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MODULE-I
THEORY OF MATRICES




Solution for linear systems

Matrix : A system of mn numbers real (or) complex arranged in the form of an ordered set of ‘m’ rows, each

row consisting of an ordered set of ‘n” numbers between [] (or) () (or) || || is called a matrix of order m xn.
:—all a12 """"" aln —}
|3 Bp e a5 |
Eg: | e o, | = [ajj ]mxn Where 1< ism, 1<j<n.
| |
| ....................... |
[a mil amZ """" a mn J mxn

Some types of matrices:
1. square matrix : A square matrix A of order n x n is sometimes called as a n- rowed matrix A (or) simply a

square matrix of order n

1] .
eg: is 2™ order matrix
2 2
2. Rectangular matrix: A matrix which is not a square matrix is called a rectangular matrix,
[1 -1 2]
is @ 2x3 matrix
LZ 3 4J

3. Row matrix: A matrix of order 1xm is called a row matrix

eg: 1 2 3]

1x3

4. Column matrix: A matrix of order nx1 is called a column matrix

1]
Eg: I 1 I
'~2 J3><].
5. Unit matrix: if A= [a;] nxn Such that a; = 1 for i =jand a; = 0 for i#j, then A is called a unit matrx.

[1 0 0]
[1 0] | |
Eg:lz = L J I3= ‘ 0 1 0 |

0 1
o0 1]

6. Zero matrix : it A =[a;] mx» suchthata;=0V landjthen Ais called a zero matrix (or) null matrix
[0 0 0]
Eg: Oya=
0 0 O
7. Diagonal elements in a matrix: A= [a;].n, the elements a;; of A for which i =j.i.e. (a11, @2;....ann) are called

the diagonal elements of A

1 2 3]

Eg: A= I 4 5 6 : diagonal elements are 1,5,9

|7 8 9]

Note: the line along which the diagonal elements lie is called the principle diagonal of A




8. Diagonal matrix: A square matrix all of whose elements except those in leading diagonal are zero is
called diagonal matrix.
If dy, d,..... d,, are diagonal elements of a diagonal matrix A, then A is written as A = diag
(dy,d;....d,)
[3 0 0 ]
E.g. : A=diag(3,1,-2)= I 0 1 0 I
[0 0 -2
9. Scalar matrix: A diagonal matrix whose leading diagonal elements are equal is called a scalar matrix.

[2 0 0]

Eg:A=IO 2 ol

o 0 2]
10. Equal matrices : Two matrices A = [a;] and b= [b;] are said to be equal if and only if (i) A and B are of
the same type(order) (ii) ;= b;; for every i &j
11. The transpose of a matrix: The matrix obtained from any given matrix A, by interchanging its rows
and columns is called the transpose of A. It is denoted by A (or) A'.
If A =[a;] mxn then the transpose of A is Al= [bji] nxm, Where b =a jAlso (A=A
Note: A' and B' be the transposes of A and B respectively, then
(i) (A) = A
(ii) (A+B)" = A*+B'
(iiii) (KA)' = KA®, K is a scalar
(iv) (AB)'= B*A"
12. The conjugate of a matrix: The matrix obtained from any given matrix A, on replacing its elements by

corresponding conjugate complex numbers is called the conjugate of A and is denoted by A

Note:if Aand B be the conjugates of A and B respectively then,

() (A) =A
(i) (A+B) = A+B

(iii) (KA) = KA,_K_is a any complex number

(iv) (AB)=BA
2 3i 2 - 5i — 2 - 3i 2 + 5i
Eg;ifA=r ! ' then A=|— ! wel
{—i 0 4i+3 Jm Li 0 —4i+3J2X3

13. The conjugate Transpose of a matrix

The conjugate of the transpose of the matrix A is called the conjugate transpose of A and is denoted by A°

Thus AS:(Al) where A! is the transpose of A. Now A = [3;] mxn = A° =[b;] nxm , where bij = a iji.e. the

(i,j)™ element of A° conjugate complex of the (j, i)™ element of A




r
5 3-i -2i \

Eg: if A:r I " then  A° =
Lo 1+i 4—iJ |

\

L

i 4 + i

2X3

N W

+

[

|
|

Note: A’= A" =(A)'and (A")" _,
14.
(i) Upper Triangular matrix: A square matrix all of whose elements below the leading diagonal are zero is
called an Upper triangular matrix. i.e, ajj=o for i>j

3 8]

Eg;}o 4 —5}

lo 0o 2]

is an Upper triangular matrix

(ii) Lower triangular matrix: A square matrix all of whose elements above the leading diagonal are zero is
called a lower triangular matrix. i.e, ajj-o for i< j

[4 0 0]
EgIS 2 OI
|7 3 6|

is an Lower triangular matrix

(iii) Triangular matrix: A matrix is said to be triangular matrix it is either an upper triangular matrix or a lower
triangular matrix

15. Symmetric matrix: A square matrix A =[a;] is said to be symmetric if a; = a; for every i and j

Thus A is a symmetric matrix if A= A

[a h g
Eg: : h b f I is a symmetric matrix
Lo f ¢
16. Skew — Symmetric: A square matrix A = [a;] is said to be skew — symmetric if a; = — a; for every i and j.

[ O a -b]
| |

E.g.: |- a o0 c | is a skew — symmetric matrix

b -c¢ OJ

Thus A is a skew — symmetric iff A= -A’ e _aA=Al
Note: Every diagonal element of a skew — symmetric matrix is necessarily zero.
Since ajj=-a; = a; = 0
7. Multiplication of a matrix by a scalar.
Let ‘A’ be a matrix. The matrix obtain by multiplying every element of A by a scalar K, is called the
product of A by K and is denoted by KA (or) AK
Thus: A+ [aij] mxn then KA = [kaij] mxn = k[aij] mxn
18. Sum of matrices:

Let A = [a;] mxn ,B = [bj] mxn be two matrices. The matrix C = [c;] nxn Where ¢; = a;+by; is called the sum

of the matrices A and B.




The sum of A and B is denoted by A+B. Thus [aj] mxn + [bj]m<n = [@j#+bi]mxn  ang [aj+by]mxn  =[@] mxn
+ [bij] mxn

19. The difference of two matrices: If A, B are two matrices of the same type then A+(-B) is taken as A—B

20. Matrix multiplication: Let A = [a,, ]mxn, B = [byj]nxp then the matrix C = [¢j]my Where ¢ is called the product

of the matrices A and B in that order and we write C = AB.
The matrix A is called the pre-factor & B is called the post — factor
Note: If the number of columns of A is equal to the number of rows in B then the matrices are said to be
conformable for multiplication in that order.
21. Positive integral powers of a square matrix:

Let A be a square matrix. Then A’ is defined A.A
Now, by associative law A® = A2.A = (AA)A

= A(AA) = AA?

Similarly we have A™A = A A™" = A™ where m is a positive integer

Note: I"=1
0"=0
Note 1: Multiplication of matrices is distributive w.r.t. addition of matrices.
i.e, A(B+C)
(B+C)A

AB + AC

BA+CA

Note 2: If A is a matrix of order mxn then Al,=1,A=A

n

22. Trace of A square matrix : Let A = [a;] n«n the trace of the square matrix A is defined as > a; . And is

i=1

denoted by ‘tr A’

n

Thus trA = D a; =anptant ... ann

i=1

FahgT‘

Eg:A=Ih b f‘thentrA=a+b+c

o 1 ¢

Properties: If A and B are square matrices of order n and A is any scalar, then

(i) tr(AA)=AtrA

(ii) tr (A+B) =trA +trB

(iii) tr(AB) = tr(BA)
23. Idempotent matrix: If A is a square matrix such that A% = A then ‘A’ is called idempotent matrix
24. Nilpotent Matrix: If A is a square matrix such that A"=0 where m is a +ve integer then A is called nilpotent
matrix.
Note: If m is least positive integer such that A™ = 0 then A is called nilpotent of index m

25. Involutary : If A is a square matrix such that A% = | then A is called involuntary matrix.




26. Orthogonal Matrix: A square matrix A is said to be orthogonal if AA' = A'A = |
Examples:

[ cos @ sin 6]
1. Show that A = L J is orthogonal.
—sin @ cos 6@

[ cos @ sin 6]
Sol: Given A =
L— sin @ cos HJ

AT [ cos @ —sin 6]
Lsin 0 cos 4 J
) . lcos o sih @ | [cos@ —sin 6]
Consider A.A" =
L—sin 0 cos HJ Lsin 0 cos @ J
[cos®@ +sin’e —cos @sin @ + cos O sin 6 |
= | |
L—siné’cos@+cos€sin0 cos @ +sin’6o J

[1 0]

o 1]

~. A'is orthogonal matrix.

[-1 2 27
1
2. Prove that the matrix —:2 -1 2 Iisorthogonal.
3
|2 2 -1
-1 2 21
1
SoI:GivenA=—I2 -1 ZI
3
2 2 -1
-1 2 21
r_ 1] |
ThenA-—|2 -1 2|
3
2 2 -1
[-1 2 27 [-1 2 27
1
ConsiderA.ATz—}Z -1 2 I }2 -1 2:
9
|2 2 -1] ]2 2 -1
[9 0 0] [1 0 O]
1
=—i0 9 Oi:}O 1 OI
9
00 9] |0 0 1]




AA"=|

Similarly AT.A=1

Hence A is orthogonal Matrix

[0 2b «c]
|

3. Determine the values of a, b, c when | a b -c | is orthogonal.

La -b cJ

Sol: - For orthogonal matrix AA" =|

[0 2b c][0O a a ]
SoAAT=Ia b —cHZb b —bI:I
La -b CJLC -C cJ
[4b? +¢° 2b% - ¢? —2b%* +¢? 1 1 o 0]
| |
Cy[2b° -¢® a’+b’+c’ a’-b’-c¢c* | =I= Io 1 ol
I_—2b2+c2 a’-b’-c¢’ az+b2+c2J| LO 0 1J

Solving 2b%-c? =0, a*-b*-c* =0
Wegetc= + V2b  a? =b%+2b? =3b?

+ +/3b

From the diagonal elements of |

= a

4b%*+c’= 1 = 4b’+2b%=1 (c*=2b?)

> b=+




27. Determinant of a square matrix:

}—all a12 """"" aln —{ all alZ """"" aln

|a21 a22 ......... a2n | 321 azz ......... az
A= | i . | then |A|= .........................

| |

|aI1 Ay a; | a;; A, a.

Lanl an2 """" ann Jnxn anl anz """" ann

28. Minors and cofactors of a square matrix
Let A =[a;] »n be a square matrix when form A the elements of i"" row and j™ column are deleted the
determinant of (n-1) rowed matrix [Mij] is called the minor of aij of A and is denoted by | M;|

The signed minor (-1) ™ | M;| is called the cofactor of a; and is denoted by A;..

{—all a12 a13 —I
IfA= | aZl a22 a23 | then
Lafil ay Ay J

| A|=a1 [Mu| +a1, [Mg, | +a13 [My3] (or)
=ay; A a1 App a3 Ags

M1 1 3]
| !

E.g.: Find Determinant of | 1 3 -3 | by using minors and co-factors.

|-2 -4 4]

M1 1 3
Sol: A = Il 3 73:
|-2 -4 4]
3 -3 -3 3
detA=1 -1 +3
—4 -4 |-2 -4 -2 -4
=1(-12-12)-1(-4-6)+3(-4+6)
=-24+10+6 = -8

Similarly we find det A by using co-factors also.

Note 1: If Ais a square matrix of order n then |KA| = K"|A|, where k is a scalar.

AT

Note 2: If A is a square matrix of order n, then |A| =

Note 3: If A and B be two square matrices of the same order, then |AB | = |A| |B|

29. Inverse of a Matrix: Let A be any square matrix, then a matrix B, if exists such that AB = BA =l then B is

called inverse of A and is denoted by A™.




Note:1 (A")" = A

Note 2: 1" = |

30. Adjoint of a matrix:
Let A be a square matrix of order n. The transpose of the matrix got from A

By replacing the elements of A by the corresponding co-factors is called the adjoint of A and is denoted by adj

A.

Note: For any scalar k, adj(kA) = k™" adj A

Note: The necessary and sufficient condition for a square matrix to posses’ inverse is that |A|¢ 0

1

(adj )
[A]

Note: if |A|¢o then A ™' =

3. Singular and Non-singular Matrices:

A square matrix A is said to be singular if |A|: 0. If |A|¢ 0

then “ A’ is said to be non-singular.
Note: 1. only non-singular matrices possess inverses.

2. The product of non-singular matrices is also non-singular.
Theorem 9: If A, B are invertible matrices of the same order, then
(i). (AB)* =BA™
(if). (A" = (A7)

Proof: (i). we have (BA™) (AB) = B*(AA)B
=B(IB)

(AB)*=B*A™
(ii). ATA=AAT = |

Consider A'A =l
= (A—l A)l — Il

= AL (A =1
= (Al)—l — (A—l)l

Unitary matrix:

-1

A square matrix A such that (K)T =A
ie () A=A(A) =I
If A” A=l then A is called Unitary matrix

Theorem: The Eigen values of a Hermitian matrix are real.
Note: The Eigen values of a real symmetric are all real
Corollary: The Eigen values of a skew-Hermitian matrix are either purely imaginary (or) Zero

Theorem 3: The Eigen values of an unitary matrix have absolute value .




Note 1: From the above theorem, we have “The characteristic root of an orthogonal matrix is unit
modulus”.

2. The only real Eigen values of unitary matrix and orthogonal matrix can be + 1
Theorem 4: Prove that transpose of a unitary matrix is unitary.

PROBLEMS
) ) [ 3i 2+
1) Find the eigen values OfA:L . J
+i —i
[ 3i 241
Sol:  we have A=
L 2+ —i J
— [ -3 2-i] ;8 2]
SOA_[_Q_i i JandA _LG i J

. A=-A"
Thus A is a skew-Hermitian matrix.
.. The characteristic equation of A is |A y | =0

T 3i—-A =2+

= A =

=0
-2+i —-i-A

— A°-2i1+8=0
— A = 4i,-2i are the Eigen values of A

2, f
2) Find the Eigen values of A =| 2 2 |
RERE
L2 2]
i
a2 2 | and
Now A I£ _liIan
L 2 2]
1 )
XT=| 2 2 |
DRI
L 2 2

—7 [1 0]
We can see that A .Azto 1J= I

Thus A is a unitary matrix
- The characteristic equation is|A y | =0

1 NG
_|_Z —_
= 2 2 =0
N
—  Zi-2
2 2
. N I R SR
Which gives 4 = — + i —and +—i and
2 2 2 2

3—1/’)—\/’2_¢1/'7i
v




Hence above 1 values are Eigen values of A.

[ 3 7-4i -2+5i]
3) IfA:I 7 + 4i -2 3+i Ithenshowthat

|-2-5i 3-i 4 |

A is Hermitian and iA is skew-Hermitian.

[ 3 7-4i -2+5i]
Sol: GivenA:I7+4i -2 3+i Ithen
L—Z—Sl 3-i 4
[ 3 7+4i -2-5i] [ 3 7-4i -2+5i]
K:I7—4i 2 3 IAnd(A)T:}7+4i ~2 3+|I
|[-2+5i 3+i 4 | |-2-5i 3-i 4 |

A= (K)T Hence A is Hermitian matrix.

Let B=iA
[o3i 4+ 71 -5-2i]
i.e B=I —4+7i -2i —1+3i I then
L5—2i 1+ 3i 4i J
[ -3i 4-7i -5+2i]
E:I—4—7i 2i —1—3iI
L5+2i 1-3i —4i J
[ -3i —4-7i 5+2i] [ 3i 4+7i —-5-2i]
(E)T:I4—7i 2i 1—3iI =(—1)I—4+7i ~2i —1+3i}=—B
L—5+2i —1- 3i —4iJ Ls—zi 1+ 3i 4i J
() =B

- B=iA is a skew Hermitian matrix.

4) If A and B are Hermitian matrices, prove that AB-BA is a skew-Hermitian matrix.
Sol: Given A and B are Hermitan matrices

— T

~(A) =a And (B) =B e 1)

T _

NOW (AB - BA) =(AB - BA)

=BA-AB (By (1))
= - (AB - BA)

Hence AB-BA is a skew-Hemitian matrix.




[a+ic —b+id] . ] . e 2 2 2 o
5) Show that A= Is unitary if and only if a”+b“+c*+d°=1
Lb+id a-ic J

. [a+ic —-b+id]
Sol: Given A=
Lb+id a-—ic J

— Ja-ic -b-id]
Then A =
Lb—id a+icJ

Hence AS:(X)T:r a-ic b-id]
L—b—id a+icJ

[a+ic -b+id] a-ic b-id]

AR =
Lb+id a-ic J{—b—id a+icJ
(a’+b*+c*+d°’ 0 )
L 0 a2+b2+c2+d2)
~ AA” =1 ifandonlyif a® +b* +c*+d* =1

6) Show that every square matrix is uniquely expressible as the sum of a Hermitian matrix
and a skew- Hermitian matrix.

Sol. Let A be any square matrix

0 0

Now (A + A*’) = Ag+(A9)

=A"+A

9

(A+ Ag) =A+A”= A+ A’ isaHermitian matrix.

1 : . :
~ =(A+ A”) isalso a Hermitian matrix
2

6

=A"-A=—(A-A)
Hence A — A’ is a skew-Hermitian matrix

1 . .. .
—( A- A”) is also a skew —Hermitian matrix.
2

Unigueness:
Let A =R+S be another such representation of A

Where R is Hermitian and

S is skew-Hermitian




Then A’ = (R+5s)

=R’ +s’
=R-5 (~R"=R,8"=-5)
1 ) 1 )
~R==(A+A’)=Pand s=—(A-A")=0Q
2 2
Hence P=R and Q=S

Thus the representation is unique.

0 1+ 2i]

7) Given that A:{ J , show that (1 - A)(1 + A) " is a unitary matrix.

-1+ 2i 0

. [1 0] [ © 1+ 2i]
Sol.wehavel—A:LO 1J_L—l+2i . J

[1 -1-2i]
:Ll—Zi 1 JAnd

1 o] [ o 1+ 2i]

I+A:Lo 1J+L—1+2i oJ

1 1 -1-2i]
Teli-2i 1|
Let B =(1-A)1+A)"
1l 1 -1-2i 1 -1-2i] 1f1+(@-2i)(-1-2i) -1-2i-1-2i ]
B=— _ =
GLl—Zi 1 ﬂl—Zi 1 J 6{ 1-2i+1-2i (—1—2i)(1—2i)+1J
5 1] -4 -2 —4i]
_6{2—4| ~4 J
— 4 -2+4 T 4 2+4i
NOWB—£r e and (B) =lr "a
6L2+4i —4 J 6{—2+4| —4J




i.e., B is unitary matrix.
~ (1= A)1 + A) " is a unitary matrix.
8) Show that the inverse of a unitary matrix is unitary.

Sol: Let A be a unitary matrix. Then AA” = |

-1

ie (AA") =1

-1

Thus A~ is unitary.

Problems

1). Express the matrix A as sum of symmetric and skew — symmetric matrices. Where

3 -2 6 ]
A:Iz 7 —1}
5 4 0|
3 -2 6 ]
Sol: Given A = iz 7 —1I
Ls 4 oJ
[ 3 2 5 7
ThenAT=I—2 7 4 I
L 6 -1 0 J

M3 -2 67 [3 +2 517l
:>P:1/2(A+AT):£JI2 7 —1I+}—2 7 4 IL
s« o ls -1 o




6 0 11 ] [3 0 11 /2]

:iio 14 3 i =io 7 3/2i

2L11 3 o] |1/2 372 0 |

Q=% (A-A")

(T3 -2 67 [3 2 57 [o -4 1]
—Q'z 7 1| | 2 7 4 ‘L—£|4 0 —5|
PR T Y |
Hs 4 o [6 -1 OJJ -1 5 0]

A = P+Q where ‘P’ is symmetric matrix
‘Q’ is skew-symmetric matrix.

Sub — Matrix: Any matrix obtained by deleting some rows or columns or both of a given matrix is called is sub

matrix.
[1 5 6 7
| | (8 9 101 : . o
E.g.:LetA= ‘8 9 10 5 | . Then L J is a sub matrix of A obtained by deleting first row and
3 4 5
|34 5 -1 2x3

4™ column of A.

Minor of a Matrix: Let A be an m x n matrix. The determinant of a square sub matrix of A is called a minor of

the matrix.

Note: If the order of the square sub matrix is‘t’ then its determinant is called a minor of order is‘t’.

