar{j}+\bar{k}) \cdot(2 x \bar{i}-2 y \bar{j}+4 z \bar{k}) \frac{1}{\sqrt{21}}(8 x+4 y+4 z)_{a t(1,2,3)}=\frac{1}{\sqrt{21}}(28)
$$

7: Find the greatest value of the directional derivative of the function $f=x^{2} y z^{3}$ at $(2,1,-1)$.
Sol: we have
$\operatorname{grad} f=\bar{i} \frac{\partial f}{\partial x}+\bar{j} \frac{\partial f}{\partial y}+\bar{k} \frac{\partial f}{\partial z}=2 x y z^{3} \bar{i}+x^{2} z^{3} \bar{j}+3 x^{2} y z^{2} \bar{k}=-4 \bar{i}-4 \bar{j}+12 \bar{k}$ at $(2,1,-1)$.
Greatest value of the directional derivative of $f=|\nabla f|=\sqrt{16+16+144}=4 \sqrt{11}$.

8: Find the directional derivative of $x y z^{2}+x z$ at $(1,1,1)$ in a direction of the normal to the surface $3 x y^{2}+y=z$ at $(0,1,1)$.
Sol:- Let $f(x, y, z) \equiv 3 x y^{2}+y-z=0$
Let us find the unit normal e to this surface at $(0,1,1)$. Then
$\frac{\partial f}{\partial x}=3 y^{2}, \frac{\partial f}{\partial y}=6 x y+1, \frac{\partial f}{\partial z}=-1$.
$\nabla f=3 y^{2} i+(6 x y+1) j-k$
$(\nabla f)_{(0,1,1)}=3 \mathrm{i}+\mathrm{j}-\mathrm{k}=\bar{n}$
$\bar{e}=\frac{\bar{n}}{|\bar{n}|}=\frac{3 i+j-k}{\sqrt{9+1+1}}=\frac{3 i+j-k}{\sqrt{11}}$
Let $g(x, y, z)=x y z^{2}+x z$, then
$\frac{\partial g}{\partial x}=y z^{2}+z, \frac{\partial g}{\partial y}=x z^{2}, \frac{\partial g}{\partial z}=2 x y+x$
$\nabla g=\left(y z^{2}+z\right) i+x z^{2} j+(2 x y z+x) k$
And $[\nabla g]_{(1,1,1)}=2 i+j+3 k$
Directional derivative of the given function in the direction of \bar{e} at $(1,1,1)=\nabla g \cdot \bar{e}$

$$
=(2 i+j+3 k) \cdot\left(\frac{3 i+j-k}{\sqrt{11}}\right)=\frac{6+1-3}{\sqrt{11}}=\frac{4}{\sqrt{11}}
$$

9: Find the directional derivative of $2 x y+z^{2}$ at $(1,-1,3)$ in the direction of $\bar{i}+2 \bar{j}+3 \bar{k}$.
Sol: Let $f=2 x y+z^{2}$ then $\frac{\partial f}{\partial x}=2 y, \frac{\partial f}{\partial y}=2 x, \frac{\partial f}{\partial z}=2 z$.
$\operatorname{grad} \mathrm{f}=\sum \bar{i} \frac{\partial f}{\partial x}=2 y \bar{i}+2 x \bar{j}+2 z \bar{k}$ and (grad f)at $(1,-1,3)=-2 \bar{i}+2 \bar{j}+6 \bar{k}$

$$
\text { given vector is } \bar{a}=\bar{i}+2 \bar{j}+3 \bar{k} \Rightarrow|\bar{a}|=\sqrt{1+4+9}=\sqrt{14}
$$

Directional derivative of f in the direction of \bar{a} is

$$
\frac{\bar{a} \cdot \nabla f}{|\bar{a}|}=\frac{(\bar{i}+2 \bar{j}+3 \bar{k})(-2 \bar{i}+2 \bar{j}+6 \bar{k}) \cdot}{\sqrt{14}}=\frac{-2+4+18}{\sqrt{14}}=\frac{20}{\sqrt{14}}
$$

10: Find the directional derivative of $\phi=x^{2} y z+4 x z^{2}$ at $(1,-2,-1)$ in the direction $2 i-j-2 k$.
Sol:- Given $\phi=x^{2} y z+4 x z^{2}$

$$
\frac{\partial \phi}{\partial x}=2 x y z+4 z^{2}, \frac{\partial \phi}{\partial y}=x^{2} z, \frac{\partial \phi}{\partial z}=x^{2} y+8 x z
$$

Hence $\nabla \phi=\sum \bar{i} \frac{\partial \phi}{\partial x}=\bar{i}\left(2 x y z+4 z^{2}\right)+\bar{j} x^{2} z+\bar{k}\left(x^{2} y+8 x z\right)$
$\nabla \phi$ at $(1,-2,-1)=i(4+4)+j(-1)+k(-2-8)=8 i-j-10 k$.
The unit vector in the direction $2 \mathrm{i}-\mathrm{j}-2 \mathrm{k}$ is

$$
\bar{a}=\frac{2 i-j-2 k}{\sqrt{4+1+4}}=\frac{1}{3}(2 i-j-2 k)
$$

Required directional derivative along the given direction $=\nabla \phi \cdot \bar{a}$

$$
\begin{aligned}
& =(8 i-j-10 k) \cdot 1 / 3(2 i-j-2 k) \\
& =1 / 3(16+1+20)=37 / 3
\end{aligned}
$$

11: If the temperature at any point in space is given by $t=x y+y z+z x$, find the direction in which temperature changes most rapidly with distance from the point $(1,1,1)$ and determine the maximum rate of change.

Sol:- The greatest rate of increase of t at any point is given in magnitude and direction by $\nabla \mathrm{t}$.

$$
\begin{aligned}
& \text { We have } \nabla \mathrm{t}=\left(\bar{i} \frac{\partial}{\partial x}+\bar{j} \frac{\partial}{\partial y}+\bar{k} \frac{\partial}{\partial z}\right)(x y+y z+z x) \\
& =\bar{i}(y+z)+\bar{j}(z+x)+\bar{k}(x+y)=2 \bar{i}+2 \bar{j}+2 \bar{k} \text { at }(1,1,1)
\end{aligned}
$$

Magnitude of this vector is $\sqrt{2^{2}+2^{2}+2^{2}}=\sqrt{12}=2 \sqrt{3}$
Hence at the point $(1,1,1)$ the temperature changes most rapidly in the direction given by the vector $2 \bar{i}+2 \bar{j}+2 \bar{k}$ and greatest rate of increase $=2 \sqrt{3}$.

12: Findthe directional derivative of $\phi(x, y, z)=x^{2} y z+4 x z^{2}$ at the point $(1,-2,-1)$ in the direction of the normal to the surface $f(x, y, z)=x \log z-y^{2}$ at $(-1,2,1)$.

Sol:- Given $\phi(x, y, z)=x^{2} y z+4 x z^{2}$ at $(1,-2,-1)$ and $f(x, y, z)=x \log z-y^{2}$ at $(-1,2,1)$

$$
\text { Now } \begin{aligned}
\nabla \phi & =\frac{\partial \phi}{\partial x} \bar{i}-\frac{\partial \phi}{\partial y} \bar{j}+\frac{\partial \phi}{\partial z} \bar{k} \\
& =\left(2 x y z+4 z^{2}\right) \bar{i}+\left(x^{2} z\right) \bar{j}+\left(x^{2} y+8 x z\right) \bar{k}
\end{aligned}
$$

$(\nabla \phi)_{(1,-2,-1)}=\left[2(1)(-2)(-1)+4(-1)^{2}\right] i+\left[(1)^{2}(-1) \bar{j}\right]+\left[\left(1^{2}\right)(-2)+8(-1)\right] \bar{k}----(1)$

$$
=8 \bar{i}-\bar{j}-10 \bar{k}
$$

Unit normal to the $\operatorname{surface} f(x, y, z)=x \log z-y^{2}$ is $\frac{\nabla f}{|\nabla f|}$
Now $\nabla f=\bar{i} \frac{\partial f}{\partial x}+\bar{j} \frac{\partial f}{\partial y}+\bar{k} \frac{\partial f}{\partial z}=\log z \bar{i}+(-2 y) \bar{j}+\frac{x}{z} \bar{k}$
At $(-1,2,1), \nabla f=\log (1) \bar{i}-2(2) \bar{j}+\frac{-1}{1} \bar{k}=-4 \bar{j}-\bar{k}$
$\frac{\nabla f}{|\nabla f|}=\frac{-4 \bar{j}-\bar{k} .}{\sqrt{16+1}}=\frac{-4 \bar{j}-\bar{k} .}{\sqrt{17}}$

Directional derivative $=\nabla \phi \cdot \frac{\nabla f}{|\nabla f|}$

$$
=(8 \bar{i}-\bar{j}-10 \bar{k}) \cdot \frac{-4 \bar{j}-\bar{k}}{\sqrt{17}}=\frac{4+10}{\sqrt{17}}=\frac{14}{\sqrt{17}} .
$$

13: Find a unit normal vector to the given surface $x^{2} y+2 x z=4$ at the point $(2,-2,3)$.
Sol:- Let the given surface be $f=x^{2} y+2 x z-4$
On differentiating,

$$
\frac{\partial f}{\partial x}=2 x y+2 z, \frac{\partial f}{\partial y}=x^{2}, \frac{\partial f}{\partial z}=2 x .
$$

$\operatorname{grad} f=\sum \bar{i} \frac{\partial f}{\partial x}=\bar{i}(2 x y+2 z)+\bar{j} x^{2}+2 x \bar{k}$
$(\operatorname{grad} f)$ at $(2,-2,3)=\bar{i}(-8+6)+4 \bar{j}+4 \bar{k}=2 \bar{i}+4 \bar{j}+4 \bar{k}$
$\operatorname{grad}(f)$ is the normal vector to the given surface at the given point.
Hence the required unit normal vector $\frac{\nabla f}{|\nabla f|}=\frac{2(-\bar{i}+2 \bar{j}+2 \bar{k}) .}{2 \sqrt{1+2^{2}+2^{2}}}=\frac{-\bar{i}+2 \bar{j}+2 \bar{k}}{3}$
14: Evaluate the angle between the normal to the surface $x y=z^{2}$ at the points $(4,1,2)$ and $(3,3,-3)$.
Sol:- Given surface is $f(x, y, z)=x y-z^{2}$
Let \bar{n}_{1} and \bar{n}_{2} be the normal to this surface at $(4,1,2)$ and $(3,3,-3)$ respectively.
Differentiating partially, we get

$$
\frac{\partial f}{\partial x}=y, \frac{\partial f}{\partial y}=x, \frac{\partial f}{\partial z}=-2 z .
$$

$\bar{n}_{1}=(\operatorname{grad} f)$ at $(4,1,2)=\bar{i}+4 \bar{j}-4 \bar{k}$

$$
\bar{n}_{2}=(\operatorname{grad} f) \text { at }(3,3,-3)=3 \bar{i}+3 \bar{j}+6 \bar{k}
$$

Let θ be the angle between the two normal.

$$
\begin{gathered}
\cos \theta=\frac{\overline{n_{1}} \cdot \overline{n_{2}}}{\left\lvert\, \overline{n_{1}| | \overline{n_{2}} \mid}=\frac{(i+4 j-4 k)}{\sqrt{1+16+16}} \cdot \frac{(3 i+3 j+6 k)}{\sqrt{9+9+36}}\right.} \begin{array}{c}
\frac{(3+12-24)}{\sqrt{33} \sqrt{54}}=\frac{-9}{\sqrt{33} \sqrt{54}}
\end{array} .
\end{gathered}
$$

15: Find a unit normal vector to the surface $x^{2}+y^{2}+2 z^{2}=26$ at the point $(2,2,3)$.

Sol:- Let the given surface be $f(x, y, z) \equiv x^{2}+y^{2}+2 z^{2}-26=0$. Then

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 x, \frac{\partial f}{\partial y}=2 y, \frac{\partial f}{\partial z}=4 z . \\
& \operatorname{grad} \mathrm{f}=\sum \bar{i} \frac{\partial f}{\partial x}=2 \mathrm{xi}+2 \mathrm{yj}+4 \mathrm{zk} \\
& \text { Normal vector at }(2,2,3)=[\nabla f]_{(2,2,3)}=4 \bar{i}+4 \bar{j}+12 \bar{k}
\end{aligned}
$$

$$
\text { Unit normal vector }=\frac{\nabla f}{|\nabla f|}=\frac{4(\bar{i}+\bar{j}+3 \bar{k})}{4 \sqrt{11}}=\frac{\bar{i}+\bar{j}+3 \bar{k}}{\sqrt{11}}
$$

16: Find the values of a and b so that the surfaces $a x^{2}-b y z=(a+2) x$ and $4 x^{2} y+z^{3}=4$ may intersect orthogonally at the point ($1,-1,2$).
(or) Find the constants a and b so that surface $a x^{2}-b y z=(a+2) x$ will orthogonal to $4 x^{2} y+z^{3}=4$ at the point (1,1,2).
Sol:- Let the given surfaces be $f(x, y, z)=a x^{2}$-byz - $(a+2) x$
And $g(x, y, z)=4 x^{2} y+z^{3}-4---------(2)$

Given the two surfaces meet at the point (1,-1,2).
Substituting the point in (1), we get

$$
a+2 b-(a+2)=0 \Rightarrow b=1
$$

Now $\frac{\partial f}{\partial x}=2 a x-(a+2), \frac{\partial f}{\partial y}=-b z$ and $\frac{\partial f}{\partial z}=-b y$.

$$
\nabla f=\sum \bar{i} \frac{\partial f}{\partial x}=[(2 \mathrm{ax}-(\mathrm{a}+2)] \mathrm{i}-\mathrm{bz}+\mathrm{bk}=(\mathrm{a}-2) \mathrm{i}-2 \mathrm{bj}+\mathrm{bk}
$$

$$
=(\mathrm{a}-2) \mathrm{i}-2 \mathrm{j}+\mathrm{k}=\bar{n}_{1}, \text { normal vector to surface } 1 .
$$

Also $\frac{\partial g}{\partial x}=8 x y, \frac{\partial g}{\partial y}=4 x^{2}, \frac{\partial g}{\partial z}=3 z^{2}$.
$(\nabla \mathrm{g})_{(1,-1,2)}=-8 \mathrm{i}+4 \mathrm{j}+12 \mathrm{k}=\bar{n}_{2}$, normal vector to surface 2 .
Given the surfaces $f(x, y, z), g(x, y, z)$ are orthogonal at the point ($1,-1,2$).
$[\bar{\nabla} f] \cdot[\bar{\nabla} g]=0 \Rightarrow((a-2) i-2 j+k) \cdot(-8 i+4 j+12 k)=0$
$\Rightarrow-8 a+16-8+12 \Rightarrow a=5 / 2$
Hence $a=5 / 2$ and $b=1$.

17: Find a unit normal vector to the surface $\mathrm{z}=\mathrm{x}^{2}+\mathrm{y}^{2}$ at $(-1,-2,5)$
Sol:- Let the given surface be $f=x^{2}+y^{2}-z$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 x, \frac{\partial f}{\partial y}=2 y, \frac{\partial f}{\partial z}=-1 . \\
& \operatorname{grad} \mathrm{f}=\nabla f=\sum \bar{i} \frac{\partial f}{\partial x}=2 x i+2 y j-k \\
& (\nabla f) \text { at }(-1,-2,5)=-2 i-4 j-k
\end{aligned}
$$

∇f is the normal vector to the given surface.
Hence the required unit normal vector $=\frac{\nabla f}{|\nabla f|}=$

$$
\frac{-2 i-4 j-k}{\sqrt{(-2)^{2}+(-4)^{2}+(-1)^{2}}}=\frac{-2 i-4 j-k}{\sqrt{21}}=-\frac{1}{\sqrt{21}}(2 i+4 j+k)
$$

18: Find the angle of intersection of the spheres $x^{2}+y^{2}+z^{2}=29$ and $x^{2}+y^{2}+z^{2}+4 x-6 y-8 z-47=0$ at the point ($4,-$ $3,2)$.

Sol:- Let $f=x^{2}+y^{2}+z^{2}-29$ and $g=x^{2}+y^{2}+z^{2}+4 x-6 y-8 z-47$

$$
\begin{aligned}
& \text { Then } \operatorname{grad} \mathrm{f}=\bar{i} \frac{\partial f}{\partial x}+\bar{j} \frac{\partial f}{\partial y}+\bar{k} \frac{\partial f}{\partial z}=2 x \bar{i}+2 y \bar{j}+2 z \bar{k} \text { and } \\
& \operatorname{grad} \mathrm{g}=(2 x+4) \bar{i}+(2 y-6) \bar{j}+(2 z-8) \bar{k}
\end{aligned}
$$

The angle between two surfaces at a point is the angle between the normal to the surfaces at that point.

$$
\begin{aligned}
& \text { Let } \bar{n}_{1}=(\operatorname{grad} f) \text { at }(4,-3,2)=8 \bar{i}-6 \bar{j}+4 \bar{k} \\
& \bar{n}_{2}=(\operatorname{grad} f) \text { at }(4,-3,2)=12 \bar{i}-12 \bar{j}-4 \bar{k}
\end{aligned}
$$

The vectors \bar{n}_{1} and \bar{n}_{2} are along the normal to the two surfaces at ($4,-3,2$). Let θ be the angle between the surfaces. Then
$\operatorname{Cos} \theta=\frac{n_{1} \cdot n_{2}}{\left|\overline{n_{1}| | \mid n_{2}}\right|}=\cdot \frac{152}{\sqrt{116} \sqrt{304}}$
$\therefore \theta=\cos ^{-1}\left(\sqrt{\frac{19}{29}}\right)$
19: Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$, and $z=x^{2}+y^{2}-3$ at point $(2,-1,2)$.
Sol:- Let $\phi_{1}=x^{2}+y^{2}+z^{2}-9=0$ and $\phi_{2}=x^{2}+y^{2}-z-3=0$ be the given surfaces. Then

$$
\nabla \phi_{1}=2 x i+2 y j+2 z k \text { and } \nabla \phi_{2}=2 x i+2 y j-k
$$

Let $\bar{n}_{1}=\nabla \phi_{1}$ at $(2,-1,2)=4 i-2 j+4 k$ and

$$
\bar{n}_{2}=\nabla \phi_{2} \text { at }(2,-1,2)=4 \mathrm{i}-2 \mathrm{j}-\mathrm{k}
$$

The vectors \bar{n}_{1} and \bar{n}_{2} are along the normals to the two surfaces at the point $(2,-1,2)$. Let θ be the angle between the surfaces. Then

$$
\begin{aligned}
\operatorname{Cos} \theta & =\frac{\bar{n}_{1} \bar{n}_{2}}{\left|\bar{n}_{1} \bar{n}_{2}\right|}=\frac{(4 i-2 j+4 k)}{\sqrt{16+4+16}} \cdot \frac{(4 i-2 j-k)}{\sqrt{16+4+16}}=\frac{16+4-4}{6 \sqrt{21}}=\frac{16}{6 \sqrt{21}}=\frac{8}{3 \sqrt{21}} \\
\therefore \theta & =\cos ^{-1}\left(\frac{8}{3 \sqrt{21}}\right) .
\end{aligned}
$$

20: If \bar{a} is constant vector then prove that $\operatorname{grad}(\bar{a} \cdot \bar{r})=\bar{a}$
Sol: Let $\bar{a}=a_{1} \bar{i}+a_{2} \bar{j}+a_{3} \bar{k}$, where $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}$ are constants.
$\bar{a} \cdot \bar{r}=\left(a_{1} \bar{i}+a_{2} \bar{j}+a_{3} \bar{k}\right) \cdot(x \bar{i}+y \bar{j}+z \bar{k})=a_{1} x+a_{2} y+a_{3} z$ $\frac{\partial}{\partial x}(\bar{a} \cdot \bar{r})=a_{1}, \frac{\partial}{\partial y}(\bar{a} \cdot \bar{r})=a_{2}, \frac{\partial}{\partial z}(\bar{a} \cdot \bar{r})=a_{3}$
$\operatorname{grad}(\bar{a} \cdot \bar{r})=a_{1} \bar{i}+a_{2} \bar{j}+a_{3} \bar{k}=\bar{a}$
21: If $\nabla \phi=y z \bar{i}+z x \bar{j}+x y \bar{k}$, find ϕ.
Sol:- We know that $\nabla \phi=\bar{i} \frac{\partial f}{\partial x}+\bar{j} \frac{\partial f}{\partial y}+\bar{k} \frac{\partial f}{\partial z}$
Given that $\nabla \phi=y z \bar{i}+z x \bar{j}+x y \bar{k}$
Comparing the corresponding coefficients, we have $\frac{\partial \phi}{\partial x}=y z, \frac{\partial \phi}{\partial y}=z x, \frac{\partial \phi}{\partial z}=x y$
Integrating partially w.r.t. x, y, z, respectively, we get
$\phi=x y z+a$ constant independent of x.
$\phi=x y z+a$ constant independent of y.
$\phi=x y z+a$ constant independent of z.
Here a possible form of ϕ is $\phi=x y z+a$ constant.

Let \bar{f} be any continuously differentiable vector point function. Then $\bar{i} \cdot \frac{\partial \bar{f}}{\partial x}+\bar{j} \cdot \frac{\partial \bar{f}}{\partial y}+\bar{k} \cdot \frac{\partial \bar{f}}{\partial z}$ is called the divergence of \bar{f} and is written as $\operatorname{div} \bar{f}$.

$$
\text { i.e., } \operatorname{div} \bar{f}=\bar{i} \cdot \frac{\partial \bar{f}}{\partial x}+\bar{j} \cdot \frac{\partial \bar{f}}{\partial y}+\bar{k} \cdot \frac{\partial \bar{f}}{\partial z}=\left(\bar{i} \frac{\partial}{\partial x}+\bar{j} \frac{\partial}{\partial y}+\bar{k} \frac{\partial}{\partial z}\right) \cdot \bar{f}
$$

Hence we can write div \bar{f} as
$\operatorname{div} \bar{f}=\nabla \cdot \bar{f}$
This is a scalar point function.

Theorem 1: If the vector $\bar{f}=f_{1} \bar{i}+f_{2} \bar{j}+f_{3} \bar{k}$, then $\operatorname{div} \bar{f}=\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}+\frac{\partial f_{3}}{\partial z}$
Prof: Given $\bar{f}=f_{1} \bar{i}+f_{2} \bar{j}+f_{3} \bar{k}$
$\frac{\partial \bar{f}}{\partial x}=\bar{i} \frac{\partial f_{1}}{\partial x}+\bar{j} \frac{\partial f_{2}}{\partial x}+\bar{k} \frac{\partial f_{3}}{\partial x}$
Also $\bar{i} \cdot \frac{\partial \bar{f}}{\partial x}=\frac{\partial f_{1}}{\partial x}$. Similarly $\bar{j} \cdot \frac{\partial \bar{f}}{\partial y}=\frac{\partial f_{2}}{\partial y}$ and $\bar{k} \cdot \frac{\partial \bar{f}}{\partial z}=\frac{\partial f_{3}}{\partial z}$
We have div $\bar{f}=\sum \bar{i} .\left(\frac{\partial \bar{f}}{\partial x}\right)=\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}+\frac{\partial f_{3}}{\partial z}$
Note: If \bar{f} is a constant vector then $\frac{\partial f_{1}}{\partial x}, \frac{\partial f_{2}}{\partial y}, \frac{\partial f_{3}}{\partial z}$ are zeros.
$\therefore \operatorname{div} \bar{f}=0$ for a constant vector \bar{f}.
Theorem 2: $\operatorname{div}(\bar{f} \pm \bar{g})=\operatorname{div} \bar{f} \pm \operatorname{div} \bar{g}$
Proof: $\operatorname{div}(\bar{f} \pm \bar{g})=\sum \bar{i} \cdot \frac{\partial}{\partial x}(\bar{f} \pm \bar{g})=\sum \bar{i} \cdot \frac{\partial}{\partial x}(\bar{f}) \pm \sum \bar{i} \cdot \frac{\partial}{\partial x}(\bar{g})=\operatorname{div} \bar{f} \pm \operatorname{div} \bar{g}$.
Note: If ϕ is a scalar function and \bar{f} is a vector function, then
(i). $(\bar{a} \cdot \nabla) \phi=\left\lceil\bar{a} \cdot\left(\bar{i} \frac{\partial}{\partial x}+\bar{j} \frac{\partial}{\partial y}+\bar{k} \frac{\partial}{\partial z}\right)\right\rfloor \phi$

$$
\begin{aligned}
& =\left[(\bar{a} \cdot \bar{i}) \frac{\partial}{\partial x}+(\bar{a} \cdot \bar{j}) \frac{\partial}{\partial y}+(\bar{a} \cdot \bar{k}) \frac{\partial}{\partial z}\right] \phi \\
& =\left[(\bar{a} \cdot \bar{i}) \frac{\partial \phi}{\partial x}+(\bar{a} \cdot \bar{j}) \frac{\partial \phi}{\partial y}+(\bar{a} \cdot \bar{k}) \frac{\partial \phi}{\partial z}\right] \\
& =\sum(\bar{a} \cdot \bar{i}) \frac{\partial \phi}{\partial x} . \text { and }
\end{aligned}
$$

(ii). $(\bar{a}, \nabla) \bar{f}=\sum(\bar{a} \cdot \bar{i}) \frac{\partial \bar{f}}{\partial x}$. by proceeding as in (i) [simply replace ϕ by \bar{f} in (i)].

A vector point function \bar{f} is said to be solenoidal if $\operatorname{div} \bar{f}=0$.

Physical interpretation of divergence:

Depending upon \bar{f} in a physical problem, we can interpret $\operatorname{div} \bar{f}(=\nabla \cdot \bar{f})$.
Suppose $\bar{F}(x, y, z, t)$ is the velocity of a fluid at a point (x, y, z) and time ' t '. Though time has no role in computing divergence, it is considered here because velocity vector depends on time.

Imagine a small rectangular box within the fluid as shown in the figure. We would like to measure the rate per unit volume at which the fluid flows out at any given time. The divergence of \bar{F} measures the outward flow or expansions of the fluid from their point at any time. This gives a physical interpretation of the divergence.

Similar meanings are to be understood with respect to divergence of vectors \bar{f} from other branches. A detailed elementary interpretation can be seen in standard books on fluid dynamics, electricity and magnetism etc.

SOLVED PROBLEMS

1: If $\bar{f}=x y^{2} \bar{i}+2 x^{2} y z \bar{j}-3 y z^{2} \bar{k}$ find div \bar{f} at(1, $\left.-1,1\right)$.
Sol:- Given $\bar{f}=x y^{2} \bar{i}+2 x^{2} y z \bar{j}-3 y z^{2} \bar{k}$.
Thendiv $\bar{f}=\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}+\frac{\partial f_{3}}{\partial z}=\frac{\partial}{\partial x}\left(x y^{2}\right)+\frac{\partial}{\partial y}\left(2 x^{2} y z\right)+\frac{\partial}{\partial z}\left(-3 y z^{2}\right)=y^{2}+2 x^{2} z-6 y z$
$(\operatorname{div} \bar{f})$ at $(1,-1,1)=1+2+6=9$

2: Find div \bar{f} when $\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$
Sol:- Let $\phi=x^{3}+y^{3}+z^{3}-3 x y z$.
Then $\frac{\partial \phi}{\partial x}=3 x^{2}-3 y z, \frac{\partial \phi}{\partial y}=3 y^{2}-3 z x, \frac{\partial \phi}{\partial z}=3 z^{2}-3 x y$

$$
\operatorname{grad} \phi=\bar{i} \frac{\partial \phi}{\partial x}+\bar{j} \frac{\partial \phi}{\partial y}+\bar{k} \frac{\partial \phi}{\partial z}=3\left[\left(x^{2}-y z\right) \bar{i}+\left(y^{2}-z x\right) \bar{j}+\left(z^{2}-x y\right) \bar{k}\right]
$$

$$
\operatorname{div} \bar{f}=\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}+\frac{\partial f_{3}}{\partial z}=\frac{\partial}{\partial x}\left[3\left(x^{2}-y z\right)\right]+\frac{\partial}{\partial y}\left[3\left(y^{2}-z x\right)\right]+\frac{\partial}{\partial z}\left[3\left(z^{2}-x y\right)\right]
$$

$$
=3(2 x)+3(2 y)+3(2 z)=6(x+y+z)
$$

3: If $\bar{f}=(x+3 y) \bar{i}+(y-2 z) \bar{j}+(x+p z) \bar{k}$ is solenoid, find P.
Sol:- Let $\bar{f}=(x+3 y) \bar{i}+(y-2 z) \bar{j}+(x+p z) \bar{k}=f_{1} \bar{i}+f_{2} \bar{j}+f_{3} \bar{k}$

$$
\text { We have } \frac{\partial f_{1}}{\partial x}=1, \frac{\partial f_{2}}{\partial y}=1, \frac{\partial f_{3}}{\partial z}=p
$$

$$
\operatorname{div} \bar{f}=\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}+\frac{\partial f_{3}}{\partial z}=1+1+\mathrm{p}=2+\mathrm{p}
$$

since \bar{f} is solenoid, we have $\operatorname{div} \bar{f}=0 \Rightarrow 2+p=0 \Rightarrow p=-2$

4: Find $\operatorname{div} \bar{f}=r^{n} \bar{r}$. Find n if it is solenoid?
Sol: Given $\bar{f}=r^{n} \bar{r}$. where $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$ and $r=|\bar{r}|$
We have $r^{2}=x^{2}+y^{2}+z^{2}$
Differentiating partially w.r.t. x, we get

$$
2 r \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r}
$$

Similarly $\frac{\partial r}{\partial y}=\frac{y}{r}$ and $\frac{\partial r}{\partial z}=\frac{z}{r}$
$\bar{f}=\mathrm{r}^{\mathrm{n}}(x \bar{i}+y \bar{j}+z \bar{k})$
$\operatorname{div} \bar{f}=\frac{\partial}{\partial x}\left(r^{n} x\right)+\frac{\partial}{\partial y}\left(r^{n} y\right)+\frac{\partial}{\partial z}\left(r^{n} z\right)$

$$
\begin{aligned}
& =n r^{n-1} \frac{\partial r}{\partial x} x+r^{n}+n r^{n-1} \frac{\partial r}{\partial y} y+r^{n}+n r^{n-1} \frac{\partial r}{\partial z} z+r^{n} \\
& =n r^{n-1}\left\lceil\left[\frac{x^{2}}{r}+\frac{y^{2}}{r}+\frac{z^{2}}{r}\right\rceil+3 r^{n}=n r^{n-1} \frac{\left(r^{2}\right)}{r}+3 r^{n}=n r^{n}+3 r^{n}=(\mathrm{n}+3) r^{n}\right.
\end{aligned}
$$

Let $\bar{f}=r^{n} \bar{r}$ be solenoid. Then $\operatorname{div} \bar{f}=0$

$$
(n+3) r^{n}=0 \Rightarrow n=-3
$$

5: Evaluate $\nabla \cdot\left(\frac{\bar{r}}{r^{3}}\right)$ where $\bar{r}=x i+y j+z k$ and $r=|\bar{r}|$.
Sol:- We have

$$
\bar{r}=\mathrm{xi}+\mathrm{yj}+\mathrm{zk} \text { and } \mathrm{r}=\sqrt{x^{2}+y^{2}+z^{2}}
$$

$$
\begin{aligned}
\frac{\partial r}{\partial x} & =\frac{x}{r}, \frac{\partial r}{\partial y}=\frac{y}{r}, \text { and } \frac{\partial r}{\partial z}=\frac{z}{r} \\
& \therefore \frac{\bar{r}}{r^{3}}=\bar{r} . r^{-3}=r^{-3} x \mathrm{i}+\mathrm{r}^{-3} \mathrm{yj}+\mathrm{r}^{-3} \mathrm{zk}=f_{1} i+f_{2} j+f_{3} k
\end{aligned}
$$

Hence $\nabla .\left(\frac{\bar{r}}{r^{3}}\right)=\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}+\frac{\partial f_{3}}{\partial z}$

$$
\text { We have } f_{1}=r^{-3} x \Rightarrow \frac{\partial f_{1}}{\partial x}=r^{-3} \cdot 1+x(-3) r^{-4} \cdot \frac{\partial r}{\partial x}
$$

$$
\begin{aligned}
\therefore \frac{\partial f_{1}}{\partial x}=r^{-3}-3 x r^{-4} \frac{x}{y} & =r^{-3}-3 x^{2} r^{-5} \\
\nabla \cdot\left(\frac{\bar{r}}{r^{3}}\right) & =\sum \quad \frac{\partial f_{1}}{\partial x}=3 r^{-3}-3 r^{-5} \sum x^{2} \\
& =3 r^{-3}-3 r^{-5} r^{2}=3 r^{-3}-3 r^{-3}=0
\end{aligned}
$$

6: Find div \bar{r} where $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$

Sol:- We have $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}=f_{1} \bar{i}+f_{2} \bar{j}+f_{3} \bar{k}$

$$
\operatorname{div} \bar{r}=\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}+\frac{\partial f_{3}}{\partial z}=\frac{\partial}{\partial x}(x)+\frac{\partial}{\partial y}(y)+\frac{\partial}{\partial z}(z)=1+1+1=3
$$

CURL OF A VECTOR

Def: Let \bar{f} be any continuously differentiable vector point function. Then the vector function defined by $\bar{i} \times \frac{\partial \bar{f}}{\partial x}+\bar{j} \times \frac{\partial \bar{f}}{\partial y}+\bar{k} \times \frac{\partial \bar{f}}{\partial z}$ is called curl of \bar{f} and is denoted by curl \bar{f} or $(\nabla \times \bar{f})$.
Curl $\bar{f}=\bar{i} \times \frac{\partial \bar{f}}{\partial x}+\bar{j} \times \frac{\partial \bar{f}}{\partial y}+\bar{k} \times \frac{\partial \bar{f}}{\partial z}=\sum\left(\bar{i} \times \frac{\partial \bar{f}}{\partial x}\right)$
Theorem 1: If \bar{f} is differentiable vector point function given by $\bar{f}=f_{1} \bar{i}+f_{2} \bar{j}+f_{3} \bar{k}$ then curl $\bar{f}=$ $\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}\right) \bar{i}+\left(\frac{\partial f_{1}}{\partial z}-\frac{\partial f_{3}}{\partial x}\right) \bar{j}+\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right) \bar{k}$

Proof : curl $\bar{f}=\sum \bar{i} \times \frac{\partial}{\partial x}(\bar{f})=\sum \bar{i} \times \frac{\partial}{\partial x}\left(f_{1} \bar{i}+f_{2} \bar{j}+f_{3} \bar{k}\right)=\sum\left(\frac{\partial f_{2}}{\partial x} \bar{k}-\frac{\partial f_{3}}{\partial x} \bar{j}\right)$

$$
\begin{aligned}
& =\left(\frac{\partial f_{2}}{\partial x} \bar{k}-\frac{\partial f_{3}}{\partial x} \bar{j}\right)+\left(\frac{\partial f_{3}}{\partial y} \bar{i}-\frac{\partial f_{1}}{\partial y} \bar{k}\right)+\left(\frac{\partial f_{1}}{\partial z} \bar{j}-\frac{\partial f_{2}}{\partial z} \bar{i}\right) \\
& =\bar{i}\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}\right)+\bar{j}\left(\frac{\partial f_{1}}{\partial z}-\frac{\partial f_{3}}{\partial x}\right)+\bar{k}\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right)
\end{aligned}
$$

Note: (1) the above expression for curl \bar{f} can be remembered easily through the representation.

$$
\operatorname{curl} \bar{f}=\left|\begin{array}{lll}
\bar{i} & \bar{j} & \bar{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
f_{1} & f_{2} & f_{3}
\end{array}\right|=\nabla \mathbf{x} \bar{f}
$$

Note (2) : If \bar{f} is a constant vector then curl $\bar{f}=\bar{o}$.
Theorem 2: curl $(\bar{a} \pm \bar{b})=\operatorname{curl} \quad \bar{a} \pm \operatorname{curl} \bar{b}$
Proof: $\operatorname{curl}(\bar{a} \pm \bar{b})=\sum \bar{i} \times \frac{\partial}{\partial x}(\bar{a} \pm \bar{b})$

$$
\begin{aligned}
& =\sum i \times\left(\frac{\partial \bar{a}}{\partial x} \pm \frac{\partial \bar{b}}{\partial x}\right)=\sum i \times \frac{\partial \bar{a}}{\partial x} \pm \sum i x \frac{\partial \bar{b}}{\partial x} \\
& =\text { curl } \bar{a} \pm \text { curl } \bar{b}
\end{aligned}
$$

If \bar{w} is the angular velocity of a rigid body rotating about a fixed axis and \bar{v} is the velocity of any point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ on the body, then $\bar{w}=1 / 2$ curl \bar{v}. Thus the angular velocity of rotation at any point is equal to half the curl of velocity vector. This justifies the use of the word "curl of a vector".

2. Irrotational Motion, Irrotational Vector

Any motion in which curl of the velocity vector is a null vector i.e curl $\bar{v}=\overline{0}$ is said to be Irrotational.

Def: A vector \bar{f} is said to be Irrotational if curl $\bar{f}=\overline{0}$.
If \bar{f} is Irrotational, there will always exist a scalar function $\varphi(x, y, z)$ such that $\bar{f}=\operatorname{grad} \phi$. This ϕ is called scalar potential of \bar{f}.

It is easy to prove that, if $\bar{f}=\operatorname{grad} \phi$, then curl $\bar{f}=0$.
Hence $\nabla \mathbf{x} \bar{f}=0 \Leftrightarrow$ there exists a scalar function ϕ such that $\bar{f}=\nabla \phi$.
This idea is useful when we study the "work done by a force" later.

SOLVED PROBLEMS

1: If $\bar{f}=x y^{2} \bar{i}+2 x^{2} y z \bar{j}-3 y z^{2} \bar{k}$ find curl \bar{f} at the point (1,-1,1).
Sol:- Let $\bar{f}=x y^{2} \bar{i}+2 x^{2} y z \bar{j}-3 y z^{2} \bar{k}$. Then

$$
\begin{aligned}
& \operatorname{curl} \bar{f}=\nabla \mathbf{x} \bar{f}=\left|\begin{array}{lll}
\bar{i} & \bar{j} & \bar{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x y^{2} & 2 x^{2} y z & -3 y z^{2}
\end{array}\right| \\
& =\bar{i}\left(\frac{\partial}{\partial y}\left(-3 y z^{2}\right)-\frac{\partial}{\partial z}\left(2 x^{2} y z\right)\right)+\bar{j}\left(\frac{\partial}{\partial z}\left(x y^{2}\right)-\frac{\partial}{\partial x}\left(-3 y z^{2}\right)\right)+\bar{k}\left(\frac{\partial}{\partial x}\left(2 x^{2} y z\right)-\frac{\partial}{\partial y}\left(x y^{2}\right)\right) \\
& =\bar{i}\left(-3 z^{2}-2 x^{2} z\right)+\bar{j}(0-0)+\bar{k}(4 x y z-2 x y)=-\left(3 z^{2}+2 x^{2} y\right) \bar{i}+(4 x y z-2 x y) \bar{k} \\
& =\operatorname{curl} \bar{f} \text { at }(1,-1,1)=-\bar{i}-2 \bar{k} .
\end{aligned}
$$

2: Find curl \bar{f} where $\bar{f}=\operatorname{grad}\left(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}\right)$
Sol:- Let $\phi=x^{3}+y^{3}+z^{3}-3 x y z$. Then
$\operatorname{grad} \phi=\sum \bar{i} \frac{\partial \phi}{\partial x}=3\left(x^{2}-y z\right) \bar{i}+3\left(y^{2}-z x\right) \bar{j}+3\left(z^{2}-x y\right) \bar{k}$

$$
\begin{aligned}
\text { curl } \operatorname{grad} \phi=\nabla \times \operatorname{grad} \phi & =3\left|\begin{array}{lll}
\bar{i} & \bar{j} & \bar{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2}-y z & y^{2}-z x & z^{2}-x y
\end{array}\right| \\
& =3[\bar{i}(-x+x)-\bar{j}(-y+y)+\bar{k}(-z+z)]=\overline{0} \\
\therefore \operatorname{curl} f & =\overline{0} .
\end{aligned}
$$

Note: We can prove in general that curl $(\operatorname{grad} \phi)=\overline{0}$.(i.e) grad ϕ is always irrotational.
3: Prove that if \bar{r} is the position vector of an point in space, then $\mathrm{r}^{\mathrm{n}} \bar{r}$ is Irrotational. (or) Show that $\operatorname{curl}\left(r^{n} \vec{r}\right)=0$

Sol:- Let $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k} \quad$ and $\mathrm{r}=|\bar{r}| \quad \therefore \mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$.

Differentiating partially w.r.t. ' x ', we get
$2 r \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r}$,
Similarly $\frac{\partial r}{\partial y}=\frac{y}{r}$, and $\frac{\partial r}{\partial z}=\frac{z}{r}$
We have $r^{n}{ }^{-}=r^{n}(x \bar{i}+y \bar{j}+z \bar{k})$

$$
\begin{aligned}
& \nabla \times\left(r^{\mathrm{n}} \bar{r}\right)=\left|\begin{array}{lcc}
\bar{i} & \bar{j} & \bar{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x r^{n} & y r^{n} & z r^{n}
\end{array}\right| \\
& =\bar{i}\left(\frac{\partial}{\partial y}\left(r^{n} z\right)-\frac{\partial}{\partial z}\left(r^{n} y\right)\right)+\bar{j}\left(\frac{\partial}{\partial z}\left(r^{n} x\right)-\frac{\partial}{\partial x}\left(r^{n} z\right)\right)+\bar{k}\left(\frac{\partial}{\partial x}\left(r^{n} y\right)-\frac{\partial}{\partial y}\left(r^{n} x\right)\right) \\
& =\sum \bar{i}\left\{z n r^{n-1} \frac{\partial r}{\partial y}-y n r^{n-1} \frac{\partial r}{\partial z}\right\}=n r^{n-1} \sum \bar{i}\left\{z\left(\frac{y}{r}\right)-y\left(\frac{z}{r}\right)\right\} \\
& =n r^{n-2}[(z y-y z) \bar{i}+(x z-z x) \bar{j}+(x y-y z) \bar{k}] \\
& =n r^{n-2}[0 \bar{i}+0 j+0 \bar{k}]=n r^{n-2}[\overline{0}]=\overline{0}
\end{aligned}
$$

Hence $\mathrm{r}^{\mathrm{n}} \bar{r}$ is Irrotational.

4: Prove that curl $\bar{r}=\overline{0}$
Sol:- Let $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$

$$
\operatorname{curl} \bar{r}=\sum \bar{i} \times \frac{\partial}{\partial x}(\bar{r})=\sum(\bar{i} x \bar{i})=\overline{0}+\overline{0}+\overline{0}=\overline{0}
$$

$\therefore \bar{r}$ is Irrotational vector.

5: If \bar{a} is a constant vector, prove that curl $\left(\frac{\bar{a} x \bar{r}}{r^{3}}\right)=-\frac{\bar{a}}{r^{3}}+\frac{3 \bar{r}}{r^{5}}(\bar{a} \cdot \bar{r})$.
Sol:- We have $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$
$\frac{\partial \bar{r}}{\partial x}=\bar{i}, \frac{\partial \bar{r}}{\partial y}=\bar{j}, \frac{\partial \bar{r}}{\partial z}=\bar{k}$
If $|\bar{r}|=r$ then $r^{2}=x^{2}+y^{2}+z^{2}$
$\frac{\partial r}{\partial x}=\frac{x}{r}, \frac{\partial r}{\partial y}=\frac{y}{r}$, and $\frac{\partial r}{\partial z}=\frac{z}{r}$
$\operatorname{curl}\left(\frac{\bar{a} \times \bar{r}}{r^{3}}\right)=\sum \bar{i} \times \frac{\partial}{\partial x}\left(\frac{\bar{a} \times \bar{r}}{r^{3}}\right)$
Now $\frac{\partial}{\partial x}\left(\frac{\bar{a} \times \bar{r}}{r^{3}}\right)=\bar{a} \times \frac{\partial}{\partial x}\left(\frac{\bar{r}}{r^{3}}\right)=\bar{a} \times\left[\frac{1}{r^{3}} \frac{\partial \bar{r}}{\partial x}-\frac{3}{r^{4}} \frac{\partial r}{\partial x} \bar{r}\right]$

$$
\begin{aligned}
& =\bar{a} \times\left[\frac{1}{r^{3}} \bar{i}-\frac{3}{r^{5}} x \bar{r}\right]=\frac{\bar{a} \times \bar{i}}{r^{3}}-\frac{3 x(\bar{a} \cdot \times \bar{r})}{r^{5}} . \\
& \therefore i \times \frac{\partial}{\partial x}\left(\frac{\bar{a} \times \bar{r}}{r^{3}}\right)=\bar{i} \times\left[\frac{\bar{a} \times \bar{i}}{r^{3}}-\frac{3 x}{r^{5}}(\bar{a} \times \bar{r})\right]=\frac{\bar{i} \times(\bar{a} \times \bar{i})}{r^{3}}-\frac{3 x}{r^{5}} \bar{i} \times(\bar{a} \times \bar{r}) \\
& =\frac{(\bar{i} \cdot \bar{i}) \bar{a}-(\bar{i} \cdot \bar{a}) i}{r^{3}}-\frac{3 x}{r^{5}}[(\bar{i} \cdot \bar{r}) \bar{a}-(i . a) \bar{r}]
\end{aligned}
$$

Let $\bar{a}=a_{1} \bar{i}+a_{2} \bar{j}+a_{3} \bar{k}$. Then $\bar{i} \cdot \bar{a}=\mathrm{a}_{1}$, etc.
$\therefore \quad i \times \frac{\partial}{\partial x}\left(\frac{\bar{a} \times \bar{r}}{r^{3}}\right)=\sum \frac{\left(\bar{a}-a_{1} i\right)}{r^{3}}-\frac{3 x}{r^{3}}\left(x \bar{a}-a_{1} \bar{r}\right)$
$\therefore \quad \sum i \times \frac{\partial}{\partial x}\left(\frac{\bar{a} \times \bar{r}}{r^{3}}\right)=\sum \frac{\bar{a}-a_{1} \bar{i}}{r^{3}}-\frac{3}{r^{5}} \sum\left(x^{2} \bar{a}-a_{1} x \bar{r}\right)$
$=\frac{3 \bar{a}-\bar{a}}{r^{3}}-\frac{3 \bar{a}}{r^{5}}\left(r^{2}\right)+\frac{3 \bar{r}}{r^{5}}\left(a_{1} x+a_{2} y+a_{3} z\right)$
$=\frac{2 \bar{a}}{r^{3}}-\frac{3 \bar{a}}{r^{3}}+\frac{3 \bar{r}}{r^{5}}(\bar{r} \cdot \bar{a})=-\frac{\bar{a}}{r^{3}}+\frac{3 \bar{r}}{r^{5}}(\bar{r} \cdot \bar{a})$

6: Show that the vector $\left(x^{2}-y z\right) \bar{i}+\left(y^{2}-z x\right) \bar{j}+\left(z^{2}-x y\right) \bar{k}$ is irrotational and find its scalar potential.
Sol: let $\bar{f}=\left(x^{2}-y z\right) \bar{i}+\left(y^{2}-z x\right) \bar{j}+\left(z^{2}-x y\right) \bar{k}$

$$
\text { Then curl } \bar{f}=\left|\begin{array}{lll}
\bar{i} & \bar{j} & \bar{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2}-y z & y^{2}-z x & z^{2}-x y
\end{array}\right|=\sum \bar{i}(-x+x)=\overline{0}
$$

$\therefore \bar{f}$ is Irrotational. Then there exists ϕ such that $\bar{f}=\nabla \phi$.
$\Rightarrow \bar{i} \frac{\partial \phi}{\partial x}+\bar{j} \frac{\partial \phi}{\partial y}+\bar{k} \frac{\partial \phi}{\partial z}=\left(x^{2}-y z\right) \bar{i}+\left(y^{2}-z x\right) \bar{j}+\left(z^{2}-x y\right) \bar{k}$
$\frac{\partial \phi}{\partial y}=y^{2}-z x \Rightarrow \phi=\frac{y^{3}}{3}-x y z+f_{2}(z, x) \ldots \ldots .($
$\frac{\partial \phi}{\partial z}=z^{2}-x y \Rightarrow \phi=\frac{z^{3}}{3}-x y z+f_{3}(x, y) \ldots \ldots .(3)$
From (1), (2),(3), $\quad \phi=\frac{x^{3}+y^{3}+z^{3}}{3}-x y z$
$\therefore \quad \phi=\frac{1}{3}\left(x^{3}+y^{3}+z^{3}\right)-x y z+$ cons $\tan t$

Which is the required scalar potential.

7: Find constants a, b and c if the vector $\bar{f}=(2 x+3 y+a z) \bar{i}+(b x+2 y+3 z) \bar{j}+(2 x+c y+3 z) \bar{k}$ is Irrotational.

Sol:- Given $\bar{f}=(2 x+3 y+a z) \bar{i}+(b x+2 y+3 z) \bar{j}+(2 x+c y+3 z) \bar{k}$

$$
\text { Curl } \bar{f}=\left|\begin{array}{lll}
\bar{i} & \bar{j} & \bar{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2 x+3 y+a z & b x+2 y+3 z & 2 x+c y+3 z
\end{array}\right|=(c-3) \bar{i}-(2-a) \bar{j}+(b-3) \bar{k}
$$

If the vector is Irrotational then curl $\bar{f}=\overline{0}$
$\therefore 2-a=0 \Rightarrow a=2, b-3=0 \Rightarrow b=3, c-3=0 \Rightarrow c=3$
8: If $\mathrm{f}(\mathrm{r})$ is differentiable, show that curl $\{\bar{r} \mathrm{f}(\mathrm{r})\}=\overline{0}$ where $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$.
Sol: $\mathrm{r}=\bar{r}=\sqrt{x^{2}+y^{2}+z^{2}}$
$\therefore \mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$
$\Rightarrow 2 r \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r}$, similarly $\frac{\partial r}{\partial y}=\frac{y}{r}$, and $\frac{\partial r}{\partial z}=\frac{z}{r}$
$\operatorname{curl}\{\bar{r} \mathrm{f}(\mathrm{r})\}=\operatorname{curl}\{\mathrm{f}(\mathrm{r})(x \bar{i}+y \bar{j}+z \bar{k})\}=\operatorname{curl}(x \cdot f(r) \bar{i}+y \cdot f(r) \bar{j}+z \cdot f(r) \bar{k})$
$=\left|\begin{array}{lcc}\bar{i} & \bar{j} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x f(r) & y f(r) & z f(r)\end{array}\right|=\sum \bar{i}\left[\frac{\Gamma}{\partial y}[z f(r)]-\frac{\partial}{\partial z}[y f(r)]\right]$
$\sum \bar{i}\left\lfloor z f^{1}(r) \frac{\partial r}{\partial y}-y f^{1}(r) \frac{\partial r}{\partial z}\right\rfloor=\sum \bar{i}^{-\lceil }\left[z{ }^{1}(r) \frac{y}{r}-y f^{1}(r) \frac{z}{r}\right\rfloor$
$=\overline{0}$.

9: If \bar{A} is irrotational vector, evaluate $\operatorname{div}(\bar{A} \mathbf{x} \bar{r})$ where $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$.
Sol:We have $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$
Given \bar{A} is an irrotational vector

$$
\begin{aligned}
& \nabla \mathrm{x} \bar{A}=\overline{0} \\
& \operatorname{div}(\bar{A} \times \bar{r})=\nabla \cdot(\bar{A} \times \bar{r}) \\
&=\bar{r} \cdot(\nabla \mathbf{x} \bar{A})-\bar{A} \cdot(\nabla \mathbf{x} \bar{r}) \\
&=\bar{r} \cdot(\overline{0})-\bar{A} \cdot(\nabla \mathbf{x} \bar{r}) \quad[\text { using (1)] } \\
&=-\bar{A} \cdot(\nabla \mathbf{x} \bar{r}) \ldots . .(2)
\end{aligned}
$$

Now $\nabla \mathbf{x} \bar{r}=\left|\begin{array}{lcc}\bar{i} & \bar{j} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x & y & z\end{array}\right|=\bar{i}\left(\frac{\partial}{\partial y} z-\frac{\partial}{\partial z} y\right)-\bar{j}\left(\frac{\partial}{\partial x} z-\frac{\partial}{\partial z} x\right)+\bar{k}\left(\frac{\partial}{\partial x} y-\frac{\partial}{\partial y} x\right)=\overline{0}$
$\therefore \bar{A} .(\nabla \mathrm{x} \bar{r})=0 \ldots$

Hence $\operatorname{div}(\bar{A} \times \bar{r})=0$. [using (2) and (3)]

10: Find constants $\mathrm{a}, \mathrm{b}, \mathrm{c}$ so that the vector $\bar{A}=(x+2 y+a z) \bar{i}+(b x-3 y-z) \bar{j}+(4 x+c y+2 z) \bar{k}$ is Irrotational. Also find ϕ such that $\bar{A}=\nabla \phi$.