[2 1 1]
| 3 1 2
Eg: = | ‘
l1 2 3|
| \
> 6 7 J4X3 be a matrix
[2 1]
— B = is a sub-matrix of order ‘2’
s 1

|B | =2-3 =-1is aminor of order ‘2’

[2 1 1]
- C = I 3 1 2 I is a sub-matrix of order ‘3’
|5 6 7]

detc= 2(7-12)-1(21-10)+(18-5)
= 2(-5)-1(11)+1(13)

=-10-11+13 = -8 is a minor of order ‘3’




*Rank of a Matrix:
Let A be m x n matrix. If A is a null matrix, we define its rank to be ‘0’. If A is a non-zero matrix, we say

that ris the rank of A if
(i) Every (r+1)" order minor of A is ‘0’ (zero) &
(ii) At least one r'" order minor of A which is not zero.
Note: 1. It is denoted by p (A)
2. Rank of a matrix is unique.
3. Every matrix will have a rank.
4. If A is a matrix of order mxn,

Rank of A < min (m,n)

S,

. If p(A) = r then every minor of A of order r+1, or more is zero.

()]

. Rank of the Identity matrix I, is n.

7. 1f A'is a matrix of order n and A is non-singular then p(A) = n

Important Note:
1. The rank of a matrix is <r if all minors of (r+1)" order are zero.

2. The rank of a matrix is 2r, if there is at least one minor of order ‘r’ which is not equal to zero.

PROBLEMS
[1 2 3]
1. Find the rank of the given matrix IS 4 4I
|710 12 |
[1 2 3]
Sol: Given matrix A = IB 4 4 I
|710 12 |

- det A = 1(48-40)-2(36-28)+3(30-28)
= 816+6=-2#0

We have minor of order 3
p(A) =3

I 2 3 4]
2. Find the rank of the matrix I 5 6 7 8 I
|8 7 0 5]

Sol: Given the matrix is of order 3x4
Its Rank < min(3,4) =3
Highest order of the minor will be 3.




m 2 3

Let us consider the minor } 5 6 7
7

|8

Determinant of minor is 1(-49)-2(-56)+3(35-48)
=-49+112-39=24 2 0.
Hence rank of the given matrix is ‘3.
* Elementary Transformations on a Matrix:
i). Interchange of i*" row and j row is denoted by R; <> R;
(ii). If i row is multiplied with k then it is denoted by R; K R;
(iii). If all the elements of i*" row are multiplied with k and added to the corresponding elements of j™ row
then it is denoted by R; — R; +KR;
Note: 1. The corresponding column transformations will be denoted by writing ‘c’. i.e
¢ ¢, c—kg ¢ — ¢+ kg
2. The elementary operations on a matrix do not change its rank.
Equivalence of Matrices: If B is obtained from A after a finite number of elementary transformations on A,
then B is said to be equivalent to A.
Itis denoted as B~A.
Note :1.If Aand B are two equivalent matrices, then rank A = rank B.
2. If A and B have the same size and the same rank, then the two matrices are equivalent.
Echelon form of a matrix:
A matrix is said to be in Echelon form, if
(i). Zero rows, if any exists, they should be below the non-zero row.
(ii). the first non-zero entry in each non-zero row is equal to ‘1.
(iii). the number of zeros before the first non-zero element in a row is less than the number of such zeros in
the next row.
Note: 1. the number of non-zero rows in echelon form of A is the rank of ‘A’.
2. The rank of the transpose of a matrix is the same as that of original matrix.
3. The condition (ii) is optional.

0

1
E.g.: 1.

© r»r o o

[ 0]
Io o} ,
is a row echelon form.
lo o 1|
| \
L0 0 |

=
o

0 0 0 0]
|

0 0 0 O | is a row echelon form.
0 0 0 0]

— — — /1
o o
o [l




PROBLEMS

2 3 77

1. Find the rank of the matrix A = I 3 -2 4 I by reducing it to Echelon form.

1 -3-1]

sol: Given A = }3 -2 4

|1 -3-1]

Applying row transformations on A.

2 3 77
|
|

[1 -3 -1]
A~I3—2 4IR1®R3
|2 3 7]
1 -3-17
~}o 7 7}R29R2—3R1
09 9
Rs=> R3-2R;
[1 -3 -1]
~I0 11 }R29R2/7,R39 Rs/9
01 1 |
[1-3-1]
~io 11 }RgeRg—Rz
o0 0]

This is the Echelon form of matrix A.
The rank of a matrix A.

= Number of non — zero rows =2

11 1o
2. For what values of k the matrix |

has rank ‘3’.

4 4 -3 1]
|
|

2 2 —2{

|
99 k 3

Sol: The given matrix is of the order 4x4
If its rank is 3 = det A =0
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Applylng R2 - 4R2'R1, R3 94R3 - le, R4 - 4R4 - 9R1

0
WegetA~|
0 8-4k 8+3k 8-k

[4 4 -3 1]
o -1 —1I
|

|

|
10 0 4k +27 3 |

Since Rank A =3 = det A=0
0 -1 -1

=>4 8-4k 8+3k 8-k[=0
0 4k + 27 3

= 1[(8-4k)3]-1(8-4k)(4k+27)] =0

= (8-4k) (3-4k-27) =0

= (8-4k)(-24-4k) =0

= (2-k)(6+k)=0

= k=2ork=-6

Normal Form:
_ I, 0 ' 1. 0
Every mxn matrix of rank r can be reduced to the form (or) (I;) (or) (or) by
0 O 0
a finite number of elementary transformations, where I, is the r — rowed unit matrix.
Note: 1. If Ais an mxn matrix of rank r, there exists non-singular matrices P and Q such that PAQ =

I, 0
0 0
Normal form another name is “canonical form”

2

into normal form, find its rank.

|3 0




2
A”IO -3
[0 -6
2
A“‘IO -3
!
2
A“IO -3
[0 0
[0 0
a=lo s
[0 0
1 0
a-lo s
[0 0
1 0
Ao 1
[0 0
1 0
wlo
o o0

3 4 ]
-2 5 }RzeRz—ZRl
-4 -2
Rs 2> R;—3R;
3 4 7
_2 —SIR3%R3/-2
2 1 |
3 4
~2 —SIR3%R3+R2
0 6
0 0
-2 -5 I C—> €y - 2C4, C3>C3-3C1, C4>Ca-4Cy
o 6 |
0 0]
0 0 i C3 > 3¢ -2C2, ¢4~ 3¢4-5¢,
0 18 |
0 0]
0 0 I C,>Cy/-3, cs>cl/18
0 1]
0 0]
0 0 I Cy € C3
1 0 |

This is in normal form [l3 0]

Hence Rank of A'is ‘3’.

Gauss — Jordan method

1.

The inverse of a matrix by elementary Transformations: (Gauss — Jordan method)

suppose A is a non-singular matrix of order ‘n’ then we write A=1, A
Now we apply elementary row-operations only to the matrix A and the pre-factor |, of the
R.H.S

We will do this till we get |, = BA then obviously B is the inverse of A.

[1 6

47
Find the inverse of the matrix A using elementary operations where A= : 0 2 3 I
01 2]




Sol:
[1 6 4
Given A = IO 2 3
o1 2

We can write A=15A

1 6 47 [1 0 0]

io 2 3 I: Io 1 0 I A

o1 2| Jo 0o 1]
Applying R; -2R;-R,, we get

[1 6 4] [1 o0 0 ]

Io 2 3 I = Io 1 0 I A

oo 1] [0 -1 2]

[1 O 0] 1 -8 10 ]
Io 2 o}:lo 4 -6 IA
oo 1] |0 -1 2

Applying R, > R./2, we get

[1 O 0] 1 -8 10 ]
Io 1 ol:}o 2 -3 IAE(>I3=BA
oo 1] |o -1 2 |

B is the inverse of A.

Cayley - Hamilton Theorem:

Statement:

Every square matrix satisfies its own characteristic equation

PROBLEMS
1 -2 1

1. Show thatthe matrix A= |1 —2 3| satisfies its characteristic equation Hence find A™*
o -1 2

Sol: Characteristic equation of A is det (A-Al) =0




=0 C2 > C2+C3

By Cayley — Hamilton theorem, we have A*-A*+A-1=0

i -2 2] -1 0 0] -1 2 -2
A=:1 -2 SIAZ::—I -1 ZIA3:I—2 2 —1I
0 -1 2] -1 0 1] -1 1 0|
-1 2 -2]7 -1 0 0] 1t -2 2] [t 0 0]
A3—A2+A—I:I—2 2 —1**—1 -1 2%}1 -2 4—}0 1 q
-1 1 o] [-1 0o 1] [0 -1 2] |0 0 1]
0 0 0
=[{J aQ 'D]='D
0 0 0

Multiplying with A we get A=A + [ =A""

-1 0 0] 1 -2 27 1 0 0] [-1 2 -2]
A4=I—1 -1 2}—}1 -2 3I+Io 1 ol:l—z 2 —1I
-1 0 1] [0 -1 2] 0o o0 1] [-1 1 O]

7 2 =2

2. Using Cayley - Hamilton Theorem find the inverse and A* of the matrix A= |—6 —1 2‘

& 2 -1

7 2 —2
Sol: Let A= [—6 -1 2 ]
& 2 -1

The characteristic equation is given by |A-Al|=0

6 2 -1-2
1 0 -1
(1—A)%0 1 1 =0
6 2 —(1+4)




AP —5A*+74A-3=0
By Cayley — Hamilton theorem we have A*-5A%+7A-31=0.....(1)
Multiply with A™ we get

Al= I [4% =54+ 7I]

(25 8 -8] [ 79 2%  -26]
A2=I—24 ~7 8IA3:I—78 _25 26I
L24 8 —7J \_78 26 —zsj
-3 -2 27
41 |
At==16 5 -2
3l |
L—e ~2 5j

Multiply (1)with A,we get
A*—54%+747-34=0

395 130 -130 ] [ 175 56 -5 ] [ 21 6 -6]
|—168 - 49 56 +|—18 -3 6 |

-390 -125 130 - |
\_168 56 —69_.\_18 6 —3J

[
|
|
[390 130 -125

Problems
r2 2 11 [-1 2 =2]
1. Diagonalize the matrix(i)I 1 3 1I(||)I 1 2 1 I
-1 2 2] |-1 -1 o]
1 2 3
1. Verify Cayley — Hamilton Theorem forA=|2 4 5|.Hence find A™.
i 5 &

Linear dependence and independence of Vectors:
1. Show that the vectors (1,2,3), (3,-2,1), (1,-6,-5) from a linearly dependent set.

[1] [3 ] (1]
Sol. TheGivenVectorXl=:2IXz=:—2IX3=I—6:
3] L] -8
The Vectors X1, X,, X3 from a square matrix.
[1 3 1]
LetAzlz -2 —GI
3 1 -5]




[1 3 1]
Then|A|:I2 _2 —6}

|3 1 -5]
= 1(10+6)-2(15-1)+3(-18+2)
=16+32-48=0

The given vectors are linearly dependent - |A|=0
2. Show that the Vector X;=(2,2,1), X,=(1,4,-1) and X5=(4,6,-3) are linearly independent.
Sol. Given Vectors X;=(2,-2,1) X,=(1,4,-1) and X3=(4,6,-3) The Vectors X;, X, X3 form a square

matrix.

rz 1 4]
A= I -2 4 6 I
|1 -1 -3]
r2 1 47
Then|A|:I—2 4 el
|1 -1 -3]
=2(-12+6)+2(-3+4)+1(6-16)
=-20£0

The given vectors are linearly independent
|A[#0

Eigen Values & Eigen Vectors

Def: Characteristic vector of a matrix:

Let A=[a;] be an nxn matrix. A non-zero vector X is said to be a Characteristic Vector of A if there exists a
scalar such that AX=AX.

Note: If AX=AX (X#0), then we say ‘A’ is the Eigen value (or) characteristic root of ‘A’.

egteta=[> 2 x=[ 1]

S e [ Y e e

=1.X

Here Characteristic vector of A is [ 11] and Characteristic root of A is “1”.




Note: We notice that an Eigen value of a square matrix A can be 0. But a zero vector cannot be an Eigen
vector of A.

Method of finding the Eigen vectors of a matrix.

Let A = [a;] be a nxn matrix. Let X be an Eigen vector of A corresponding to the Eigen value A.

Then by definition AX=AX.

= AX = AIX
> AX-AIX=0
2 (AADX =0 - (1)

This is a homogeneous system of n equations in n unknowns.

Q) Will have a non-zero solution X if and only |A-AI| =0

- A-Al is called characteristic matrix of A

- |A-Al| is a polynomial in A of degree n and is called the characteristic polynomial of A
- |A-AI|=0 is called the characteristic equation

Solving characteristic equation of A, we get the roots, 4; 1, 45 ....... A, these are called the characteristic
roots or Eigen values of the matrix.
- Corresponding to each one of these n Eigen values, we can find the characteristic vectors.

Procedure to find Eigen values and Eigen vectors

atr A1z e A1n
a1 A22 wevr A2p . .
LetA= be a given matrix
an1 Qn2 Ann
Characteristicmatrix of Ais A — Al
I—au -4 a, a, —:
a a,, — A a
ie A Al =| 21 22 2n |
| |
| |
|_ anl anz a'nn - ﬂ’J

Then the characteristic polynomial is |A -l |

a, - A a, a,

a, -4 .. a

a 21 22

say ¢(l):|A—/1I|=

ni n2 nn




The characteristic equation is |A-Al| = 0 we solve the @(A) = |A — AI| = 0, we get n roots, these are called

Eigen values or latent values or proper values.

Let each one of these Eigen values say A their Eigen vector X corresponding the given value A is obtained by

solving Homogeneous system

|—a11 -4 a, a, —||—X1~| o]

I a, a,, -4 - a,, sz I IO} - .o .

| I and determining the non-trivial solution.
| 1l |

L 2n a,, o8, - ﬂ'Jl_XnJ LO]

PROBLEMS

1. Find the Eigen values and the corresponding Eigen vectors of [g _24]

sol:Let A = [g _4]

2
Characteristic matrix = A — Al
_ [8—7\ —4]
2 2—A
Characteristic equation of Ais|A—iI|=O
8—N —4_
= | 2 2—7\|‘0

= B8-NMN2-N+8=0
=16 +A° —10A+8=0
= M —10A+24=0
= (A-6)A—-4)=0

= A = 6,4 are eigen values of A
. 8—A —47 %1 _
Consider system [ 2 22 (Xz) =0
Eigen vector correspondingto A = 4
Put A = 4 in the above system, we get
4 =4\ X1\ _ (0
(2 _2) (xz) - (o)
= 4X1_4XZ :O___(l)
2x1—2x2 :O___(Z)

from (1)and (2)we have x; = x;

Letx;= o




Xy

_ (X)) e
Eigen vector is
LXZJ

ol
e T

[1] is a Eigen vector of matrix A, corresponding eigen value A = 4

Eigen Vector correspondingto A = 6
put A = 6 in the above system, we get
2 —4\ (*1\ _ (0
(2 _4) (xz) - (0)
= 2x; —4x, =0———(1)

2x] —4x, =0———(2)
from (1) and (2) we have x; = 2x;

Say x, =a = x, = 2«

Eigen vector = 21 =a
Lo |7l

[ﬂ is eigen vector of matrix A corresponding eigen value A = 6

2
2. Find the eigen values and the corresponding eigen vectors of matrix [0
1
2 0 1
Sol:LetA=|0 2 O
1 0 2
The characteristic equation is |A-Al|=0
2—A 0 1
ie.[AN|= 0 2= 0 |=0
1 0 2—A

= 2-MND2-NMD>-0+[-2-MN]=0
=2-MD3—QA-2)=0

= A=2[-A=2)2-1]=0

= A-2[-A+4-3]=0
= A-2)A-3)A-1=0




= A=1,2,3

The eigen values of Ais 1,2,3.

For finding eigen vector the systemis (A —ADX =0

2—A 0 1 X1 0
= 0 2—A 0 X2 =10
1 0 2— X3 0

Eigen vector corresponding toA = 1

1 0 17" 0
0 1 Of|*2]=|0
1 0 111x3 0

X1+X3=O
XZ—O
X1+X3—O
X1——X3,X2—O
sayxs =a
x1=—a x=0, x3=a
[X1 - -1
xz]=[0]=a!0]
X3 a 1
[—1
0 | is Eigen vector
[ 1

Eigen vector corresponding to A = 2

0 0 1] [* 0
0 0 Of*2]=|0
1 0 0d1x3 0

Here x; = 0 and x3 = 0 and we can take any arbitary value x, i.e x, = a (say)

2] lel=<ll

0
Eigen vector is [1]
0

Eigen vector corresponding to A = 3

-1 0 17 [* 0
0 -1 0]|*]|=|0
1 0 —-111lx3 0

—X1 +X3 =0

—Xy = 0
X1 — X3 = 0
here by solving we get x; = x3,x, = 0 say x3 =

X1 =X, x=0 ,x3 =x




—_

Eigen vectoris [0
1

Properties of Eigen Values:

Theorem 1: The sum of the eigen values of a square matrix is equal to its trace and product of the eigen

values is equal to its determinant.

[t 2 3]

Example: if A=| 0 2 5 | then trace=1+2+1=4 and determinant=15
| |

2 -1 1]
Theorem 2: If A is an Eigen value of A corresponding to the Eigen vector X, then A™ is Eigen value A"
corresponding to the Eigen vector X.

[1 0 O

]
Example: if A=: 0 2 0 I then Eigen values of Alare 1,8,1
[0 0 1]

Theorem 3: A Square matrix A and its transpose A" have the same Eigen values.

1 0 0]

Example: if A={ 0 2 0 : then Eigen values of Alare1,2,1.

[0 0 1]

Theorem 4: If A and B are n-rowed square matrices and If A is invertible show that A'B and B A have same

Eigen values.

Theorem 5: If 4., 4, ,....... ./ are the Eigen values of a matrix A then k A;, k 4, ..... k A, are the Eigen value
of the matrix KA, where K is a non-zero scalar.

Example:

If 1,2,3 are eigen values of A then eigen values of 3A are 3,3,9

Theorem 6: If # is an Eigen values of the matrix A then #.+K is an Eigen value of the matrix A+KI

Example:

If 1,2,3 are eigen values of A then eigen values of 3+A are 4,5,6

Theorem 7: If 4,, A,.. A,arethe Eigenvalues of A, then #,—K, &, =K, .. #,—K,
are the eigen values of the matrix (A — KI ), where K is a non — zero scalar

Example:

If 1,2,3 are eigen values of A then eigen values of 3-A are 2,1,0




Theorem 8: If ;, A, ... A, are the Eigen values of A, find the Eigen values of the matrix (4 — AI)-

Theorem 9: If A is an Eigen value of a non-singular matrix A corresponding to the Eigen vector X, then ™" js
an Eigen value of A™ and corresponding Eigen vector X itself.

Theorem 10: If

Ais an eigen value of a non — singular matrix A, then l}il is an eigen value of the matrix Adj A

. . . 1, .
Theorem 11: If X is an eigen value of an erthogonal matrix then S s also an eigen value

Theorem 12: If . is Eigen value of A then prove that the Eigen value of B = agA*+a;A+a,l is ap #°+a; A+a,

Theorem 14: Suppose that A and P be square matrices of order n such that P is non singular. Then A and P"'AP
have the same Eigen values.
Corollary 1: If A and B are square matrices such that A is non-singular, then A'B and BA™ have the same Eigen

values.

Corollary 2: If A and B are non-singular matrices of the same order, then AB and BA have the same Eigen
Theorem 15: The Eigen values of a triangular matrix are just the diagonal elements of the matrix.
Theorem 16: The Eigen values of a real symmetric matrix are always real.

Theorem 17: For a real symmetric matrix, the Eigen vectors corresponding to two distinct Eigen values are

orthogonal.
PROBLEMS
1. Find the Eigen values and Eigen vectors of the matrix A and its inverse, where
1 3 4
A=|0 2 5‘
o 0 3
1 3 4
Sol: GivenA=|0 2 5]
a 0 3
The characteristic equation of A is given by |A-Al| =0
1—4 3 4
= Q 2—4 E [=0
0 0 3i-4

= 1-Al2-DE-4]=
= A=1,2,3
Characteristic roots are 1,2,3

Characteristic vector fori=1

P TR

= 3x, +4x, =10
X, + 5x, =10

2x; =0




x; =0,23=04nd x - o
[a]  [1]
lol-rlo
Lo] o]
1
L X =

Characteristic vector for A= 2

-1 3 4
ForA=2,becomes |0 0O &
o 0 1

= —xq + 3x, T~ 4x, =0
5%, =0= x,=0
- X, +3x,=0= x, =3Xx,

Let x, =k

1

X

= 3k

3

k

aq

|

.-‘-L'E

-l

Q
1]
]

|

|

1
|
0]

I
|
|
]
3

is the solution - 1

3]
Ll
B
o]

Is the Eigen vector correspondingto A = 2

0

1

Hence the characteristic vector is {{)

Characteristic vector for A= 3

(-2 3 4llx 1 [o]
For A = 3,becomes IO -1 5:x2:=0I
Lo 0 ofx] [o]
= —2xy+ 3x, T4x, =10
—x, + 5xg =
Savx, =K = x,=5K




x, = —
2
ZK| e
X=| 5 | =75 [10
K 2
[19]
cx =l i i
A ||sthe Eigen vector correspondingto 4 =3
[2]
11 1
Eigen values of A 'are —, — ,—
K’..-_ K’.: K’.E
11
= Eigenvaluesof A 'arel,—, —
2 3

We know Eigen vectors of A" are same as Eigen vectors of A.