Sol: Given vector is $\bar{A}=(x+2 y+a z) \bar{i}+(b x-3 y-z) \bar{j}+(4 x+c y+2 z) \bar{k}$

$$
\text { Vector } \bar{A} \text { is Irrotational } \Rightarrow \operatorname{curl} \bar{A}=\overline{0}
$$

$\Rightarrow\left|\begin{array}{lcc}\bar{i} & \bar{j} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x+2 y+a z & b x-3 y-z & 4 x+c y+2 z\end{array}\right|=\overline{0}$
$\Rightarrow(c+1) \bar{i}+(a-4) \bar{j}+(b-2) \bar{k}=\overline{0}$
$\Rightarrow(c+1) \bar{i}+(a-4) \bar{j}+(b-2) \bar{k}=0 \bar{i}+0 \bar{j}+0 \bar{k}$
Comparing both sides,
$c+1=0, a-4=0, b-2=0$
$c=-1, a=4, b=2$
Now $\bar{A}=(x+2 y+4 z) \bar{i}+(2 x-3 y-z) \bar{j}+(4 x-y+2 z) \bar{k}$, on substituting the values of a,b,c we have $\bar{A}=\nabla \phi$.
$\Rightarrow \bar{A}=(x+2 y+4 z) \bar{i}+(2 x-3 y-z) \bar{j}+(4 x-y+2 z) \bar{k}=\bar{i} \frac{\partial \phi}{\partial x}+\bar{j} \frac{\partial \phi}{\partial y}+\bar{k} \frac{\partial \phi}{\partial z}$
$\frac{\partial \phi}{\partial y}=2 x-3 y-z \Rightarrow \phi=2 x y-3 y^{2} / 2-y z+f_{2}(z, x)$
$\frac{\partial \phi}{\partial z}=4 x-y+2 z \Rightarrow \phi=4 x z-y z+z^{2}+f_{3}(x, y)$
Hence $\phi=x^{2} / 2-3 y^{2} / 2+z^{2}+2 x y+4 z x-y z+c$
11: If ω is a constant vector, evaluate curl V where $\mathrm{V}=\omega \mathrm{x} \bar{r}$.

Sol: curl $(\omega \mathrm{x} \bar{r})=\sum \bar{i} \times \frac{\partial}{\partial x}(\varpi \times \bar{r})=\sum \bar{i} \times\left[\frac{\partial \sigma}{\partial x} \times \bar{r}+\varpi \times \frac{\partial \bar{r}}{\partial x}\right]$

$$
\begin{aligned}
& =\sum \bar{i} \times[\overline{0}+\omega \times \bar{i}] \quad[\therefore \bar{a} \times(\bar{b} \times \bar{c})=(\bar{a} \cdot \bar{c}) \bar{b}-(\bar{a} \cdot \bar{b}) \cdot \bar{c}] \\
& =\sum \bar{i} \times(\omega \times \bar{i})=\sum[(\bar{i} \cdot \bar{i}) \omega-(\bar{i} \cdot \omega) \bar{i}]=\sum \omega-\sum(\bar{i} \cdot \omega) \bar{i}=3 \omega-\omega=2 \omega
\end{aligned}
$$

Assignments

1. If $\bar{f}=\mathrm{e}^{\mathrm{x}+\mathrm{y}+\mathrm{z}}(\bar{i}+\bar{j}+\bar{k})$ find curl \bar{f}.
2. Prove that $\bar{f}=(y+z) \bar{i}+(z+x) \bar{j}+(x+y) \bar{k}$ is irrotational.
3. Prove that $\nabla \cdot(\bar{a} \times \bar{f})=-\bar{a} . \operatorname{curl} \bar{f}$ where \bar{a} is a constant vector.
4. Prove that curl $(\bar{a} \times \bar{r})=2 \bar{a}$ where \bar{a} is a constant vector.
5. If $\bar{f}=x^{2} y \bar{i}-2 z x \bar{j}+2 y z \bar{k}$ find (i) curl \bar{f} (ii) curl curl \bar{f}.

OPERATORS

Vector differential operator ∇

The operator $\nabla=\bar{i} \frac{\partial}{\partial x}+\bar{j} \frac{\partial}{\partial y}+\bar{k} \frac{\partial}{\partial z}$ is defined such that $\nabla \phi=\bar{i} \frac{\partial \phi}{\partial x}+\bar{j} \frac{\partial \phi}{\partial y}+\bar{k} \frac{\partial \phi}{\partial z}$ where ϕ is a scalar point function.

Note: If ϕ is a scalar point function then $\nabla \phi=\operatorname{grad} \phi=\sum i \frac{\partial \phi}{\partial x}$
(2) Scalar differential operator $\bar{a} . \nabla$

The operator $\bar{a} \cdot \nabla=(\bar{a} \cdot \bar{i}) \frac{\partial \phi}{\partial x}+(\bar{a} \cdot \bar{j}) \frac{\partial \phi}{\partial y}+(\bar{a} \cdot \bar{k}) \frac{\partial \phi}{\partial z}$ is defined such that
$(\bar{a} \cdot \nabla) \phi=(\bar{a} \cdot \bar{i}) \frac{\partial \phi}{\partial x}+(\bar{a} \cdot \bar{j}) \frac{\partial \phi}{\partial y}+(\bar{a} \cdot \bar{k}) \frac{\partial \phi}{\partial z}$
And $(\bar{a} . \nabla) \bar{f}=(\bar{a} \cdot \bar{i}) \frac{\partial \bar{f}}{\partial x}+(\bar{a} \cdot \bar{j}) \frac{\partial \bar{f}}{\partial y}+(\bar{a} \cdot \bar{k}) \frac{\partial \bar{f}}{\partial z}$
(3). Vector differential operator $\bar{a} \times \nabla$

The operator $\bar{a} \times \nabla=(\bar{a} \times \bar{i}) \frac{\partial}{\partial x}+(\bar{a} \times \bar{j}) \frac{\partial}{\partial y}+(\bar{a} \times \bar{k}) \frac{\partial}{\partial z}$ is defined such that

(iii). $(\bar{a} \times \nabla) \times \bar{f}=(\bar{a} \times \bar{i}) \times \frac{\partial \bar{f}}{\partial x}+(\bar{a} \times \bar{j}) \times \frac{\partial \bar{f}}{\partial y}+(\bar{a} \times \bar{k}) \times \frac{\partial \bar{f}}{\partial z}$
(4). Scalar differential operator ∇.

The operator $\nabla=\bar{i} \cdot \frac{\partial}{\partial x}+\bar{j} \cdot \frac{\partial}{\partial y}+\bar{k} \cdot \frac{\partial}{\partial z}$ is defined such that $\nabla \cdot \bar{f}=\bar{i} \cdot \frac{\partial \bar{f}}{\partial x}+\bar{j} \cdot \frac{\partial \bar{f}}{\partial y}+\bar{k} \cdot \frac{\partial \bar{f}}{\partial z}$ Note: $\nabla \cdot \bar{f}$ is defined as $\operatorname{div} \bar{f}$ It is a scalar point function.
(5). Vector differential operator $\nabla \mathrm{x}$

The operator $\nabla \mathrm{x}=\bar{i} \times \frac{\partial}{\partial x}+\bar{j} \times \frac{\partial}{\partial y}+\bar{k} \times \frac{\partial}{\partial z}$ is defined such that

$$
\nabla \times \bar{f}=\bar{i} \times \frac{\partial \bar{f}}{\partial x}+\bar{j} \times \frac{\partial \bar{f}}{\partial y}+\bar{k} \times \frac{\partial \bar{f}}{\partial z}
$$

Note : $\nabla \mathbf{x} \bar{f}$ is defined as curl \bar{f}. It is a vector point function.
(6). Laplacian Operator ∇^{2}
$\nabla \cdot \nabla \phi=\sum \bar{i} \cdot \frac{\partial}{\partial x}\left(\bar{i} \frac{\partial \phi}{\partial x}+\bar{j} \frac{\partial \phi}{\partial y}+\bar{k} \frac{\partial \phi}{\partial z}\right)=\sum \frac{\partial^{2} \phi}{\partial x^{2}}=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \phi=\nabla^{2} \phi$
Thus the operator $\nabla^{2} \equiv \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ is called Laplacian operator.
Note : (i). $\nabla^{2} \phi=\nabla \cdot(\nabla \phi)=\operatorname{div}(\operatorname{grad} \phi)$
(ii). If $\nabla^{2} \phi=0$ then ϕ is said to satisfy Laplacian equation. This ϕ is called a harmonic function.

SOLVED PROBLEMS

1: Prove that div. $\left(\operatorname{grad} r^{m}\right)=m(m+1) r^{m-2}($ or $) \nabla^{2}\left(r^{m}\right)=m(m+1) r^{m-2}($ or $) \nabla^{2}\left(r^{n}\right)=n(n+1) r^{n-2}$
Sol: Let $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$ and $\mathrm{r}=|\bar{r}|$ then $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$.
Differentiating w.r.t. ' x ' partially, wet get $2 \mathrm{r} \frac{\partial r}{\partial x}=2 \mathrm{x} \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r}$.
Similarly $\frac{\partial r}{\partial y}=\frac{y}{r}$ and $\frac{\partial r}{\partial z}=\frac{z}{r}$
Now $\operatorname{grad}\left(\mathrm{r}^{m}\right)=\sum \bar{i} \frac{\partial}{\partial x}\left(r^{m}\right)=\sum \bar{i} m r^{m-1} \frac{\partial r}{\partial x}=\sum \bar{i} m r{ }^{m-1} \frac{x}{r}=\sum \bar{i}_{m r}^{m-2} x$
$\therefore \operatorname{div}\left(\operatorname{grad} \mathrm{r}^{\mathrm{m}}\right)=\sum \frac{\partial}{\partial x}\left[m r^{m-2} x\right]=\mathrm{m} \sum\left[(m-2) r^{m-3} \frac{\partial r}{\partial x} x+r^{m-2}\right]$

$$
=\mathrm{m} \sum\left[(m-2) r^{m-4} x^{2}+r^{m-2}\right]=m\left[(m-2) r^{m-4} \sum x^{2}+\sum r^{m-2}\right]
$$

$$
=m\left[(m-2) r^{m-4}\left(r^{2}\right)+3 r^{m-2}\right]
$$

$$
=m\left[(m-2) r^{m-2}+3 r^{m-2}\right]=m\left[(m-2+3) r^{m-2}\right]=m(m+1) r^{m-2} .
$$

2: Show that $\nabla^{2}[f(\mathrm{r})]=\frac{d^{2} f}{d r^{2}}+\frac{2}{r} \frac{d f}{d r}=f^{11}(r)+\frac{2}{r} f^{1}(r)$ where $\mathrm{r}=|\bar{r}|$.
Sol: grad $[\mathrm{f}(\mathrm{r})]=\nabla f(\mathrm{r})=\sum i \frac{\partial}{\partial x}[f(r)]=\sum i f^{1}(r) \frac{\partial r}{\partial x}=\sum i f^{1}(r) \frac{x}{r}$
$\therefore \operatorname{div}[\operatorname{grad} f(\mathrm{r})]=\nabla^{2}[f(\mathrm{r})]=\nabla . \nabla f(\mathrm{r})=\sum \frac{\partial}{\partial x}\left[f^{1}(r) \frac{x}{r}\right]$

$$
\begin{aligned}
& =\sum \frac{r \frac{\partial}{\partial x}\left[f^{1}(r) x\right]-f^{1}(r) x \frac{\partial}{\partial x}(r)}{r^{2}} \\
& =\sum \frac{r\left(f^{11}(r) \frac{\partial r}{\partial x} x+f^{1}(r)\right)-f^{1}(r) x\left(\frac{x}{r}\right)}{r^{2}} \\
& =\sum \frac{r f^{11}(r) \frac{x}{r} x+r f^{1}(r)-f^{1}(r) x\left(\frac{x}{r}\right)}{r^{2}}
\end{aligned}
$$

$=\frac{\sum r f^{11}(r) \frac{x}{r} x+r f^{1}(r)-x^{2}}{r^{2}} \cdot \frac{f^{1}(r)}{r}$
$=\frac{\mathrm{f}^{11}(\mathrm{r})}{\mathrm{r}^{2}} \sum \mathrm{x}^{2}+\frac{1}{\mathrm{r}} \sum \mathrm{f}^{1}(\mathrm{r})-\frac{1}{\mathrm{r}^{3}} \mathrm{f}^{1}(\mathrm{r}) \sum \mathrm{x}^{2}$
$=\frac{f^{11}(r)}{r^{2}}\left(r^{2}\right)+\frac{3}{r} f^{1}(r)-\frac{1}{r^{3}} f^{1}(r) r^{2}$
$=f^{11}(r)+\frac{2}{r} f^{1}(r)$
3: If ϕ satisfies Laplacian equation, show that $\nabla \phi$ is both solenoidal and irrotational.
Sol: Given $\nabla^{2} \phi=0 \Rightarrow \operatorname{div}(\operatorname{grad} \phi)=0 \Rightarrow \operatorname{grad} \phi$ is solenoidal
We know that curl $(\operatorname{grad} \phi)=\overline{0} \Rightarrow \operatorname{grad} \phi$ is always irrotational.
2.Show that (i) $(\bar{a} \cdot \nabla) \phi=\bar{a} \cdot \nabla \phi$ (ii) $(\bar{a} \cdot \nabla) \bar{r}=\bar{a}$.

Sol: (i). Let $\bar{a}=a_{1} \bar{i}+a_{2} \bar{j}+a_{3} \bar{k}$. Then

$$
\begin{aligned}
& \bar{a} \cdot \nabla=\left(a_{1} \bar{i}+a_{2} \bar{j}+a_{3} \bar{k}\right) \cdot\left(\bar{i} \frac{\partial}{\partial x}+\bar{j} \frac{\partial}{\partial y}+\bar{k} \frac{\partial}{\partial z}\right)=a_{1} \frac{\partial}{\partial x}+a_{2} \frac{\partial}{\partial y}+a_{3} \frac{\partial}{\partial z} \\
& \therefore(\bar{a} \cdot \nabla) \phi=a_{1} \frac{\partial \phi}{\partial x}+a_{2} \frac{\partial \phi}{\partial y}+a_{3} \frac{\partial \phi}{\partial z}
\end{aligned}
$$

Hence $(\bar{a} . \nabla) \phi=\bar{a} . \nabla \phi$
(ii). $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$

$$
\begin{aligned}
& \therefore \frac{\partial \bar{r}}{\partial x}=\bar{i}, \frac{\partial \bar{r}}{\partial y}=\bar{j}, \frac{\partial \bar{r}}{\partial z}=\bar{k} \\
& (\bar{a} . \nabla) \bar{r}=\sum a_{1} \frac{\partial}{\partial x}(\bar{r})=\sum a_{1} \frac{\partial \bar{r}}{\partial x}=a_{1} \bar{i}+a_{2} \bar{j}+a_{3} \bar{k}=\bar{a}
\end{aligned}
$$

5: Prove that (i) $(\bar{f} \times \nabla) \cdot \bar{r}=0$
(ii). $(\bar{f} \times \nabla) \mathbf{x} \bar{r}=-2 \bar{f}$

Sol: (i) $(\bar{f} \mathrm{x} \nabla) \cdot \bar{r}=\sum(\bar{f} \times \bar{i}) \cdot \frac{\partial \bar{r}}{\partial x}=\sum(\bar{f} \times \bar{i}) \cdot \bar{i}=0$
(ii) $(\bar{f} \times \nabla)=(\bar{f} \times \bar{i}) \frac{\partial}{\partial x} \times(\bar{f} \times \bar{j}) \frac{\partial}{\partial y} \times(\bar{f} \times \bar{k}) \frac{\partial}{\partial z}$

$$
\begin{aligned}
& (\bar{f} \times \nabla) \times \bar{r}=(\bar{f} \times \bar{i}) \times \frac{\partial \bar{r}}{\partial x}+(\bar{f} \times \bar{j}) \times \frac{\partial \bar{r}}{\partial y}+(\bar{f} \times \bar{k}) \times \frac{\partial \bar{r}}{\partial z}=\sum(\bar{f} \times \bar{i}) \times \bar{i}=\sum[(\bar{f} . i) i-\bar{f}] \\
& =(\bar{f} . i) \bar{i}+(\bar{f} \cdot \bar{j}) \bar{j}+(\bar{f} \cdot \bar{k}) \bar{k}-3 \bar{f}=\bar{f}-3 \bar{f}=-2 \bar{f}
\end{aligned}
$$

6: Find div \bar{F}, where $\bar{F}=\operatorname{grad}\left(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}\right)$
Sol: \quad Let $\phi=x^{3}+y^{3}+z^{3}-3 x y z$. Then

$$
\begin{aligned}
& \bar{F}=\operatorname{grad} \phi \\
& =\sum i \frac{\partial \phi}{\partial x}=3\left(x^{2}-y z\right) \bar{i}+3\left(y^{2}-z x\right) \bar{j}+3\left(x^{2}-x y\right) \bar{k}=F_{1} i+F_{2} j+F_{3} k(\text { say }) \\
& \quad \therefore \operatorname{div} \bar{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}=6 x+6 y+6 z=6(x+y+z)
\end{aligned}
$$

$$
\text { i.e } \operatorname{div}\left[\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)\right]=\nabla^{2}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)=6(x+y+z)
$$

7: If $f=\left(x^{2}+y^{2}+z^{2}\right)^{-n}$ then find $\operatorname{div} \operatorname{grad} f$ and determine n if $\operatorname{div} \operatorname{grad} f=0$.
Sol: Let $f=\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-\mathrm{n}}$ and $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$

$$
\begin{aligned}
& r=|\bar{r}| \Rightarrow r^{2}=x^{2}+y^{2}+z^{2} \\
& \Rightarrow f(r)=\left(r^{2}\right)^{-n}=r^{-2 n} \\
& \therefore f^{1}(r)=-2 n r^{-2 n-1}
\end{aligned}
$$

and

$$
f^{11}(r)=(-2 n)(-2 n-1) r^{-2 n-2}=2 n(2 n+1) r^{-2 n-2}
$$

We have div grad $f=\nabla^{2} f(r)=f^{11}(r)+^{2} / r f^{1}(r)=(2 n)(2 n+1) r^{-2 n-2}-4 n r^{-2 n-2}$

$$
=r^{-2 n-2}[2 n(2 n+1-2)]=(2 n)(2 n-1) r^{-2 n-2}
$$

If $\operatorname{div} \operatorname{grad} f(r)$ is zero, we get $\mathrm{n}=0$ or $\mathrm{n}=1 / 2$.

8: Prove that $\nabla \times\left(\frac{\bar{A} \times \bar{r}}{r^{n}}\right)=\frac{(2-n) \bar{A}}{r^{n}}+\frac{n(\bar{r} \cdot \bar{A}) \bar{r}}{r^{n+2}}$.
Sol: We have $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$ and $\mathrm{r}=|\bar{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$

$$
\begin{aligned}
& \therefore \frac{\partial \bar{r}}{\partial x}=\bar{i}, \frac{\partial \bar{r}}{\partial y}=\bar{j}, \frac{\partial \bar{r}}{\partial z}=\bar{k} \text { and } \\
& \mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \ldots . .(1)
\end{aligned}
$$

Diff. (1) partially,

$$
2 r \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r}, \text { similarly } \frac{\partial r}{\partial y}=\frac{y}{r} \text { and } \frac{\partial r}{\partial z}=\frac{z}{r}
$$

Now $\frac{\partial}{\partial x}\left(\frac{(\bar{A} \times \bar{r})}{r^{n}}\right)=\bar{A} \times \frac{\partial}{\partial x}\left(\frac{\bar{r}}{r^{n}}\right)=\bar{A} \times\left[\frac{r^{n} \bar{i}-\bar{r} n r^{n-1}}{r^{2 n}}\right] \frac{\partial r}{\partial x}$

$$
\begin{aligned}
& =\bar{A} \times\left[\frac{r^{n} \bar{i}-n r^{n-2} x \bar{r}}{r^{2 n}}\right]=\bar{A} \times\left[\frac{1}{r^{n}} \bar{i}-\frac{n}{r^{n+2}} \cdot x \bar{r}\right] \\
& =\frac{\bar{A} \times \bar{i}}{r^{n}}-\frac{n}{r^{n+2}} \cdot x(\bar{A} \times \bar{r}) \\
\therefore \bar{i} \times \frac{\partial}{\partial x}\left(\frac{(\bar{A} \times \bar{r})}{r^{n}}\right) & =\frac{\bar{i} \times(\bar{A} \times \bar{i})}{r^{n}}-\frac{n x}{r^{n+2}} \cdot \bar{i} \times(\bar{A} \times \bar{r}) \\
& =\frac{(\bar{i} \cdot \bar{i}) \bar{A}-(\bar{i} . \bar{A}) \bar{i}}{r^{n}}-\frac{n x}{r^{n+2}}[(\bar{i} \cdot \bar{r}) \bar{A}-(\bar{i} . \bar{A}) \bar{r}]
\end{aligned}
$$

Let $A_{1} \bar{i}+A_{2} \bar{j}+A_{3} \bar{k}$. Then $\bar{i} \cdot \bar{A}=A_{1}$

$$
\therefore \bar{i} \times \frac{\partial}{\partial x}\left(\frac{(\bar{A} \times \bar{r})}{r^{n}}\right)=\left(\frac{\bar{A}-A_{1} \bar{i}}{r^{n}}\right)-\frac{n x}{r^{n+2}}\left[x \bar{A}-A_{1} \bar{r}\right]
$$

$$
\text { and } \sum \bar{i} \times \frac{\partial}{\partial x}\left(\frac{(\bar{A} \times \bar{r})}{r^{n}}\right)=\sum\left(\frac{\bar{A}-A_{1} \bar{i}}{r^{n}}\right)-\frac{n x}{r^{n+2}}\left[x \bar{A}-A_{1} \bar{r}\right]
$$

$$
\begin{aligned}
& =\frac{3 \bar{A}-\bar{A}}{r^{n}}-\frac{n}{r^{n+2}}\left[r^{2} \bar{A}\right]+\frac{n \bar{r}}{r^{n+2}}\left(A_{1} x+A_{2} y+A_{3} z\right) \\
& =\frac{2 \bar{A}}{r^{n}}-\frac{n}{r^{n}} \bar{A}+\frac{n \bar{r}}{r^{n+2}}(\bar{A} \cdot \bar{r})=\frac{(2-n) \bar{A}}{r^{n}}+\frac{n \bar{r}}{r^{n+2}}(\bar{A} \cdot \bar{r})
\end{aligned}
$$

Hence the result.

VECTOR IDENTITIES

Theorem 1: If \bar{a} is a differentiable function and ϕ is a differentiable scalar function, then prove that $\operatorname{div}(\phi$ $\bar{a})=(\operatorname{grad} \phi) \cdot \bar{a}+\phi \operatorname{div} \bar{a}$ or $\nabla \cdot(\phi \bar{a})=(\nabla \phi) \cdot \bar{a}+\phi(\nabla \cdot \bar{a})$

Proof: $\operatorname{div}(\phi \bar{a})=\nabla .(\phi \bar{a})=\sum i \cdot \frac{\partial}{\partial x}(\phi \bar{a})$

$$
\begin{aligned}
& =\sum \bar{i} \cdot\left(\frac{\partial \phi}{\partial x} \bar{a}+\phi \frac{\partial \bar{a}}{\partial x}\right)=\sum\left(i \cdot \frac{\partial \phi}{\partial x} \bar{a}\right)+\sum\left(i \frac{\partial \bar{a}}{\partial x}\right) \phi \\
& =\sum\left(\bar{i} \frac{\partial \phi}{\partial x}\right) \cdot \bar{a}+\left(\sum \bar{i} \frac{\partial a}{\partial x}\right) \phi=(\nabla \phi) \cdot \bar{a}+\phi(\nabla \cdot \bar{a})
\end{aligned}
$$

Theorem 2: Prove that curl $(\phi \bar{a})=(\operatorname{grad} \phi) \times \bar{a}+\phi$ curl \bar{a}
Proof : $\operatorname{curl}(\phi \bar{a})=\nabla \times(\phi \bar{a})=\sum i \times \frac{\partial}{\partial x}(\phi \bar{a})$

$$
=\sum \bar{i} \times\left(\frac{\partial \phi}{\partial x} \bar{a}+\phi \frac{\partial \bar{a}}{\partial x}\right)=\sum\left(\bar{i} \frac{\partial \phi}{\partial x}\right) \times \bar{a}+\sum\left(\bar{i} \times \frac{\partial \bar{a}}{\partial x}\right) \phi
$$

Proof: Consider

$$
\begin{align*}
& \bar{a} \times \operatorname{curl}(\bar{b})=\bar{a} \times(\nabla \times \bar{b})=a \times \sum\left\{\bar{i} \times \frac{\partial \bar{b}}{\partial x}\right) \\
& =\sum \bar{a} \times\left(\bar{i} \times \frac{\partial \bar{b}}{\partial x}\right) \\
& =\sum\left\{\left(\bar{a} \cdot \frac{\partial \bar{b}}{\partial x}\right) \bar{i}-(\bar{a} \cdot \bar{i}) \frac{\partial \bar{b}}{\partial x}\right\}=\sum \bar{i}\left\{\bar{a} \cdot \frac{\partial \bar{b}}{\partial x}\right\}-\left\{\bar{a} \cdot \sum i \frac{\partial}{\partial x}\right\} \bar{b} \\
& \therefore \bar{a} \times \operatorname{curl} \bar{b}=\sum \bar{i}\left(\bar{a} \cdot \frac{\partial \bar{b}}{\partial x}\right)-(\bar{a} \cdot \nabla) \bar{b} \ldots .(1) \tag{1}\\
& \text { Similarly, } \bar{b} \times \text { curl } \bar{b}=\sum \bar{i}\left(\bar{b} \cdot \frac{\partial \bar{a}}{\partial x}\right)-(\bar{b} \cdot \nabla) \bar{a} \ldots \ldots(2) ~
\end{align*}
$$

(1)+(2) gives

$$
\begin{aligned}
& \bar{a} \times \operatorname{curl} \bar{b}+\bar{b} \times \operatorname{curl} \bar{a}=\sum \bar{i}\left(\bar{a} \cdot \frac{\partial \bar{b}}{\partial x}\right)-(\bar{a} \cdot \nabla) \bar{b}+\sum \bar{i}\left(\bar{b} \cdot \frac{\partial \bar{a}}{\partial x}\right)-(\bar{b} \cdot \nabla) \bar{a} \\
& \Rightarrow \bar{a} \times \operatorname{curl} \bar{b}+\bar{b} \times \operatorname{curl} \bar{a}+(\bar{a} \cdot \nabla) \bar{b}+(\bar{b} \cdot \nabla) \bar{a}=\sum \bar{i}\left(\bar{a} \cdot \frac{\partial \bar{b}}{\partial x}+\bar{b} \cdot \frac{\partial \bar{a}}{\partial x}\right) \\
&=\sum \bar{i} \frac{\partial}{\partial x}(\bar{a} \cdot \bar{b}) \\
&=\nabla(\bar{a} \cdot \bar{b})=\operatorname{grad}(\bar{a} \cdot \bar{b})
\end{aligned}
$$

Theorem 4: Prove that $\operatorname{div}(\bar{a} \times \bar{b})=\bar{b}$. curl $\quad \bar{a}-\bar{a}$. curl \bar{b}
Proof: div $(\bar{a} \times \bar{b})=\sum \bar{i} \cdot \frac{\partial}{\partial x}(\bar{a} \times \bar{b})=\sum \bar{i} \cdot\left(\frac{\partial \bar{a}}{\partial x} \times \bar{b}+\bar{a} \times \frac{\partial \bar{b}}{\partial x}\right)$

$$
\begin{aligned}
& =\sum \bar{i} \cdot\left(\frac{\partial \bar{a}}{\partial x} \times \bar{b}\right)+\sum \bar{i} \cdot\left(\bar{a} \times \frac{\partial \bar{b}}{\partial x}\right)=\sum\left(\bar{i} \times \frac{\partial \bar{a}}{\partial x}\right) \cdot \bar{b}-\sum\left(\bar{i} \times \frac{\partial \bar{b}}{\partial x}\right) \cdot \bar{a} \\
& =(\nabla \times \bar{a}) \cdot \bar{b}-(\nabla \times \bar{b}) \cdot \bar{a}=\bar{b} \cdot \text { curl } \bar{a}-\bar{a} \cdot \text { curl } \bar{b}
\end{aligned}
$$

Theorem 5 :Prove that $\operatorname{curl}(\bar{a} \times \bar{b})=\bar{a} \operatorname{div} \bar{b}-\bar{b} \operatorname{div} \bar{a}+(\bar{b} \cdot \nabla) \bar{a}-(\bar{a} \cdot \nabla) \bar{b}$
$\operatorname{Proof}: \operatorname{curl}(\bar{a} \times \bar{b})=\sum \bar{i} \times \frac{\partial}{\partial x}(\bar{a} \times \bar{b})=\sum \bar{i} \times\left\lceil\frac{\partial \bar{a}}{\partial x} \times \bar{b}+\bar{a} \times \frac{\partial \bar{b}}{\partial x}\right]$

$$
\sum \bar{i} \times\left(\frac{\partial \bar{a}}{\partial x} \times \bar{b}\right)+\sum \bar{i} \times\left(\bar{a} \times \frac{\partial \bar{b}}{\partial x}\right)
$$

$=(\bar{b} \cdot \nabla) \bar{a}-(\nabla \cdot \bar{a}) \bar{b}+(\nabla \cdot \bar{b}) \bar{a}-(\bar{a} \cdot \nabla) \bar{b}$
$=(\nabla . \bar{b}) \bar{a}-(\nabla \cdot \bar{a}) \bar{b}+(\bar{b} \cdot \nabla) \bar{a}-(\bar{a} . \nabla) \bar{b}$
$=\bar{a} \operatorname{div} \bar{b}-\bar{b} \operatorname{div} \bar{a}+(\bar{b} . \nabla) \bar{a}-(\bar{a} . \nabla) \bar{b}$
Theorem 6: Prove that curl grad $\phi=0$.
Proof: Let ϕ be any scalar point function. Then
$. \operatorname{grad} \quad \phi=\bar{i} \frac{\partial \phi}{\partial x}+\bar{j} \frac{\partial \phi}{\partial y}+\bar{k} \frac{\partial \phi}{\partial z}$
$\operatorname{curl}(\operatorname{grad} \phi)=\left|\begin{array}{ccc}\bar{i} & \bar{j} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} & \frac{\partial \phi}{\partial z}\end{array}\right|$
$=-\left(\frac{\partial^{2} \phi}{\partial y \partial z}-\frac{\partial^{2} \phi}{\partial z \partial y}\right)-\bar{j}\left(\frac{\partial^{2} \phi}{\partial x \partial z}-\frac{\partial^{2} \phi}{\partial z \partial x}\right)-\bar{k}\left(\frac{\partial^{2} \phi}{\partial x \partial y}-\frac{\partial^{2} \phi}{\partial y \partial x}\right)=\overline{0}$
Note : Since $\operatorname{Curl}(\operatorname{grad} \phi)=0$, we have $\operatorname{grad} \phi$ is always irrotational.
7. Prove that div curl $\bar{f}=0$

Pr oof : Let $\bar{f}=f_{1} \bar{i}+f_{2} \bar{j}+f_{3} \bar{k}$
\therefore curl $\bar{f}=\nabla \times \bar{f}=\left|\begin{array}{lcc}\bar{i} & \bar{j} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_{1} & f_{2} & f_{3}\end{array}\right|$

$$
=\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}\right) \bar{i}-\left(\frac{\partial f_{3}}{\partial x}-\frac{\partial f_{1}}{\partial z}\right) \bar{j}+\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right) \bar{k}
$$

$\therefore \quad$ div curl $\bar{f}=\nabla .(\nabla \times \bar{f})=\frac{\partial}{\partial x}\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}\right)-\frac{\partial}{\partial y}\left(\frac{\partial f_{3}}{\partial x}-\frac{\partial f_{1}}{\partial z}\right)+\frac{\partial}{\partial z}\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right)$
$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{2}}{\partial x \partial z}-\frac{\partial^{2} f_{3}}{\partial y \partial x}+\frac{\partial^{2} f_{1}}{\partial y \partial z}+\frac{\partial^{2} f_{2}}{\partial z \partial x}-\frac{\partial^{2} f_{1}}{\partial z \partial y}=0$
Note : Since $\operatorname{div}(\operatorname{curl} \bar{f})=0$, we have $\operatorname{curl} \bar{f}$ is always solenoidal.

Theorem 8: If f and g are two scalar point functions, prove that $\operatorname{div}(f \nabla g)=f \nabla^{2} g+\nabla f . \nabla g$
Sol: Let f and g be two scalar point functions. Then
$\frac{\nabla g=\bar{i} \frac{\partial g}{\partial x}+\bar{j} \frac{\partial g}{\partial y}+\bar{k} \frac{\partial g}{\partial z}}{O z}$

$$
\begin{aligned}
& \therefore \nabla \cdot(f \nabla \mathrm{~g})=\frac{\partial}{\partial x}\left(f \frac{\partial g}{\partial x}\right)+\frac{\partial}{\partial y}\left(f \frac{\partial g}{\partial y}\right)+\frac{\partial}{\partial z}\left(f \frac{\partial g}{\partial z}\right) \\
& \quad=f\left(\frac{\partial^{2} g}{\partial x^{2}}+\frac{\partial^{2} g}{\partial y^{2}}+\frac{\partial^{2} g}{\partial x^{2}}\right)+\left(\frac{\partial f}{\partial x} \cdot \frac{\partial g}{\partial x}+\frac{\partial f}{\partial y} \cdot \frac{\partial g}{\partial y}+\frac{\partial f}{\partial z} \cdot \frac{\partial g}{\partial z}\right) \\
& \quad=f \nabla^{2} \mathrm{~g}+\left(-\left(-\frac{\partial f}{\partial x}+\bar{j} \frac{\partial f}{\partial y}+\bar{k} \frac{\partial f}{\partial z}\right) \cdot\left(-\frac{\partial g}{\partial x}+\bar{j} \frac{\partial g}{\partial y}+k \frac{-\partial g}{\partial z}\right) .\right. \\
& \quad=f \nabla^{2} \mathrm{~g}+\nabla f . \nabla \mathrm{g}
\end{aligned}
$$

Theorem 9: Prove that $\nabla \mathrm{x}(\nabla \mathrm{x} \bar{a})=\nabla(\nabla \cdot \bar{a})-\nabla^{2} \bar{a}$.
Proof: $\nabla \mathrm{x}(\nabla \times \bar{a})=\sum \bar{i} \times \frac{\partial}{\partial x}(\nabla \times \bar{a})$
Now $\bar{i} \times \frac{\partial}{\partial x}(\nabla \times \bar{a})=i \times \frac{\partial}{\partial x}\left(\bar{i} \times \frac{\partial \bar{a}}{\partial x}+\bar{j} \times \frac{\partial \bar{a}}{\partial y}+\bar{k} \times \frac{\partial \bar{a}}{\partial z}\right)$

$$
\begin{aligned}
& =\bar{i} \times\left(\bar{i} \times \frac{\partial^{2} \bar{a}}{\partial x^{2}}+\bar{j} \times \frac{\partial^{2} \bar{a}}{\partial x \partial y}+\bar{k} \times \frac{\partial^{2} \bar{a}}{\partial x \partial z}\right) \\
& =\bar{i} \times\left(\bar{i} \times \frac{\partial^{2} \bar{a}}{\partial x^{2}}\right)+\bar{i} \times\left(\bar{j} \times \frac{\partial^{2} \bar{a}}{\partial x \partial y}\right)+\bar{i} \times\left(\bar{k} \times \frac{\partial^{2} \bar{a}}{\partial x \partial z}\right)
\end{aligned}
$$

$$
=\left(\bar{i} \cdot \frac{\partial^{2} \bar{a}}{\partial x^{2}}\right) \bar{i}-\frac{\partial^{2} \bar{a}}{\partial x^{2}}+\left(\bar{i} \cdot \frac{\partial^{2} \bar{a}}{\partial x \partial y}\right) \bar{j}+\left(\bar{i} \cdot \frac{\partial^{2} \bar{a}}{\partial x \partial z}\right) \bar{k} \quad[\because i . i=1, i . j=i . k=0]
$$

$$
=\bar{i} \frac{\partial}{\partial x}\left(\bar{i} \cdot \frac{\partial \bar{a}}{\partial x}\right)+j \frac{\partial}{\partial y}\left(\bar{i} \cdot \frac{\partial \bar{a}}{\partial y}\right)+k \frac{\partial}{\partial z}\left(\bar{i} \cdot \frac{\partial \bar{a}}{\partial x}\right)-\frac{\partial^{2} \bar{a}}{\partial x^{2}}=\nabla\left(\bar{i} \cdot \frac{\partial \bar{a}}{\partial x}\right)-\frac{\partial^{2} \bar{a}}{\partial x^{2}}
$$

$$
\therefore \sum \bar{i} \times \frac{\partial}{\partial x}(\nabla \times \bar{a})=\nabla \sum \bar{i} \cdot \frac{\partial \bar{a}}{\partial x}-\sum \frac{\partial^{2} \bar{a}}{\partial x^{2}}=\nabla(\nabla \cdot \bar{a})-\left(\frac{\partial^{2} \bar{a}}{\partial x^{2}}+\frac{\partial^{2} \bar{a}}{\partial y^{2}}+\frac{\partial^{2} \bar{a}}{\partial z^{2}}\right)
$$

$\therefore \nabla \mathrm{x}(\nabla \mathrm{x} \bar{a})=\nabla(\nabla \cdot \bar{a})-\nabla^{2} \bar{a}$
i.e., curlcurl $\bar{a}=\operatorname{grad} \operatorname{div} \bar{a}-\nabla^{2} \bar{a}$

SOLVED PROBLEMS

1: Prove that $(\nabla f \times \nabla g)$ is solenoidal.

Sol: We know that $\operatorname{div}(\bar{a} \times \bar{b})=\bar{b} . \operatorname{curl} \bar{a}-\bar{a} . \operatorname{curl} \bar{b}$
Take $\mathrm{a}=\nabla f$ and $\mathrm{b}=\nabla \mathrm{g}$
3. Prove that (i) $\operatorname{div}\{(\bar{r} \times \bar{a}) \bar{b}\}=-2(\bar{b} \cdot \bar{a})$ (ii) $\operatorname{curl}\{(\bar{r} \cdot \bar{a}) \times b\}=\bar{b} \times \bar{a}$ where \bar{a} and \bar{b} are constant vectors.

Sol: (i)

$$
\begin{aligned}
& \operatorname{div}\{(\bar{r} \times \bar{a}) \times \bar{b}\}=\operatorname{div}[(\bar{r} . \bar{b}) \bar{a}-(\bar{a} . . \bar{b}) \bar{r}] \\
& \quad=\operatorname{div}(\bar{r} . \bar{b}) \bar{a}-(\bar{a} . . \bar{b}) \bar{r} \\
& \quad=[(\bar{r} . \bar{b}) \operatorname{div} \bar{a}+\bar{a} . \operatorname{grad}(\bar{r} . \bar{b})]-[(\bar{a} . \bar{b}) \operatorname{div} \bar{r}+\bar{r} . \operatorname{grad}(\bar{a} \cdot \bar{b})]
\end{aligned}
$$

We have div $\bar{a}=0, \operatorname{div} \bar{r}=3, \operatorname{grad}(\bar{a} \cdot \bar{b})=0$
$\operatorname{div}\{(\bar{r} \times \bar{a}) \times \bar{b}\}=0+\bar{a} \cdot g \operatorname{rad}(\bar{r} \cdot \bar{a})-3(\bar{a} \cdot \bar{a})$
$=\bar{a} \cdot \sum \frac{i \partial}{\partial x}(\bar{r} \cdot \bar{b})-3(\bar{a} \cdot \bar{b})$
$=\bar{a} \cdot \sum \bar{i} \frac{\partial \bar{r}}{\partial x} \cdot \bar{b}-3(\bar{a} \cdot \bar{b})$
$=\bar{a} \cdot \sum \bar{i}(\bar{i} \cdot \bar{b})-3(\bar{a} \cdot \bar{b})$
$=\bar{a} \cdot \bar{b}-3(\bar{a} \cdot \bar{b})=-2(\bar{a} \cdot \bar{b})$
$=-2(\bar{b} \cdot \bar{a})$
(ii) $\operatorname{curl}\{(\bar{r} \times \bar{a}) \times \bar{b}\}=\operatorname{curl}[(\bar{r} \cdot \bar{b}) \bar{a}-(\bar{a} \cdot \bar{b}) \bar{r}]$
$=\operatorname{curl}(\bar{r} \cdot \bar{b}) \bar{a}-\operatorname{curl}(\bar{a} \cdot \bar{b}) \bar{r}$
$=(\bar{r} \cdot \bar{b}) c u r l \bar{a}+\operatorname{grad}(\bar{r} . \bar{b}) \times \bar{a}$
$=\overline{0}+\nabla(\bar{r} \cdot \bar{b}) \times \bar{a}(\because \operatorname{curl} \bar{a}=\overline{0})$
$=\bar{b} \times \bar{a}$ Since $\operatorname{grad}(\bar{r} \cdot \bar{b})=\bar{b}$
3: Prove that $\nabla\left[\nabla \cdot \frac{\bar{r}}{r}\right]=\frac{-2}{r^{3}} \bar{r}$.
Sol: We have $\nabla \cdot\left(\frac{\bar{r}}{r}\right)=\sum i \cdot \frac{\partial}{\partial x}\left(\frac{\bar{r}}{r}\right)$

$$
\begin{aligned}
& =\sum i \cdot\left[\frac{1}{r} \frac{\partial \bar{r}}{\partial x}+\bar{r}\left(\frac{-1}{r^{2}}\right)\left(\frac{x}{r}\right)\right]=\sum i \cdot\left(\frac{1}{r} i-\frac{\bar{r}}{r^{3}} x\right) \\
& =\frac{1}{r} \sum i \cdot i-\frac{1}{r^{3}} r^{2}=\frac{3}{r}-\frac{1}{r}=\frac{2}{r}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Ax} \nabla=\left|\begin{array}{lcc}
\bar{i} & \bar{j} & \bar{k} \\
y z^{2} & -3 x z^{2} & 2 x y z \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}
\end{array}\right| \\
& ={ }^{-}\left[\frac{\partial}{\partial x}\left(-3 x z^{2}\right)-\frac{\partial}{\partial y}(2 x y z)\right]^{-j}\left[\frac{\partial}{\partial z}\left(y z^{2}\right)-\frac{\partial}{\partial x}(2 x y z)\right]^{+k}\left[\frac{\partial}{\partial y}\left(y z^{2}\right)-\frac{\partial}{\partial x}\left(-3 x z^{2}\right)\right] \\
& =\bar{i}(-6 x z-2 x z)-\bar{j}(2 y z-2 y z)+\bar{k}\left(z^{2}+3 z^{2}\right)=-8 x z \bar{i}-0 \bar{j}+4 z^{2} \bar{k} \\
& \therefore(A x \nabla) \phi,=\left(-8 x z \bar{i}+4 z^{2} \bar{k}\right) x y z=-8 x^{2} y z^{2} \bar{i}+4 x y z^{3} \bar{k}
\end{aligned}
$$

Vector Integration

Line integral:- (i) $\int F . d r$ is called Line integral of F along c

Note: Work done by F along a curve c is $\int F . d r$

PROBLEMS

1. If $\bar{F}\left(x^{2}-27\right) \bar{i}-6 y z \bar{j}+8 z^{2} \mathrm{k}$, evaluate $\int \bar{F} . \mathrm{dr}$ from the point $(0,0,0)$ to the point $(1,1,1)$ along the Straight line from $(0,0,0)$ to $(1,0,0),(1,0,0)$ to $(1,1,0)$ and $(1,1,0)$ to $(1,1,1)$.

Solution: Given $F=\left(\mathrm{x}^{2}-27\right) i-6 y z \mathrm{j}+8 \mathrm{xz}^{2} \mathrm{k}$
Now $\overline{\mathrm{r}}=\mathrm{x} \overline{\mathrm{i}}+\mathrm{y} \overline{\mathrm{j}}+z \overline{\mathrm{k}} \Rightarrow d \overline{\mathrm{r}}=d x \overline{\mathrm{i}}+d \mathrm{y} \overline{\mathrm{j}}+d z \overline{\mathrm{k}}$
$\therefore \quad \bar{F} \cdot d \overline{\mathrm{r}}=\left(\mathrm{x}^{2}-27\right) \mathrm{dx}-(6 \mathrm{yz}) \mathrm{dy}+8 \mathrm{xz}^{2} \mathrm{dz}$
(i) Along the straight line from $O=(0,0,0)$ to $A=(1,0,0)$ Here $\mathrm{y}=0=\mathrm{z}$ and $\mathrm{dy}=\mathrm{dz}=0$. Also x changes from 0 to 1 .

$$
\therefore \int_{0 \mathrm{~A}} \bar{F} \cdot d \overline{\mathrm{r}}=\int_{0}^{1}\left(\mathrm{x}^{2}-27\right) \mathrm{dx}=\left[\frac{x^{3}}{3}-27 x\right]_{0}^{1}=\frac{1}{3}-27=\frac{-80}{3}
$$

ii) Along the straight line from $B=(1,1,0)$ to $C=(1,1,1)$ $x=1=y \Rightarrow d x=d y=0$ and z changes from 0 to 1 .

$$
\begin{aligned}
& \therefore \int_{\text {ВС }} \bar{F} \cdot d \overline{\mathrm{r}}=\int_{z=0}^{1} 8 x z^{2} d z=\int_{z=0}^{1} 8 x z^{2} d z=\left\lceil\frac{8 z^{3}}{3}\right]_{0}^{1}=\frac{8}{3} \\
& (i)+(i i)+(i i i) \Rightarrow \int_{C} \bar{F} \cdot d \overline{\mathrm{r}}=\frac{88}{3}
\end{aligned}
$$

2. If $\bar{F}=\left(5 \mathrm{xy}-6 \mathrm{x}^{2}\right) \bar{i}{ }_{+}(2 \mathrm{y}-4 \mathrm{x}) \overline{\mathrm{j}}$, evaluate $\mid \bar{F} . d \overline{\mathrm{r}}$ Along the curve C in xy -plane $\mathrm{y}=\mathrm{x}^{3}$ from $(1,1)$ to $(2,8)$.

Solution : Given $\bar{F}=\left(5 x y-6 x^{2}\right) \bar{i}+(2 y-4 x) \bar{j}$
Along the curve $y=x^{3}, d y=3 x^{2} d x$

$$
\begin{aligned}
\therefore \quad & F=\left(5 \mathrm{x}^{4}-6 \mathrm{x}^{2}\right) \bar{i}+\left(2 \mathrm{x}^{3}-4 \mathrm{x}\right) \overline{\mathrm{j}},\left[\text { Putting } \mathrm{y}=\mathrm{x}^{3} \text { in }(1)\right] \\
& \mathrm{d}_{\mathrm{r}}^{-}=\mathrm{dx} \overline{\mathrm{i}}+\mathrm{dy} \overline{\mathrm{j}}=\mathrm{dx} \overline{\mathrm{i}}+3 \mathrm{x}^{2} \mathrm{dx} \overline{\mathrm{j}} \\
\therefore \quad & \bar{F} \cdot \mathrm{~d} \overline{\mathrm{r}}=\left[\left(5 \mathrm{x}^{4}-6 \mathrm{x}^{2}\right) \bar{i}+\left(2 \mathrm{x}^{3}-4 \mathrm{x}\right) \overline{\mathrm{j}}\right] \cdot\left[\mathrm{dx} \bar{i}+3 x^{2} d x \bar{j}\right] \\
& =\left(5 \mathrm{x}^{4}-6 \mathrm{x}^{2}\right) \mathrm{dx}+\left(2 \mathrm{x}^{3}-4 \mathrm{x}\right) 3 \mathrm{x}^{3} \mathrm{dx} \\
& =\left(6 \mathrm{x}^{5}+5 \mathrm{x}^{4}-12 \mathrm{x}^{3}-6 \mathrm{x}^{2}\right) \mathrm{dx} \\
& \text { Hence } \int_{y=x^{3}}^{F} \cdot \bar{d}_{\mathrm{r}}=\int_{1}^{2}\left(6 x^{5}+5 x^{4}-12 x^{3}-6 x^{2}\right) d x \\
& =\left(6 \cdot \frac{x^{6}}{6}+5 \cdot \frac{x^{5}}{5}-12 \cdot \frac{x^{4}}{4}-6 \cdot \frac{x^{3}}{4}\right)=\left(x^{6}+x^{5}-3 x^{4}-2 x^{3}\right)_{1}^{2} \\
& =16(4+2-3-1)-(1+1-3-2)=32+3=35
\end{aligned}
$$

3. Find the work done by the force $\bar{F}=z \bar{i}+x \bar{j}+y \bar{k}$, when it moves a particle along the arc of the curve $r=$ $\operatorname{cost} \bar{i}+\operatorname{sint} \bar{j}-\mathrm{t} \bar{k}$ from $\mathrm{t}=0 \mathrm{tot}=2 \pi$

Solution: Given force $\bar{F}=\mathbf{z} \bar{i}+\mathbf{x} \bar{j}+\mathrm{y} \bar{k}$ and the arc is $\bar{r}=\operatorname{cost} \bar{i}+\sin \mathrm{t} \bar{j}-\mathrm{t} \bar{k}$
i.e., $x=\cos t, y=\sin t, z=-t$
$\therefore \mathrm{dr}_{\mathrm{r}}=(-\sin \mathrm{t} i+\cos \bar{j}-\bar{k}) \mathrm{dt}$

$$
\begin{aligned}
& =[t(-\cos t)]_{0}^{2 \pi}-\int_{0}^{2 \pi}(-\sin t) d t+\int_{0}^{2 \pi} \frac{1+\cos 2 t}{2} d t-\int_{0}^{2 \pi} \sin t d t \\
& =-2 \pi-(\cos t)_{0}^{2 \pi}+\frac{1}{2}\left(t+\frac{\sin 2 t}{2}\right)_{0}^{2 \pi}+(\cos t)_{0}^{2 \pi} \\
& =-2 \pi-(1-1)+\frac{1}{2}(2 \pi)+(1-1)=-2 \pi+\pi=-\pi
\end{aligned}
$$

PROBLEMS

1: Evaluate $\int \overline{\mathrm{F}} . \mathrm{ndS}$ where $\overline{\mathrm{F}}=\mathrm{zi}+x j-3 y^{2} z k$ and S is the surface $x^{2}+y^{2}=16$ included in the first octant between $z=0$ and $z=5$.
Sol. The surface S is $x^{2}+y^{2}=16$ included in the first octant between $z=0$ and $z=5$.
Let

$$
\phi=x^{2}+y^{2}=16
$$

Then

$$
\nabla \phi=\overline{\mathrm{i}} \frac{\partial \phi}{\partial \mathrm{x}}+\overline{\mathrm{j}} \frac{\partial \phi}{\partial \mathrm{y}}+\overline{\mathrm{k}} \frac{\partial \phi}{\partial \mathrm{z}}=2 \mathrm{x} \overline{\mathrm{i}}+2 \mathrm{y} \overline{\mathrm{j}}
$$

\therefore unit normal $\overline{\mathrm{n}}=\frac{\nabla \phi}{|\nabla \varphi|}=\frac{\mathrm{x} \overline{\mathrm{i}}+\mathrm{y} \overline{\mathrm{j}}}{4}\left(\because \mathrm{x}^{2}+\mathrm{y}^{2}=16\right)$
Let R be the projection of S on yz-plane

Then

$$
\int_{\mathrm{S}} \overline{\mathrm{~F}} \cdot \mathrm{ndS}=\iint_{\mathrm{R}} \overline{\mathrm{~F}} \cdot \overline{\mathrm{n}} \frac{\mathrm{dydz}}{|\overline{\mathrm{n}} \cdot \overline{\mathrm{i}}|}
$$

\qquad *

Given

$$
\bar{F}=z i+x j-3 y^{2} z k
$$

$\therefore \quad \overline{\mathrm{F}} \cdot \overline{\mathrm{n}}=\frac{1}{4}(\mathrm{xz}+\mathrm{xy})$
and $\quad \overline{\mathrm{n}} \cdot \overline{\mathrm{i}}=\frac{\mathrm{x}}{4}$
In yz-plane, $x=0, y=4$
In first octant, y varies from 0 to 4 and z varies from 0 to 5 .

$$
\int_{s}^{\bar{F}} . \operatorname{ndS}=\int_{y=0}^{4} \int_{z=0}^{5}\left(\frac{x z+x y}{4}\right) \frac{d y d z}{\left|\frac{x}{4}\right|}
$$

$$
=90
$$

2: If $\bar{F}=z i+x j-3 y^{2} z k$, evaluate $\int_{s} \bar{F} \cdot \bar{n} d S$ where S is the surface of the cube bounded by $x=0, x=a, y$ $=0, y=a, z=0, z=a$.

Sol. Given that S is the surface of the $x=0, x=a, y=0, y=a, z=0, z=a$, and $\bar{F}=z i+x j-3 y^{2} z k$ we need to evaluate $\int_{\mathrm{s}} \overline{\mathrm{F}} . \overline{\mathrm{n}} \mathrm{d} S$.

(i) For OABC

Eqn is $z=0$ and $d S=d x d y$

$$
\begin{aligned}
\overline{\mathrm{n}} & =-\overline{\mathrm{k}} \\
\int_{\mathrm{S}_{1}} \overline{\mathrm{~F}} \cdot \overline{\mathrm{n} d S} & =-\int_{x=0}^{a} \quad-\int_{y=0}^{a}(y z) \mathrm{d} x \mathrm{~d} y=0
\end{aligned}
$$

(ii) For PQRS

Eqn is $z=a$ and $d S=d x d y$

$$
\begin{aligned}
\overline{\mathrm{n}} & =\overline{\mathrm{k}} \\
\int_{\mathrm{S}_{2}} \overline{\mathrm{~F}} . \mathrm{ndS} & =\int_{\mathrm{x}=0}^{\mathrm{a}}\left(\int_{\mathrm{y}=0}^{\mathrm{a}} \mathrm{y}(\mathrm{a}) \mathrm{dy}\right) \mathrm{dx}=\frac{\mathrm{a}^{4}}{2}
\end{aligned}
$$

(iii) For OCQR

Eqn is $x=0$, and $\overline{\mathrm{n}}=-\overline{\mathrm{i}}, \mathrm{dS}=\mathrm{dydz}$

$$
\int_{S_{3}} \overline{\mathrm{~F}} . \mathrm{ndS}=\int_{y=0}^{a} \int_{z=0}^{a} 4 x z d y d z=0
$$

(iv) For ABPS

Eqn is $x=a$, and $\bar{n}=-\bar{i}, d S=d y d z$
(v) For OASR

Eqn is $\mathrm{y}=0$, and $\overline{\mathrm{n}}=-\overline{\mathrm{j}}, \mathrm{dS}=\mathrm{dxdz}$

$$
\int_{S_{S}} \bar{F} \cdot n d S=\int_{y=0}^{a} \int_{z=0}^{a} y^{2} d z d x=0
$$

(vi) For PBCQ

Eqn is $\mathrm{y}=\mathrm{a}$, and $\overline{\mathrm{n}}=-\overline{\mathrm{j}}, \mathrm{dS}=\mathrm{dxdz}$

$$
\int_{S_{6}} \bar{F} \cdot \bar{n} d S=-\int_{y=0}^{a} \int_{z=0}^{a} y^{2} d z d x=0
$$

From (i) - (vi) we get

$$
\int_{s_{6}} \overline{\mathrm{~F}} \cdot \overline{\mathrm{n}} \mathrm{dS}=0+\frac{\mathrm{a}^{4}}{2}+0+2 \mathrm{a}^{4}+0-\mathrm{a} 4=\frac{3 \mathrm{a}^{4}}{2}
$$

VOLUME INTEGRALS

Let V be the volume bounded by a surface $r=f(\mathrm{u}, \mathrm{v})$. Let $F(r)$ be a vector point function define over V .
Divide V into m sub-regions of volumes $\delta V_{1}, \delta V_{2}, \ldots . \delta V_{p} \ldots . \delta V_{m}$
Let $\mathrm{P}_{\mathrm{i}}\left(\bar{r}_{\mathrm{i}}\right)$ be a point in δV_{i}. Then form the sum $\mathrm{I}_{\mathrm{m}}=\sum_{i=1}^{m} \bar{F}\left(r_{i}\right) \delta V_{i}$. Let $\mathrm{m} \rightarrow \infty$ in such a way that δV_{i}
shrinks to a point,. The limit of I_{m} if it exists, is called the volume integral of $F(r)$ in the region V is denoted by $\int_{V}^{\bar{F}} \overline{(-r)} d v$ or $\int_{V}^{\bar{F}} d v$.