2. Find the Eigen values of 34% + 54° — 64+ 2l where A= [{) 3 2

o 0 -2
Sol:The characteristic equationof Ais|[A—AIl = 0
1—2 2 —3
‘I-I'E'.l 'D 3 _.?'. 2 = 'D
)] 4] —2-2
=[(1-A)(3-A)(-2—-24)—-0]=0
=(1-A)(3-A)(2+4) =0 A=13,-2

Eigen values of A are 1,3,—2

We know that if Aisan eigen value of Aand f(A)is a polynomial in A.
then the eigen value of f(A)is f(A)

Let f(A) =34 + 547 — 64 + 21

Then eigen values of f(A) are f(1), f(3) and f(-2)

f(1) = 3(1)+5(1)%-6(1)+2(1) = 4

f(3) = 3(3)*+5(3)%-6(3)+2(1) = 110

f(-2) = 3(-2)*+5(-2)%-6(-2)+2(1) = 10

Eigen values of 34% + 54% — 64 + 21 are 4,110,10

Diagonalization of a matrix:

Theorem: If a square matrix A of order n has n linearly independent eigen vectors (X1,X;...X,) corresponding to
the n eigen values Ay,A,....A, respectively then a matrix P can be found such that

P'AP is a diagonal matrix.

Proof: Given that (X3,X,...X,) be eigen vectors of A corresponding to the eigen values A,A;....A, respectively and
these eigen vectors are linearly independent Define P = (X1, X%5...%0)
Since the n columns of P are linearly independent |P|#0

Hence P exists

Consider AP = A[X1,X;...Xq]




= [AXy, AX;.....AX,]
= [)\Xll )\ZXZ....)\an]

(4, 0 0]

0 4 ol
[X1,Xz...Xn] | |

| |

[0 0 4]
=PD
Where D =diag (4,,4,, A4 wAL)
AP=PD

P AP)=P ' (PD) = P ‘AP = (P 'P)D
— P'AP=(I\D

=D

=diag (A, 4, Ay e LA0)

Hence the theorem is proved.

Modal and Spectral matrices:

The matrix P in the above result which diagonalizable the square matrix A is called modal matrix of A and the
resulting diagonal matrix D is known as spectral matrix.
Note 1:If X3,X,...X, are not linearly independent this result is not true.

2: Suppose A is a real symmetric matrix with n pair wise distinct Eigen values 4,4, --- 2, then

the corresponding Eigen vectors X3,X5...X,are pair wise orthogonal.
Hence if P = (e1,€;...€n)

Where e3 = (Xq / [|Xa]), €2 = (X2 / ||Xzl]). . ..en = Xn)! [IXal]

then P will be an orthogonal matrix.

i.e, PTP=PP'=|

Hence P =P’

PlaPp =D =P'AP=D

Calculation of powers of a matrix:

We can obtain the power of a matrix by using diagonalization

Let A be the square matrix then a non-singular matrix P can be found such that D = P*AP
D*=(P*AP) (P*AP)

=P 'A(PP HAP

=P'A’®P  (since PP '=I)

Similarly D* = P AP

In general D" = PAP......... (1)

To obtain A", Pre-multiply (1) by P and post multiply by P

Then PD"P* = P(PA"P)P




=(PPHA" (PP =A" = A"=PD P

(2" o o0- 0]
0 A0 o
Hence A"=P | |P

= =

o o o 4|
PROBLEMS
-2 2 =3

2. Determine the modal matrix P of =| 2 1 —6/|. Verify that P71 AP is a diagonal matrix.

-1 -2 0

Sol: The characteristic equation of Ais |A-Al| =0
—2-1 2 —3
2 1—4 —6
—1 —2 i
which gives (A—5)(A+ 3)? =0

i.e, =0

—A
Thus the eigen values are A=5, A=-3 and A=-3

-7 2
whenA=5 = | 2 —4
-1 -2

1
By solving above we get X; = [ 2 ]
-1

Similarly, for the given eigen value A=-3 we can have two linearly independent eigen vectors X, =

2 3]
—1| and X3= |0
0 11
P=(X X; X3)
1 2 3]
p=12 -1 0
-1 0 1l

= modal matrix of 4

NowdetP =1(—1)—2(2)+3(0—1) = —8

s 4[17 )
det P 3 1 2 _sc
[t -2 3712 2 -3
=—21-2 4+ 6|2 1 -e
-1 -2 —-s5ll-1 -2 o
l{—S —10 15]
=—=|6 -—-12 -18
g
3 6 15
—40 0 0
P'1_4P=—% 0 24 0
0 0 24
5 0 0
=10 -3 0 |=diag(5-3,-3)
0 0 -3

Hence P™YAP is a diagonal matrix.




3. Find a matrix P which transform the matrix A =

1 0 -1
[l 2 1 ] to diagonal form. Hence calculate A®
2 2 3

Sol: Characteristic equation of A is given by |A-Al| =0

1—4 0 -1
1 2—A4 1
2 2 3-4

=(1-(2-A)3-4)—-2]-0—-1[2—-2(2—-40}= 0

— (A—1)(A—-2)(A—3)= 0

i.e,

= A=14A=241=3
Thus the eigen valuesof A are 1,2,3

If X1, X2, X3 be the components of an Eigen vector corresponding to the Eigen value A, we have
1—4 0 -1
[A-M]X=| 1 2—4 1

Ly 0
x| = |0
2 2 3 — All*s 0

For A =1,eigen vectors are given by

o0 0 —17[%4 0
1 1 1 |[%2)=|0] i.e, 0.x;40.X,+0.x3=0 and x;+X,+x3=0

2 2 21l%s Q

b=
x3=0 and X;+x;+x5=0

X3=O, X1=-X2
X1=1, X2='1, X3=0
Eigen vector is [1,-1,0]"
Also every non-zero multiple of this vector is an Eigen vector corresponding to A=1
For A=2, A=3 we can obtain Eigen vector [-2,1,2]"and [-1,1,2]"
1 -2 -1

—1 1 1

4] 2 2

The Matrix P is called modal matrix of A

P=

ro 2 -1]
P-l_—il 2 2 0|
- 2| |
L—z _2 —1J
[ 1]
10 -1 ;Wl 0 -17[1 -2 -1
Now P’lAP=I—1 -1 0I1 2 1“-1 1 1:
1
1 1 =2 2 3o 2 2]
|- 2|
1 0 0
=10 2 0|—0D (say)
0 0 3




A =pp=p~1

1 -2 -1t o 01|r0 -1 1|
I—l L 1,0 16 0”—1 1 }
o 2 2]0 o 81J|L—2 -2 _1J|

65 66 40
130 130 381

[—49 —50 —4{)]

Diagonalization of Symmetric Matrices:
NOTE:
a matrix A is diagonalizable if and only if there is an invertible matrix P such that A =P DP " where D is a
diagonal matrix.
A matrix A is orthogonally diagonalizable if and only if there is an orthogonal matrix P such that
A =P DP " where D is a diagonal matrix.
Remark : Recall that any orthogonal matrix A is invertible and also that A* = AT . Thus we can say that A
matrix A is orthogonally diagonalizable if there is a square matrix P such that A = P DP" where D is a diagonal
matrix.
Remark: The formula for transpose of a product: (MN) "= N" M" . Using this we can see that any
orthogonally diagonalizable A must be symmetric. This is because AT = (PDP") '=(P")'D'P"=PDP' =
A.
If A is symmetric then any two Eigen values from different Eigen spaces are orthogonal
Proposition: (The Spectral Theorem) An n x n symmetric matrix has the following properties:
1. A has n real Eigen values if we count multiplicity
2. For each Eigen values the dimension of the corresponding Eigen spaces is equal to the algebraic multiplicity
of that Eigen values
3. The Eigen spaces are mutually orthogonal.
4. Ais orthogonally diagonalizable.

NOTE:
All Eigen values (all roots of the characteristic polynomial) of a symmetric matrix are real.
Eigenvectors of a symmetric matrix corresponding to different Eigen values are orthogonal.
Problems:
r2 -1 -1]
1) Find an orthogonal matrix P which diagonalizes A = I -1 2 -1 |
-1 -1 2|
Sol: Eigen systems:
Eigen values and Eigenvector are 3,3,0and (—1,0,1),(-1,1,0), (1, 1, 1)

Using the Gram-Schmidt process we find that an orthonormal
basis for the eigenspace of A corresponding to Ay = 3 is

(—1.0,1) s =
p1 m —{—1 \.2.['1. \-2}
u: = (—1.1.0)— {(—-1.1.0).p1)p1 = (—1/2.1.-1/2)
(-1/2.1,-1/2) e .-
P2 iz 12 (—1/v8, /2/3, —1/V86)
P2 (1.1.1) (1/+v3,1//3,1/+3)

I L0010




Sol:

Let orthogonal matrix P = \‘ 0
A

2
PTAP
r_ 1 A
= 9 = 2
= A j2 1 1
7 V3 7@
e —1
L W3 '3 V'3
3 0 0
= 0 3 0
L0 0 0

2. Find an orthogonal matrix P which diagonalizes A =

Jthen
N I I
|- - \-E
1 _1
VE VB
[ 3 1 -17
s
-1 -1 5|

-..l_.-f..|_. - |_.
il el

o
L




Let

=1 -1
A=11 32 -1
-1 -1 5
-4 1 -1
det(A-AN=1 1 3-1 -1
-1 -1 5-4
=(3-A03-2)05-0)-1]-1[2-2-T1]-1[-1-3-x]
=[i3- !)k*—ﬁ:llﬁ—f;l P 3-00]-04- .?:] {2 )
i-

=[ lr)k'\—,.n‘-jll —,"JI I,kj-—.-"}]-f-':. )
_kj_;_)[kg—,n‘_:llxj—;’.;l—1'2]
={3-3)[15-30-30- A2 5]

=(3-300 A%-8n—-12)
={3-L)Wrh-6XE-27

Thus, ». =12, 3, 6 are the e1genvalues of 4 Lot us find an eigenvector corresponding to cach
eigetrvalue | For the eigetnvalue » = 2 since

11 -1

A-2i=11 1 -l

-1 -1 3
11 -1
~[0 0 0
o0 2z
11 -1
~|0 0 Z
0O 0 0

A vector X = (7.7, x; ) will be an eigenvector for eigenvalue » = 2 if

SR

[f e choose X3=1_then X =-1. Hence

i.e.: i= o




1z a1 eigenivector for « =2 For the eigenvalue » =35,

o1 -1 1 0 -1 1 0 -1
A-3=11 0 -1|~ 1 -1]~10 1 -1}
-1 -1 2 o -1 1 o 0 0
Thus

will be an eigemvector for the etgenvalue » =3, 1f

1 0 -1[x
0 1 -1l|{x]=0,
00 0l|lx

e, X=X and & -%=0 Hence

1
X =1l s an eigenvector for » =3,
1
Finally, for». =6
-2 1 -1 -1 -1 -1 -1 -1 1

A-4i=11 -3 -1|~10 -4 =2|~0 -4 -Z|

Thus |

X; =% | willbe an gigemector for etgetnalue A =6 4f




Axy D =0, ok -x-x=0

Thus, if we tabe A3=2_ then =1 and A =-x,— %=1
Hence

X;=1-1] iz an eigenvector for the eigentalue » = 6.

WNote that for

-1 1 -1
P=[X, X, X]=[1 1 -1|.the columns of P are orthogonal.
o 1 2

To tmake P orthogonal, we nommalize =ach %, X and x; | and define

1 11
N
1

=

Sil= &= &
Sl 4

oy
I

1
E
0

Lt o=l

[t 18 easyv to vertfy that FAF =0 where
2 00
D=0 3 0[
00 &

o=l At o=l o=t

Infact, 2 =F . Thus wechecks & AP =15

[0 2 2]
3) Find an orthogonal matrix P which diagonalizes A = i 2 0 2 :
2 2 o
Sol:
Let
o 2 2
A=12 0 2|
2 20
Then A 15 a real symunetric matrix with eigentalues given by
-4 2 2
D=det[ﬂ—;’i£) =12 -1 2
2 2 -A

= (AT 20 4= 24+ )
= (A-2W =2 AR 2) (42

=(n=2%-A%-2n-8}

=-{i—20r—2¥r-3)




Hence, &= -2 | % =4 are two distinet etgerrvalues of A To find sigensectors for & = -2, since

2 2 2] [+2 2 2
(4+2)=|2 +2 2|~
2 2 42

0 00

0 00
A

E._ o isgiven by 4| x, X txtx =0y
5

[foechooze 3=0and & =1then =-1. And for %=1and x; =0we ger =-1.
Thus

are two mutnally orthogonal eigenvector for » = -2

For the eigenvalue » =4, sinee

-4 2 2 -4 2 2 -4 2 2
A-4i=2 4 2|~|0 -3 3|~|0 -3 3
2 2 -4 o3 -3 o 0 0

=

B._4=4]x Gxy +3x, =0, -4y +Ex, +2x, =03

1

Thus, if we choose
Ty= =% =1 then
1
X =1
1




13 an eigenvector for the eigenvalue » = 4. Thus, the eigenrector for & are

-1 -1 1

To make { X}, X,} orthonormal, we use the Gram-Schmidt process.
Define

N -1
X=X =1},
0
~ X, X
X ::Xj—( 2 1>X1
{XI!X1>
'+1' '_1
-1 1 -1 -1 y y,
USRS U R
1 0 1 p 2
0 1
We normalize X also to ger
- [ 1] [ 1]
1 - _
"5 NG 3
iy iy 1 - 1
X =1 0 |l.X, =|-——]|. =|—1.
1 ) 2 N3 3 Nz
— 2 1
o Ewl =

are orthenermal basis of B of eigemvectors of & Thus, for

v g 5
Sl- - -

one checlks that
PAF =D

where




MODULE-II

FUNCTIONS
OF SINGLE AND SEVERAL
VARIABLES




MEAN VALUE THEOREMS

| Rolle’s Theorem:

Let f(x) be a function such that

(i). It is continuous in closed interval [a,b]

(ii). It is differentiable in open interval (a,b) and

(iii). f(a) = f(b).

Then there exists at least one point ‘c’ in (a,b) such that
f'(c) = 0.

Geometrical Interpretation of Rolle’s Theorem:

Let f :[a,b] = R be afunction satisfying the three conditions of Rolle ’s Theorem. Then the graph.

.

O

y
T;\r'\'"""‘“"""] B

o

1. y=f(x) in a continuous curve in [a,b].
2. There exist a unique tangent line at every point x=c, where a<c<b
3. The ordinates f(a), f(b) at the end points A,B are equal so that the points A and B are equidistant from
the X-axis.
4. By Rolle’s Theorem, There is at least one point x=c between A and B on the curve at which the
tangent line is parallel to the x-axis and also it is parallel to chord of the curve.
1. Verify Rolle’s theorem for the function f(x) = sinx/e” or e™ sinx in [0,rt]
Sol: i) Since sinx and e” are both continuous functions in [0, ).
Therefore, sinx/e* is also continuous in [0,t].
ii) Since sinx and e” be derivable in (0,m), then fis also derivable in (0,m).
iii) f(0) = sin0/e° = 0 and f(r)= sin /e ™ =0
f(0) = f(m)

Thus all three conditions of Rolle ’s Theorem are satisfied.

. There exists c €(0, m) such that f*(c)=0

e*cos x—sin xe* cos x —sin X
1
Now f " (x) = =

Xy 2 X

(e) e

1 cos ¢ —sin ¢
f(c)=0 => ————=0
e

cosc=sinc=>tanc=1




c=m/4 €(0,m)

Hence Rolle’s theorem is verified.

[ x"+ab )
2. Verify Rolle’s theorem for the functions log | — | in[a,b], a>0, b>0,
(x(a+b))
[ x"+ab )
Sol: Let f(x)= log | ————|
( x(a+b))

= log(x*+ab) — log x —log(a+b)
(i). Since f(x) is a composite function of continuous functions in [a,b], it is continuous in [a,b].

2
X" — ab

(ii). f'(x) =

1
2X — — =
2
X

x> +ab x(x2+ab)

f1(x) exists for all xe (a,b)

(ii). f(a) = log {ﬂT “log 1= 0
a” +ab J
f(b) = log [EZ;ZE} =log 1=0
+
f(a) = f(b)

Thus f(x) satisfies all the three conditions of Rolle ’s Theorem.
So, 3 ce (a,b) = fi(c) =0,

¢’ —ab

f'(c)=0, = =0= c’=ab

c(c2+ab)
= c=+ab € (a,b)

Hence Rolle’s theorem verified.
3. Verify whether Rolle ’s Theorem can be applied to the following functions in the intervals.
i) f(x) = tan xin[0, t] and ii) f(x) = 1/x% in [-1,1]
(i) f(x) is discontinuous at x = t/2 as it is not defined there. Thus condition (i) of Rolle ’s Theorem is not
satisfied. Hence we cannot apply Rolle ’s Theorem here.
.. Rolle’s theorem cannot be applicable to f(x) = tan x in [0,m].
(ii). f(x) = 1/x*in [-1,1]
f(x) is discontinuous at x= 0.Hence Rolle ’s Theorem cannot be applied.
4. Verify Rolle’s theorem for the function f(x) = (x-a)™(x-b)" where m,n are positive integers in [a,b].

Sol: (i). Since every polynomial is continuous for all values, f(x) is also continuous in[a,b].

(i) f(x) = (x-a)"(x-b)"




1(x) = m(x-a)™"(x-b)"+(x-a)™.n(x-b)"*
= (x-a)™}(x-b)" [m(x-b)+n(x-a)]
=(x-a)™*(x-b)" [(m+n)x-(mb+na)]
Which exists
Thus f(x) is derivable in (a,b)
(iii) f(a) =0 and f(b) = 0
= f(a) =f(b)
Thus three conditions of Rolle’s theorem are satisfied.
~. There exists ce(a,b) such that f'(c)=0
(c-a)™*(c-b)"™*[(m+n)c-(mb+na)]=0
= (m+n)c-(mb+na)=0 =>(m+n)c=mb+na

= c=mb+na €(a,b)

m+n

Rolle ’s Theorem verified.

5. Using Rolle ’s Theorem, show that g(x) = 8x3-6x*-2x+1 has a zero between

Oand 1.

Sol: g(x) = 8x>-6x’-2x+1 being a polynomial, it is continuous on [0,1] and differentiable on (0,1)
Now g(0)=1and g(1)=8-6-2+1=1

Also g(0)=g(1)

Hence, all the conditions of Rolle’s theorem are satisfied on [0,1].

Therefore, there exists a number ce(0,1) such that g'(c)=0.

Now g'(x) = 24x*-12x-2

.. g'(c)=0=>24c>12¢-2=0

Caedm

= C= ie c=0.630r-0.132
12

only the value c=0.63 lies in (0,1)
Thus there exists at least one root between 0 and 1.
6. Verify Rolle’s theorem for f(x) = x> -2x /% in the interval (0,8).
Sol: Given f(x) = x /% -2x 3
f(x) is continuous in [0,8]
fi(x) = 2/3 . 1/x** -2/3 . 1/x* = 2/3(1/x*2 = 1/x*?)
Which exists for all x in the interval (0,8)
. fis derivable (0,8).
Now f(0) = 0 and f(8) = (8)¥3-2(8)* = 4-4 =0

e, 0] = 18]




Thus all the three conditions of Rolle’s Theorem are satisfied.

.. There exists at least one value of c in(0,8) such that f*(c)=0

o 1
ie. —-—=0=>c=1€(0,8)

1 2
c® ¢?
Hence Rolle’s Theorem is verified.
7. Verify Rolle’s theorem for f(x) = x(x+3)e™/% in [-3,0].
Sol: - (i). Since x(x+3) being a polynomial is continuous for all values of x and e™?is also continuous for all X,
-x/2

their product x(x+3)e

[-3,0].

= f(x) is also continuous for every value of x and in particular f(x) is continuous in the

(ii). we have f(x) = x(x+3)( -1/2 e™)+(2x+3)e™"?