Cartesian form : Let $F(r)=F_{1} i+F_{2} i+F_{3} k$ where $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}$ are functions of $\mathrm{x}, \mathrm{y}, \mathrm{z}$. We know that $d v=d x d y d z$. The volume integral given by
$\int \bar{F} d v=\iiint\left(F_{1} \bar{i}+F_{2} \bar{i}+F_{3} \bar{k}\right) \mathrm{dx} \mathrm{dy} \mathrm{dz}=\bar{i} \iiint F_{1} \mathrm{dxdy} \mathrm{dz}+\bar{j} \iiint F_{2} \mathrm{~d} \mathrm{~d} \mathrm{~d} \mathrm{dz}+\bar{k} \iiint F_{3} \mathrm{dx} \mathrm{d} \mathrm{d} z$

SOLVED EXAMPLES

Example 1: If $\bar{F}=2 x z \bar{i}-x \bar{j}+y^{2} \bar{k}$ evaluate $\int_{V} \bar{F} d v$ where γ is the region bounded by the surfaces $x=0, x=2, y=0, y=6, z=x^{2}, z=4$.

Solution: Given $\bar{F}=2 x z \bar{i}-x \bar{j}+y^{2} \bar{k}, \therefore$ The volume integral is $\int_{V} \bar{F} d v=\iiint\left(2 x z \bar{i}-x \bar{j}+y^{2} \bar{k}\right) d x d y d z$
$=\bar{i} \int_{x=0}^{2} \int_{y=0}^{6} \int_{z=x^{2}}^{4} 2 x z d x d y d z-\bar{j} \int_{x=0}^{2} \int_{y=0}^{6} \int_{z=r^{2}}^{4} x d x d y d z+\bar{k} \int_{x=0}^{2} \int_{y=0}^{6} \int_{z=x^{2}}^{4} y^{2} d x d y d z$ $=\bar{i} \int_{x=0}^{2} \int_{y=0}^{6}\left[x z^{2}\right]_{x^{2}}^{4} d x d y-\bar{j} \int_{x=0}^{2} \int_{y=0}^{6}(x z)_{x^{2}}^{4} d x d y+\bar{k} \int_{x=0}^{2} \int_{y=0}^{6} y^{2}(z)_{x^{2}}^{4} d x d y$
$=\bar{i} \int_{x=0}^{2} \int_{y=0}^{6} x\left(16-x^{4}\right) d x d y-\dot{j} \int_{x=0}^{2} \int_{y=0}^{6} x\left(4-x^{2}\right) d x d y-\bar{k} \int_{x=0}^{2} \int_{y=0}^{2} y^{2}\left(x^{2}-4\right) d x d y$
$=\bar{i} \int_{x=0}^{2}\left(16 x-x^{5}\right)(y)_{0}^{6} d x-\bar{j} \int_{x=0}^{2}\left(4 x-x^{3}\right)(y)_{0}^{6} d x-\bar{k} \int_{x=0}^{2}\left(x^{2}-4\right)\left(\frac{y^{3}}{3}\right)_{0}^{6} d x$
$=\left(8 x^{2}-\frac{x^{6}}{6}\right)_{0}^{2}(6)-\bar{j}\left(2 x^{2}-\frac{x^{4}}{4}\right)_{0}^{2}(6)-\bar{k}\left(4 x-\frac{x^{3}}{3}\right)_{0}^{2}\left(\frac{211}{3}\right)$
$=128 \bar{i}-24 \bar{j}-384 \bar{k}$

Vector Integral Theorems

Introduction

In this chapter we discuss three important vector integral theorems: (i) Gauss divergence theorem, (ii) Green's theorem in plane and (iii) Stokes theorem. These theorems deal with conversion of
(ii) $\quad \int_{c} F . d r$ into a double integral over a region in a plane when C is a closed curve in the plane and.
(iii) $\quad \int_{s}(\nabla \times A) \cdot n$ ds into a line integral around the boundary of an open two sided surface.

I. GAUSS'S DIVERGENCE THEOREM

(Transformation between surface integral and volume integral)

Let S be a closed surface enclosing a volume V . If F is a continuously differentiable vector point function, then

$$
\int_{V} \operatorname{div} F d v=\int_{s} \bar{F} \cdot \bar{n} \mathrm{~d} S
$$

When n is the outward drawn normal vector at any point of S.
SOLVED PROBLEMS

1) Verify Gauss Divergence theorem for $\bar{F}=\left(x^{3}-y z\right) \overline{\boldsymbol{l}}-2 x^{2} y \bar{J}+z \bar{k}$ taken over the surface of the cube bounded by the planes $x=y=z=a$ and coordinate planes.

Sol: By Gauss Divergence theorem we have
$\int_{S} \bar{F} \cdot \bar{n} d S=\int_{v} d i v \bar{F} d v$
$R H S=\int_{0}^{a} \int_{0}^{a} \int_{0}^{a}\left(3 x^{2}-2 x^{2}+1\right) d x d y d z=\int_{0}^{a} \int_{0}^{a} \int_{0}^{a}\left(x^{2}+1\right) d x d y d z=\int_{0}^{a} \int_{0}^{a}\left(\frac{x^{3}}{3}+x\right)_{0}^{a} d y d z$
$\int_{0}^{a} \int_{0}^{a}\left\lceil\frac{a^{3}}{3}+a\right\rceil d y d z=\int_{0}^{a}\left[\frac{a^{3}}{3}+a\right\rceil(y)_{0}^{a} d z=\left(\frac{a^{3}}{3}+a\right) a \int_{0}^{a} d z=\left(\frac{a^{3}}{3}+a\right)\left(a^{2}\right)=\frac{a^{5}}{3}+a^{3}$
Verification: We will calculate the value of $\int_{S} \bar{F} \cdot \bar{n} d S$ over the six faces of the cube.
(i) For $S_{1}=$ PQAS; unit outward drawn normal $\bar{n}=\bar{i}$
$x=a ; d s=d y d z ; 0 \leq y \leq a, 0 \leq z \leq a$

$$
\therefore \bar{F} \cdot \bar{n}=x^{3}-y z=a^{3}-y z \sin c e x=a
$$

$$
\therefore \iint_{S_{1}} \bar{F} \cdot \bar{n} d S=\int_{z=0}^{a} \int_{y=0}^{a}\left(\mathrm{a}^{3}-y z\right) d y d z
$$

$$
=\int_{z=0}^{a}\left[a^{3} y-\frac{y^{2}}{2} z\right]_{y=0}^{a} d z
$$

$$
\begin{align*}
& =\int_{z=0}^{a}\left(\frac{a^{2}}{a^{4}} a^{2}\right) d z \\
& =a^{5}-\frac{a^{4}}{4} \ldots(2) \tag{2}
\end{align*}
$$

(ii) For $S_{2}=$ OCRB; unit outward drawn normal $\bar{n}=-\bar{l}$
$\mathrm{x}=0 ; \mathrm{ds}=\mathrm{dy} \mathrm{dz} ; 0 \leq \mathrm{y} \leq \mathrm{a}, \mathrm{y} \leq \mathrm{z} \leq \mathrm{a}$
$\bar{F} \cdot \bar{n}=-\left(x^{3}-y z\right)=y z$ since $x=0$
$\iint_{S_{s}} \bar{F} \cdot \bar{n} d S=\int_{z=0}^{a} \int_{y=0}^{a} y z d y d z=\int_{z=0}^{a}\left[\frac{y^{2}}{2}\right]_{y=0}^{a} z d z$
$=\frac{a^{2}}{2} \int_{z=0}^{a} z d z=\frac{a^{4}}{4} \ldots$
(iii) \quad For $\mathrm{S}_{3}=\mathrm{RBQP} ; \mathrm{Z}=\mathrm{a} ; \mathrm{ds}=\mathrm{dxdy} ; \bar{n}=\bar{k}$
$0 \leq x \leq a, 0 \leq y \leq a$
$\bar{F} \cdot \bar{n}=z=a \operatorname{since} z=a$
$\therefore \iint_{S_{3}} \bar{F} \bar{F} d S=\int_{y=0}^{a} \int_{x=0}^{a} a d x d y=a^{3} \ldots$
(iv) For $\mathrm{S}_{4}=\mathrm{OASC} ; \mathrm{z}=0 ; \bar{n}=-\bar{k}$, ds $=\mathrm{dxdy}$;
$0 \leq x \leq a, 0 \leq y \leq a$
$\bar{F} \cdot \bar{n}=-z=0$ since $z=0$
$\iint_{S_{4}} \bar{F} \cdot \bar{n} d S=0$.
(v) For $\mathrm{S}_{5}=$ PSCR; $\mathrm{y}=\mathrm{a} ; \bar{n}=\bar{\jmath}, \mathrm{ds}=\mathrm{dzdx}$;
$0 \leq x \leq a, 0 \leq z \leq a$
$\bar{F} \cdot \bar{n}=-2 x^{2} y=-2 a x^{2}$ since $y=a$
$\int_{S_{S}} \int \bar{F} \cdot \bar{n} d S=\int_{x=0}^{a} \int_{z=0}^{a}\left(-2 a x^{2}\right) d z d x$
$\int_{x=0}^{a}\left(-2 a x^{2} z\right)_{z=0}^{a} d x$
$=-2 a^{2}\left(\frac{x^{3}}{3}\right)_{0}^{a}=\frac{-2 a^{5}}{3}$
(vi) For $S_{6}=$ OBQA; $y=0 ; \bar{n}=-\bar{j}$, ds $=$ dzdx;

$$
\begin{aligned}
& 0 \leq x \leq a, 0 \leq y \leq a \\
& \bar{F} . \bar{n}=2 x^{2} y=0 \text { since } y=0
\end{aligned}
$$

$$
\begin{aligned}
& =a^{5}-\frac{a^{4}}{4}-\frac{a^{4}}{4}+a^{3}+0-\frac{2 a^{5}}{3}+0 \\
& =\frac{a^{5}}{3}+a^{3}=\iiint \bar{V} \cdot \bar{F} d v u \sin g(1)
\end{aligned}
$$

2. Compute $\int\left(\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{y}^{2}+\boldsymbol{c z ^ { 2 }}\right) d \boldsymbol{S}$ over the surface of the sphere $x^{2}+y^{2}+z^{2}=1$

Sol: By divergence theorem $\int_{S} \bar{F} \cdot \bar{n} d S=\int_{V} \bar{V} \cdot \bar{F} d v$
Given $\bar{F} \cdot \bar{n}=a x^{2}+b y^{2}+c z^{2}$. Let $\phi=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-1$
\therefore Normal vector \bar{n} to the surface ϕ is
$\bar{V} \phi=\left(\bar{i} \frac{\partial}{\partial x}+\bar{j} \frac{\partial}{\partial y}+\bar{k} \frac{\partial}{\partial y}\right)\left(x^{2}+y^{2}+z^{2}-1\right)=2(x \bar{i}+y \bar{j}+z \bar{k})$
\therefore Unit normal vector $=\bar{n}=\frac{2(x \bar{i}+y \bar{j}+z \bar{k})}{2 \sqrt{x^{2}+y^{2}+z^{2}}}=x \bar{i}+y \bar{j}+z \bar{k}$ Since $x^{2}+y^{2}+z^{2}=1$
$\therefore \bar{F} \cdot \bar{n}=\bar{F} \cdot(x \bar{i}+y \bar{j}+z \bar{k})=\left(a x^{2}+b y^{2}+c z^{2}\right)=(a x \bar{i}+b y \bar{j}+c z \bar{k}) \cdot(x \bar{i}+y \bar{j}+z \bar{k})$
i.e., $\bar{F}=a x \bar{i}+b y \bar{j}+c z \bar{k} \quad \nabla \cdot \bar{F}=a+b+c$

Hence by Gauss Divergence theorem,
$\int_{S}\left(a x^{2}+b y^{2}+c z^{2}\right) d S=\int_{V}(a+b+c) d v=(a+b+c) V=\frac{4 \pi}{3}(a+b+c)$
$\left[\right.$ SInce $V=\frac{4 \pi}{3}$ is the volume of the sphere of unit radius]
3)By transforming into triple integral, evaluate $\iint x^{3} d y d z+x^{2} y d z d x+x^{2} d x d y$ where S is the closed surface consisting of the cylinder $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}$ and the circular discs $\mathrm{z}=0, \mathrm{z}=\mathrm{b}$.
Sol: Here $F_{1}=x^{3}{ }_{,} F_{2}=x^{2} y_{,} F_{3}=x^{2} z$ and $\bar{F}=F_{1} \bar{\imath}+F_{2} \bar{\jmath}+F_{3} \bar{k}$
$\frac{\partial F_{1}}{\partial x}=3 x^{2}, \frac{\partial F_{2}}{\partial y}=x^{2}, \frac{\partial F_{3}}{\partial z}=x^{2}$
$\nabla \cdot \bar{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}=3 x^{2}+x^{2}+x^{2}=5 x^{2}$

By Gauss Divergence theorem,
$\iint F_{1} d y d z+F_{2} d z d x+F_{3} d x d y=\iiint\left(\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}\right) d x d y d z$
$\therefore \iint_{s}\left(x^{3} d y d z+x^{2} y d z d x+x^{2} z d x d y=\iiint 5 x^{2} d x d y d z\right.$
$=5 \int_{-a}^{a} \int_{y=-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}} \int_{z=0}^{b} x^{2} d x d y d z$
$a \sqrt{a^{2}-x^{2}} \quad b$
$=20 \int_{0} \int_{0} \int_{z=0} x^{2} d x d y d z$ [Integrand is even function]
$=20 \int_{0}^{a \sqrt{a^{2}-x^{2}}} \int_{0}^{2} x^{2}(z)_{0}^{b} d x d y=20 b \int_{x=0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} x^{2} d x d y$
$=20 b \int_{x=0}^{a} x^{2}(y)_{0}^{\sqrt{a^{2}-x^{x}}} d x=20 b \int_{0}^{a} x^{2} \sqrt{a^{2}-x^{2}} d x$
$=20 b \int_{0}^{\frac{\pi}{2}} a^{2} \sin ^{2} \theta \sqrt{a^{2}-a^{2} \sin ^{2} \theta}(a \cos \theta d \theta)$
[Put $x=a \sin \theta=\Rightarrow d x=a \cos \theta d \theta$ when $x=a \Rightarrow \theta=\frac{\pi}{2}$ and $x=0 \Rightarrow \theta=0$]
$=20 a^{4} b \int_{0}^{\frac{\pi}{2}} \sin ^{2} \theta \cos ^{2} \theta d \theta=5 a^{4} b \int_{0}^{\pi}(2 \sin \theta \cos \theta)^{2} d \theta=5 a^{4} b \int_{0}^{\frac{\pi}{2}} \frac{1-\cos 4 \theta}{2} d \theta$
$=\frac{5 a^{4} b}{2}\left[\theta-\frac{\sin 4 \theta}{4}\right]_{0}^{\pi / 2}=\frac{5 a^{4} b}{2}\left[\frac{\pi}{2}\right]=\frac{5}{4} \pi a^{4} b$

4: Applying Gauss divergence theorem, Prove that $\int \bar{r}, \bar{n} d S=3 V$ or $\int \bar{r}, d \bar{s}=3 V$
Sol: Let $\bar{r}=x \bar{l}+y \bar{\jmath}+z \bar{k}$ we know that $\operatorname{div} \bar{r}=3$

Take $\bar{F}=\bar{r}=>\int_{S} \bar{r} \cdot \bar{n} d S=\int_{V} 3 d V=3 V$. Hence the result

5: Show that $\int_{S}(a x \bar{l}+b y \bar{J}+c z \bar{k}) \cdot \bar{n} d S=\frac{4 \pi}{3}(a+b+c)$, where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=1$.

Sol: Take $\bar{F}=a x \bar{\imath}+b y \bar{\jmath}+c z \bar{k}$
$d i v \bar{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}=a+b+c$

By Gauss divergence theorem, $\int_{S} \bar{F} \cdot \bar{n} d S=\int_{V} \bar{V} \cdot \bar{F} d V=(a+b+c) \int_{V} d V=(a+b+c) V$ We have $V=\frac{4}{3} \pi r^{3}$ for the sphere.Here $r=1$
$\therefore \int \bar{F} . \bar{n} d S=(a+b+c) \frac{4 \pi}{3}$
6: Using Divergence theorem, evaluate
$\iint_{S}(x d y d z+y d z d x+z d x d y)$, where $S: x^{2}+y^{2}+z^{2}=\mathrm{a}^{2}$
Sol: We have by Gauss divergence theorem, $\int_{s} \bar{F} \cdot \bar{n} d S=\int_{v} d i v \bar{F} d v$
L.H.S can be written as $\int\left(F_{1} d y d z+F_{2} d z d x+F_{3} d x d y\right)$ in Cartesian form

Comparing with the given expression, we have $F_{1}=x, F_{2}=y, F_{3}=z$

Then div $\bar{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}=3$
$\therefore \int_{v} d i v \bar{F} d v=\int_{v} 3 d v=3 V$
Here V is the volume of the sphere with radius a .
$\therefore V=\frac{4}{3} \pi a^{3}$
Hence $\iint(x d y d z+y d z d x+z d x d y)=4 \pi a^{3}$
7: Apply divergence theorem to evaluate $\iint_{s}(x+z) d y d z+(y+z) d z d x+(x+y) d x d y$ S is the surface of the sphere $x^{2}+y^{2}+z^{2}=4$

```
Sol. Given \(\iint(x+z) d y d z+(v+z) d z d x+(x+y) d x d y\)
```

$\frac{\partial F_{1}}{\partial x}=1, \frac{\partial F_{2}}{\partial y}=1, \frac{\partial F_{3}}{\partial z}=0$ and $\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}=1+1+0=2$
By Gauss Divergence theorem,
$\iint_{s} F_{1} d y d z+F_{2} d z d x+F_{3} d x d y=\iiint_{V}\left(\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}\right) d x d y d z$
$=\iiint 2 d x d y d z=2 \int_{V} d v=2 V$
$=2\left[\frac{4}{3} \pi(2)^{3}\right]=\frac{64 \pi}{3}[$ for the sphere, radius $=2]$

8: Evaluate $\int_{S} \bar{F} \cdot \bar{n} d s_{s}$ if $F=x y \overline{\boldsymbol{\imath}}+z^{2} \bar{J}+\mathbf{2 y z} \overline{\boldsymbol{k}}$ over the tetrahedron bounded by $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0$ and the plane $\mathrm{x}+\mathrm{y}+\mathrm{z}=1$.

Sol: Given $\mathrm{F}=x y \bar{\imath}+z^{2} \bar{\jmath}+2 y z \bar{k}$, then div. $\mathrm{F}=\mathrm{y}+2 \mathrm{y}=3 \mathrm{y}$
$\therefore \int_{s}^{\bar{F}} \bar{n} d S=\int_{v} d i v \bar{F} d v=\int_{x=0}^{1} \int_{y=0}^{1-x} \int_{z=0}^{1-x-y} 3 y d x d y d z$
$=3 \int_{x=0}^{1} \int_{y=0}^{1-x} y[z]_{0}^{1-x-y} d x d y=3 \int_{x=0}^{1} \int_{y=0}^{1-x} y(1-x-y) d x d y$
$=3 \int_{x=0}^{1}\left[\frac{y^{2}}{2}-\frac{x y^{2}}{2}-\frac{y^{3}}{3}\right]_{0}^{1-x} d x=3 \int_{0}^{1}\left[\frac{(1-x)^{2}}{2}-\frac{x(1-x)^{2}}{2}-\frac{(1-x)^{3}}{3}\right] d x$
$=3 \int_{0}^{1}\left[\frac{(1-x)^{3}}{2}-\frac{(1-x)^{3}}{3}\right] d x=3 \int_{0}^{1} \frac{(1-x)^{3}}{6} d x=\frac{3}{6}\left[\frac{-(1-x)^{4}}{4}\right]_{0}^{1}=\frac{1}{8}$
9: Use divergence theorem to evaluate $\iint \bar{F} \cdot d \bar{S}$ where $\bar{F}=\mathrm{x}^{3} \mathrm{i}+\mathrm{y}^{3} \mathrm{j}+\mathrm{z}^{3} \mathrm{k}$ and S is the surface of the sphere
$x^{2}+y^{2}+z^{2}=r^{2}$
Sol: We have
$\bar{V} \cdot \bar{F}=\frac{\partial}{\partial x}\left(x^{3}\right)+\frac{\partial}{\partial y}\left(\mathrm{y}^{3}\right)+\frac{\partial}{\partial z}\left(\mathrm{z}^{3}\right)=3\left(x^{2}+y^{2}+z^{2}\right)$
\therefore By divergence theorem,
$\bar{V} \cdot \bar{F} d V=\iint_{V} \int \bar{V} \cdot \bar{F} d V=\iiint 3\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$
$=3 \int_{r=0}^{a} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} r^{2}\left(r^{2} \sin \theta d r d \theta d \phi\right)$

10: Use divergence theorem to evaluate $\iint_{S} \bar{F} . d S$ where $\bar{F}=\mathbf{4 x i}-2 y^{2} j+z^{2} k$ and S is the surface bounded by the region $x^{2}+y^{2}=4, z=0$ and $z=3$.

Sol: We have
$\operatorname{div} \bar{F}=\nabla \cdot \bar{F}=\frac{\partial}{\partial x}(4 x)+\frac{\partial}{\partial y}\left(-2 y^{2}\right)+\frac{\partial}{\partial z}\left(\mathrm{z}^{2}\right)=4-4 y+2 z$
By divergence theorm,
$\iint_{S} \bar{F} \cdot d S=\iint_{V} \int \bar{V} \cdot \bar{F} d V$
$=\int_{z=-2}^{2} \int_{y=-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{z=0}^{3}(4-4 y+2 z) d x d y d z$
$=\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}}\left[(4-4 y) z+z^{2}\right]_{0}^{3} d x d y$
$=\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}}[12(1-y)+9] d x d y$
$=\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}}(21-12 y) d x d y$

$=\int_{-2}^{2}\left\lfloor 21 \times 2 \int_{0}^{\sqrt{4-x^{2}}} d y-\left.12(0)\right|^{\rceil} d x\right.$
[Since the integrans in forst integral is even and in $2^{\text {nd }}$ integral it is on add function]
$=42 \int_{-2}^{2}(y)_{0}^{\sqrt{4-x^{2}}} d x$
$=42 \int_{-2}^{2} \sqrt{4-x^{2}} d x=42 \times 2 \int_{0}^{2} \sqrt{4-x^{2}} d x$
$=84\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{0}^{2}$
$=84\left[0+2 \cdot \frac{\pi}{2}-0\right]=84 \pi$

11: Verify divergence theorem for $\bar{F}=x^{2} i+y^{2} j+z^{2} k$ over the surface S of the solid cut off by the plane $x+y+z=a$ in the first octant.

Sol: By Gauss theorem, $\int_{s} \bar{F} \cdot \bar{n} d S=\int_{v} d i v \bar{F} d v$
Let $\phi=x+y+z-a$ be the given plane then
$\frac{\partial \phi}{\partial x}=1, \frac{\partial \phi}{\partial y}=1, \frac{\partial \phi}{\partial z}=1$
$\therefore \operatorname{grad} \phi=\sum \bar{i} \frac{\partial \phi}{\partial x}=\bar{i}+\bar{j}+\bar{k}$

Unit normal $=\frac{\operatorname{grad} \phi}{|\operatorname{grad} \phi|}=\frac{\bar{\imath}+\bar{\jmath}+\bar{k}}{\sqrt{3}}$
Let R be the projection of S on xy-plane
Then the equation of the given plane will be $x+y=a \Rightarrow y=a-x$
Also when $\mathrm{y}=0, \mathrm{x}=\mathrm{a}$
$\therefore \int_{s} \bar{F} \cdot \bar{n} d S=\iint_{R} \frac{\bar{F} \cdot \bar{n} d x d y}{|\bar{n} \cdot \bar{k}|}$
$=\int_{x=0}^{a} \int_{y=0}^{a-z} \frac{x^{2}+y^{2}+z^{2}}{\sqrt{3}} \frac{\int_{0}^{a}}{1 / \sqrt{3}} \int_{y=0}^{a-z}\left[x^{2}+y^{2}+(a-x-y)^{2}\right] d x d y[\operatorname{since} x+y+z=a]$
$=\int_{0}^{a} \int_{0}^{a-x}\left[2 x^{2}+2 y^{2}-2 a x+2 x y-2 a y+a^{2}\right] d x d y$
$=\int_{x=0}^{a}\left[2 x^{2} y+\frac{2 y^{3}}{3}+x y^{2}=2 a x y=a y^{2}+a^{2} y\right]_{0}^{a-x} d x$

Given $\bar{F}=x^{2} \bar{i}+y^{2} \bar{j}+z^{2} \bar{k}$
$\therefore \operatorname{div} \bar{F}=\frac{\partial}{\partial x}\left(x^{2}\right)+\frac{\partial}{\partial y}\left(y^{2}\right)+\frac{\partial}{\partial z}\left(z^{2}\right)=2(x+y+z)$
Now $\iiint_{\operatorname{div}} \bar{F} . d v=2 \int_{x=0}^{a} \int_{y=0} \int_{z=0}(x+y+z) d x d y d z$
$=2 \int_{x=0}^{a} \int_{y=0}^{a-x}\left[z(x+y)+\frac{z^{2}}{2}\right]_{0}^{a-x-y} d x d y$
$=2 \int_{x=0}^{a} \int_{y=0}^{a}(a-x-y)\left[x+y+\frac{a-x-y}{2}\right] d x d y$
$=\int_{a=0}^{a} \int_{y=0}^{a-x}(a-x-y)[a+x+y] d x d y$
$=\int_{0}^{a} \int_{0}^{a-x}\left[a^{2}-(x+y)^{2}\right] d y d x=\int_{0}^{a a-x} \int_{0}^{2}\left(a^{2}-x^{2}-y^{2}-2 x y\right) d x d y$
$=\int_{0}^{a}\left[a^{2} y-x^{2} y-\frac{y^{3}}{3}-x y^{2}\right]_{0}^{a-x} d x$
$=\int_{0}^{a}(a-x)\left(2 a^{2}-x^{2}-a x\right) d x=\frac{a^{4}}{4} \ldots \ldots$
Hence from (1) and (2), the Gauss Divergence theorem is verified.