2
X"+ 3X

=™ [2x+3-

]

=e™2[6+x-x*/2]
Since f'(x) doesnot become infinite or indeterminate at any point of the interval(-3,0).
f(x) is derivable in (-3,0)
(iii) Also we have f(-3) =0 and f(0) =0

=~ f(-3)=f(0)
Thus f(x) satisfies all the three conditions of Rolle’s theorem in the interval [-3,0].
Hence there exist at least one value c of x in the interval (-3,0) such that f'(c)=0
i.e., ¥ e 2(6+c-c%)=0 =>6+c-c*=0 (e*/*#20 for any c)

=> c*+¢-6 = 0 => (c-3)(c+2)=0

c=3,-2
Clearly, the value c= -2 lies within the (-3,0) which verifies Rolle’s theorem.
Il. Lagrange’s mean value Theorem
Let f(x) be a function such that (i) it is continuous in closed interval [a,b] & (ii) differentiable in (a,b). Then 3 at
least one point c in (a,b) such that

f(b) - f(a)
b-a

fi(c) =

Geometrical Interpretation of Lagrange’s Mean Value theorem:

Let f :[a,b] » R be afunction satisfying the two conditions of Lagrange’s theorem. Then the graph.

y

I
1
i
C * X >

° — X

1. y=f(x) is continuous curve in [a,b]




2. At every point x=c, when a<c<b, on the curve y=f(x), there is unique tangent to the curve. By Lagrange’s

f(b)- f(a)

b-a

theorem there exists at least one point ¢ € (a,b) > f'(c) =
Geometrically there exist at least one point ¢ on the curve between A and B such that the tangent line is

parallel to the chord AHB
1. Verify Lagrange’s Mean value theorem for f(x)= x>-x*-5x+3 in [0,4]
Sol: Let f(x)= x>-x*-5x+3 is a polynomial in x.

. Itis continuous & derivable for every value of x.

In particular, f(x) is continuous [0,4] & derivable in (0,4)

Hence by Lagrange’s Mean value theorem 3 ce (0,4) 3

PRI ERIC)
4 -0
i.e., 3c%-2c-5 = T = O (1)

4

Now f(4) = 43-4%-5.4+3 =64-16-20-3=67-36= 31 & f(0)=3

f(4)- f(0) _ (31 -3) ;
4 4
From equation (1), we have

3¢%-2¢-5 =7 =>3¢%-2¢-12 =0

2+ 4+ 144 _21\/148 11\/;

c= = =
6 6 3

1+

We see that lies in open interval (0,4) & thus Lagrange’s Mean value theorem is verified.

2. Verify Lagrange’s Mean value theorem for f(x) = log , x in [1,e]
Sol: - f(x) = log , x

This function is continuous in closed interval [1,e] & derivable in (1,e). Hence L.M.V.T is applicable

here. By this theorem, 3 a point c in open interval (1,e) such that

f(e)— f(1) 1-0 1
filg= @@ 1-0
e—-1 e—-1 e-1
1 1 1
But f'(c)= => — =
e—-1 c e—-1
L c=e-1

Note that (e-1) is in the interval (1,e).

Hence Lagrange’s mean value theorem is verified.




4. Give an example of a function that is continuous on [-1, 1] and for which mean value theorem does

not hold with explanations.

Sol:- The function f(x) = |x| is continuous on [-1,1]

But Lagrange Mean value theorem is not applicable for the function f(x) as its derivative does not

exist in (-1,1) at x=0.

b-a b-a
4.If a<b, P.T —<Tan 'b-Tan 'ac< — using Lagrange’s Mean value theorem. Deduce the
1+D l1+a
following.
T 3 44 o 1
i) —+—<Tan  —< —+ —
25 3 4 6
.. br+4 1 T+ 2
ii). <Tan 2 <
20 4

Sol: consider f(x) = Tan™ x in [a,b] for O<a<b<1
Since f(x) is continuous in closed interval [a,b] & derivable in open interval (a,b).
We can apply Lagrange’s Mean value theorem here.

Hence there exists a point cin (a,b)>

f(b)- f(a
fl(C) - M
b-a
Here fi(x) = —— & hence  1°(c) = ——
1+ X l1+c
Thus 3 ¢, a<c<b >
1 Tan b —Tan ‘a
— = (1)
l+c b-a
We have 1+a’<1+c’<1+b?
1 1 1
. . > P > 2
1+ a 1+¢ 1+b RS (7))
From (1) and (2), we have
1 Tan ‘b - Tan ‘a 1
2 s > 2
1+a b-a 1+b
or
b —a -1 -1 b - a
<Tan b-Tan ac< - ..(3)
1+ a 1+ b
Hence the result
Deductions: -
. b —a -1 -1 b - a
(i) We have ~<Tan b-Tan "a< 2
1+b l+a
Talea n Q ol wino
TORG o XU I, Wwo Ut




4 4 4-3
P 4 P 3 4-3
- - _ T -
3 < Tan 1(—)—Tan 1(1)< 3 - == 3 < Tan 1(—)——<
3 1+1 25 3 4 3
1+ — — —
9 9 2
3 T 4 4 r 1
= —+—<Tan (=)< —+ —
25 4 3 4 6

(ii) Taking b=2 and a=1, we get

2-1 ™ . 2-1 1 . n 1
2<Tan 2-Tan 1< 2:—<Tan 2 - —<—
1+2 1+1 5 4 2
1 =z 1 2+
= —+ —<Tan 2<
5 4 4
4 +5x 1 2+ T
= +<Tan "2<
20 4

5. Showthatforanyx>0,1+x<e*<1+xe"

Sol: - Let f(x) = e" defined on [0,x]. Then f(x) is continuous on [0,x] & derivable
on (0,x).
By Lagrange’s Mean value theorem 3 a real number c €(0,x) such that

(0= 1@

x—-0
X 0 X
e -e e -1
= =e = = wrveennn(1)
x-0 X

Note that O<c<x => e%<e‘<e* ( e* is an increasing function)
X _ l .
< e From (1)

X

e
=>1<

=> x<e*-1<xe”

=> 1+x<e’<1+xe".
6. Calculate approximately Y245 by using LM.V.T.
Sol:- Let f(x) = V;:xl/s & a=243 , b=245
Then f4(x) = 1/5 x *° & f!(c) = 1/5¢ **
By L.M.V.T, we have

f(b)-f(a) .

f(c)
b-a
f(45)- f(23) 1
=> = —C
25 — 243 5

=> f (245) =f(243)+2/5¢*"
= c lies b/w 243 & 245 take c= 243




—4

=> sl =(243) 15 +2/5(243) P = a%ys , Z a5y e

5
= 3+ (2/5)(L/81) = 3+2/405 = 3.0049

7. Find the region in which f(x) = 1-4x-x’ is increasing & the region in which it is decreasing using M.V.T.
Sol: - Given f(x) = 1-4x-x

f(x) being a polynomial function is continuous on [a,b] & differentiable on (a,b) ¥ a,b €R
.. f satisfies the conditions of L.M.V.T on every interval on the real line.

f1(x)= - 4-2x= -2(2+x)V xR

f'(x)= 0if x=-2
for x<-2, f'(x) >0 & for x>-2 , f*(x)<0
Hence f(x) is strictly increasing on (-oo, -2) & strictly decreasing on (-2,o°)
8. Using Mean value theorem prove that Tan x > x in 0<x<7/2
Sol:- Consider f(x) = Tan xin [£, x] where 0<¢ <x<m/2
Apply LM.V.T to f(x)
3 a points c such that 0< & <c<x<m/2 such that

Tan x —Tan ¢&
X=¢

2
=SecC C =—=>

Tanx -Tan & = (x - £)sec ‘¢
Take & — 0+ Othen Tan Xx = xsec 2 x
But sec’c>1.
Hence Tan x > x
9. If f(x) = 0 Through out an interval [a,b], prove using M.V.T f(x) is a constant in that interval.
Sol:- Let f(x) be function defined in [a,b] & let f}(x) = 0 V x in [a,b].
Then f'(t) is defined & continuous in [a,x] where a<x<b.
& f(t) exist in open interval (a,x).
By L.M.V.T 3 a point c in open interval (a,x) >
f(x)- f(a)

X—a

= f'(c)

But it is given that f'(c) = 0
- f(x) -f@) =0

L f(x) = f(@ Vv x

Hence f(x) is constant.

10 Using mean value theorem

STilNv>SIna(1av) > v>SQAN
—=—=00-==5 X

1+x




i) /6 + (v3/15) <sin(0.6) <w/6+ (1/6)

i)  1+x <& <1+xe* ¥ x>0

iv) o <tan®v -tan@u<

— Where 0 < u <v hence deduce
Q) w4+ (3125) < tan™(4/3) <4+ (1/6)

lll. Cauchy’s Mean Value Theorem

If f: [a,b] —R, g:[a,b] —R > (i) f,g are continuous on [a,b] (ii) f,g are differentiable on (a,b)

(iii) g*(x) = 0¥x e (a,b), then

fic) f(b)-f(a)
g'(c) g(b)-g(a)

Ja point c e (a,b)>

1. Find c of Cauchy’s mean value theorem for

1
f(x)=x & 900 ==
X

in [a,b] where O<a<b
Sol: - Clearly f, g are continuous on [a,b] = R”

1

f (x):;and gl(x):_—l
We have 2/X 2x/x which exits on (a,b)

o f, g are differenti  able on (a, b) < R *
Also g" (x)£0, V x €(a,b) c R
Conditions of Cauchy’s Mean value theorem are satisfied on (a,b) so dce(a,b) >

f(b)-f(a) f(c)
g(b)-g(a) g’(c)

1

R R S S Y Sy
o i ok T
NV R R

Since a,b >0, Vab is their geometric mean and we have a<Vab <b

ce(a,b) which verifies Cauchy’s mean value theorem.
2. Verify Cauchy’s Mean value theorem for f(x) = * & g(x) = e™in [3,7] &
find the value of c.
Sol: We are given f(x) = e* & g(x) = ™
f(x) & g(x) are continuous and derivable for all values of x.
=>f & g are continuous in [3,7]
=>f & g are derivable on (3,7)

Also g'(x) = e*#0 V x €(3,7)

Thus f & g satisfies the conditions of Cauchy’s mean value theorem.




Consequently, 3 a point ¢ €(3,7) such that

f(7)- £(3) f'(c) e —¢’ e e’ —e .
= =
9(7)-9g(3) g (c) e —e? —e

= _e7+3 — _e2c

=>2c=10
=>c=5¢€(3,7)
Hence C.M.T. is verified

Partial Differentiation

Partial differential coefficients : The Partial differential coefficient of f(x,y) with
respect to x is the ordinary differential coefficient of f(x.v) when v is regarded as a
constant. It is written as

%ur of f & or Dhf
e I e R~ Ex,y)

sl h
Again, the partial differential coefficient df/dy of f{x,y) with respect to y is the
ordinary differential coefficient of f(x,v) when x is regarded as a constant,

Thus 2F = lig JO¥ +R) Z 0 ¥)
,aj,- k=D k
Similarly, if f is a function of the n variables x;, xz,......... xn the partial differential

coefficient of f with respect to x; is the ordinary differential coefficient of f when
all the variables except x1 are regarded as constants and is written as /.

g—fanr:l aﬂ_f are also denoted by £ and fy respectively.
X ¥

The partal differential coefficients of fx and f, are .., fup, fyu fyy
or af o't a'f a'f
&xz r ax&}r [} a}?ax F a:rr-! &

respectively,

z z
It should be specially noted that Eiq;x mmm%[%] and af means i[%]

The student will be able to convince himself that in all ordinary cases
a*f _ a* f
dydx  dhdy

PROBLEMS




Example 1:If u = log {x® + y* +23- 3xyz) show that

[a 3 aJ’ g
e —— = ———ee

Solution : The given relation is
u = log(x® + yv*+ x* - Jxcyz)

Drfferentiate it w.r.t. x partally., we get

du _ 3Ix* —3yz
ox x +}'3+Z!—3:-c}"z
x
similarly E =— 3;:" ?xz
b +}r + F° _31_}1_2
du 3z® — 3nye

amd

E=x"+}r3+z}—3x}rz

. a_u+ﬂ+ﬂ_u_-3{x?+}r: + 2 —yE—=zx — xy)

Tdx oy Oz x + Yy + 2z —Bxyz
3(x* +¥? + 2% — yz — xz— xy)

"y T2~y — k- xy)

3

Mow [ o2 @V (2,28 8o _ a8 _ a8
e Er"l..r z g 3}? oz o' chy az
Ju  ou E‘u]

=3__{x+}r+z}1 Txryez) +{x+}r+z}2:|

Example 2: If u = ex¥=, show that
&u

Sehote = (1+3xyrtxIyizd) e=y:=
dxdydz

Solution : Givern u = e*¥E
= -I'__i_l.l = BNy
- W

a4 . -

= x[w x= e=vE 4+ exre]

= en¥E [(x2yzm + =)
a4t o .

dxchyde T ox femr= (xFy=tx)]

=exrE (ZxpyE+1) + yEesrE (M yEox)

= @=¥= [ZxyeE +1 + xFyiz® + xyz]

= @=¥e (1+ 3=y + x7v3=7) Hence Prowved.

Hermce




x’ ¥y z*

+ +
isu B e4u cP4u

Example 3 : If =1, prove that,
a

F] r ] 3 L
uf +u? +ud =2 (xu tyuy 4z

x"_'l‘ }I,E z?

Solution : Given =1 i fi
uhon ! az+u+bz+u+cz+u (0
where u is a function of x,v and =,

Differentiating (i) partially with respect to x, we get

(a® +u).2x —x* du (b* +'|.L:|-.'[I—1|.?lil (c* +u).0—2® ou
ax ¥ o, % _ g
{a} +u}2 Ii‘l::l-=I ----1.1_:|2 {-::2 +1.|.}1

or 2x x + y’ + z a—uz'ﬂ

a'+u [(a?+u)  (b*+u) (¢ +u) |ox

du 2x /(a® +u)
or — =

o [;: /a* +u::|E +y* /{b* + u]i +z" fc’ +u:]?j|

_ 2xja’+u

El[:n-:j ..-"{az +1.|}|3]
imilar &_“= 2].-',.."{1:'1 +u:|
5 larly d}r E[Kzf(azﬂ'uf]
du _ 2z /(c* +u)

9z 3 [ /(a® +u) |




Y I T A T R I 1 | T DA P i
L R L T e

B L e e et

!, 21 T
OF Uj +uy +u;= DO | §

3| {x /a +u) ]|

du du du
Also xu, + yuy + zu, = = "(E}+F[E]+E(E]

i 1 |:1:-:1 L2y +Ef}

E[:rf{ﬂt,m]‘] (a’+u] (b'+u) [c"+u]
2

.E :zﬂalw]:]h]._._....

From (i), (ii) {iii) and we have

uj +uy o+l = 2xuy +yuy + zu;) Hence Proved,

RN 1171

Example 4 : If u = f{r) and x = r cosf, y = r sinf i.e. 1 = x2+y2, Prove that

d*u  du 1
— e =)+~ Fr
dx’  dy’ () r (x)
Solution : Givenu = f(r)................ (i)
Differentating (i) partially w.r.t. x, we get
gu _ F'{r) ar
Ix dx
= P(r). f “o gl x4y
dr
h — =
= ax
ar  x
Ry
dx T
P ar _ ¥
Similarly Iy T

Differentiating above once again, we get




u \'I

v e
|:‘|[r 1+ xf"(r) {Er,u"ﬂ:-:]] xf'(r)(dr / ax)

1

Az

r
2 2
or th: = r_lz [rf (r) + x2£'(r) - ET f(r)] (1)
Similarly, 2;—1:.' = % [rf(r) + y2E(r) - % F(r)] (i)
Adding (ii) and (jii), we get
aul az“ - 1 P i Thpnean l:xl +]'Ir=:] I
F-b?yut—- = 2rf [r}+{:¢ +y Jf (r) -—-—}-—n-—f (r)

-|.||-t —|H|,_.

[2r £(r) + 12 £(r) - ¢ £(r)]

f(r) + f'{r), Hence proved.

Example 5: If x* y¥ 22 = ¢, show that at x = y =z,
dI

Ex'u"}-' ~(xlogex)”

Solution : Given x* y¥ z¢ = ¢, where z is a function of x and y
Taking logarithms, x logx+ ylogy + zlogz=logc (i)
Differentiating (i) partially with respect to x, we get

[:-; [1]+|[|ng t]1:|+|:z[j;] +(log z}l}g% -0

E.Iz. |:1 +log xj

" (1+logz) ()
Similarly from (i) we have
Ez___{1+1c-gy:l (i)

dy - [1 +log z]
'z _ 3oz
'u"xa:,r dxtﬁy

a8l 1+lﬂg}rﬂ
_Bx[ [1+l:::p;z | From (i)




o'z d .1
or ﬁ——{‘] +Iﬂg}r:|.a—x|:[1 +log =) :I
2 1 az]

=—(1+log }r}.l:—(l +log =) 2

#z _ (1+logy) {_[1+I:agx] . .
7 oxdy z(1+logz) | \1+logz )| "TTE )

2 1+1 ;
At x=v =z, we have &=z =— (1+ ugx}j
dxdy  x(1+logx)
Substituting = for y and =
. oz 1
ie. =—
dxdy x(1+logx)
_ 1
- x(loge +logx)
-1
xloglex)
= = {x log (ex)}?! Hence Proved.

Sloge=1

Chain rule of Partial Differentiation

Change of Variables : If u is a function of x, y and x, y are functions of t and r,
then u is called a composite function of t and r.

Let u =f(x, yv) and x = g(t, r), y = h(t, r) then the continuous first order partial
derivatives are

du_du dx, du dy

 9x At ay ot
du_du ox ou dy
dr odx dr dy or

This is called as Chain rule of Partial Differentiation.

Problems

Example 1:

Ifu=u| X—=,Z"% |show that xla—u+yzd—u+zld—“=
Xy Xz dx dy dz

b
Z
-
o]
X
k-3
L ——

Solution : Here given u = u[

=y (r, 5}

where :=uand 5=z-x

xy zx




—r=2_land s:-}-é ................ (M
Cas g =
we know that
du _du dr du ds
dx 9r 9x ds dx
_du 1] du 1 1 1
__ér_[_x_’ __:[_;1_) Txy
_or__ 1
ahx w?
__1lgdu_1du 1.1
x* dr x* ds TRz
9 __1
ax w’

du du dr du ds
Similarly — = —. — 4+ —_.—
Yoy or 3y 9s dy

=—— . from (i
3y 'y + o~ o m (i}
2 0u _du
ory et (iii)

du Jdu dr du ds

9z or 9z 0s 0z

=R —— = — e aa{iV)
Adding (i) (ii) and (iii) we get
za_“ 15’2 :_a_u=ﬂ

* A }rﬂ}r dz

Hence Proved.

Example 2:

du du E.I_u_l[‘,I

fu=ufy-z2-xx-y)Provethat ax "oy oz

Solution : Here givenu=u(y -z, z - x, x = ¥)
letX=y-z Y=z-xand Z=x-y...............{i)

Then u = u (X,¥Y,Z), where X, Y, Z are function of x,y and z.
Then




au__au ax  oud¥Y odudZ

—  ——— e — — e ———
dx dX dx  JY dx  di dx
i"l du d¥ du &Y du BZ

e e e T ii
dy 9Xay aY oy 0Zay o)
du _dudX dudY dudZ .
— e e e {1'\?}
9z 09X 0z dY 9z 97 oz
with the help of (i), equahnns (ii), (iii) and (iv) gives.
du _du,  du du  du

—= 1)+ —(l)=—4+— s
X VT ©)
du  du du du du .
a_',' ax 1+Eﬂ —{—]}I H—E S 21
and a—“_—{—n+—”(1j+—“m}:—a—"+a—“ (vii)
= X TGy e
Adding (v), (vi) and (vii) we gr:t _u_ + g_u + ?‘- 0. Hence Proved.
:r" Z

Example 3: [fzis a function of xand y and x = gv + g, y = gt - g

dz  dz dz dz
that ———=x—-y—
Prove that a0 ae o Y By

Solution : Here z is a function of x and y, where x and y are functions of u and v.
L dz _dz odx _-r]? ay
“3u dxdu oy du
dz  dz dx dz El'} ..

nd —=—.—4+—.—........... ii
dv  dx dv f:"v v (i)

Also given that
x=eu+egvandy=ev—ev

_Elx_ u ii_x.—._'” _e_}r___ =18 gi_ v
..au—e,av— e el e ,av——e
. From (i) we get

%=?j{e“j+§—:{—e'“j ................ (iii)
and from (ii) we get

dz dz IR -4 " .
P -é;(e ] d}r[ e ) ............. {iv)

Subtracting (iv) from (1ii) we get

9z _ E—{e“ +E"'} ?— e —e‘}lE

du av dy
=x ;—i -y g—; Hence Proved.
Example 4:

ItV = {(2x -y, Jy 4z 4z -Xx), compute the value of 6V, +4V, +3V,,




Solution : Here given V = {2x -3y, 3y -4z, 4z -2x)

N Y W, TN T TR, VA T . Ml S, IS PR

r CS - - F:ﬁ ......... El "‘ﬁ,"_.l
Then u = f(X, Y, Z), where X, Y, Z are function of x, v and =z.
dV gV adx JgVvdY gV arf

IhEth:E:EE-FEE*-EE ................ (if)
SV VX NN NIZ e (iif)
Yody dxXdy dY dy  dE dy

and V, —£=£i}i+a—va—Y+aE£ .................. (iv)

* dz aX odz dY dz OF d=z

with the help of (i), equations (i), (i1i) and (iv) gives
aV v av

V. o=—(2)+—(0)+ —(-2
ax{ ]'+aY'[ }+az{ )

L]

¥

; _oV. o 8V v
Now V, =20 (-3)+—5(3)+5_(0)

JdVv  av .
Vo= B ol I
== 4 . TE[ X HY} (vi)
av av oV
and l"n'r, _E{D)-‘-ﬁ{_d}-'-ﬁ{.q-}
oA avh
V=4 ——+—
or ¥ L Y 9z )
foav gV .
=3V, = IEL_E + E] . el i)

Adding (v), (vi) and (vii) we get
6Vx + 4V, +3V, =0 Answer.