12: Verify divergence theorem for $2 x^{2} y \bar{i}-y^{2} \bar{j}+4 x z^{2} \bar{k}$ taken over the region of first octant of the cylinder $y^{2}+z^{2}=9$ and $x=2$.
(or) Evaluate $\iint \bar{F} \cdot \bar{n} d S$, where $\bar{F}=2 x^{2} y \bar{i}-y^{2} \bar{j}+4 x z^{2} \bar{k}$ and S is the closed surface of the region in the first octant bounded by the cylinder $y^{2}+z^{2}=9$ and the planes $x=0, x=2, y=0, z=0$

Sol: Let $\bar{F}=2 x^{2} y \bar{i}-y^{2} \bar{j}+4 \mathrm{xz}^{2} \bar{k}$
$\therefore \nabla \cdot \bar{F}=\frac{\partial}{\partial x}\left(2 x^{2}\right)+\frac{\partial}{\partial y}\left(-y^{2}\right)+\frac{\partial}{\partial z}\left(4 x z^{2}\right)=4 x y-2 y+8 x z$

$$
\begin{aligned}
& 4^{\lambda} \\
& \iiint_{V} \bar{V} \cdot \bar{F} d v=\int_{x=0}^{2} \int_{y=0}^{3} \int_{z=0}^{\sqrt{9-y^{2}}}(4 x y-2 y+8 x z) d z d y d x \\
& =\int_{0}^{2} \int_{0}^{3}\left[(4 x y-2 y) z+8 x \frac{z^{2}}{2}\right]_{z=0}^{\sqrt{9-y^{2}}} d y d x \\
& =\int_{0}^{2} \int_{0}^{3}\left[(4 x y-2 y) \sqrt{9-y^{2}}+4 x\left(9-y^{2}\right)\right] d y d x \\
& =\int_{0}^{2} \int_{0}^{3}\left[(1-2 x)(-2 y) \sqrt{9-y^{2}}+4 x\left(9-y^{2}\right)\right] d y d x \\
& =\int_{0}^{2}\left\{\left[(1-2 x) \frac{\left(9-y^{2}\right)^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{3}+4 x\left(9 y-\frac{y^{3}}{3}\right)_{0}^{3}\right\} d x \\
& =\int_{0}^{2}\left\{\frac{2}{3}(1-2 x)[0-27]+4 x[27-9]\right\} d x=\int_{0}^{2}[-18(1-2 x)+72 x] d x \\
& {\left[-18\left(x-x^{2}\right)+72 \frac{x^{2}}{2}\right]_{0}^{2}=-18(2-4)+36(4)=36+144=180 \ldots(1)}
\end{aligned}
$$

Where S_{1} is the face OAB, S_{2} is the face CED, S_{3} is the face OBDE, S_{4} is the face OACE and S_{5} is the curved surface ABDC.
(i) On $S_{1}: x=0, \bar{n}=-i \therefore \bar{F} \cdot \bar{n}=0$ Hence $\int_{s_{1}} \bar{F} \cdot \bar{n} d S$
(ii) On $S_{2}: x=2, \bar{n}=i \therefore \bar{F} \cdot \bar{n}=8 y$
$\therefore \int_{s_{2}} \bar{F} \cdot n d S=\int_{0}^{3} \int_{0}^{\sqrt{9-z^{2}}} 8 y d y d z=\int_{0}^{3} 8\left(\frac{y^{2}}{2}\right)_{0}^{\sqrt{9-z^{2}}} d z$
$=4 \int_{0}^{3}\left(9-z^{2}\right) d z=4\left(9 z-\frac{z^{3}}{3}\right)_{0}^{3}=4(27-9)=72$
(iii) On $S_{3}: y=0, \bar{n}=-j . \therefore \bar{F} \cdot \bar{n}=0$ Hence $\int_{s_{3}} \bar{F} \cdot \bar{n} d S$
(iv) $O n S_{4}: z=0, \bar{n}=-k . \quad \bar{F}, \bar{n}=0 . \quad$ Hence $\int_{S_{4}} \bar{F}, \bar{n} d s=0$
(v) On $S_{5}: y^{2}+z^{2}=9, \bar{n}=\frac{\nabla\left(y^{2}+z^{2}\right)}{\left|\nabla\left(y^{2}+z^{2}\right)\right|}=\frac{2 y \bar{j}+2 z \bar{k}}{\sqrt{4 y^{2}+4 z^{2}}}=\frac{y \bar{j}+z \bar{k}}{\sqrt{4 \times 9}}=\frac{y \bar{j}+z \bar{k}}{3}$
$\bar{F} \cdot \bar{n}=\frac{-y^{3}+4 x z^{3}}{3}$ and $\bar{n} \cdot \bar{k}=\frac{z}{3}=\frac{1}{3} \sqrt{9-y^{2}}$
Hence $\int_{S_{5}} \bar{F}, \bar{n} d s=\iint_{R} \bar{F} \cdot \bar{n} \frac{d x d y}{\|\bar{n} \bar{k}\|}$ Where R is the projection of S_{5} on $x y$-plane.
$=\int_{R} \int^{4 x z^{3}-y^{3}} \frac{\sqrt{9-y^{2}}}{\sqrt{9}} d x d y=\int_{x=0}^{2} \int_{y=0}^{3}\left[4 x\left(9-y^{2}\right)-y^{3}\left(9-y^{2}\right)^{-\frac{1}{2}}\right] d y d x$
$=\int_{0}^{2} 72 x d x-18 \int_{0}^{2} d x=72\left(\frac{x^{2}}{2}\right)_{0}^{2}-18(x)_{0}^{2}=144-36=108$
Thus $\int_{S} \bar{F} \cdot \bar{n} d s=0+72+0+0+108=180$
Hence the Divergence theorem is verified from the equality of (1) and (2).

13: Use Divergence theorem to evaluate $\iint\left(x \bar{i}+y \bar{j}+z^{2} \bar{k}\right) \cdot \bar{n} d s$. Where S is the surface bounded by the

Sol: Given $\iint\left(x \bar{\imath}+y \bar{\jmath}+z^{2} \bar{k}\right) \cdot \bar{n} \cdot d s$ Where S is the surface bounded by the cone $\mathrm{x}^{2}+y^{2}=z^{2}$ in the plane z
$=4$.
Let $\bar{F}=x \bar{\imath}+y \bar{\jmath}+z^{2} \bar{k}$
By Gauss Divergence theorem, we have
$\iint\left(x \bar{\imath}+y \bar{\jmath}+z^{2} \bar{k}\right) \cdot \bar{n} \cdot d s=\iiint \bar{V} \cdot \bar{F} d v$
Now $\nabla \cdot \bar{F}=\frac{\partial}{\partial x}(x)+\frac{\partial}{\partial y}(y)+\frac{\partial}{\partial z}\left(z^{2}\right)=1+1+2 z=2(1+z)$
On the cone, $x^{2}+y^{2}=z^{2}$ and $z=4 \Rightarrow x^{2}+y^{2}=16$
The limits are $z=0$ to $4, y=o$ to $\sqrt{16-x^{2}}, x=0$ to 4 .
$\iiint_{V} \bar{V} \cdot \bar{F} d v=\int_{0}^{4 \sqrt{16-x^{2}}} \int_{0}^{4} \int_{0}^{4} 2(1+z) d x d y d z$
$=2 \int_{0}^{4 \sqrt{16-x^{2}}} \int_{0}\left\{[z]_{0}^{4}+\left[\frac{z^{2}}{2}\right]_{0}^{4}\right\} d x d y$
$=2 \int_{0}^{4} \int_{0}^{\sqrt{16-x^{2}}}[4+8] d x d y=2 \times 12 \int_{0}^{4}[y]_{0}^{\sqrt{16-x^{2}}} d x$
$=24 \int_{0}^{4} \sqrt{16-x^{2}} d x=24 \int_{0}^{\frac{\pi}{2}} \sqrt{16-16 \sin ^{2} \theta} \cdot 4 \cos \theta d \theta$
[putx $=4 \sin \theta \Rightarrow d x=4 \cos \theta d \theta$. Also $x=0 \Rightarrow \theta=0$ and $\left.x=4 \Rightarrow \theta=\frac{\pi}{2}\right]$
$\therefore \iiint_{V} \nabla \cdot \bar{F} d v=96 \times 4 \int_{0}^{\frac{\pi}{2}} 4 \sqrt{1-\sin ^{2} \theta} \cos \theta d \theta=96 \times 4 \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta$

$$
\begin{aligned}
& \quad \iint_{V} \int_{0} \bar{V} \cdot \bar{F} d v=96 \times 4 \int_{0}^{\frac{\pi}{2}} 4 \sqrt{1-\sin ^{2} \theta} \cos \theta d \theta= \\
& =96 \times 4 \int_{0}^{\frac{\pi}{2}} \frac{1+\cos 2 \theta}{2} d \theta=96 \times 4 \int_{0}^{\frac{\pi}{2}}\left[\frac{1}{2}+\frac{\cos 2 \theta}{2}\right] d \theta \\
& =384\left[\frac{1}{2} \theta+\frac{1}{2} \frac{\sin 2 \theta}{2}\right]_{0}^{\frac{\pi}{2}}=96 \pi
\end{aligned}
$$

14: Use Gauss Divergence theorem to evaluate $\iint_{S}\left(y z^{2} \bar{\imath}+z x^{2} \bar{J}+2 z^{2} \bar{k}\right)$.ds, where S is the closed surface bounded by the $x y-$ plane and the upper half of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ above this plane.

Sol: Divergence theorem states that
$\iint_{S} \bar{F} \cdot d s=\iint_{V} \int \bar{V} \cdot \bar{F} d v$
Here $\nabla \cdot \bar{F}=\frac{\partial}{\partial x}\left(y z^{2}\right)+\frac{\partial}{\partial y}\left(z x^{2}\right)+\frac{\partial}{\partial z}\left(2 z^{2}\right)=4 z$
$\therefore \iint_{s} \bar{F} \cdot d s=\iint_{V} 4 z d x d y d z$
Introducing spherical polar coordinates $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi$,
$z=r \cos \theta$ then $d x d y d z=r^{2} d r d \theta d \phi$
$\therefore \iint_{s} \bar{F} . d s=4 \int_{r=0}^{a} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi}(r \cos \theta)\left(r^{2} \sin \theta d r d \theta d \phi\right)$
$=4 \int_{r=0}^{a} \int_{\theta=0}^{\pi} r^{3} \sin \theta \cos \theta\left[\int_{\phi=0}^{2 \pi} d \phi\right] d r d \theta$
=4. $\int_{r=0}^{a} \int_{\theta=0}^{\pi} r^{3} \sin \theta \cos \theta(2 \pi-0) d r d \theta$
$=4 \pi \int_{r=0}^{a} r^{3}\left[\int_{0}^{\pi} \sin 2 \theta d \theta\right] d r=4 \pi \int_{r=0}^{a} r^{3}\left(-\frac{\cos 2 \theta}{2}\right)_{0}^{\pi} d r$
$=(-2 \pi) \int_{0}^{\alpha} r^{3}(1-1) d r=0$
15: Verify Gauss divergence theorem for $\bar{F}=x^{3} \bar{\imath}+y^{3} \bar{J}+z^{3} \bar{k}$ taken over the cube bounded by $x=0, x=a, y=0, y=a, z=0, z=a$.
Sol: We have $\bar{F}=x^{3} \bar{\imath}+y^{3} \bar{\jmath}+z^{3} \bar{k}$
$\iint_{V} \int \bar{V} \cdot \bar{F} d v=\iint_{V} \int\left(3 x^{2}+3 y^{2}+3 z^{2}\right) d x d y d z$
$=3 \int_{z=0}^{a} \int_{y=0}^{a} \int_{x=0}^{a}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$
$=3 \int_{z=0}^{a} \int_{y=0}^{a}\left(\frac{x^{3}}{3}+x y^{2}+z^{2} x\right)_{0}^{a} d y d z$
$=3 \int_{z=0}^{a} \int_{y=0}^{a}\left(\frac{a^{3}}{a}+a y^{2}+a z^{2}\right) d y d z$
$=3 \int_{z=0}^{a}\left(\frac{a^{3}}{3} y+a \frac{y^{3}}{3}+a z^{2} y\right)_{0}^{a} d z$
$=3 \int_{0}^{a}\left(\frac{a^{4}}{3}+\frac{a^{4}}{3}+a^{2} z^{2}\right) d z=3 \int_{0}^{a}\left(\frac{2}{3} a^{4}+a^{2} z^{2}\right) d z$
$=3\left(\frac{2}{3} a^{4} z+a^{2} \cdot \frac{z^{3}}{3}\right)_{0}^{a}=3\left(\frac{2}{3} a^{5}+\frac{1}{3} a^{5}\right)$
$=3 a^{5}$
To evaluate the surface integral divide the closed surface S of the cube into 6 parts.
i.e., $\quad S_{1}$: The face DEFA ; S_{4} : The face OBDC
S_{2} : The face AGCO ; S_{5} : The face GCDE
S_{3} : The face AGEF ; S_{6} : The face AFBO
$\iint_{s} \bar{F} \cdot \bar{n} d s=\iint_{s_{1}} \bar{F} \cdot \bar{n} d s+\iint_{s_{2}} \bar{F} \cdot \bar{n} d s+\cdots+\int_{s_{0}} \int_{\bar{F}} \bar{n} d s$

On S_{1}, we have $\bar{n}=\bar{i}, x=a$

$$
\begin{aligned}
& \therefore \iint_{s_{1}} \bar{F} \cdot n d s=\int_{z=0}^{a} \int_{y=0}^{a}\left(a^{3} \bar{i}+y^{3} \bar{j}+z^{3} \bar{k}\right) \cdot \bar{i} d y d z \\
& \iint_{S_{0}} \int_{\bar{F}} \bar{n} d s=\int_{z=0}^{a} \int_{y=0}^{a}\left(a^{3} \bar{\imath}+y^{3} \bar{\jmath}+z^{3} \bar{k}\right) \cdot \bar{\imath} d y d z
\end{aligned}
$$

$=\int_{z=0}^{a} \int_{y=0}^{a} a^{3} d y d z=a^{3} \int_{0}^{a}(y)_{0}^{a} d z$
$=a^{4}(z)_{0}^{a}=a^{5}$
On S_{2}, we have $\bar{n}=-\bar{l}, x=0$

On S_{3}, we have $\bar{n}=\bar{\jmath}_{y} y=a$

$$
\begin{aligned}
& \iint_{s_{3}} \bar{F} \cdot \bar{n} d s=\int_{z=0}^{a} \int_{x=0}^{a}\left(x^{3} \bar{i}+a^{3} \bar{j}+z^{3} \bar{k}\right) \cdot \bar{j} d x d z=a^{3} \int_{z=0}^{a} \int_{x=0}^{a} d x d z=a^{3} \int_{0}^{a} a d z=a^{4}(z)_{0}^{a} \\
& =a^{5}
\end{aligned}
$$

On S_{4}, we have $\bar{n}=-\bar{J}_{3} y=0$
$\int_{s_{a}} \int_{\bar{F}} \bar{F} \bar{n} d s=\int_{z=0}^{a} \int_{a=0}^{a}\left(x^{3} \bar{l}+z^{3} \bar{k}\right) \cdot(-\bar{\jmath}) d x d z=0$
On S_{5}, we have $\bar{n}=\bar{k}_{y} z=a$
$\int_{s_{s}} \int \bar{F} \cdot \bar{n} d s=\int_{y=0}^{a} \int_{x=0}^{a}\left(x^{3} \bar{l}+y^{3} \bar{\jmath}+a^{3} \bar{k}\right) \cdot \bar{k} d x d y$
$=\int_{y=0}^{a} \int_{x=0}^{a} a^{3} d x d y=a^{3} \int_{0}^{a}(x)_{0}^{\alpha} d y=a^{4}(y)_{0}^{a}=a^{5}$
On S_{6}, we have $\bar{n}=-\bar{k}_{,} z=0$
$\int_{s_{0}} \int_{\bar{F}} \overline{\bar{n}} d s=\int_{y=0}^{a} \int_{x=0}^{a}\left(x^{3} \bar{\imath}+y^{3} \bar{\jmath}\right) \cdot(-\bar{k}) d x d y=0$
Thus $\int_{S} \int \bar{F} \cdot \bar{n} d s=a^{5}+0+a^{5}+0+a^{5}+0=3 a^{5}$

Hence $\int_{S} \int_{V} \bar{F} \cdot \bar{n} d s=\int_{V} \bar{V} \cdot \bar{F} d v$
\therefore The Gauss divergence theorem is verified.

II. GREEN'S THEOREM IN A PLANE

(Transformation Between Line Integral and Surface Integral) [JNTU 2001S].
If S is Closed region in xy plane bounded by a simple closed curve C and if M and N are continuous functions of x and y having continuous derivatives in R, then
$\int_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$.
Where C is traversed in the positive(anti clock-wise) direction

SOLVED PROBLEMS

Verify Green's theorem in plane for $\oint\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the region bounded by $\mathrm{y}=\sqrt{x}$ and $\mathrm{y}=x^{2}$.

Solution: Let $\mathrm{M}=3 x^{2}-8 y^{2}$ and $\mathrm{N}=4 \mathrm{y}-6 \mathrm{xy}$. Then
$\frac{\partial M}{\partial y}=-16 y, \frac{\partial N}{\partial x}=-6 y$

We have by Green's theorem,
$\int_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$.
Now $\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y=\iint_{R}(16 y-6 y) d x d y$

$$
\begin{align*}
& =10 \iint_{R} y d x d y=10 \int_{x=0}^{1} \int_{y=x^{2}}^{\sqrt{x}} y d y d x=10 \int_{x=0}^{1}\left(\frac{y^{2}}{2}\right)_{x^{2}}^{\sqrt{x}} d x \\
& =5 \int_{0}^{1}\left(x-x^{4}\right) d x=5\left(\frac{x^{2}}{2}-\frac{x^{5}}{5}\right)_{0}^{1}=5\left(\frac{1}{2}-\frac{1}{5}\right)=\frac{3}{2} \tag{1}
\end{align*}
$$

Verification:
We can write the line integral along c
$=\left[\right.$ line integral along $\mathrm{y}=\mathrm{x}^{2}$ (from O to A$)+\left[\right.$ line integral along $y^{2}=\mathrm{x}($ from A to O$\left.)\right]$
$=I_{1}+I_{2}$ (say)
Now $\quad I_{1}=\int_{x=0}^{1}\left\{\left[3 x^{2}-8\left(x^{2}\right)^{2}\right] d x+\left[4 x^{2}-6 x\left(x^{2}\right)\right] 2 x d x\right\}\left[\because y=x^{2} \Rightarrow \frac{d y}{d x}=2 x\right]$

$$
=\int_{0}^{1}\left(3 x^{3}+8 x^{3}-20 x^{4}\right) d x=-1
$$

And

$$
l_{2}=\int_{1}^{0}\left[\left(3 x^{2}-8 x\right) d x+\left(4 \sqrt{x}-6 x^{3 / 2}\right) \frac{1}{2 \sqrt{x}} d x\right]=\int_{1}^{0}\left(3 x^{2}-11 x+2\right) d x=\frac{5}{2}
$$

$\therefore I_{1}+I_{2=-1+5 / 2=3 / 2}$.
From(1) and (2), we have $\int_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$.
hence the verification of the Green's theorem.

Evaluate by Green's theorem $\int_{c}(y-\sin x) d x+\cos x d y$ where C is the triangle enclosed by the lines $\mathrm{y}=0, \mathrm{x}=\frac{\pi}{2}, \pi y=2 x$.

Solution: Let $\mathrm{M}=\mathrm{y}-\sin x$ and $N=\cos x$ Then
$\frac{\partial M}{\partial y}=1$ and $\quad \frac{\partial N}{\partial x}=-\sin x$
\therefore By Green's theorem $\int_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$.
$\Rightarrow \int_{c}(y-\sin x) d x+\cos x d y=\iint_{R}(-1-\sin x) d x d y$

$$
\begin{aligned}
& =-\int_{x=0}^{\pi / 2} \int_{y=0}^{\pi x}(1+\sin x) d x d y \\
& =-\int_{x=0}^{\pi / 2}(\sin x+1)[y]_{0}^{2 x / \pi} d x \\
& =\frac{-2}{\pi} \int_{x=0}^{\pi / 2} x(\sin x+1) d x
\end{aligned}
$$

$$
=\frac{-2}{\pi}[x(-\cos x+x)]_{0}^{\pi}-\int_{0}^{\pi / 2} 1(-\cos x+x) d x
$$

$$
=\frac{-2}{\pi}\left[x(-\cos x+x)+\sin x-\frac{x^{2}}{2}\right]_{0}^{\pi / 2}
$$

$$
=\frac{-2}{\pi}\left[-x \cos x+\frac{x^{2}}{2}+\sin x\right]_{0}^{\pi / 2}=\frac{-2}{\pi}\left[\frac{\pi^{2}}{8}+1\right]=-\left(\frac{\pi}{4}+\frac{2}{\pi}\right)
$$

3: Evaluate by Green's theorem for $\oint_{0}\left(x^{2}-\cosh y\right) d x+(y+\sin x) d y$ where C is the rectangle with vertices $(0,0),(\pi, 0),(\pi, 1),(0,1)$.

Solution: Let $\mathrm{M}=x^{2}-\cosh y_{,} N=y+\sin x$
$\therefore \frac{\partial M}{\partial y}=-\sinh y$ and $\frac{\partial N}{\partial s}=\cos x$

$\Rightarrow \int_{c}\left(x^{2}-\cosh y\right) d x+(y+\sin x) d y=\int_{R} \int(\cos x+\sinh y) d x d y$

$$
\Rightarrow \oint_{c}\left(x^{2}-\cosh y\right) d x+(y+\sin x) d y=\int_{s} \int(\cos x+\sinh y) d x d y
$$

$=\int_{x=0}^{\pi} \int_{y=0}^{1}(\cos x+\sinh y) d y d x=\int_{x=0}^{\pi}(y \cos x+\cosh y)_{0}^{1} d x$

$$
\begin{aligned}
& =\int_{x=0}^{\pi}(\cos x+\cosh 1-1) d x \\
& =\pi(\cosh 1-1)
\end{aligned}
$$

A Vector field is given by $\bar{F}=(\sin y) \bar{i}+x(1+\cos y) \bar{j}$
Evaluate the line integral over the circular path $x^{2}+y^{2}=a^{2}, z=0$
(i) Directly (ii) By using Green's theorem

Solution: (i) Using the line integral

$$
\begin{aligned}
\oint_{c} \bar{F} \cdot d \bar{r} & =\oint_{c} F_{1} d x+F_{2} d y=\oint_{c} \sin y d x+x(1+\cos y) d y \\
& =\prod_{c} \sin y d x+x \cos y d y+x d y=\prod_{c} d(x \sin y)+x d y
\end{aligned}
$$

Given Circle is $x^{2}+y^{2}=a^{2}$. Take $x=a \cos \theta$ and $\mathrm{y}=\mathrm{a} \sin \theta$ so that $\mathrm{dx}=-\mathrm{a} \sin \theta d \theta$ and $\mathrm{dy}=\mathrm{a} \cos \theta \mathrm{d} \theta$ and $\theta=0 \rightarrow 2 \pi$
$\therefore \oint \bar{F} \cdot d \bar{r}=\int_{0}^{2 \pi} d[a \cos \theta \sin (a \sin \theta)]+\int_{0}^{2 \pi} a(\cos \theta) a \cos \theta d \theta$

$$
\begin{aligned}
& =[a \cos \theta \sin (a \sin \theta)]_{0}^{2 x}+4 a^{2} \int_{0}^{\pi / 2} \cos ^{2} \theta d \theta \\
& =0+4 a^{2} \cdot \frac{1}{2} \cdot \frac{\pi}{2}=\pi a^{2}
\end{aligned}
$$

(ii)Using Green's theorem

Let $\mathrm{M}=\sin y$ and $\mathrm{N}=\mathrm{x}(1+\cos y)$. Then
$\frac{\partial M}{\partial y}=\cos y$ and $\quad \frac{\partial N}{\partial x}=(1+\cos y)$
By Green's theorem,
$\int_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$
$\therefore \int_{c} \sin y d x+x(1+\cos y) d y=\iint_{R}(-\cos y+1+\cos y) d x d y==\iint d x d y$

$$
=\iint_{R} d A=A=\pi a^{2}\left(\because \text { area of circle }=\pi a^{2}\right)
$$

Show that area bounded by a simple closed curve C is given by $\frac{1}{2} \oint x d y-y d x$ and hence find the area of
(i)The ellipse $\mathrm{x}=a \cos \theta, y=b \sin \theta$ (i.e) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(ii)The Circle $\mathrm{x}=\mathrm{a} \cos \theta, y=\operatorname{asin} \theta$ (i.e) $x^{2}+y^{2}=a^{2}$
Solution: We have by Green's theorem $\int_{C} M d x+N d y=\int_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$
Here $M=-y$ and $N=x$ so that $\frac{\partial M}{\partial y}=-1$ and $\frac{\partial N}{\partial x}=1$
$\int_{c} x d y-y d x=2 \int_{R} d x d y=2 A$ where A is the area of the surface.
$\therefore \frac{1}{2} \int x d y-y d x=A$
(i)For the ellipse $\mathrm{x}=\mathrm{a} \cos \theta$ and $\mathrm{y}=\mathrm{b} \sin \theta$ and $\theta=0 \rightarrow 2 \pi$
\therefore Area, $A=\frac{1}{2} \oint x d y-y d x=\frac{1}{2} \int_{0}^{2 \pi}[(a \cos \theta)(b \cos \theta)-(b \sin \theta(-a \sin \theta))] d \theta$

$$
=\frac{1}{2} a b \int_{0}^{2 \pi}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) d \theta=\frac{1}{2} a b(\theta)_{0}^{2 \pi}=\frac{a b}{2}(2 \pi-0)=\pi a b
$$

(ii)Put $a=b$ to get area of the circle $A=\pi a^{2}$

6: Verify Green's theorem for $\int_{0}\left[\left(x y+y^{2}\right) d x+x^{2} d y\right]$, where C is bounded by $\mathrm{y}=\mathrm{x}$ and $\mathrm{y}=x^{2}$

Solution: By Green's theorem, we have $\int_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$

Here $M=x y+y^{2}$ and $N=x^{2}$

The line $\mathrm{y}=\mathrm{x}$ and the parabola $\mathrm{y}=\mathrm{x}^{2}$ intersect at $\mathrm{O}(0,0)$ and $\mathrm{A}(1,1)$
Now $\int 10 d x+N d y=\int_{c_{1}} M d x+N d y+\int_{c_{2}} M d x+N d y \ldots \ldots$ (1)
Along C_{1} (i.e. $y=x^{2}$), the line integral is
$\int_{c_{1}} M d x+N d y=\int_{c_{1}}\left[x\left(x^{2}\right)+x^{4}\right] d x+x^{2} d\left(x^{2}\right) \int_{c}\left(x^{3}+x^{4}+2 x^{3}\right) d x=\int_{0}^{1}\left(3 x^{3}+x^{4}\right) d x$
$=\left(3 . \frac{x^{4}}{4}+\frac{x^{5}}{5}\right)_{0}^{1}=\frac{3}{4}+\frac{1}{5}=\frac{19}{20}$

Along C_{2} (i.e. $\left.y=x\right)$ from $(1,1)$ to $(0,0)$, the line integral is

$$
\begin{align*}
\int_{c_{2}} M d x+N d y= & \int_{c_{2}}\left(x \cdot x+x^{2}\right) d x+x^{2} d x[* d y=d x] \\
& =\int_{c_{2}} 3 x^{2} d x=3 \int_{1}^{0} x^{2} d x=3\left(\frac{x^{3}}{3}\right)_{1}^{0}=\left(x^{3}\right)_{1}^{0}=0-1=-1 \tag{3}
\end{align*}
$$

From (1), (2) and (3), we have

$$
\begin{equation*}
\int_{0} M d x+N d y=\frac{19}{20}-1=\frac{-1}{20} \tag{4}
\end{equation*}
$$

Now

$$
\begin{align*}
& \iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y=\iint_{R}(2 x-x-2 y) d x d y \\
& =\int_{0}^{1}\left[\left(x^{2}-x^{2}\right)-\left(x^{3}-x^{4}\right)\right] d x=\int_{0}^{1}\left(x^{4}-x^{3}\right) d x \\
& =\left(\frac{x^{5}}{5}+\frac{x^{4}}{4}\right)_{0}^{1}=\frac{1}{5}-\frac{1}{4}=\frac{-1}{20} \tag{5}
\end{align*}
$$

From(4) and(5), We have $\int_{c} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mathrm{dxdy}$
Hence the verification of the Green's theorem.