Total Diff tiation

Introduction : In partial differentiation of a function of two or more variables,
only one variable varies. But in total differentiation, increments are given in all
the variables.

Total differential Coefficient : If u = f{x,y)

where x = ¢(t), and y = ¥(t) then we can find the value of u in terms of t by
substituting from the last two equations in the first equation. Hence we can
regard u as a function of the single variable t, and find the ordinary differential

coefficient d—u.
dt

Then%?—is called the total differential coefficient of u, to distinguish it from the

partial differential coefficient du and du .
dx dy

Hence
dt  dx dt  dy dt

_du_9du dx _du dy

& axarTaydr
Similarly, if u = f{x1, x2......... wp) And X1, X2..0oiiieiaann. . xn are all functons of t, we
can prove that

du _du d:-;1+au d?"iz+ +fi_u dx,
dt ox, dt  ax, de T gx,  dt

An important case : By supposing t to be the same, as x in the formula for two
variables, we get the following proposition :
When f(x.v) is a function of x and y, and y is a function of x, the total (i.e., the
ordinary) differential coefficient of f with respect to x is given by
df _of af dy
dx  dx oy dx
Now, if we have an implicit relation between x and y of the form f(x,y) = C
where C is a constant and v is a function of x, the above formula becomes
= .ﬂ + ﬂ El
dx oy dx
Which gives the important formula
dy __of of
dx  9x dy

Again, if f is a function of n variables x;, x2, x3,.......... o And Xz, X3, xq are all
functions of x;, the total (i.e. the ordinary) differential coefficient of f with respect
to x1 is given by

df of of dx, odf dx, df  dx,

=_— e ———  —— e i -+ —= —=

= . + . - .
dx, dx, dx, dx, odx; dx, de dx,

Example 1:




If u = x log xv. where x>+ v*+3xy = 1, find -:_lT_u .

L e

Solution : Givenu=xlog xy.................(1)
du du El'u dy

we know — = e (i)

dx  ax aydx """""""""""

MNow from (i) g—i=:~:_x v +logxy

=1+logxv

Again, we are given x*+y>+3xy =1, whence differentiating, we get
"Sx2+3'_-,.r2 dy + 3[ dy +}'.1)=
dx

or ¥ (X +y)

dx (¥ +x)
Substituting these values in (ii} we get
3—: =(1+logxy)+ i[—

(x* +v)

(v

2

J Answer.
+ x|

Example 2:

ff(x, y)=0,0(y,z)=0show that ~ S 5oS=-3552

. dy  [ofy [ of :
Solution : If f(x, y) =0 then —*= [ax}{ay,, ............. (i)
{ ¢
if (y, z) =0, then E La{bhg_z] ..................... (ii)

Multiplying (i) and (i |[ i), we have
dy dz _ af)“am] fﬁi][é‘.ﬂ‘?
dx dy Lax |y La dz |

af | (de\dz (@ faq}

il i L Hence Proved
ﬂr[&}r]k&zjldx [a] L | ence Trove
Example 3:

IF the curves f{x,y) =0 and 9(x, y) =0 touch, show that at the point of




Solution : For the curve f(x, y) =0, we have
dy __[3f),[8F - d_F__fa_‘F} 90
e (ax]f[ay]andforEhecurvecr{x.}f] 0, ax L 3x / 3y

Also if two curves touch each other at a point then at that point the values of
(dy/dx) for the two curves must be the same,
Hence at the point of contact

—[ﬂ]f(—‘}—f]z—[?—“’);’[a—ﬂ

ax ) | dy ax ) | 9y )
or [%J{%] - [;—i:][%] ={). Hence Proved
Example 4:

If &(x,v.z) =0 show that [%} [gf ) [%;i] = -1

Solution : The given relation defines y as a function of x and z. treating x as
constant

dy | _ d¢/oz .

The given relation defines z as a function of x and y. Treating y as constant

[az] _ 9%/ ax (i)
_— . - aﬁfaz ETTEEELE

N dx ___3"1!.-"'3}-’
Similarly, (Ez-l = __"a¢,f31 .............. (iii)

Multiplying (i), (ii) and (iii) we get

[%l [%1 [%l =—-1 Hence Proved.




Euler's Theorem on Homogeneous Functions :

Statement : If f{x,y) is a homogeneous function of x and y of degree n, then

Proof : Since f(x,v) is a homogeneous function of degree n, it can be expressed in
the form

) L L7 (i)

22 e /) = e Fy /e (L)
or x% =n x" F [{‘] - yx™! F'(%} S (ii)
Again from (i), we have

%=%:xn Fy/x)}

- xn Fiy/x).

or }'a&—; = yx™ Fy/x) (iii)

Adding (i) and (iii), we get
af

xa—x+y% =nx" Fy/x)

= nf using(i) Hence Proved.

Note. In general if £ (x), %2, xn) be a homogeneous function of degree n,
then by Euler's theorem, we have

x1£+x:£+ .............. +X ﬂ=nf

dx, ox,




2, du du
TI'u;_T_nnlr’x ry 1‘T3+mr_n_l_hn+ x'-|_+}r"-\_"-=.1

Example1: “\x+y ] o

Solution : We are given that

2 1
u= Iug(x}c:i ]

2 2
nen=X Y o feay)
K+}T

Clearly f is a homogeneous function in x and y of degree 2-1 i.e. 1

. By Euler's theorem for f, we should have
af of

_ —=f
Kax-F}‘aF
B v Dy _
ale”)+yale) e ome
ﬂrxc”?u+}re“a_u=g“
dy
or xg—:+3rg-:-=1 Hence Proved.

[ du du

Examp|e 2- Ifu:sin-i{ﬁ},showthat Kgﬂfay Etanu

Solution : Here u = sin’! x.+ Y
Jx + .y

X+y
Ry e

Here f is a homogeneous function in x and y of degree [1 - %) ie %

=s5inu=

~. By Euler’s theorem for f, we have

of of 1
x_n_ —

BX+FE=2

d d 1

— i + 17— (5] = —gf
orxax (5in u) }ray {sin u) 5 sinu
o f=sinu

urxmsu?ﬂ-i" msu§£=lsinu
Ny T2

1
or x—+y—=—tanu. Hence Proved




Example 3:

da g

Y 3 1 .
Qj’ﬂmn prove thvat XE-F}I’E:ESII'IEL‘[

If u =tan"[
e
2 z

Solution : Here tan u =2 _ = f (say)
X+

2 + z
Then for " Y_is a homo geneous function in x and y of degree 2-11.e1.
xry
.. By Euler's theorem for f, we have
of of

154‘}’@

Drk%(tﬂn u) + y%(tan u) = tanu

=1f

v f=tanu

du du
orxseciu— +vyseclu —=tanu
ax 7 3

or xgﬂ+ya—u=ﬂ=smumsu= %sirﬂu. Hence Proved

ox oy sec’u

Example 4:
If u be a homogeneous function of degree n, then prove that
du d°u
(i) Xz g +Y3—= 3y —{n—l]a—x-
2 2 2 2
(ii) x - g}r! = —1]3—; (iii) x g - +2xyi;jr+y % 1;1 =n(n-1)u

Su]utmn Since u is a homogenous function of degree n, therefore by Euler's
theorem

x—g—;l--r-yg—;:nu S
Differentiating (i) partially w.r.t. x, we get
x Ca +r3_u 1+ d'u J_u

ox* ' dxa}' ax

E:i"u *u du du

“”‘ﬁ*’"axaf“ﬁ‘a_x
d'u &
Or Xz +y == U —{ - :I-*— ----------- (2)

which prove the result (1)

MNow differentiating (i) partially w.r.t vy, we get
X du +y~a1—u-+1,a—“=n§-y-
oyox oy’ ay | 9y
L, Fu ou o
dydx ~ ay’ dy dy
F 2
ai’;x+}'§Tl:=|:n—1}a—Lf ................ (3)

Which proves the result (ii)

Or X




Mu]ﬁpf}ring {2) by x and {':'J} by v and then adding, we get

xd‘u+x du +x ou | zd‘u_{n_n'xd_u_k 9,1.‘1.."
ax* }'axay }Fayax Y gy { dix }r&_-,.r}
d'u d’u 9 u
2 2 =y =(n-1
or x FwE + 2xy axdy ¥ 3y’ (n—=1) nu

which proves the result (ii1). Hence Proved

Example 5:
If u(x,y.z) = log (tan x + tan y + tan z) Prove that
sin2x Su + sin 2y du + sin Zza—u =2
o ay dz
Solution : we hawve
ulxy.z)=log(tan x + tany + tan =).............o. (i)
Differentiating (i) w.r.t. 'x' partially, we get
du sec” x ..
——  —— e A mEASbS EdE P EEEEEEE E {II}
dx f@manx+tany +t@anz
Differentiating (i) w.r.t. 'y' partally we get
a sec”
Ll Y . (iii)

Jy tanx+tany+tanz
Apgain differentiating (i) w.r.t 'z’ partally we get
Ju sec’ z
3z tanx+tany +tanz
Multiplying (ii), (iii) and (iv) by sin 2x, sin 2y and sin 2z respectively and adding
them, we get

. N N .
sin 2x 2% + sin2y S% + sin2z 91 - SiM2x sec x4+ sinZy sec y +sin2z sec’ 2
ax H’j,r dz tanx+tany + tan z

_ 2sinx cosx.sec” x + 2siny cos y.sec’ y + 2sinz cosz.sec” z
- tfanx +tany +tanz

~ 2{tanx+tany +tan z)

- tanx+tany + tanz

=2

=5 L-"ri.l"t.'.'?.:vcil'l +5in 2y ou +5in 2z gﬂ = 2. Hence Proved
ox dy dz

** Maximum & Minimum for function of a single Variable:

To find the Maxima & Minima of f(x) we use the following procedure.
() Find f(x) and equate it to zero

(i) Solve the above equation we get Xo,X; as roots.

(iii)  Then find f(x).

If 1 (X)(x = x0) > 0, then f(x) is minimum at xo

If fll(x)(X =x0),< 0, f(x) is maximum at Xo. Similarly we do this for other stationary points.

PROBLEMS:




1. Find the max & min of the function f(x) = x* -3x* +5 (08 S-1)

Sol: Given f(x) = x* -3x* + 5
fi(x) = 5x* — 12x°

for maxima or minima  f*(x) =0

5x'—12x*=0
x =0, x=12/5
f1(x) = 20 x* - 36 X*
At x=0=> f(x)=0. So fis neither maximum nor minimum at x = 0

At x=(12/5) => f(x) =20 (12/5)° — 36(12/5)
=144(48-36) /25 =1728/25>0
So f(x) is minimum at x = 12/5
The minimum value is f (12/5) = (12/5)° -3(12/5)* + 5

** Maxima & Minima for functions of two Variables:

Working procedure:

1. Find g and ? Equate each to zero. Solve these equations for x & y we get the pair of
values (az, bl) (az,b2) (a3 ,b3) cooveviniininiil.

. o f a%f
2. Findi=—— m- ,N=
oX 0 X oy oy

3. i Ifin-m?>>0and 1 <0at (ay,by)then f(x,y) is maximum at (as,b;) and maximum
value is f(az,b;)
ii. If in-m”>0and | >0at (ayb;)thenf(x,y)is minimum at (a;,b;) and minimum value is

f(al,bl) .

iii. Ifin-m”<0andat (a;, bl) then f(x, y) is neither maximum nor minimum at (az, by). In

this case (az, bl) is saddle point.
iv. Ifin-m’=0andat (a;, by), no conclusion can be drawn about maximum or minimum

and needs further investigation. Similarly we do this for other stationary points.

PROBLEMS:




1. Locate the stationary points & examine their nature of the following functions.

2.

u=x*+y*-2x% +4xy -2y*, (x>0, y > 0)
Sol: Given u(x ,y) = x* + y* -2x% +4xy -2y?

. .. ou
For maxima & minima — =0, M=o

00X oy
oA Ay =0 o XX Y0 e > (1)
§=4y3+4x-4y=0:>y3+x—y=0 ------------------- > (2)
Adding (1) & (2),
X +y* =0
= X T Y oo > (3)

(1) = X-2X= x=o0,+2, -2
Hence (3) ~ y=0, 2, 2

2 ou
1= 2% =12%4,m=

X oX0oYy
In—m?=(12x*—4)(12y* - 4) -16
At (—+2, V2),In—m®=(24—4)(24-4) -16 =(20) (20)—16 > 0and I=20>0

2
o'u

_ 8,8\ _ _
=2(2) =4&n=—

=12y* -4

(o)}

The function has minimum value at (— v2, +2)
At (0,0), In—m? = (0-4)(0-4)-16 =0
(0,0) is not a extreme value.

Investigate the maxima & minima, if any, of the function f(x) = x*y? (1-x-y).

Sol: Given f(x) = X%y (1-xy) =Xy Xy - Xy
g = 3x4y? — A3y -3y ? = 2%y — 2x%y -3%y?

For maxima & minima g =0and ? =0
2 Y —ACY -3y = 0 => XYA(3 — 4X -3y) = 0 —-mmememeeeeee > (1)
2 2%y -2xYy 3% = 0 => XPy(2-2X-3y) =0 oo > (2)
From (1) & (2) 4x+3y-3=0
2Xx+3y-2=0

2x=1 =>x=%

4(%)+3y-3=0 =>3y=3-2,y=(1/3)




3.

| = % = 6xy*-12X%y* -6xy°
OX

{5 fJ(m 13y = 6(1/2)(1/3)? -12 (1/2)*(1/3)? -6(1/2)(1/3)° = 1/3 — 1/3 -1/9 = -1/9
oX

i
m=" :i[i] = 6x%y -8 X%y — Ox%y?
oXoy oy

[52; J w2 a3y = 6(1/2)%(1/3) -8 (1/2)3(1/3) -9(1/2)*(1/3)° E ::—3
Xoy -

: = 2x° -2x* -6x%y

1

[5 f} w2am = 2(1/2)° -2(1/2)" -6(1/2)(L/3) = -1 = = -
oy P s

1
g

In- m? =(-1/9)(-1/8) —(-1/12) =~ - X =271 =1 sgandl= —t<o

T2 1la2 12 1la2 9

The function has a maximum value at (1/2, 1/3)

- Maximum value is f(l IW—QXH( —Li(i——\—
L2 3) (8 9l 2 3) 12 2 3) 42

Find three positive numbers whose sum is 100 and whose product is maximum.
Sol: Let x,y ,z be three +ve numbers.
Then x+y+z=100
= z=100-x-Yy
Let f (x,y) = xyz =xy(100 — x — y) =100xy —x°y-xy?
a5

For maxima or minima 2£ =0 and Pl 0

Bx

% =100y —2xy-y* =0 =>y(100- 2X —y) =0 ------m-mmmmmmn- > (1)

j = 100X —X° -2Xy = 0 => X(100 —X -2y) = 0 --==----enmmmeeeev > (2)

From (1) & (2)
100 -2x-y =0
200 -2x -4y =0

100 +3y =0 =>3y=100 => y=100/3
100 -x—(200/3) =0  => x =100/3

|:a : =-2y

oX
(A%f )
L 5 J (10073, T0U/3 ) = - 20073
o0X




m — o' f = a(af\—ﬂ\ﬂ_’)y_’)y

oxay  ox| oy )

[‘3 ! ] (100/3, 100/3 ) = 100 —(200/3) —(200/3) = -(100/3)
OXoy

% f
n=— =-2X
oy

["’ f J (100/3 , 100/3 ) = - 200/3
oy

In -m? = (-200/3) (-200/3) - (-100/3)*> = (100)? /3
The function has a maximum value at (100/3, 100/3)

e atx=100/3,y=100/3 .. z =100- 20 100 100

3 3 3
The required numbers are x = 100/3, y = 100/3, z = 100/3

4. Find the maxima & minima of the function f(x) = 2(x* —y%) —x* +y*
Sol: Given f(x) = 20 —y?) —x* +y* = 2x% —2y? —x* +y*

- R - L':._,"‘-
For maxma&mmma% =0and -~ =

-

3{:4X-4X3:0 :>4X(1-X2):O =>x=0,x=%1

R
ér

93

=-dy+4y’=0 =>-dy(1-y")=0 =>y=0,y=+1

| = [a fj = 4-12%
oX

2
m= o 1 = ofat) =0
oxoy ox | ay

n= [“ ]:-4+12y2
oy
we have In— m? = (4-12x%)( -4 +12y* ) - 0
= -16 +48x% +48y” -144x%y*
= 48x% +48y” -144x%y* -16
i) At(0,+1)
In-m?=0+48-0-16=32>0
1=4-0=4>0
f has minimum value at (0, £1)
f(x,y) =20 -y") X" +y*
f(0,£1)=0-2-0+1=-1

The minimum value is ‘-1 °.

i) At(£1,0)

lnmf=4840.0.16-32>0




1=4-12=-8<0

f has maximum value at (+1,0)
f(x.y) =20 ) x* +y*
f(x1,0)=2-0-1+0=1
The maximum value is ‘1 °.
iii) At (0,0),(x1,+1)

In-m?<0

| =4-12x°
(0,0) & (£1,x1) aresaddle points.

f has no max & min valuesat (0,0),(x1,+1).

*Extremum : A function which have a maximum or minimum or both is called

‘extremum’

*Extreme value :- The maximum value or minimum value or both of a function is

Extreme value.

*Stationary points: - To get stationary points we solve the equations £ =0 and

Bx
? = 0 i.e the pairs (a, b1), (82, b2) ..vvvveeeeeen. are called
Stationary.

*Maxima & Minima for a function with constant condition :Lagranges Method

Suppose f(x ,y, z) =0 ------------ (1)
D(x,y,2)=0--mmmrmmmmee )
F(x,y,z)=f(x,y,z)+v @(x,Yy,z) wherey is called Lagrange’s constant.
1. o0 =52 45822 3)
ox A -k
oF _ _Gf 8o _5
E_O _>E +y .;"_-.-_0 4)
OF _n _3F L .,80_(
— =0 =>= +y_-=0 (5)

2. Solving the equations (2) (3) (4) & (5) we get the stationary point (X, y, 2).

3. Substitute the value of x, y, z in equation (1) we get the extremum.




Problem:

1. Find the minimum value of x* +y? +7°, given x +y + z=3a (08 S-2)
Sol: u = X* +y* +7°

@d=x+y+z-3a=0

Using Lagrange’s function
F(x,y,z)=u(X,y,2)+y @(Xx,y,2)
For maxima or minima

u am _ —
- — = + - e 2X + = O ____________ (1)
oF _E:': ar L':'D: = () cmmmmm———e
oy T ay Y =R 2y + 0 @)
OF _ou . a6 _ N o
- _E+‘,E_Zz+‘,_0 (3)

From (1), (2) & (3)

y =-2X=-2y =-22
x=y=z
D=x+x+x-3a=0x=a
x=y=z=a

Minimum value of u = a® + a® + a°> =3 a°




MODULE-III
HIGHER ORDER LINEAR
DIFFERENTIAL EQUATIONS AND
THEIR APPLICATIONS




LINEAR DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER ORDER

o - dﬂ}. d-ﬂ—l_,}, dﬂ—zy
Definition: An equation of the form axn P1(X) - dn-17 Pa(X) - g2 T +
Pn(X) .y = Q(X) Where P1(x), P2(x), P3(x)... .....Pa(X) and Q(x) (functions of x) continuous is called

a linear differential equation of order n.
LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

di’t}, dn_l_'}' d'n—zj'.
Def: An equation of the form ot P . -1 P, . gon—2 + Py .y = Q(X) where Py, Py,

Ps.....Pn, are real constants and Q(x) is a continuous function of x is called an linear differential

equation of order ‘ n’ with constant coefficients.