7: Using Green's theorem evaluate $\int_{0}\left(2 x y-x^{2}\right) d x+\left(x^{2}+y^{2}\right) d y_{s}$ Where " C " is the closed curve of the region bounded by $\mathrm{y}=x^{2}$ and $y^{2}=x$

Solution:

The two parabolas $y^{2}=x$ and $y=x^{2}$ are intersecting at $\mathrm{O}(0,0)$, and $\mathrm{P}(1,1)$
Here $\mathrm{M}=2 \mathrm{xy}-\mathrm{x}^{2}$ and $\mathrm{N}=x^{2}+y^{2}$
$\therefore \frac{\partial M}{\partial y}=2 x$ and $\frac{\partial N}{\partial x}=2 x$
Hence $\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}=2 x-2 x=0$
By Green's theorem $\int M d x+N d y=\iint\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mathrm{dxdy}$
i.e., $\int_{c}\left(2 x y-x^{2}\right) d x+\left(x^{2}+y^{2}\right) d y=\int_{x=0}^{1} \int_{y=x^{2}}^{\sqrt{x}}(0) d x d y=0$

8: Verify Green's theorem for $\int_{c}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right]$ where c is the region bounded by $\mathrm{x}=0, \mathrm{y}=0$ and $\mathrm{x}+\mathrm{y}=1$.

Solution: By Green's theorem, we have
$\int_{c} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$
Here $\mathrm{M}=3 \mathrm{x}^{2}-8 y^{2}$ and $\mathrm{N}=4 \mathrm{y}-6 \mathrm{xy}$

$\backslash \therefore \frac{\partial M}{\partial y}=-16 y$ and $\frac{\partial N}{\partial x}=-6 y$
Now $\int_{c} M d x+N d y=\int_{O A} M d x+N d y+\int_{A B} M d x+N d y+\int_{B C} M d x+N d y \ldots(1)$

Along $\mathrm{OA}, \mathrm{y}=0 \quad \therefore d y=0$
$\int_{O A} M d x+N d y=\int_{0}^{1} 3 x^{2} d x=\left(\frac{x^{3}}{3}\right)_{0}^{1}=1$
Along $\mathrm{AB}, \mathrm{x}+\mathrm{y}=1 \therefore d y=-d x$ and $\mathrm{x}=1-\mathrm{y}$ and y varies from 0 to 1 .

$$
\begin{aligned}
& \int_{A B} M d x+N d y=\int_{0}\left[3(y-1)^{2}-8 y^{2}\right](-d y)+[4 y+6 y(y-1)] d y \\
& =\int_{0}^{1}\left(-5 y^{2}-6 y+3\right)(-d y)+\left(6 y^{2}-2 y\right) d y \\
& \quad=\int_{0}^{1}\left(11 y^{2}+4 y-3\right) d y=\left(11 \frac{y^{3}}{3}+4 \frac{y^{2}}{2}-3 y\right)_{0}^{1} \\
& = \\
& =\frac{11}{3}+2-3=\frac{8}{3}
\end{aligned}
$$

Along $\mathrm{BO}, \mathrm{x}=0 \quad \therefore \mathrm{a} \mathrm{dx}=0$ and limits of y are from 1 to 0
. $\int_{B O} M d x+N d y=\int_{1}^{0} 4 y d y=\left(4 \frac{y^{2}}{2}\right)_{1}^{0}=\left(2 y^{2}\right)_{0}^{1}=-2$
from (1), we have $\int_{0} M d x+N d y=1+\frac{8}{3}-2=\frac{5}{3}$

Now $\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y=\int_{x=0}^{1} \int_{y=0}^{1-x}(-6 y+16 y) d x d y$

$$
\begin{aligned}
& =10 \int_{x=0}^{1}\left[\int_{y=0}^{1-x} y d y\right] d x=10 \int_{0}^{1}\left(\frac{y^{2}}{2}\right)_{0}^{1-x} d x \\
& =5 \int_{0}^{1}(1-x)^{2} d x=5\left[\frac{(1-x)^{3}}{-3}\right]_{0}^{1} \\
& =-\frac{5}{3}\left[(1-1)^{3}-(1-0)^{3}\right]=\frac{5}{3}
\end{aligned}
$$

From (2) and (3), we have $\int_{c} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$
Hence the verification of the Green's Theorem.

Apply Green's theorem to evaluate $\oint_{c}\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$ where c is the boundary of the area enclosed by the x-axis and upper half of the circle $x^{2}+y^{2}=a^{2}$

Solution : Let $\mathrm{M}=2 x^{2}-y^{2}$ and $\mathrm{N}=x^{2}+y^{2}$ Then
$\frac{\partial M}{\partial y}=-2 y$ and $\frac{\partial N}{\partial x}=2 x$

Figure
\therefore By Green'sTheorem, $\int_{c} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$
$=2 \iint_{R}(x+y) d y$

$$
=2 \int_{0}^{a} \int_{0}^{\pi} r(\cos \theta+\sin \theta) \cdot r d \theta d r
$$

[Changing to polar coordinates $(r, \theta), r$ varies from 0 to a and θ varies from 0 to π]
$\therefore \prod_{c}\left[\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y\right]=2 \int_{0}^{a} r^{2} d r \int_{0}^{\pi}(\cos \theta+\sin \theta) d \theta$
$=2 . \frac{a^{3}}{3}(1+1)=\frac{4 a^{3}}{3}$

10: Find the area of the Folium of Descartes $x^{3}+y^{3}=3 a x y(a>0)$ using Green's Theorem.

Solution: from Green's theorem, we have
$\int P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y$
By Green's theorem, Area $=\frac{1}{2} \mathfrak{f}(x d y-y d x)$

Considering the loop of folium Descartes($a>0$)

Let $\mathrm{x}=\frac{3 a t}{1+t^{3}}, y=\frac{3 a t^{2}}{1+t^{3}}$, Then $d x=\left[\frac{d}{d t}\left(\frac{3 a t}{1+t^{3}}\right)\right] d t$ and $d y=\left\lceil\frac{d}{d t}\left(\frac{3 a t^{2}}{1+t^{3}}\right)\right] d t$
The point of intersection of the loop is $\left(\frac{3 a}{2}, \frac{3 a}{2}\right) \Rightarrow t=1$
Along OA, t varies from 0 to1.
$\therefore \frac{1}{2} \oint(x d y-y d x)=\frac{1}{2} \int_{0}^{1}\left(\frac{3 a t}{1+t^{3}}\right)\left[\frac{d}{d t}\left(\frac{3 a t^{2}}{1+t^{3}}\right)\right] d t-\left(\frac{3 a t^{2}}{1+t^{2}}\right)\left[\frac{d}{d t}\left(\frac{3 a t}{1+t^{3}}\right)\right] d t$

$$
\begin{aligned}
& =\frac{1}{2} \int_{0}^{1}\left\{\frac{3 a t}{1+t^{3}}\left[\frac{3 a t\left(2-t^{3}\right)}{\left(1+t^{3}\right)^{2}}\right]-\frac{3 a t^{2}}{1+t^{3}}\left[\frac{3 a\left(1-2 t^{3}\right)}{\left(1+t^{3}\right)^{2}}\right]\right\} d t
\end{aligned}
$$

$=\frac{9 a^{2}}{2} \int_{0}^{1} \frac{t^{2}+t^{5}}{\left(1+t^{3}\right)^{3}} d t=\frac{9 a^{2}}{2} \int_{0}^{1} \frac{t^{2}\left(1+t^{3}\right)}{\left(1+t^{3}\right)^{3}} d t$

$$
=\frac{9 a^{x}}{2} \int_{0}^{1} \frac{t^{3}}{\left(1+t^{3}\right)^{2}} d t\left[\text { Put } 1+t^{3}=x \Rightarrow 3 t^{2} d t=d x\right.
$$

L.L. : $x=1$, U.L.: $x=2]$

11: Verify Green's theorem in the plane for $\int_{C}\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y$
Where C is square with vertices $(0,0),(2,0),(2,2),(0,2)$.
Solution: The Cartesian form of Green's theorem in the plane is
$\int_{c} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$
Here $\mathrm{M}=x^{2}-x y^{3}$ and $\mathrm{N}=y^{2}-2 x y$
$\therefore \frac{\partial M}{\partial y}=-3 x y^{2}$ and $\frac{\partial N}{\partial x}=-2 y$

Evaluation of $\int_{C}(M d x+N d y)$
To Evaluate $\int_{C}\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y$, we shall take C in four different segments viz (i) along $\mathrm{OA}(\mathrm{y}=0)$ (ii) along $\mathrm{AB}(\mathrm{x}=2)$ (iii) along $\mathrm{BC}(\mathrm{y}=2)$ (iv) along $\mathrm{CO}(\mathrm{x}=0)$.
(i)Along $\mathrm{OA}(\mathrm{y}=0$)
$\int_{C}\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y=\int_{0}^{2} x^{2} d x=\left(\frac{x^{3}}{3}\right)_{0}^{2}=\frac{8}{3}$
(ii)Along $\mathrm{AB}(\mathrm{x}=2)$
$\int_{C}\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y=\int_{0}^{2}\left(y^{2}-4 y\right) d y \quad[\because x=2, d x=0]$

$$
\begin{equation*}
=\left(\frac{y^{3}}{3}-2 y^{2}\right)_{0}^{2}=\left(\frac{8}{3}-8\right)=8\left(-\frac{2}{3}\right)=-\frac{16}{3} \tag{2}
\end{equation*}
$$

(iii)Along $\mathrm{BC}(\mathrm{y}=2)$
$\int_{C}\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y=\int_{2}^{0}\left(x^{2}-8 x\right) d x \quad[\because y=2, d y=0]$
$\left.\left.=\frac{\left(x^{3}\right.}{3}-\frac{2}{4}\right)^{2}\right)_{0}=-(8-10)=\frac{40}{3} \cdots(3)$
$\int_{C}\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y=\int_{2}^{0} y^{2} d x \quad[\because x=0, d x=0]=\left(\frac{y^{3}}{3}\right)_{2}^{0}=-\frac{8}{3}$
Adding(1),(2),(3) and (4), we get
$\int\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y=\frac{8}{3}-\frac{16}{3}+\frac{40}{3}-\frac{8}{3}=\frac{24}{3}=8$
Evaluation of $\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$
Here x ranges from 0 to 2 and y ranges from 0 to 2 .

$$
\begin{align*}
\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y & =\int_{0}^{2} \int_{0}^{2}\left(-2 y+3 x y^{2}\right) d x d y \\
& =\int_{0}^{2}\left(-2 x y+\frac{3 x^{2}}{2} y^{2}\right)_{0}^{2} d y \\
& =\int_{0}^{2}\left(-4 y+6 y^{2}\right) d y=\left(-2 y^{2}+2 y^{3}\right)_{0}^{2} \\
& =-8+16=8 \tag{6}
\end{align*}
$$

From (5) and (6), we have
$\int_{c} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$

Hence the Green's theorem is verified.

III. STOKE'S THEOREM

(Transformation between Line Integral and Surface Integral)
[JNTU 2000]
Let S be a open surface bounded by a closed, non intersecting curve C. If \bar{F} is any differentieable vector point function then $\oint_{C} \bar{F} . d \bar{r}=\int_{S}$ curl $\bar{F} . \bar{n} d s$ where c is traversed in the positive direction and \bar{n} is unit outward drawn normal at any point of the surface.

PROBLEMS:

1: Prove by Stokes theorem, Curl grad $\phi=\bar{O}$
Solution: Let S be the surface enclosed by a simple closed curve C.
\therefore By Stokes theorem
$\int_{s}($ curl grand $\phi) \cdot \bar{n} d s=\int_{s}(\nabla \mathrm{x} \nabla \phi) \cdot \bar{n} d S=\oint_{C} \nabla \phi \cdot d \bar{r}=\oint_{C} \nabla \phi \cdot d \bar{r}$

$$
=\oint_{c}\left(\frac{\bar{i} \partial \phi}{\partial x}+\bar{j} \frac{\partial \phi}{\partial y}+\bar{k} \frac{\partial \phi}{\partial z}\right) \cdot(\bar{i} d x+\bar{j} d y+\bar{k} d z)
$$

2: prove that $\int_{s} \phi c u r l \bar{f} \cdot d S=\int_{c} \phi \bar{f} \cdot d \bar{r}-\int_{s} \operatorname{curlg} \operatorname{rad} \phi \times \bar{f} d S$
Solution: Applying Stokes theorem to the function $\phi \bar{f}$

$$
\begin{aligned}
& \int_{c} \phi \bar{f} \cdot d \bar{r}=\int_{s} \operatorname{curl}(\phi \bar{f}) \cdot \bar{n} d s=\int_{s}(\operatorname{grad} \phi \times \bar{f}+\phi c u r l \bar{f}) d s \\
& \therefore \int_{c} \phi c u r l \bar{f} \cdot d s=\int_{c} \phi \bar{f} \cdot d \bar{r}-\int \nabla \phi \times \bar{f} \cdot d s
\end{aligned}
$$

3: Prove that $\oint_{0} \mathrm{f} \nabla f, d \bar{r}=0$.
Solution: By Stokes Theorem,
$\int_{c}(f \nabla f) \cdot d \bar{r}=\int_{s} \operatorname{curlf} \nabla \bar{f} \cdot \bar{n} d s=\int_{s}[f c u r l \nabla f+\nabla f \times \nabla f] \cdot \bar{n} d s$
$=\int \overline{0} \cdot \bar{n} d s=0[\because \operatorname{curl} \nabla f=\overline{0}$ and $\nabla f \times \nabla f=\overline{0}]$
4: Prove that $\underset{f}{f} f \nabla g \cdot d \bar{r}=\int(\nabla f \times \nabla g) \cdot \bar{n} d s$
Solution: By Stokes Theorem,
$\int_{c}(f \nabla g \cdot d \bar{r})=\int_{s}[\nabla \times(f \nabla g)] \bar{n} d s=\int_{s}[\nabla f \times \nabla g+f c u r \lg r a d g] . \bar{n} d s$

$$
=\int[\nabla f \times \nabla g] \cdot \bar{n} d s[\because \operatorname{curl}(\operatorname{grad} g)=\overline{0}]
$$

5: Verify Stokes theorem for $\bar{F}=-y^{3} \bar{\imath}+x^{3} \bar{\jmath}$, Where S is the circular disc $x^{2}+y^{2} \leq 1, z=0$.
Solution: Given that $\bar{F}=-y^{3} \bar{l}+x^{3} \bar{j}$. The boundary of C of S is a circle in xy plane.
$x^{2}+y^{2} \leq 1_{s} z=0$. We use the parametric co-ordinates $\mathrm{x}=\cos \theta_{s} y=\sin \theta_{y} z=0,0 \leq \theta \leq 2 \pi^{z}$ $\mathrm{dx}=-\sin \theta d \theta$ and $\mathrm{dy}=\cos \theta d \theta$

$$
\begin{aligned}
\therefore \oint_{0} \bar{F}, d r= & \int_{0} F_{1} d x+F_{2} d y+F_{3} d z=\int_{0}-y^{3} d x+x^{3} d y \\
& =\int_{0}^{2 \pi}\left[-\sin ^{3} \theta(-\sin \theta)+\cos ^{3} \theta \cos \theta\right] d \theta=\int_{0}^{2 \pi}\left(\cos ^{4} \theta+\sin ^{4} \theta\right) d \theta \\
& =\int_{0}^{2 \pi}\left(1-2 \sin ^{2} \theta \cos ^{2} \theta\right) d \theta=\int_{0}^{2 \pi} d \theta-\frac{1}{2} \int_{0}^{2 \pi}(2 \sin \theta \cos \theta)^{2} d \theta \\
& =\int_{0}^{2 \pi} d \theta-\frac{1}{2} \int_{0}^{2 \pi} \sin ^{2} 2 d \theta=(2 \pi-0)-\frac{1}{4} \int_{0}^{2 \pi}(1-\cos 4 \theta) d \theta \\
& =2 \pi+\left[-\frac{1}{4} \theta+\frac{1}{16} \sin 4 \theta\right]_{0}^{2 \pi}=2 \pi-\frac{2 \pi}{4}=\frac{6 \pi}{4}=\frac{3 \pi}{2}
\end{aligned}
$$

$\operatorname{Now} \nabla \times \bar{F}=\left|\begin{array}{ccc}\bar{\imath} & \bar{\jmath} & \bar{k} \\ \bar{v} & \frac{\hat{v}}{\partial x} & \frac{\hat{v}}{\partial z} \\ -y^{3} & x^{3} & 0\end{array}\right|=\bar{k}\left(3 x^{2}+3 y^{2}\right)$
$\therefore \int_{s}(\nabla \times \bar{F}) \cdot \bar{n} d s=3 \int_{s}\left(x^{2}+y^{2}\right) \bar{k} \cdot \bar{n} d s$
We have $(\bar{k} \cdot \bar{n}) d s=d x d y$ and R is the region on xy-plane
$\therefore \iint_{Q}(\nabla \times \bar{F}) \cdot \bar{n} d s=3 \iint_{R}\left(x^{2}+y^{2}\right) d x d y$

Put $x=r \cos \emptyset, y=r \sin \emptyset: d x d y=r d r d \emptyset$
r is varying from 0 to 1 and $0 \leq \emptyset \leq 2 \pi$.
$\therefore \int(\nabla \times \bar{F}) \cdot \bar{n} d s=3 \int_{\emptyset=0}^{2 \pi} \int_{r=0}^{1} r^{2} \cdot \mathrm{rdr} \mathrm{d} \emptyset=\frac{3 \pi}{2}$
L.H.S=R.H.S.Hence the theorem is verified.

6: If $\bar{F}=y \bar{i}+(x-2 x z) \bar{j}-x y \bar{k}$, evaluate $\int_{s}(\nabla \times F) \cdot \bar{n} d s$. Where S is the surface of sphere $x^{2}+y^{2}+z^{2}=a^{2}$, above the $x y$-plane.

Solution: Given $\bar{F}=y \bar{l}+(x-2 x z) \bar{\jmath}-x y \bar{k}$.
By Stokes Theorem,
$\int_{Q}(\nabla \times \bar{F}) \cdot \bar{n} d s=\int \bar{F} \cdot d \bar{r}=\int_{c} F_{1} d x+F_{2} d y+F_{3} d z=\int_{c} y d x+(x-2 x z) d y-x y d z$
Above the xy plane the sphere is $x^{2}+y^{2}+=a^{2}{ }_{s} z=0$
$\therefore \int_{0} \bar{F} \cdot d \bar{r}=\int_{0} y d x+x d y$.
Put $\mathrm{x}=\mathrm{a} \cos \theta, \mathrm{y}=\mathrm{a} \sin \theta$ so that $d x=-a \sin \theta d \theta_{,} d y=a \cos \theta d \theta$ and $\theta=0 \rightarrow 2 \pi$

$$
\begin{aligned}
\int_{0} \bar{F} \cdot d \bar{r}=\int_{0}^{2 \pi}(a \sin \theta)(-a \sin \theta) d \theta+(a \cos \theta)(a \cos \theta) d \theta \\
=a^{2} \int_{0}^{2 \pi} \cos 2 \theta d \theta=a^{2}\left[\frac{\sin 2 \theta}{2}\right]_{0}^{2 \pi}=\frac{a^{2}}{2}(0)=0
\end{aligned}
$$

7: Verify Stokes theorem for $\bar{F}=(2 x-y) \bar{\imath}-\dot{y} z^{2} \bar{\jmath}-y^{2} z \bar{k}$ over the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ bounded by the projection of the $x y$-plane.
Solution: The boundary C of S is a circle in xy plane i.e $x^{2}+y^{2}=1, \mathrm{z}=0$
The parametric equations are $\mathrm{x}=\cos \theta_{y} y=\sin \theta_{,} \theta=0 \rightarrow 2 \pi$
$\therefore d x=-\sin \theta d \theta, d y=\cos \theta d \theta$

$$
\begin{aligned}
\int_{c} \bar{F} \cdot d \bar{r}= & \int_{c} \overline{F_{1}} d x+\overline{F_{2}} d y+\overline{F_{3}} d z=\int_{c}(2 x-y) d x-y z^{2} d y-y^{2} z d z \\
& =\int_{c}(2 x-y) d x(\text { since } z=0 \text { and } d z=0)
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\theta=0}^{2 \pi} \frac{1-\cos 2 \theta}{2} d \theta-\int_{0}^{2 \pi} \sin 2 \theta d \theta=\left[\frac{1}{2} \theta-\frac{1}{4} \sin 2 \theta+\frac{1}{2} \cdot \cos 2 \theta\right]_{0}^{2 \pi} \\
& =\frac{1}{2}(2 \pi-0)+0+\frac{1}{2} \cdot(\cos 4 \pi-\cos 0)=\pi
\end{aligned}
$$

Again $\nabla \times \bar{F}=\left|\begin{array}{ccc}\bar{l} & \bar{\jmath} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2 x-y & -y z^{2} & -y^{2} z\end{array}\right|=\bar{l}(-2 y z+2 y z)-\bar{\jmath}(0-0)+\bar{k}(0+1)=\bar{k}$
$\therefore \int_{S}(\nabla \times \bar{F}) \cdot \bar{n} d s=\int_{S} \bar{k} \cdot \bar{n} d s=\int_{R} \int d x d y$
Where R is the projection of S on xy plane and $\bar{k} \cdot \bar{n} d s=d x d y$

$$
\text { Now } \iint_{R} d x d y=4 \int_{x=0}^{1} \int_{y=0}^{\sqrt{1-x^{2}}} d y d x=4 \int_{x=0}^{1} \sqrt{1-x^{2}} d x=4\left[\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1} x\right]_{0}^{1}
$$

$=4\left[\frac{1}{2} \sin ^{-1} 1\right]=2 \frac{\pi}{2}=\pi$
\therefore The Stokes theorem is verified.