Note:
d ’ dz ) dﬂ
1. OperatorD—dx ;D Tl S D'=""n
? it
dy , d7y n _d_}
Dy—dx DY Dly=""

2. Operator%Q = f @ ie D'Q is called the integral of Q.

To find the general solution of f(D).y =0:
Where f(D) = D" + P; D™ + P, D"? #--ceemeeev +Py, is a polynomial in D.

Now consider the auxiliary equation : f(m) =0

ief(m = m"+P m™ +Pym"? oo +P, =0

where p1,p2,P3..cevevvennnn.. pn are real constants.

Let the roots of f(m) =0 be my, my, ms......m,.

Depending on the nature of the roots we write the complementary function

as follows:




Consider the following table

S.No Roots of A.E f(m) =0 Complementary function(C.F)
1. my, My, ..M, are real and distinct. | ye = c1€™+ coe ™2 +.. .+ c g™
2. my, My, ..mj, are and two roots are

equal i.e., my, m, are equal and Ye = (C1+Cox)e™*+ c3e™* +.. .+ ce™”

real(i.e repeated twice) &the rest
are real and different.

3. my, my, ..M, are real and three Yo = (Cr+Cox+Cax?)e™* + cie™*+. . + cpe™”
roots are equal i.e., m3, mp , mz are
equal and real(i.e repeated thrice)
&the rest are real and different.

4, Two roots Of A.E are Complex Say yc = E‘E{"T (Cl COS'BX + CzSIﬂS X)+ C3€m3x +.. .+ Cnemnx
@+ifS & -iff and rest are real and
distinct.

5. If &+ifS are repeated twice & rest |y = €™ [(c1+cox)cosfF x + (Catcax) sinfF x)]+ cse™s”
are real and distinct +...4 cpe™

6. | If a+if5 are repeated thrice & rest |y, = @™ [(ci+cox+ cax?)cosfx + (Catesx+ Cox?) sinf3
are real and distinct X)]+ ce™ +.. L + cpe™

7. If roots of A.E. irrational say y, = e™[c,cosh \[Ax+c,sinh [px]+ce™ +. ... +ce™
a + 4/ and rest are real and
distinct.

Solve the following Differential equations :

d*y _d
1. Solve—-3
dxs

é +2y=0
Sol: Given equation is of the form f(D).y = 0
Where f(D) = (D*-3D +2)y =0
Now consider the auxiliary equation f(m) =0
f(m=m*-3m+2=0 = (m-1)(m-1)(m+2)=0
- m=1,1,2
Since my and m, are equal and mg is -2
We have Y. = (Ci+Cox)e* + cae™
2. Solve (D*-2D*-3D? +4D +4)y =0
Sol: Given f(D) = (D*-2D%-3D? +4D +4)y=0
= A.equation f(m)=(m*-2m*-3m? +4m+4)=0
= (m+1)’M-2)>=0
= m=-1,-1,2,2




=y = (C1+CoX)e™ +(Ca+cax)e>

3. Solve (D* +8D*+16)y=0
Sol: Given f(D) = (D* +8D? + 16) y =0
Auxiliary equation f(m) = (m*+8 m? + 16) =0
= (m’+4)*=0
= (m+2i)? (m+2i)?> =0
=2 m=2i,2i,-2i, -2i

Ye = €% [(ci+Cx)cos2X + (Ca+Cax) sin2x)]

4. Solve y*'+6y'+9y =0 ; y(0) = -4, y'(0) = 14
Sol:  Given equation is y"'+6y'+9y = 0
Auxiliary equationf(D) y=0 = (D?+6D +9)y=0
A.equation f(m) =0 = (m? +6m +9) =0
= m=-3,-3
Yo = (Cr+CoX)e™ -rmmmmrmommenenanes > (1)
Differentiate of (1) w.rtox = y*=(ci+cox)(-3e%) + co(e™)
Giveny; (0)=14 = ¢ =-4&¢C,=2
Hence we get y =(-4 + 2x) (&)

111 + 4y11 +y1 =0

111

5. Solve 4y
Sol: Given equation is 4y + 4y +y* = 0
That is (4D*+4D?+D)y=0
Auxiliary equation f(m) =0

4m* +4mf + m=0

m(4m? +4m+ 1) =0

m2m + 1)% =0

m=0,-1/2 ,-1/2

y =Ci+ (Ca+ CaX) €7
6. Solve (D*-3D +4)y =0

Sol: Given equation (D? - 3D +4) y =0
AE. f(m) =0
m*-3m+4=0
34+9-16 3407
m= =

) )
&S &S

atip= = —

-
L

~

H+

2

N

E?{' '.,'=." . '.,'=."
y = e2" (C1C0ST X+ C2SINTX)
General solution of f(D) v = O(x)

Isgiven by y =yc+ Y,




i.e.y=C.F+P.l
Where the P.I consists of no arbitrary constants and P.1 of f (D) y = Q(x)

Is evaluated as P.I = ; . Q%)
f (D)

Depending on the type of function of Q(X).
P.I'is evaluated as follows:
1. P.1 of f (D) y = Q(x) where Q(x) =e® for (a) # 0

ax 1 ax

1 1
Casel: P'I_H'Q(X)_fr - = e

(D] f(a)
Provided f(a) # 0
Case 2: If f(a) = 0 then the above method fails. Then

if f(D) = (D-a)* O(D)
(i.e ©a’is arepeated root k times).
Then P.I = Ci e™ | .{i x provided @ (a) # 0
na) o
2. P.I of f(D) y =Q(x) where Q(x) = sin ax or Q(x) = cos ax where ¢ a ¢ is constant then P.I =
1
o Q).

sin ax

Case 1: In f(D) put D? = - a*> 3 f(-a%) # 0 then P.I1 = o]
—a

Case 2: If f(-a%) =0 then D? + a% is a factor of (D) and hence it is a factor of f(D). Then let
f(D) = (D? + a°) .®(D?).

sin ax sin ax 1 sin ax 1 — X CO0S ax

Then = 2 2 2. 2 2 2 2
f(D) (D’+a’)®(D’) ®(-a’)D’+a’ @(-a’) 2a

cos ax Cos ax 1 Cos ax 1 X sin ax

(D) (D’+a)®(D’) @(-a))D’+a’ o(-a’) 2a

3. P.1for f(D) y = Q(x) where Q(x) = x* where k is a positive integer f(D) can be express as
(D) =[1+ O(D)]
oY _n+O(DN
Express f(D) 1+0(D) 1+ (D)1
1
1+0(D) Q).

=[1£0(D)]* X

4. P.1of f(D)y = Q(x) when Q(x) =e™ V where ‘a’is a constant and V is function of x.

Hence P.l =

where V =sin ax or cos ax or x*
1
Then P.1 _f—Dl Q(X)

=™V
fo]

:eax[ 1

(V)]

finaenh
P Iy




& V is evaluated depending on V.

f{D+a)
5. P.loff(D) y = Q(x) when Q(x) =x V where V is a function of x.
1
Then P.l = E Q(X)

:; XV
f @

R | 1
=[x fu:n:ef(D)]fu:D:sV

6. i. P.l1. of f(D)y=Q(x) where Q(x)=x"v where v is a function of x.

1
ThenP.l. = x Q(X) = x"v = 1.P.of x" (cos ax +isin ax)
f(D) f(D) f(D)
= 1.P.of x"e™
f(D)
ii. P.I. = x" cos ax = R.P.of x"e™

f(D) f(D)
Formulae

1 éz(l_D)_l:1+D+D2+D3+ --------------

2. == =(1+D)'=1-D +D?-D®# ccememmemeeeeen

1+D
1

—=(1-D)?=1+2D + 3D% + 4D® + ~=-mrrrmrmmmmemeev
(1-D)?

3.

=(1+D)?*=1-2D + 3D% - 4D° + —---mmmmeeeeeeee-

[1+D)2
1

—=(1-D)*=1+3D + 6D° + 10D + -
(1-p)*?

=(1+D)%=1-3D+6D*- 10D° + -----------m -

o

(1+D)®
HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS:
Find the Particular integral of f(D) y = e** when f(a) #0

Solve the D.E (D? + 5D +6) y = €*

Solve y"+4y'+4y = 4% ;y(0)=-1,y'(0)=3

Solve y™ + 4y' +4y= 4cosx+3sinx , y(0) =1, y*(0) =0
Solve (D*+9) y = cos3x

Solve y* + 2yt -yt 2y = 1-4%°

Solve the D.E (D*- 7 D? + 14D - 8) y = € cos2x

Solve the D.E (D*- 4 D?*-D + 4) y = e¥* cos2x

Solve (D? - 4D +4) y =x%sinx + e + 3

© 0 N o g B~ w NP




d%v

10. Apply the method of variation parameters to solve — + v = cosecx

ax
11. Solve%:3x+2y,%+5x+3y:0
12. Solve (D? + D - 3) y =x%™*
13. Solve (D?- D -2) y=3e** y(0)=0,y" (0)=-2
SOLUTIONS:
1) Particular integral of f(D) y = e™ when f(a) #0
Working rule:
Case (i):
In f(D), put D=a and Particular integral will be calculated.

—o e¥¥=—— ™ provided f(a) #0

Particular integral=
Case (i) :
If f(a)= 0, then above method fails. Now proceed as below.
If f(D)= (D-2)P(D)
i.e. ‘@’ is a repeated root k times, then

-
QG..

Particular integral= };— provided ¢ (a) #0

$(a)
2. Solve the Differential equation(D?+5D+6)y=¢*
Sol : Given equation is (D*+5D+6)y=e"
Here Q( x) =e”*
Auxiliary equation is f(m) = m*+5m+6=0
m+3m+2m+6=0
m(m+3)+2(m+3)=0
m=-2 or m=-3

The roots are real and distinct

CF=y=ce®+c, e™

Particular Integral = y,=——. Q(x)
1 1
=—————¢e =—"""—""¢
D2+35D+6 (D+2)(D+3}

PutD=1inf(D)




1
Particular Integral = y,= F €

e

General solution is y=y+y,

-
ot

y=Cle_2X+C2 e-3x + -
=

3) Solve y*-4y'+3y=4e* y(0) = -1, y}(0) = 3
Sol : Given equation is y'*-4y'+3y=4e*
d%v

i.e s +3y=4e>¥
i.e. —— - 4— +3y=
d x2 dx y

it can be expressed as

D?y-4Dy+3y=4e*

(D*-4D+3)y=4e*"

Here Q(x)=4e*; f(D)= D?-4D+3
Auxiliary equation is f(m)=m®-4m+3 = 0
m2-3m-m+3 =0

m(m-3) -1(m-3)=0=>m=3 or 1

The roots are real and distinct.

C.F= ye=cie¥+ce* ----> (2)

1
P.l.= Yp= E . Q(X)

1

=——  4e¥
DE_4p+3’

=¥

1

P —— 4e>
(D—1}{D-3)

Put D=3

3x 3x 1

4 e X",
(3-1)(D -3) ;(D—s)zzze

de

X

Yo

General solution is y=yc+Yy,
y:C183X+C2 2% e >3

Equation (3) differentiating with respect to x’

y'=3cie¥+ce+2e¥ 466 cmmeee > (4)
By data, y(0) = -1, y*(0)=3
From (3), -1=C1#+C;  =m=mmmmmmmmmmemmeen > (5)
From (4), 3=3ci+C,+2

TV x 0 = A —

Solving (5) and (6) we get c;=1 and ¢, = -2




(4). Solve y*'+4y*+4y= 4cosx + 3sinx, y(0) = 0, y*(0) = 0

Sol: Given differential equation in operator form

(;D'2 + 4D + 4)y=4cosx +3sinx
A.Eism*+4m+4 =0

(m+2)°=0 then m=-2, -2

Y CFisye= (6 +cx)€

doosx+3sinx =
Plis=y=—"—7T""—"—"" utDL=-1
Ye (D2 +4D +4) P

drosx+3sine (4D -3} 4cosx+3siny)

Yo© T ap +3) | (aD-3)(4D +3)

(4D -3 4cosx+3sinx)
16D% -9

put D= =21

(4D -3 4cosx+3sinx)

*

pqyp:

—-16-5
—16sinx+12cosx—12cosx—9s5inx) _35sinx
= — =————=sinx
—&d —25
“+General equationisy =y.+y,
N R o A T 11 S — (1)
By given data, y(0) = 0*c; = 0 and
Diff (1) w.r..t. y = (e + x)(—2) 87" + 87 () +cosx —ememeenen (2)
given y'(0) =0
(2) = -2¢; + C,+1=0 iy =-1
"“Required solution isy = —X€ ~" +sinx

5. Solve (D*+9)y = cos3x
Sol:Given equation is (D*+9)y = cos3x

A.Eism*+9=0




Ve = C.F = ¢; cos3x+ ¢,5in3x

cos3x cos3x

=p.| = =

& D2+ DZ+332
X . X o

=—-sin3x = ~sin3x
2(3) 6

General equation isy = y+ vy,
X

Y = €1€0583X + C,C0S3X + g sin3x

6. Solve y'''+2y'! - yi-2y= 1-4x°

Sol:Given equation can be written as

(D? +2D*—D —2)y-14¢
akis(m®+2m*P—m—2)-=0
(m* — 1)m+2)=0

m? =1 0r m=2
m=1,-1,-2

C.F=c,& * g CZE_I + 8

1
Pl=""3 —ax’
D3+202-p-2) 0 )
-1
= ———5——— (1-4x")
2[1_|\D EDE DI] (
2
-1 (D3+2D?-D) ,_
:?[1— —2 ] 1(174x3)

—1  (D®+2D?-D) (D?*+2D0?-D)* (D3*+2D%-D)?

=7 [1+ 5 + 1 + 3 +o] (1-4ax?)
:;1r1+£(D3+2D2—D)+£(D2—4D3)+£(—D3)W(1—4x3)
2L 2 4 8 J

==11-2(D*)+2(D?)-5 0] (1-4%)




—1 3 3 1 y)
:T[(1-4.r3)-g(—24):(—24.&;)-:(-12.\: )
-1 3 2
=—[-4x7+6x" -30x +16] =
= [2x*-3x* +15x -8]
The general solution is
y=C.F+P.
X —X —Ix 3 4.2
y=c€7 +cE T +cf + [2x°-3x” +15x -8]

7. Solve (DE —7D?+ 14D -8)y=E" cos2x

Given equation is
(D®—7D?*+ 14D -8)y = €™ cos2x
akis(m® —7m? 4+ 14m—8)-o
(m-1) (m-2)(m-4)=0
Thenm=1,2,4
C.F=c & Ty CZEEI + C3E‘41-

e¥cos2x
" (D3-7D2414D -8)

P.l

1
"(D+1)3-7(D+1)2+14(D+1)-

g Cos2x

. .COS2X
(D3—4DZ43D)

v 1
' (—4D+3D+16 )

.cos2x (Replacing D? with -2%)

1

. T .COS2X
(16-D

v 16+D
"(16-D )(164D)

.COS2X

16+D

- Sce_p2? .COS2X
Lal—




y 164D

=8 . ————-.cos2x
256—(—4)

E.k'
— (16c0s2x — 2sin2x)
260

X

= ——(8cos 2x —sin 2x)
260

X

e
= ——(8cos 2x —sin 2x)
130

General solutionisy =y, + Yy,

X
4x

X 2x e .
y=ce +ce +ce’ +——(8cos 2x —sin 2x)
130
8. Solve (Dz - ‘51-'[] +4)y = _1,;2 S'EI'HI _|_ EEJ{ +3
Sol:Given (Dz — 4D +4)y = _1,;2 sinx + sz +3
AEis(M* —4m+4)=0
(m-— 2)2 =0 then m=2,2

C.F. = (c; + cx)=*

xZsinx+ &% +3 1 a . o
P.l= = XT5Iinx )+ et + 3
(D—-2)% (D-277 ( ) (D—27)7 (D—Ejz( )
Now x2sinx) = v2 1pofe™®
|:D—2:I2 { ) |:.l'_,-|—2:|2 { ) ( )
1P of — (x2) (e™)
C (D=2

_1pof (87), — 2 (x?)

(D+i—2)7

On simplification, we get

2 . 1
(x° sinx)= =< [(220x+244)cosx+(40x+33)sinx]
<

(D+i—272
1 = .76.'2 2
and g<¥)=— (%),
I’D—ZF( ) 2( )
1 3
3)=>
(D—Z]z( ) :
2% oy 3
P.I = —— [(220x+244)cosx+(40x+33)sinx] + — (& )+7
& =

Y=Yt VYp




1 x2

Hk.
v=(ci+X)ET +

[FygsT i

a3
[(220x+244) cosx+(40x+33)sinx] + — (&%) +-

Variation of Parameters :

Working Rule :
. . d’ d
1. Reduce the given equation of the formd—f+ P(x)dl+ Q(x)y =R
X X
2. Find C.F.
3. Take P.I. y,=Au+Bv where A= _ J%am B - j&xl
uv —vu uv —vu

4. Write the G.S. of the given equation y = y_+ vy,

dZy

~ +Y = cosecx

9. Apply the method of variation of parameters to solve i

Sol: Given equation in the operator form is (JD'2 + l)j’ = CO5ECK-mmm- (1)
AEis(m*+1)=0
~m = £i

The roots are complex conjugate numbers.

* . .
*+ C.F. is yc=C1€0SX + Cp5inX

Let y, = Acosx + Bsinx be P.I. of (1)

dr d 2. i @ e
U -y =C0S X+ Sin“X =1

X dx

A and B are given by

A= VR pstnwceseex o gy
uv —vu 1
=% [cosx.cosecx dx = [ cotx dx = log(sinx)
uv —vu

z Yp= -XCOsX +sinx. log(sinx)

*+ General solution is y = yc+ Yo-

Y = C1C0SX + C,Sinx-xcosx +sinx. log(sinx)
10. solve (4 D% — 4D +1)y = 100
sol:AEis (4m* —4m+ 1) =0

(2'?’?’1— 1)2 = (thenm =

[
[ -

w

C.F=(c+ox) gz




100 100 g% 100
" (402-4D+1) (2D-1)2 " {0-1)2 "

P.l 100

Hence the general solution is y = C.F +P.|

w

y= (c1+cyx) £z + 100

Applications of Differential Equations:

11. The differential equation satisfying a beam uniformly loaded ( w kg/meter) with one end fixed and the

second end subjected to tensile force p is given by

dz_'l,' 1 2
El E =py--wik

W

d -
Show that the elastic curve for the beam with conditions y=0= d—L at x=0 is given by y = .
X n2p

2
WX 2
where 1= =—

D
(1-coshnx) + —
=

2p

Sol:The given differential equation can be written as

d?v p - -
xg-E_Iy—ZEIH.‘L (or)
LY 2y T2
sz Y= A (o)
2 —W 5
(D =N =" X5 (1)
L0l

The auxiliary equationis (1™ — N7)=0=>m=nand m=-n

. nx —-nx
CF=y.=c.€  +c,€

1 T
P.l== =
(D%—n?) (EEI :I
v ( 1 _2)
2Ef ~ (n2-D7)
W 1 a
2B N (2 2;] X7)
|71 I\l—_szI
II-II-. II‘_F-IE bl
= 1 - _1...!'.,{-
2EI.nE ( 1:2:]
W Dz bl
- (I+=+ ————— ). x2




- )

n<

[ ]
Iy
i

*+ The general solution of equation (1) is given by y= C.F + P.|

.

X —hx
y=c€ 7+ t o
Y

2 2
(X +]1—2)
12. A condenser of capacity ‘C’ discharged through an inductance L and resistance R in series and the charge q
d?
at time t satisfies the equation Ld_ +R d—+ +2 = 0. Given that L=0. 25H, R = 2500hms, c=2 * 10 ~ °farads, and
r C

d
that when t =0, change q is 0.002 coulombs and the current d—f =0, obtain the value of ‘q’ in terms of t.