8: Verify Stokes theorem for the function $\bar{F}=x^{2} \bar{\imath}+x y \bar{\jmath}$ integrated round the square in the plan $\mathrm{z}=0$ whose sides are along the lines $\mathrm{x}=0, \mathrm{y}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=\mathrm{a}$.
Solution: Given $\bar{F}=x^{2} \bar{\imath}+x y \bar{\jmath}$

Fig. 13

By Stokes Theorem, $\int_{S}(\nabla \times \bar{F}) \cdot \bar{n} d s=\int \bar{F} \cdot d \bar{r}$
Now $\nabla \times \bar{F}=\left|\begin{array}{ccc}\bar{l} & \bar{\jmath} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^{2} & x y & 0\end{array}\right|=\bar{k}_{\mathrm{y}}$
L.H.S. $=\int_{S}(\nabla \times \bar{F}) \cdot \bar{n} d s=\int y(\bar{n} \cdot \bar{k}) d s=\int_{s} y d x d y$
$\therefore \bar{n} \cdot \bar{k} \cdot d s=d x d y$ and R is the region bounded for the square.
$\therefore \int_{S}(\nabla \times \bar{F}) \cdot \bar{n} d s=\int_{0}^{a} \int_{0}^{a} y d y d x=\frac{a^{\bar{x}}}{2}$
R.H.S. $=\int_{c} \bar{F} . d \bar{r}=\int_{c}\left(x^{2} d x+x y d y\right)$

But $\int \bar{F} \cdot d \bar{r}=\int_{O A} \bar{F} \cdot d \bar{r}+\int_{A B} \bar{F} \cdot d \bar{r}+\int_{B C} \bar{F} \cdot d \bar{r}+\int_{C O} \bar{F} \cdot d \bar{r}$
(i)Along $\mathrm{OA}: \mathrm{y}=\mathrm{0}, \mathrm{z}=0, \mathrm{dy}=0, \mathrm{dz}=0$
$\therefore \int_{O A} \bar{F} \cdot d \bar{r}=\int_{0}^{a} x^{2} d x=\frac{a^{\bar{x}}}{3}$
(ii)Along $\mathrm{AB}: \mathrm{x}=\mathrm{a}, \mathrm{z}=0, \mathrm{dx}=0, \mathrm{dz}=0$
$\int_{A B} \bar{F} \cdot d \bar{r}=\int_{0}^{a} a y d y=\frac{1}{2} a^{3}$
(iii)Along BC : $\mathrm{y}=\mathrm{a}, \mathrm{z}=0, \mathrm{dy}=0, \mathrm{dz}=0$
$\therefore \int_{B C} \bar{F} \cdot d \bar{r}=\int_{a}^{0} 0 d x=\frac{1}{3} a^{3}$
(iv)Along CO: $\mathrm{x}=0, \mathrm{z}=0, \mathrm{dx}=0, \mathrm{dz}=0$
$\therefore \int_{C O} \bar{F} \cdot d \bar{r}=\int_{a}^{0} 0 d y=0$
Adding $\int_{c} \bar{F} \cdot d \bar{r}=\frac{1}{3} a^{3}+\frac{1}{2} a^{3}+\frac{1}{3} a^{3}+0=\frac{1}{2} a^{3}$

Hence the verification.
9: Apply Stokes theorem, to evaluate $f(y d x+z d y+x d z)$ where c is the curve of intersection of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and $\mathrm{x}+\mathrm{z}=\mathrm{a}$.
Solution : The intersection of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and the plane $x+z=a$. is a circle in the plane $\mathrm{x}+\mathrm{z}=\mathrm{a}$. with AB as diameter.
Equation of the plane is $x+z=a=\frac{x}{a}+\frac{z}{a}=1$
$\therefore O A=O B=a$ i.e., $A=(a, 0,0)$ and $\mathrm{B}=(0,0, \mathrm{a})$
\therefore Length of the diameter $\mathrm{AB}=\sqrt{a^{2}+a^{2}+0}=\mathrm{a} \sqrt{2}$
Radius of the circle, $r=\frac{a}{\sqrt{2}}$
Let $\bar{F} \cdot d \bar{r}=y d x+z d y+x d z \Rightarrow \bar{F} \cdot d \bar{r}=\bar{F} \cdot(\bar{\imath} d x+\bar{\jmath} d y+\bar{k} d z)=y d x+z d y+x d z$
$\Rightarrow \bar{F}=y \bar{\imath}+z \bar{\jmath}+x \bar{k}$
$\cdot \operatorname{Curl} \overline{\bar{E}}=\left|\begin{array}{ccc}\bar{\imath} & \bar{\jmath} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \overline{\partial y} & z & x\end{array}\right|=-(\overline{\bar{j}}+\bar{\jmath}+\bar{k})$

Let \bar{n} be the unit normal to this surface. $\bar{n}=\frac{\nabla_{S}}{\left\|m_{N}\right\|}$
Then $\mathrm{s}=\mathrm{x}+\mathrm{z}-\mathrm{a}, \nabla S=\bar{i}+\bar{k} \dot{\therefore} \bar{n}=\frac{\nabla_{S}}{\left\|\nabla_{S}\right\|}=\frac{\overline{\mathrm{i}}+\bar{k}}{\sqrt{2}}$
Hence $\oint_{c} \bar{F}, d \bar{r}=\int$ curl $\bar{F} \cdot \bar{n} d s$ (by Stokes Theorem)

$$
\begin{aligned}
& =-\int(\bar{\imath}+\bar{\jmath}+\bar{k}) \cdot\left(\frac{\bar{i}+\bar{k}}{\sqrt{2}}\right) \mathrm{ds}=-\int\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right) d s \\
& =-\sqrt{2} \int_{S} d s=-\sqrt{2} S=-\sqrt{2}\left(\frac{\pi a^{2}}{2}\right)=\frac{\pi a^{2}}{\sqrt{2}}
\end{aligned}
$$

10: Apply the Stoke's theorem and show that $\int_{S} \int \operatorname{curl} \bar{F} \cdot \bar{n} d \bar{s}=0$ where \bar{F} is any vector and $S=$ $x^{2}+y^{2}+z^{2}=1$

Solution: Cut the surface if the Sphere $x^{2}+y^{2}+z^{2}=1$ by any plane Let S_{1} and S_{2} denotes its upper and lower portions a C , be the common curve bounding both these portions.
$\therefore \int_{s} \operatorname{curl} \bar{F} \cdot d \bar{s}=\int_{s_{1}} \bar{F} \cdot d \bar{s}+\int_{s_{2}} \bar{F} \cdot d \bar{s}$
Applying Stoke's theorem,
$\int_{s} \operatorname{curl} \bar{F} \cdot d \bar{s}=\int_{s_{1}} \bar{F} \cdot d \bar{R}+\int_{s_{2}} \bar{F} \cdot d \bar{R}=0$
The $2^{\text {nd }}$ integral curl $\bar{F} . d \bar{s}$ is negative because it is traversed in opposite direction to first integral.

The above result is true for any closed surface S.
11: Evaluate by Stokes theorem $\oint_{0}(x+y) d x+(2 x-z) d y+(y+z) d z$ where C is the boundary of the triangle with vertices $(0,0,0),(1,0,0)$ and $(1,1,0)$.

Solution: Let $\bar{F} \cdot d \bar{r}=\bar{F} \cdot(\bar{\imath} d x+\bar{\jmath} d y+\bar{k} d z)=(x+y) d x+(2 x-z) d y+(y+z) d z$

Then $\bar{F}=(x+y) \bar{\imath}+(2 x-z) \bar{\jmath}+(y+z) \bar{k}$
By Stokes theorem, $\oint_{C} \bar{F} \cdot d \bar{r}=\iint_{S} c u r l \bar{F}, \bar{n} d s$

Where S is the surface of the triangle OAB which lies in the xy plane. Since the z Co-ordinates of O, A and B Are zero. Therefore $\bar{n}=\bar{k}$. Equation of OA is $\mathrm{y}=0$ and that of $O B, y=x$ in the $x y$ plane.
$\therefore \operatorname{curl} \bar{F}=\left|\begin{array}{ccc}\bar{l} & \bar{\jmath} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x+y & 2 x-z & y+z\end{array}\right|=2 \bar{l}+\bar{k}$
\therefore curl $\bar{F} \cdot \bar{n} \mathrm{ds}=\operatorname{curl} \bar{F} \cdot \bar{K} d x d y=d x d y$
$\therefore \oint_{c} \bar{F} \cdot d \bar{r}=\iint_{s} d x d y=\iint_{z} d A=A=$ area of the $\triangle O A B$

$$
=\frac{1}{2} \mathrm{OA} \times \mathrm{AB}=\frac{1}{2} \times 1 \times 1=\frac{1}{2}
$$

12: Use Stoke's theorem to evaluate $\iint_{S} c u r l \bar{F}, \bar{n} d S$ over the surface of the paraboloid $z+x^{2}+y^{2}=1, z \geq 0$ where $\bar{F}=y \bar{l}+z \bar{\jmath}+x \bar{k}$.

Solution : By Stoke's theorem
$\int_{s} \operatorname{curl} \bar{F} \cdot d \bar{s}=\int_{c} \bar{F} \cdot d \bar{r}=\int_{c}(y \bar{i}+z \bar{j}+x \bar{k}) \cdot(\bar{i} d x+\bar{j} d y+\bar{k} d z)$

$$
\begin{equation*}
=\int y d x(\text { Since } \mathrm{z}=0, \mathrm{dz}=0) \tag{1}
\end{equation*}
$$

Where C is the circle $x^{2}+y^{2}=1$
The parametric equations of the circle are $\mathrm{x}=\cos \theta, y=\sin \theta$
$\therefore d x=-\sin \theta d \theta$
Hence (1) becomes
$\int_{s} \operatorname{curl} \bar{F} . d s=\int_{\theta=0}^{2 \pi} \sin \theta(-\sin \theta) d \theta=-\int_{\theta=0}^{2 \pi} \sin ^{2} \theta d \theta=-4 \int_{0}^{\frac{\pi}{2}} \sin ^{2} \theta d \theta=-4 \times \frac{1}{2} \times \frac{\pi}{2}=-\pi$
13: Verify Stoke's theorem for $\bar{F}=\left(x^{2}+y^{2}\right) \bar{\imath}-2 x y \bar{j}$ taken round the rectangle bounded by the lines $\mathrm{x}=$ $\pm a, y=0, y=b$.

Solution: Let ABCD be the rectangle whose vertices are $(a, 0),(a, b),(-a, b)$ and $(-a, 0)$.
Equations of $A B, B C, C D$ and $D A$ are $x=a, y=b, x=-a$ and $y=0$.

We have to prove that $\oint_{0} \bar{F}, d \bar{r}=\int_{S} c u r l \bar{F}, \bar{n} d s$

$$
\begin{align*}
\oint_{c} \bar{F} \cdot d \bar{r}= & \oint_{c}\left\{\left(x^{2}+y^{2}\right) \bar{\imath}-2 x y \bar{\jmath}\right\} \cdot\{\bar{l} d x+\bar{\jmath} d y\} \\
& =\oint_{C}\left(x^{2}+y^{2}\right) d x-2 x y d y \\
& =\int_{A B}+\int_{B 0}+\int_{C D}+\int_{D A} \quad \ldots . .(1) \tag{1}
\end{align*}
$$

(i) Along $\mathrm{AB}, \mathrm{x}=\mathrm{a}, \mathrm{dx}=0$

$$
\text { from (1), } \int_{A B}=\int_{y=0}^{b}-2 a y d y=-2 a\left[\frac{y^{2}}{2}\right]_{0}^{b}=-a b^{2}
$$

(ii)Along $\mathrm{BC}, \mathrm{y}=\mathrm{b}, \mathrm{dy}=0$

$$
\text { from (1), } \int_{B C}=\int_{x=a}^{x=-a}\left(x^{2}+b^{2}\right) d x=\left[\frac{x^{3}}{3}+b^{2} x\right]_{x=a}^{-a}=\frac{-2 a^{8}}{3}-2 a b^{2}
$$

(iii) Along $C D, x=-a, d x=0$
from (1), $\left.\int_{C D}=\int_{y=b}^{0} 2 a y d y=\not 2 a\left[\frac{y^{2}}{\not z}\right]^{0}\right]_{y=b}=-a b^{2}$
(iv)Along $\mathrm{DA}, \mathrm{y}=\mathrm{0}, \mathrm{dy}=0$

$$
\text { from (1), } \int_{D A}=\int_{x=-a}^{x=a} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{x=-a}^{a}=\frac{2 a^{3}}{3}
$$

(i)+(ii)+(iii)+(iv) gives
$\therefore \oint_{0} \bar{F} \cdot d \bar{r}=-a b^{2}--\frac{-2 a^{8}}{3}-2 a b^{2}-a b^{2}+\frac{2 a^{8}}{3}=-4 a b^{2}$
Consider \int_{S} curl $\bar{F} \cdot \bar{n} d S$
Vector Perpendicular to the xy -plane is $\bar{n}=k$
$\therefore \operatorname{curl} \bar{F}=\left|\begin{array}{ccc}\bar{l} & \bar{\jmath} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \left(x^{2}+y^{2}\right) & -2 x y & 0\end{array}\right|=4 y \bar{k}$
$\bar{n}=\bar{k}$ and $d s=d x d y$
$\int_{S} \operatorname{curl} \bar{F} . \bar{n} d S=\int_{S}-4 y \bar{k} . \bar{k} d x d y=\int_{x=-a}^{a} \int_{y=0}^{b}-4 y d x d y$

$$
\begin{align*}
& =\int_{y=0}^{b} \int_{x=-a}^{a}-4 y d x d y=4 \int_{y=0}^{b} y[x]_{-a}^{a} d y=-4 \int_{y=0}^{b} 2 a y d y \\
& =-4 a\left[y^{2}\right]_{y=0}^{b}=-4 a b^{2} \tag{3}
\end{align*}
$$

Hence from (2) and (3), the Stoke's theorem is verified.
14: Verify Stoke's theorem for $\bar{F}=(y-z+2) \bar{\imath}+(y z+4) \bar{\jmath}-x z \bar{k}$ where S is the surface of the cube x $=0, y=0, z=0, x=2, y=2, z=2$ above the $x y$ plane.
Solution: Given $\bar{F}=(y-z+2) \bar{\imath}+(y z+4) \bar{\jmath}-x z \bar{k}$ where S is the surface of the cube.
$x=0, y=0, z=0, x=2, y=2, z=2$ above the $x y$ plane.
By Stoke's theorem, we have $\int \operatorname{curl} \bar{F} \cdot \bar{n} d s=\int \bar{F} . d \bar{r}$
$\nabla \times \bar{F}=\left|\begin{array}{ccc}\bar{\imath} & \bar{\jmath} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y-z+2 & y+4 & -x z\end{array}\right|=\bar{\imath}(0+y)-\bar{\jmath}(-z+1)+\bar{k}(0-1)=y \bar{\imath}-(1-z) \bar{\jmath}-\bar{k}$
$\therefore \nabla \times \bar{F} \cdot \bar{n}=\nabla \times \bar{F} \cdot k=(y \bar{\imath}-(1-z) \bar{\jmath}-\bar{k}) \cdot k=-1$
$\therefore \int \nabla \times \bar{F} \cdot \bar{n} \cdot d s=\int_{0}^{2} \int_{0}^{2}-1 d x d y(\because z=0, d z=0)=-4$
To find $\int \bar{F} . d \bar{r}$

$$
\begin{aligned}
\int \bar{F} \cdot d \bar{r} & =\int((y-z+2) \bar{\imath}+(y z+4) \bar{\jmath}-x z \bar{k}) \cdot(\mathrm{d} x \bar{\imath}+d y \bar{\jmath}+d z \bar{k}) \\
& =\int[(y-z+2) d x+(y z+4) d y-(x z) d z]
\end{aligned}
$$

Sis the surface of the cube above the $x y$-plane
$\therefore z=0 \Rightarrow d z=0$
$\therefore \int \bar{F} \cdot d \bar{r}=\int(y+2) d x+\int 4 d y$
Along $\overline{O A}, y=0, z=0, d y=0, d z=0, x$ change from 0 to 2 .
$\int_{0}^{2} 2 d x=2[x]_{0}^{2}=4$
Along $\overline{B C}, y=2, z=0, d y=0, d z=0, x$ change from 2 to 0 .
$\int_{2}^{0} 4 d x=4[x]_{2}^{0}=-8$
Along $\overline{A B}, x=2, z=0, d x=0, d z=0, y$ change from 0 to 2 .
$\int \bar{F} \cdot d \bar{r}=\int_{0}^{2} 4 d y=[4 y]_{0}^{2}=8$
Along $\overline{C O}, x=0, z=0, d x=0, d z=0, y$ change from 2 to 0 .

Along $0^{\prime} A^{r}, \int_{0}^{2} \bar{F} d r=0$
Along $A^{\prime} B^{\prime}, x=2, z=2, d x=0, d z=0, y$ changes from 0 to 2
$\int_{0}^{2} \bar{F} \cdot d \bar{r}=\int_{0}^{2}(2 y+4) d y=2\left[\frac{y^{2}}{2}\right]_{0}^{2}+4[y]_{0}^{2}=4+8=12$
Along $B^{\prime} C^{\prime}{ }_{s} y=2, z=2, d y=0, d z=0, x$ changes from 2 to 0
$\int_{0}^{2} \bar{F} \cdot \overline{d r}=0$
Along $C^{\prime} D^{\prime}, x=0, z=2, d x=0, d z=0, y$ changes from 2 to 0 .
$\int_{2}^{0}(2 y+4)=2\left[\frac{y^{2}}{2}\right]_{2}^{0}+4[y]_{2}^{0}=-12$
$(2)+(3)+(4)+(5)+(6)+(7)+(8)+(9)$ gives
$\int_{C} \bar{F} \cdot d \bar{r}=4-8+8-8+0+12+0-12=-4$
By Stokes theorem, We have
$\int \bar{F} . d \bar{r}=\int \operatorname{curl} \bar{F} . \bar{n} \mathrm{ds}=-4$
Hence Stoke's theorem is verified.
15: Verify the Stoke's theorem for $\bar{F}=y \bar{\imath}+z \bar{j}+x \bar{k}$ and surface is the part of the sphere $x^{2}+y^{2}+z^{2}=1$ above the $x y$ plane.
Solution: Given $\bar{F}=y \bar{\imath}+z \bar{\jmath}+x \bar{k}$ over the surface $x^{2}+y^{2}+z^{2}=1$ is $x y$ plane.
We have to prove $\int_{C} \bar{F} \cdot d \bar{r}=\iint_{s} C u r l \bar{F} \cdot \bar{n} d s$
$\bar{F} \cdot d \bar{r}=\cdot(\mathrm{y} \overline{\mathrm{\imath}}+z \bar{\jmath}+x \bar{k}) \cdot(\mathrm{dx} \bar{\imath}+d y \bar{\jmath}+d z \bar{k})=\mathrm{ydx}+\mathrm{zdy}+\mathrm{xdz}$
$\int_{C}(y d x+z d y+x d z)=\int y d x($ in $x y$ plane $z=0, d z=0)$
Let $\mathrm{x}=\cos \theta, y=\sin \theta \Rightarrow d x=-\sin \theta d \theta, d y=\cos \theta d \theta$
$\therefore \int_{C} \bar{F} \cdot d \bar{r}=\int_{C} y \cdot d x=\int_{0}^{2 \pi} y d x \quad\left[\because x^{2}+y^{2}=1, z=0\right]$

$$
\begin{align*}
& =\int_{0}^{2 \pi} \sin \theta(-\sin \theta) d \theta=-4 \int_{0}^{\pi / 2} \sin ^{2} \theta d \theta \\
& =-4 \int_{0}^{\pi / 2} \frac{1-\cos 2 \theta}{2} d \theta=-4\left[\left(\frac{1}{2} \cdot \frac{\pi}{2}\right)-\frac{1}{4}(\sin \pi)\right] \\
& =-4\left[\left(\frac{1}{2} \cdot \frac{\pi}{2}\right)-0\right]=-4\left[\frac{\pi}{4}\right]=-\pi \tag{1}
\end{align*}
$$

$\operatorname{Cur}\left|\bar{F}=\left|\begin{array}{ccc}\bar{l} & \bar{\jmath} & \bar{k} \\ \partial / \partial x & \partial / \partial y & \partial / \partial z \\ y & z & x\end{array}\right|=-(\bar{l}+\bar{\jmath}+\bar{k})\right.$
Unit normal vector $\bar{n}=\frac{\nabla \mathrm{f}}{|\nabla \mathrm{f}|}=\frac{2 \mathrm{x} \overline{\bar{i}}+2 y \bar{J}+2 z \bar{k}}{\sqrt{4 x^{2}+4 y^{2}}+4 z^{\mathrm{x}}}=\mathrm{x} \overline{\mathrm{l}}+y \bar{\jmath}+z \bar{k}$
Substituting the spherical polar coordinates, we get
$\bar{n}=\sin \theta \cos \phi \bar{l}+\sin \theta \sin \phi \bar{J}+\cos \theta \bar{k}$
\therefore Curl $\bar{F} \cdot \bar{n}=-(\sin \theta \cos \phi+\sin \theta \sin \phi+\cos \theta)$

$\pi / 2 \quad 2 \pi$

J. $\operatorname{jourlF\cdot nds=\int _{\theta =0}^{\bullet }(\operatorname {sin}\theta \operatorname {cos}\phi +\operatorname {sin}\theta \operatorname {sin}\phi +\operatorname {cos}\theta)\operatorname {sin}\theta d\theta d\phi }$

$$
\begin{align*}
& =-\int_{0}^{\pi / 2}[\sin \theta \sin \phi-\sin \theta \cos \phi+\phi \cos \theta]_{0}^{2 \pi} \sin \theta d \theta \\
& =-2 \pi \int_{0}^{\pi / 2} \cos \theta \sin \theta d \theta=-\pi \int_{0}^{\pi / 2} \sin 2 \theta d \theta=(-\pi)\left[\frac{-\cos 2 \theta}{2}\right]_{0}^{\pi / 2} \\
& =\frac{\pi}{2}(-1-1)=-\pi \tag{2}
\end{align*}
$$

From (1) and (2), we have

$$
\int_{C} \bar{F} \cdot d \bar{r}=\iint_{s} \operatorname{Curl} \bar{F} . \bar{n} d s=-\pi
$$

\therefore Stoke's theorem is verified.
16: Verify Stoke's theorem for $\bar{F}=\left(x^{2}-y^{2}\right) \bar{i}+2 x y \bar{j}$ over the box bounded by the planes $x=0, x=a, y=0, y=b$.

Solution :

Stoke"s theorem states that $\int_{c} \bar{F} \cdot d \bar{r}=\int_{s} C u r l \bar{F} \cdot \bar{n} d s$

Given $\bar{F}=\left(x^{2}-y^{2}\right) \bar{\imath}+2 x y \bar{\jmath}$
$\operatorname{Curl} \bar{F}=\left|\begin{array}{ccc}\bar{i} & \bar{j} & \bar{k} \\ \partial / \partial x & \partial / \partial y & \partial / \partial z \\ x^{2}-y^{2} & 2 x y & 0\end{array}\right|=\bar{i}(0,0)-\bar{j}(0,0)+\bar{k}(2 y+2 y)=4 y \bar{k}$
R.H.S $=\int C u r l \bar{F} \cdot \bar{n} d s=\int 4 y(\bar{k} \cdot \bar{n}) d s$
$\int_{s} C u r l \bar{F} . \bar{n} d s=\int_{x=0}^{a} \int_{y=0}^{b} 4 y d x d y=\int_{x=0}^{a}\left[4 \frac{y^{2}}{2}\right]_{0}^{b} d x=2 b^{2} \int_{x=0}^{a} 1 d x$

$$
=2 b^{2}(x)_{0}^{a}=2 a b^{2}
$$

To Calculate L.H.S
$\bar{F} \cdot d \bar{r}=\left(x^{2}-y^{2}\right) d x+2 x y d y$
Let $\mathrm{O}=(0,0), A=(\mathrm{a}, 0), B=(\mathrm{a}, \mathrm{b})$ and
$C=(0, b)$ are the vertices of the rectangle.
(i)Along the line OA
$y=0 ; d y=0, x$ ranges from 0 to a.
$\int_{O A} \bar{F} \cdot d \bar{r}=\int_{z=0}^{\alpha} x^{2} d x=\left[\frac{x^{\pi}}{3}\right]_{0}^{a}=\frac{a^{x}}{3}$
(ii)Along the line $A B$
$x=a ; d x=0, y$ ranges from 0 to b.
$\int_{A B} \bar{F} \cdot d \bar{r}=\int_{y=0}^{b}(2 x y) d y=\left[2 a \frac{y^{y}}{2}\right]_{0}^{b}=\mathrm{a} b^{2}$
(iii)Along the line BC
$y=b ; d y=0, x$ ranges from a to 0
$\int_{B C} \bar{F} \cdot d \bar{r}=\int_{x=a}^{0}\left(x^{2}-y^{2}\right) d x=\left[\frac{x^{3}}{3}-b^{2} x\right]_{a}^{0}=0-\left(\frac{a^{3}}{3}-b^{2} a\right)$
$=a b^{2}-\frac{a^{x}}{3}$
(iv) Along the line CO
$x=0, d x=0, y$ changes from b to 0
$\int_{C} \bar{F} \cdot d \bar{\gamma}=\int_{y=b}^{0} 2 x y d y=0$
Adding these four values
$\int_{C O} \bar{F} \cdot d \bar{r}=\frac{a^{3}}{3}+a b^{2}+a b^{2}-\frac{a^{3}}{3}=2 a b^{2}$

L.H.S = R.H.S

Hence the verification of the stoke's theorem.

17: Verify Stoke's theorem for $\bar{F}=y^{2} \bar{l}-2 x y \bar{j}$ taken round the rectangle bounded by $\mathrm{x}= \pm b, \mathrm{y}=0, \mathrm{y}=\mathrm{a}$.

Solution:

$\operatorname{Curl} \bar{A}=\left|\begin{array}{ccc}\bar{l} & \bar{\jmath} & \bar{k} \\ \partial / \partial x & \partial / \partial y & \partial / \partial z \\ y^{2} & -2 x y & 0\end{array}\right|=-4 y \bar{k}$
For the given surface $S, \bar{n}=\bar{k}$
$\therefore($ Curl $\bar{F}) \cdot \bar{n}=-4 y$
Now $\iint_{s}($ Curl $\bar{F}) \cdot \bar{n} d S=\iint_{s}-4 y d x d y$

$$
\begin{aligned}
& =\int_{y=0}^{a}\left[\int_{x=-b}^{b}-4 y d x \mid d y\right. \\
& =\int_{0}^{a}[-4 x y] d y \\
& =\int_{-b}^{a}-8 b y d y=\left[-4 b y^{2}\right]_{0}^{a}=-4 a^{2} b \ldots \ldots .(1)
\end{aligned}
$$

$\int_{0} \bar{F} \cdot d \bar{r}=\int_{D A}+\int_{A B}+\int_{B C}+\int_{C D}$
$\int \bar{F} \cdot d \bar{r}=y^{2} d x-2 x y d y$
Along DA , $\mathrm{y}=0, \mathrm{dy}=0 \Rightarrow \int_{D A} \bar{F} \cdot d \bar{r}=0(\because \bar{F} \cdot d r=0)$
Along $A B, x=b, d x=0$
$\int_{A B} \bar{F} \cdot d \bar{r}=\int_{y=0}^{a}-2 b y d y=\left[-b y^{2}\right]_{0}^{a}=-a^{2} b$

Along $B C, y=a, d y=0$

$$
\int_{B C} \bar{F} \cdot d \bar{r}=\int_{b}^{-b} a^{2} d x=-2 a^{2} b
$$

Along CD, $x=-b, d x=0$
$\int_{C D} \bar{F} \cdot d \bar{r}=\int_{a}^{0} 2 b y d y=\left[-b y^{2}\right]_{a}^{0}=-a^{2} b$.

$$
\begin{equation*}
\int_{C} \bar{F} \cdot d \bar{r}=0-a^{2} b-2 a^{2} b-a^{2} b=-4 a^{2} b \tag{2}
\end{equation*}
$$

From (1),(2) $\int_{C} \bar{F} \cdot d \bar{r}=\iint_{Q}(C u r l \bar{F}) \cdot \bar{n} d S$

19: Using Stroke's theorem evaluate the integral $\int_{C} \bar{F} \cdot d \bar{r}$ where
$\bar{F}=2 y^{2} \bar{\imath}+3 x^{2} \bar{j}-(2 x+z) \bar{k}$ and C is the boundary of the triangle whose vertices are ($0,0,0$), (2,0,0),(2,2,0).

Solution:

$\operatorname{Curl} \bar{F}=\left|\begin{array}{ccc}\bar{\imath} & \bar{\jmath} & \bar{k} \\ \partial / \partial x & \partial / \partial y & \partial / \partial z \\ 2 y^{2} & 3 x^{2} & -2 \mathrm{x}-\mathrm{z}\end{array}\right|=2 \bar{\jmath}+(6 \mathrm{x}-4 \mathrm{y}) \bar{k}$

Since the z-coordinate of each vertex of the triangle is zero, the triangle lies in the $x y$-plane .
$\therefore \bar{n}=\mathrm{k}$
$\therefore(\operatorname{Curl} \bar{F}) . \bar{n}=6 x-4 y$
Consider the triangle in $x y$-plane.
Equation of the straight line $O B$ is $y=x$.
By Stroke's theorem
$\int_{c} \bar{F} \cdot d \bar{r}=\iint_{s}(\operatorname{curl} \bar{F}) \cdot \bar{n} d s$

$$
\begin{aligned}
& =\int_{x=0}^{2} \int_{y=0}^{y=x}(6 x-4 y) d x d y \quad=\int_{x=0}^{2}\left[\int_{y=0}^{x}(6 x-4 y) d y\right] d x \\
& =\int_{x=0}^{2}\left[6 x y-2 y^{2}\right]_{0}^{x} d x=\int_{0}^{2}\left(6 x^{2}-2 x^{2}\right) d x \\
& =4\left[\frac{x^{3}}{3}\right]_{0}^{2}=\frac{32}{3}
\end{aligned}
$$

[^0]: $f(x)=(x-a)^{m}(x-b)^{n}$