Sol:
Given differential equation is

d®q q ¢ g de q
" R—+—=Oor +2+——+—=0 ------------- (1)
dt dt ¢ at dt  |C

L

Substituting the given values in (1), we get

2
d°9 250 dg q 0
- + — <+ ___= or
dt? 0.25df 0.23=2=107°

d2g a 6
p 2+1ooo—+2 10°g=0 or
(D?+1000D+ 2 +10%)q=0
s AEis> + 1000m+ 2 =10°=0
" e -1000 ++10°-8x10° 1000 +1000 ~7i
2 2
=-500 T 1323i
o —-500t .
Thus the solution is g= £ (c1c051323t+c,sin1323t)
When t=0, q=0.002 since c;= 0.002
dq -500 t - —-500 t .
Now — = -500 e " '(c, cos 1323 t + c, sin 1323 t)+ e x 1323 (- ¢, sin 1323 t + ¢, cos 1323 t)
dt
d
When t = 0,i =0
dt

There fore ¢c,=0.0008




—-500 t (

Hence the required solutionis q = e 0.002 cos 1323 t+ 0.0008 sin 1323 t)

13. A particle is executing S.H.M, with amplitude 5 meters and time 4 seconds. Find the time required by the
particle in passing between points which are at distances 4 and 2 meters from the Centre of force and are on
the same side of it.

a2 x "
Sol:  The equation of S.H.M is E == " Xemeeomeneeeee (1)

-
F

Give time period = =4
i

-
We have the solution of (1) is x=acos [t
a=5, ,H=;z

X = 508 — Eoremmermee (2)

Let the times when the particle is at distances of 4 meters and 2 meters from the centre of motion

respectively be t; sec and t; sec

Fl

. 2 _q 4
" t=—C08S ! (g) since [4= 5cos(Z T1)]

v |

and t, = E cos™ (=) since [2= 5cos(~ [3)]
4L = &
time required in passing through these points
2 -1(2 —104
tyty=—[€08 ™ [ < |- cos T (=)] = 0.33sec
L o =

differentiating (2) w.r.to ‘t’

dx —5m T

= sin— T
at 2 2
_
-5 | x2
= [1— —
2 *\| 23

ax -1 = =
Z-—4/25 —x?

at 2

When x=4 metersv = :‘—L *-.,"' 52— 42-47 m/sec

When x=2 meters v=_" *'q"l 21 m/sec




14. A body weighing 10kgs is hung from a spring. A pull of 20kgs will stretch the spring to 10cms. The body is
pulled down to 20cms below the static equilibrium position and then released. Find the displacement of the

body from its equilibrium position at time t seconds the maximum velocity and the period of oscillation.

Sol:Let O be the fixed end and A be the other end of the spring. Since load of 20kg attached to A stretches the

spring by 0.1m.

Let e(AB) be the elongation produced by the mass ‘m’ hanging in equilibrium.

If ’k’ be the restoring force per unit stretch of the spring due to elasticity, then for the equilibrium at B
Mg =T =ke
20=To=k *0.1

K = 200kg/m

Let B be the equilibrium position when 10kg weight is

10
10=Te=k * AB=>AB = =0.05m
200

Now the weight is pulled down to ¢, where BC=0.2. After any time t of its release from c, let the weight be at

p, where BP=x.
Then the tension T = k *AP

=200(0.05+x) = 10 + 200x

' The equation of motion of the body is

w dx )
— =w-T where g =9.8m/sec
g dt®
10 dx
T 5.8dt2

=10-(10+200x)

d2x
d t2

= = - 17X where ut = 14

This shows that the motion of the body in simple harmonic about B as centre and the period of oscillation =

N
Fy

— 0.45sec
i

Also the amplitude of motion being B C=0.2m, the displacement of the body from B at time t is given by x =

0.2cosect




X =0.2cosect = 0.2cos14t m.

Maximum velocity = I (amplitude) = 14 * 0.2 = 2.8m/sec




MODULE -1V
Multiple Integrals




Multiple Integrals

Double Integral :

l. When y1,y» are functions of x and x, and X, are constants. f(x,y)is first integrated w.r.ty

keeping ‘x’ fixed between limits y1,Y» and then the resulting expression is integrated w.r.t ‘x’ with in
the limits x¢,x, i.e.,

X=X, y=6,(x)

J’J‘ (x,y)dxdy = J' J' f(x,y)dydx

X=X y=4,(x)
1. When x1,X; are functions of y and y; Y, are constants, f(x,y)is first integrated w.r.t ‘x’
keeping ‘y’ fixed, with in the limits x1,X and then resulting expression is integrated w.r.t ‘y’
between the limits yy,y- i.e.,

y=Y, x=¢,(y)

” (x,y)dxdy = J' J' f(x,y)dx dy

y=Y; x=¢,(y)

I, When X3,X2, y1,Y> are all constants. Then

X2 Y2

J’J‘ (x,y)dxdy = j j Xydxdy:J Jf(x,y)dydx
Problems
1. Evaluate nyzdx dy
2 3 W
Sol. J‘ J‘xy dx |dy
1 \_1 _J

2. Evaluate [[ydydx
2 2 [ x i
Sol. J' J’ydydx-J’lLJ‘ydy|dx




5 x°

3. EvaluateHx(x2+y2)dxdy
00
Sol.
s LT
f Ix(x2+y2)dydx=I Xy + — dx
x=0 y=0 x:O\; 3 Jyzo
T, x(x)] rLox) Ik 1 x*T 50 s
:j X7 X+ dx:j|x+—|dx: — - — == +—
OL 3 J 2ol 3 ) Le 3 sJO 6 24
s dydx
4. Evaluate | | —
y o ltx +y
1 e 1 rﬁ 1
Sol: [ [ —2% (1] gy ldx
CoL lexTy XZO\\y:O (1+x")+y” J

1 ‘(uxz 1 —: 1 1 I y 1 1 1
= dy |dx = \Tan’1 \ dx [ j—dx:—tan’l(x )]
| [ ‘ | 2 2 x*+a’ a a
x:oLy:o(l+X2)+y J w0 N1+ X \_ 1+X_J
y=0
1
1
= Tan™1-Tan'0]dx or “(sinh *x), = = (sinh 1)
x=0 1+ x° 4
1
1 1
=£J' dx:—[log(x+ X +1)}
4 o1+ x’ x=0
=£Iog(1+ \/2_)
4

5. Evaluate Hey’*dydx
oo Answer: 3e*-7
1

6. Evaluate [ [ (x* + y")dxdy

0 x

Answer: 3/35

2 x

. Evaluate ”e“*”dydx
00

4 2
e —¢€

2

Ans:

21
8. Evaluate J'_[xzyzdxdy

0 -1

3
Ans: Z—
36

o o

Y. BEvaluate jje" 7 dxdy

00




00 I_O
W
.
&
= At -
© B e
:J'e’yz—”dy J'exzdx:£
0 2 0 2
R
:—Ie dy = — —= —
2 1 2 2 4
Alter
o f(xz+y2) _ ; : —r? . 2 2 2
J'J'e dxdy = I ‘[e rdrd @ (o x“+y =r1)
00 0=0r=0

(changing to polar coordinates takingx = rcos@,y = rsin 9 )
AFE”ZT” A|—O—1—|
= J.‘—| do = IL_Jdg
-2

o 72, 0

1 3 1
=;(9)OA=;(%—°)
T

10. Evaluate ” xy(x + y)dxdy over the region R bounded by y=x* and y=x

Sol: y=x" is a parabola through (0, 0) symmetric about y-axis y=x is a straight line through (0,0) with slopel.

Let us find their points of intersection solving y=x", y=x we get x’ =x = x=0,1Hence y=0, 1
- The point of intersection of the curves are (0,0), (1,1)

Consider ” xy (x + y)dxdy

For the evaluation of the integral, we first integrate w.r.t “y’ from y=x* to y=x and then w.r.t. x’ from x=0 to x=1

I:ZOU::XZ xy (x+y)dy }dx = I:ZOU::XQ(XZy+ xyz)dy }dx




v (5xt x® X"
:I | — = —— |
ol 6 2 3

5 7

1
(5 x X x )

\6 5 14 24

1 1 28-12-7 28-19

1 3
6

9
14 24 168 168 168 56

11. Evaluate ” xydxdy where R is the region bounded by x-axis and x=2a and the curve x*=4ay.

R

Sol. The line x=2a and the parabola x’=4ay intersect at B(2a,a)

~The given integral = ” xy dx dy
R

Let us fix ‘y’

For a fixed ‘y’, x varies from 2./ay to 2a. Theny varies from 0 to a.

Hence the given integral can also be written as

a x=2a a " x=2a ~|
Iy:OJx:Z - xy dx dy = .[y:o ij:zﬁ XdXJydy

2a
a [ x?]
= J‘y:o L?J ydy
x:Z\/;
I -
(23,3
¥ =dny
O L
¥=2a

1
12. Evaluate J’ _[ rsin@dodr
0
0

[ 7 1

Sol. Ilor HHsin Hdejdr

% dr
=0

1
= J'rzor(— cose)e

= J’lo—r(cos%—coso)dr

:Il —r(O—l)dr:Ilrdr:(r—} :i—O:£
r=0 0 k2)0 2 2




13. Evaluate ”(xz +y° )dx dy in the positive quadrant

‘\\‘ 9]
Y
|
\
l \. &
For 1 Sy
<1 ‘ N
Which XY = ‘ Y
Sol ” X +y )dxdy:.[x:odxj'yo (x +y )dy \ f ®)
. 3\17x
:J' |x2y+y—| dx
xfok 3 }0
1
1 1 [x® x* ]
:J' (xz—x3+—(l—x)3\dx: —————(l—x)4
ool 3 ) {3 4 12 JO
1 1 1
= - -0+—==
3 4 12 6

2 2
14. Evaluate ”(x2 +y”)dxdy over the area bounded by the ellipse X—2+ y_z =1
a b

2 2
. . . X
Sol. Given ellipse is —+ _yz =1
b

N
N
N

(o

:L(a - X )(or) —(az—xz)
a

9.\

Hence the region of integration R can be expressed as

b 2 2
—a<x<a—a—x s—a—x

2 2 ﬁ
”(x +y )dxdy:jx__a-[% /Ja_zx(x +y )dxdy

R

a V\éazfxz a 3 % az_xz
:2'f J'a (x2+y2)dxdy:2.[ [x2y+y/]
x=—a ¢ y=0 -a 3

:ZJ' 2/'\/a - X +—a—x2)%}dx
_4J‘ar/ 2Ja® - x’ +— a —xz)%}dx

0

Changing to polar coordinates




putting x = asin @

dx = acos@dde

X . . —lX
—=38infd = € =sin —
a a

x—> 0,6 > 0

T
X—> a0 —-»> —
2

/[ b® 1
=4 % b/ a’sin6.acosd + —.a’cos’ @ |acos0do
|72 e
0

3a
Al ab’ ] [ 11 7 ab® 31 x|
:4_[4 a’bsin®6cos’9+ —cos*o|do=4ja’h— = —y —. = = —
0 L 3 J L 42 2 3 42 2J
[ = 1 7]
| 2 n-1 n-3 PR
|-.-J'sinm9cos"0d0: ————— 2 2|
| o m+n m+n-2 m |
L J
4 rab
:—(a3b+ab ): (a2+b2)
16 4

Double integrals in polar co-ordinates:

asing rdrd @

0 2 2
a —-r

1. Evaluate jo%j

7, L asing drd @ ”4( asing ] ”4[ asin @ -2 ]
Sol. IO/J rer -[o/i-[ ;zer;dez—%Io/ij —rdr}de

0 [ 2 0 [ 2 0 [ 2 2
a —r a —r a - -r J

e - (—1)[0%2[\/::12 —a’sin’0 —\al —o]de

-1 % 2 2
:—'[0 2( a‘—r )

2

0

o/ A

=(—a)'|'0 “(coso -1)d6 = (-a)(sind - 0)
- (-a)[[sin %_%}_(o_o)}

[ /1 s 1
R VA AR Vb A

0

.4 asiné@ azﬂ
2. Evaluate j I rdrdo Ans: ——

0o Jo 4
3. Evaluate | fée”zr dodr Ans: =

0o Jo 4

7 a(l+cosd) 3 2
4. Evaluate || rdrdo Ans: 2%2

0 0




Change of order of Integration:

1. Change the order of Integration and evaluate J“ sz:/ dy dx
X=0y="/1a

2

Sol. In the given integral for a fixed x, y varies from X 1o 2+/ax and then x varies from 0 to 4a. Let us draw
4a

2

X
the curves y = =— and y = 2+/ax
4a

Afda,da)

k

he region of integration is the shaded region in diagram.

The given integral is = I I 7 dy dx
x=0dy=X /1,

2

Changing the order of integration, we must fix y first, for a fixed y, x varies from Y 1o «/4ay and then y varies
4a

from O to 4a.

Hence the integral is equal to

[RTE TR MR Y

- I::[x]iffé dy = j::[z\/g_ yé}dy




2. Change the order of integration and evaluate - j: IVE( x*+y*)dxdy

X
Sol. In the given integral for a fixed x, y varies from Xto . f— and then x varies from 0 to a
a a

X X
Hence we shall draw the curves y = — and y = ,[—

a a

F
L J

i.e. ay=x and ay’=x
2

we get ay = ay

= ay—ayz =0

=ay(l-y)=0

= y=0,y=1

If y=0, x=0if y=1, x=a

The shaded region is the region of integration. The given integral is Ia J'y:\/Z( xZ+y’ Jdx dy
x=04+y

%

Changing the order of integration, we must fix y first. For a fixed y, x varies from ay” to ay and then y varies
from 0 to 1.

Hence the given integral, after change of the order of integration becomes

ay

J:ZO‘[X:”Z(XZ +y? Jdx dy

= J'::OLI:;YZ(XZ + yz)dx}dy




1 2-x
3. Change the order of integration in J J‘ xydxdy and hence evaluate the double integral.

0 x?
Sol.In the given integral for a fixed x,y varies from x* to 2-x and then x varies from 0 to 1. Hence we shall draw
the curves y=x* and y=2-x
The line y=2-x passes through (0,2), (2,0
Solving y=x> ,y=2-x
y=x*

Then we get x* =2 - x

= X +x-2=0
= X +2X-%x-2=0
= x(x+2)-1(x+2)=0

= (x-1)(x+2)=0

= x=1-2
If x=1y=1
If x=-2,y=4

Hence the points of intersection of the curves are  (-2,4) (1,1)
The Shaded region in the diagram is the region of intersection.

Changing the order of integration, we must fix y, for the region with in OACO for a fixed y, x varies from

Oto\/;

Then y varies from 0 to 1

For the region within CABC, for a fixed vy, x varies from 0 to 2-y ,then y varies from 1 to 2

Hence I:.[z;xxydydx: J’J‘ xy dx dy + ” xy dx dy

OACO CABC

= I:_Oi—jx\ixdx—i ydy + J.Y;U::X dx}y dy




28 151 1 1f72-112+45] 1 1151 3
" s 4] e 2| 12 |76 2[12] 24 24 8
4. Changing the order of integration J‘: J'XZ;X xy “dy dx

. . N 7)(2
5. Change of the order of integration jlj ' y “dx dy Ans:—
0+J0 16

Hint : Now limitsarey = 0toland x = 0to «/1— y?

puty =siné

»\[l— y2 = co0séd

dy = cosé@dé@
1 2 2
= [ yiNL-yidy

:Io%sinzecoszedazj'” %

Asinzede—j ’sin‘o0do
0 0

AR E LA R

(0 4

~
N

L

¥

F

Change of variables:

The variables x,y in J'J' f (x,y)dxdy arechanged to u,v with the help of the relations x = f (u,v),y = f,(u,v)
R

then the double integral is transferred into

[ 1 [ f(uv), f, (u,v)] Mdudv

6(u,v)

Where R'is the region in the uv plane, corresponding to the region R in the xy-plane.




Changing from Cartesian to polar co-ordinates

X=rcosfd,y=rsiné

OX OX
((x,y)) lor og| [|cos@ ~-rsing
0 = =
L(r,e)J oy oy sin @ rcosé@
or 06
= r(cosz¢9+sin20): ro. ”f(x,y)dxdy:” f(rcos@,rsin@)rdr do

R R,
Note : In polar form dx dy is replaced by r dr d @
Problems:

2+y2)

1. Evaluate the integral by changing to polar co-ordinates J'% J'% et dx dy
0 0

Sol.The limits of x and y are both from 0 to « .

. The region is in the first quadrant where r varies from 0 to « and ¢ varies from O to %

Substituting x =rcos@,y =rsind and dxdy =rdrd@

x2+y2) /

Hence J‘: J';ei( dx dy = ‘[:0 J';e’rzr drde

Putr® =t

= 2rdr = dt

=dV
= rdr >

Wherer=0=t=0and r=owo =t=w

2 f j:e'(xzwz)dx dy = I:_/zj:ée*dtde

_;JO%(O_l)de = %(9)%— %%: A

2. Evaluate the integral by changing to polar co-ordinates J‘aj n (x2 +y’ )dx dy
0 Jo

- x=qa’ ~y
Sol.The limits for x are x=0 to

2 2 2
> X +y =a

. The given region is the first quadrant of the circle.
By changing to polar co-ordinates

X=rcosé,y=rsind,dxdy =rdrd@

Here ‘r’ varies from O to a and '¢ 'varies from 0 to %

a
4 4
7 2 ,7 ,/
a a - a T
rr Y 2 /2 ¢ 2 rz(r\. a 4

v ardy— rdTde— =
Tl ( Aok A PR I )

La ), 4




Vi 4
= a
7A

3, ShOWthatJ‘Mj'yyy%xdy:Saz{ﬂ__J
0 4a X + Y

2
Sol. The region of integration is given by x = yé ,x =y andy=0, y=4a

Iy
v

ye=d4ax

i.e., The region is bounded by the parabola y°=4ax and the straight line x=y.

Let x=rcosé,y=rsinf.Thendxdy =rdrd@

The limits for r are r=0 at O and for P on the parabola

s . 2 4acosé@
r'sin" ¢ =4a(rcosf)= r=———
sin” @

For the line y=x, slope m=1i.e., Tand =1,0 = %

L T -
ThellmltsforH.Ae A

Also x* - y? = rz(cosze—sinze)and xX“+yi=r’

2 2 K3 acos
g ey =g cos 0 -sin” a)rarao
4a X + Y =T 0r=

IT/ ( 2\43(:05%”20
=I 2 (cosze—sin29)|r—| de
" L2,
:8azj%(cosze—sin20)ud9:Bazj%(COSAH—cotZG)dG:8a2|—3”_8+£—11:8a2(1—i\
A sin® 9 A |12 a4 | Lz 3J

Triple integrals:
If x1,X, are constants. y,y, are functions of x and z4,z, are functions of x and y, then f(x,y,z) is first integrated
w.r.t. ‘2’ between the limits z; and z, keeping x and y fixed. The resulting expression is integrated w.r.t ‘y’

between the limits y; and y, keeping x constant. The resulting expression is integrated w.r.t. ‘x’ from x; to x,




y=92(x) 2=t (xy)
J' f(x,y,z)dz dy dx
x=a Jy=g,(x) z=f,(x.y)

=J’” f(x,y,z)dxdydz = J'b

Problems

- x% -

1. Evaluate J'ljﬁj' : xyz dx dy dz
0J0 0

Sol. J:OI;AOTI o xyz dx dy dz

z=0

: oyt
=—[ x (1-x")—-— dx
2 Jxeo L 2 4J
0
1-x°
l 1 |—y2 XZyZ y4—|
=—[ x|/~ -— dx
2 -0 Lz 2 4J0

2. Evaluate ﬁlj: j:fzz(x+ y + z)dx dy dz

Sol : IJ’I(x+y+y)dxdydz
J‘lj'zl—[ YV ]X+Z—}d d
= Xy + +zy xdz
-t OL 2 X*ZJ
1 Tx+z] [x-z71

:J:lj'ox(x+z)—x(x—z)+t

J _L J +z(x+1z)-z(x—-2z)dxdz

1 z|—

1 1
= JJJO LZZ(X +17)+ Z4X2de dz




2 277
1

[ x x? 1
ZJ'{z? 2°x + 2 7J dz:Z.J:{—+z +
Definition of an double Integral

Just as we can take partial derivative by considering only one of the variables a true
variable and holding the rest of the variables constant, we can take a "partial integral”. We
indicate which the true variable is by writing "dx", "dy", etc. Also as with partial
derivatives, we can take two "partial integrals" taking one variable at a time. In practice,
we will either take x first then y or y first then x. We call this an iterated integral or

a double integral.

Let f(x,y) be a function of two variables defined on a region R bounded below and above
by

y = 6i(X) and y = 9a(X)
and to the left and right by
X = a and X =D

then the double integral (or iterated integral) of f(X,y) over R is defined by

b &0 b | &
[[feyydvete = [ | flaey)dyes = [| [ flx)dy
2 2 g(x) 2 | g0

Example 1

Find the double integral of f(x,y) = 6x°+ 2y over R where R is the region
betweeny = x*andy = 4.

Solution

First we have that the inside limits of integration are x> and 4. The region is bounded from
the left by x = -2 and from the right by x = 2 as indicated by the picture below.

\ 17

We now integrate




i I 6 +2y dvdx = i[6x2y+y2:|1 dx
X

?{i -2 ;r;'2

2 7 2
= [2422 +16)- (6x* +2*) dx = [87.3+16x—?x5—‘ = 1024
Example 2

Find the double integral of f(x,y) = 3y over the triangle with vertices (-1,1), (0,0),
and (1,1).

Solution

If we try to integrate with respect y first, we will have to cut the region into two pieces and perform
two iterated integrals. Instead we integrate with respect to x first. The region is bounded on the left
and the right by x = -y and x = y. The lowest the region getsisy = 0 and the highest

is y = 1. The integral is

iy

1 1
I TB_}? drdy = I[Bxy] v
o -y

0 -¥
1
=!5y3dy = [2°].= 2

Example 3

Evaluate the integral
1 3

_[ Iexi dady

o Iy

Solution

2
Try as you may, you will not find an antiderivative of ¢ " and we don't want to get into power series
expansions. We have another choice. The picture below shows the region.

4.
3_
¥ 29
1 x =23y (/
T*”Er 12 3 4
14 ¥




We can switch the order of integration. The region is bounded above and below by y = 1/3
x and y = 0. The double integral with respect to y first and then with respect to x is

¥

I e dvdx
i

[ ——

The integrand is just a constant with respect to y so we get

xi3

3
dr = _I-Eexidx
03

This integral can be performed with simple u-substitution.
u=x* du= 2xdx

and the integral becomes

Area and Double Integrals

If a region R is bounded below by y = gi(x) and above by y = gx(x),and a < x < b,
then the area is given by

b &3 ()
Area = I j dydx
4 g 1(35)

Set up the double integral that gives the area between y = x* and y = x°. Thenuse a
computer or calculator to evaluate this integral.

Example

Solution

The picture below shows the region

We set up the integral

(53

ildy.:ix
i




A computer gives the answer of 1/12.

Calculation of Volumes Using Triple Integrals

17 vz = [ [ [, £ (5.2 vt

Example 1 Evaluate the following integral.
J'J‘ Sxyzdl
B

B=[2,3]x[1,2]x[0.1]

Solution
Just to make the point that order doesn’t matter let’s use a different order from that listed above. We’ll do the
integral in the following order.

- 2

[z ] soedeasas

-2

B -3 5
= ) dxyz L dx dy

'1 L

-2

= .; dxy dx dy

'1 L

_422x2 |3d
= | 2"y dy

i 2

= 10vdy =15

Example 1 Evaluate jijde where E is the region that lies below the plane z = x+ 2
above the xy-plane and between the cylinders =* +»* =landx* +)* =4,

Solution
There really isn’t too much to do with this one other than do the conversions and then
evaluate the integral.

We’ll start out by getting the range for z in terms of cylindrical coordinates.
Dfzxx+2 = Oz rosf+ 2
Remember that we are above the xy-plane and so we are above the plane z=0

Next, the region D is the region between the two circles =* +»* =1and z* +»* = 4 in the xy-
plane and so the ranges for it are,

0=FL2r 1=r=2

Here is the integral.




IIIde: -I-uﬂz.l-lz.l-nrl:l:-s F+d l[r sin Q)rd‘z drdd
¥
= _I-h_l-zr2 g1 5'[!" Cos -5'+2)c1’rd5‘

2ap2]
__[ _[ —r s1n 25‘ +2r sinBdr 48

dx
= J [ér“ sitl [25‘) +§r3 si11 5][ g8
0

iz

=j Esin[EHj Esiné‘dé‘
0 8 3

I

= (_ﬁ cos[EE)—? cosé?]
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MODULE-V
VECTOR CALCULUS




Vector Calculus and Vector Operators

INTRODUCTION

In this chapter, vector differential calculus is considered, which extends the basic concepts of
differential calculus, such as, continuity and differentiability to vector functions in a simple and natural way.
Also, the new concepts of gradient, divergence and curl are introduced.

DIFFERENTIATION OF A VECTOR FUNCTION

Let S be a set of real numbers. Corresponding to each scalar t € S, let there be associated a unique

vector f . Then f is said to be a vector (vector valued) function. S is called the domain of f . We write f

= f (1)

Let i, j, k be three mutually perpendicular unit vectors in three dimensional space. We can write
f = f_(t)= fl(t)i_+ f,(t) i+ f3(t)k_ , Where fi(t), f5(t), f5(t) are real valued functions (which are called

components of f ). (we shall assume that i, k are constant vectors).

1. Derivative:
f(t) - f(a)

t—a

Let f be a vector function on an interval / and a € /. Then Lt —a , if exists, is called

_ - df -
the derivative of f ataandisdenoted by f '(a)or [d_] att=a. We alsosay that f isdifferentiable att
t

=aif f_l(a) exists.

2. Higher order derivatives

S : : -, df - - NOREE :
Let f be differentiable on an interval / and f ‘= — be the derivative of f . If Lt TOZT @) yists

dt t—a

. g1 dPf

foreverya €/, 1 . Itisdenoted by f ''= —
dt

Similarly we can define f '*!

(t) etc.

We now state some properties of differentiable functions (without proof)

(1) Derivative of a constant vectoris a .

If a and b are differentiable vector functions, then

d _ — da db
(2 —(@+b)=—x —

dt dt  dt

d _— da — _db
(3). —(@b)=—wb +2.—

dt dt dt

d _ a _d
(4).—(axb):—a><b+ax
d dt




(5). If f is a differentiable vector function and ¢ is a scalar differential function, then
d - df d¢ -
—(pf)=¢—+—f
dt dt dt

(6). If f= fl(t)i_+ f,(t) i+ f,(t) k where fa(t), f>(t), f(t) are cartesian components of the vector

- df  df - df - df. —
f,then — = —2ji+ —2j+ 2k
dt  dt dt dt

_ o, - .. df —
(7). The necessary and sufficient condition for f (t) to be constant vector functionis — = 0.
dt

3. Partial Derivatives
Partial differentiation for vector valued functions can be introduced as was done in the case of

functions of real variables. Let f be a vector function of scalar variables p, g, t. Then we write f = f

(p,q,t). Treating t as a variable and p,q as constants, we define

f(p,q,t+6t)— f(p,q,t1)

Lt st—>0 5t

. . . . - . of
if exists, as partial derivative of f w.r.t. tandis denote by —
ot

of of
Similarly, we can define — , — also. The following are some useful results on partial
op 29

differentiation.

4. Properties

o _  o¢ oa
1) —(ga)=—a+¢—
ot ot
. o _ da
2). If Nis a constant, then —(1a) = 1 —
ot ot
_ o _ _o¢
3).If ¢ isaconstant vector, then — (¢c) = ¢ —
ot t
o _ — oa ab
4). —(a+tb)=—+ —
ot t ot
o _— oa— _ab
5. —(@b)=—b +a.—
ot ot ot

o _ - oa — _ 0
6). —(axb)=—xb +ax—
ot ot ot

7). Let f= fli_+ f, j_+ f, k , Where f;, f5, fsare differential scalar functions of more than one variable,

of -of -of —of
Then — =i —4+ j—%+k
ot ot ot ot

5. Higher order partial derivatives

3

(treating i, j, k as fixed directions)

2

- 0%t o (of) 8%t o (of
let f = f (pgt).Then ——=—| — | — —=——| — |elCc.

ot>  at\ at ) apat ap | ot




6.Scalar and vector point functions: Consider a region in three dimensional space. To each point p(x,y,z),
suppose we associate a unique real number (called scalar) say ¢. This ¢(x,y,z) is called a scalar point

function. Scalar point function defined on the region. Similarly if to each point p(x,y,z)we associate a unique

vector f (x,y,2), f is called a vector point function.
Examples:

For example take a heated solid. At each point p(x,y,z)of the solid, there will be temperature
T(x,y,2). This T is a scalar point function.

Suppose a particle (or a very small insect) is tracing a path in space. When it occupies a position
p(x,y,z) in space, it will be having some speed, say, v. This speedyv is a scalar point function.

Consider a particle moving in space. At each point P on its path, the particle will be having a velocity

v which is vector point function. Similarly, the acceleration of the particle is also a vector point function.
In a magnetic field, at any point P(x,y,z) there will be a magnetic force f_(x,y,z). This is called

magnetic force field. This is also an example of a vector point function.

7. Tangent vector to a curve in space.
Consider an interval [a,b].
Let x = x(t),y=y(t),z=z(t)be continuous and derivable for a<t <b.
Then the set of all points (x(t),y(t),z(t)) is called a curve in a space.
Let A = (x(a),y(a),z(a)) and B = (x(b),y(b),z(b)). These A,B are called the end points of the curve. If A =B, the
curve in said to be a closed curve.
Let P and Q be two neighbouring points on the curve.

Let OF = 7(t), 00 = #(t + 6t) = 7 + 87.Then 67 = 00 — OP = PQ

st — — P
Then 2L is along the vector PQ. As Q->P, PQ and hence Fe tends to be along the tangent to the
St St

curve at P.

srdr . _odr .
Hence 1t — = — will be a tangent vector to the curve at P. (This — may not be a unit vector)
sto0 St dt dt

Suppose arc length AP = s. If we take the parameter as the arc length parameter, we can observe

dr . .
that — is unit tangent vector at P to the curve.
ds

VECTOR DIFFERENTIAL OPERATOR

Def. The vector differential operator V(read as del) is defined as

-0 -0 — 0 . . .
V=i —+ j— + k — . This operator possesses properties analogous to those of ordinary vectors as well as
ox oy o0z

differentiation operator. We will define now some quantities known as “gradient”, “divergence” and “curl”




involving this operator V. We must note that this operator has no meaning by itself unless it operates on

some function suitably.

GRADIENT OF A SCALAR POINT FUNCTION
Let d(x,y,z) be a scalar point function of position defined in some region of space. Then the vector

op -0¢ ~—0¢

function i —+ j— + k — is known as the gradient of ¢ or V¢
oX oy oz
-0 -0 -9 -9 -9 — 9
Vo= (i e ]2k Ly=722, 72, 2
ox oy 0z oX oy oz
Properties:

(1) If fand g are two scalar functions then grad(f +g)= grad f + grad g

(2) The necessary and sufficient condition for a scalar point function to be constant is that Vf = 0

(3) grad(fg) = f(grad g)+g(grad f)
(4) If cis a constant, grad (cf) = c(grad f)

(5) grad [L] _g(grad f)- f(grad g)

2 (g #0)
9 9

(6) Let r = Xi+ y}+ zk. Then dr = dx i+ dy }+ d k if ¢ is any scalar point function, then

o0¢ o¢ o¢ -0  -0® —-0® [ - - -
dg¢g = —dx + —dy + —dz =|i—+ j—+ k — .(IdX + jdy + kdz): vodr
ox oy oz oX oy oz
DIRECTIONAL DERIVATIVE

Let ¢(x,y,z) be a scalar function defined throughout some region of space. Let this function have a value ¢ at

a point P whose position vector referred to the origin O is OP = r . Let ¢+Ad be the value of the function

at neighboring point Q. If 0J =+ + Ar . Let Ar be the length of A7
A
AT

A
TT as Ar — 0 is called the derivative of ¢ in the direction of PQ or simply directional derivative of ¢ at P

gives a measure of the rate at which ¢ change when we move from P to Q. The limiting value of

and is denoted by d¢/dr.

Theorem 1: The directional derivative of a scalar point function ¢ at a point P(x,y,z) in the direction of a unit
vectore is equal to . grad (|>:g . Vé.

Level Surface

If a surface ¢(x,y,z)= c be drawn through any point P( r ), such that at each point on it, function has the same

value as at P, then such a surface is called a level surface of the function ¢ through P.

e.g. : equipotential or isothermal surface.




Theorem 2: V¢ at any point is a vector normal to the level surface ¢(x,y,z)=c through that point, where cis

a constant.

The physical interpretation of V¢

The gradient of a scalar function ¢(x,y,z) at a point P(x,y,z) is a vector along the normal to the level

surface ¢(x,y,z) = c at P and is in increasing direction. Its magnitude is equal to the greatest rate of increase

of ¢. Greatest value of directional derivative of o ata point P = |grad ¢| at that point.

SOLVED PROBLEMS
1: If a=x+y+z, b= x’+y*+2%, ¢ = Xy+yz+zx, prove that [grad a, grad b, grad c] = 0.

Sol:- Given a=x+y+z

oa oa oa
There fore —=1, —=1,—=1
ox oy 0z
-o0a - - -
Grada=Va=Yi—=i+j+k
OX
Given b= x’+y*+7°
ob ob ob
Therefore— = 2x, —=2y,— = 2z
oX oy 0z
-ob  -ob _ab - -
Gradb=Vb=|—+J—+Z—:2)(|+2yj+22k

oxX oy oz

Again ¢ = xy+yz+zx

oc oc oc
Therefore— =y +2, —=z+X,—=Yy + X

oxX oy 0z

-0c -0c _oc - - —
Gradc=i—+ j—+z—=(y+2)i +(z+Xx) ]+ (x+ y)k

OoX oy z

1 1 1

[grada, grad b, gradc] = [2x 2y 2z |=0,(on simplifica tion )

Y+Z Z+XX+Yy

[grad a, grad b, grad c] =0

f(r)

r

2: Show that V[f(r)] = r where r = xi + yj + 7K .

Sol:-Since F = xi + yj + zk , we have r’= x2+y?+2?
Differentiating w.r.t. ‘X’ partially, we get
or _x or 'y or z

or
2r—=2x = — = —Similarly —=—, —=—
ox oxX r oy r o0z r

VIf(r)] PN TR THOE
= — + — + — = — = -
v ox Jay 0z Z oX Z r




1 p—
Note : From the above result, V(logr) = —r
r

3: Prove that V(r")= nr"?r .

Sol:- Let = xi + yj + zk andr= |F| . Then we have r* = x’+y’+2° Differentiating w.r.t. x partially, we have

or or X . or y or z
2r—=2x=> — = —Similarly =-—=—and —=—
oxX oxX r oy r oz r

n -0 n - .10 - . - NP
V()= i—(@")=>inr 1—r:ZInr Xy 2Z|x:nr 2(r)
OX X r

Note : From the above result, we can have

(l\ r : ro
(1). V| = |= - —, takingn=-1(2) gradr= —, takingn =1
Lr) r r

4: Find the directional derivative of f = xy+yz+zx in the direction of vector i + 2 j + 2k at the point (1,2,0).
Sol:- Given f = xy+yz+zx.
of  _of

Gradf=i —+ j—+z
oX oy

of - - "
—=(y+2)i+(z+x)]+(x+ Yk
z

If e is the unit vector in the direction of the vector i + 2 j_ + 2k , then
i +2 J_ + 2k_ -

1 _ _
— = T (i + 2]+ 2K)
V12 4+ 22 4272 3

Directional derivative of f along the given direction = &. Vf

e =

%(;Jr 2]+ 2[)[(y + z)i-+ (z + x)]+ (x + y;)]at (1,2,0)

1 10
=3 [((v+z)+2(z+x) +2(x +v)](1,2,0) = 5

5: Find the directional derivative of the function xy’+yz>+zx* along the tangent to the curve x =t, y =t>, z =t
at the point (1,1,1).
Sol: - Here f = xy*+yz*+zx*

_of  -—of —of - -

Vfzi—+ j—+k —= (y2 +2xz)i+(zz+2xy)j+(x2+2yz)E
ox oy oz

At(1,1,1), Vf=3i +3]+3k

Let r be the position vector of any point on the curve x =t, y = t*, z= t*. Then

r =xi_+yj_+zk_:ti_+t2j_+t

k

3

or - - - - - =
— =i+ 2tj+3t’k = (i +2j+3k)at(1,1,1)
ot

or .
We know that — is the vector along the tangent to the curve.
ot

- i-+23+3E i_+2}+3E

Unit vector along the tangent =¢ e — =
N1+ 2% 4+3° V14

Directional derivative along the tangent= V f e

= /17 (i_+217+3k_) .?:(i_ﬁL j_+ k_) %(1+2+3):

YV I T




6: Find the directional derivative of the function f = x*-y*+22” at the point P =(1,2,3) in the direction of the

line PQ where Q= (5,0,4).

Sol:- The position vectors of P and Q with respect to the originare OP =i + 2] + 3k and

0Q =5i+ 4k

PQ=0Q —0P =4i-2j+k

_ — _ 4i-2j+k
Let e be the unit vector in the direction of PQ .Then e = ?
21

-of - of — Of - - —
gradf=i—+ j—+ k — = 2xi - 2yj+ 4zk
ox oy oz

The directional derivative of f atP (1,2,3) in the direction of E =e.Vf

1 - - = - - - 1 1
=——(4i-2j+k).(2xi —2yj+4zk) —(8x + 4y + 412) = ——(28)

/21 \/E at (1,2,3) \/Z

7: Find the greatest value of the directional derivative of the function f = xzyz3 at(2,1,-1).
Sol: we have
-of - of — of - - — _ _ _
gradf=i—+ j—+k —=2xyz i+ x°z2°j+3x°yz°k =—4i-4j+12k at(2,1,-1).
oX oy oz

Greatest value of the directional derivative of f = |Vf | =16 +16 + 144 = 411 .

8: Find the directional derivative of xyz’+xz at (1, 1,1) in a direction of the normal to the surface 3xy*+y=z
at(0,1,1).
Sol:- Let f(x, y, z) = 3xy’+y-z=0

Let us find the unit normal e to this surface at (0,1,1). Then

of , of of

—=3y", —=6xy +1,—=-1.
00X oy 0z

Vf = 3yPi+(6xy+1)j-k
(V1,1 =3i+j-k=n
nooBi+j-k 3i+j-k

\/9+l+l_ \/H

Let g(x,y,z) = Xyz>+xz,then

o9 2 a9 2 09
—=yz + 7, — =Xt ,—=2Xy+x

ox oy oz
Vg=(yz+z)i+x2’j+(2xyz+x)k

And [Vg] (1,1,1) = 2i+j+3k

Directional derivative of the given function in the direction of ¢ at(1,1,1) = Vg.e
3i+J'—k]_6+1—3 4

Vi NNy

=(2i+j+3k). {




9: Find the directional derivative of 2xy+z” at (1,-1,3) in the directionof i + 2 + 3k .

of of of
Sol: Let f=2xy+z’then — = 2y, — = 2x,— = 21.

ox oy 0z

_of - - - - -
grad f=>"i—=2yi + 2xj+ 2zk and (grad f)at(1,-1,3)= — 2i + 2 j + 6k
OX

given vectoris a =i + 2]7+3k_:>|5|=\/1+4+ =\/E

Directional derivative of f in the direction of a is

avi (i+2j+3k)(~2i+2j+6k). —-2+4+18 20

Al vy T s

10: Find the directional derivative of ¢ = xzyz+4xz2 at (1,-2,-1) in the direction 2i-j-2k.
Sol:- Given ¢ = xX’yz+4xz’
o¢ , 09

— = 2Xyz +4zz, — =X 7,—= x2y+8xz.
oX oy 0z

~0 _ _ _
Hence V¢ = z i —¢:i(2xyz +4zz)+ szz+ k(x2y+8xz)
ox

V¢ at (1,-2,-1) = i(4+4)+j(-1)+k(-2-8)= 8i-j-10k.
The unit vector in the direction 2i-j-2k is
2i— j-2k. 1
—m = g(Zl— j—2k)
Required directional derivative along the given direction = V¢. a’
= (8i-j-10k). 1/3 (2i-j-2k)
=1/3(16+1+20) = 37/3.
11: If the temperature at any point in space is given by t = xy+yz+zx, find the direction in which temperature

a =

changes most rapidly with distance from the point (1,1,1) and determine the maximum rate of change.

Sol:- The greatest rate of increase of t at any point is given in magnitude and direction by Vt.

_—6 76 _6
WehaveVt=|i —+ j—+ Kk — [(Xy + yz + X)
oX oy 0z

Si(y+2)+ j(z+x)+ k_(x+ y)=2i +2j+ 2k_at(1,1,1)
Magnitude of this vector is V22 + 2% + 27 =12 = 2+/3

Hence at the point (1,1,1) the temperature changes most rapidly in the direction given by the

vector 2i + 2+ 2 k and greatest rate of increase = 2+/3

12: Findthe directional derivative of ¢(x,y,z) = x’yz+4xz” at the point (1,-2,-1) in the direction of the normal

to the surface f(x,y,z) = x log z-y* at (-1,2,1).




Sol:- Given ¢(x,y,z) = X’yz+4xz” at (1,-2,-1) and f(x,y,z) = x log z-y* at (-1,2,1)

Now V= LiT 07, 20y

oX oy az

= (2xyz + 422)i_+ (xzz)JT+ (xzy + 8xz)k_

(VO)a 2= [20)(-2)(-1) + 4(=1)*Ji + (1) (~1) j1+ [(1°)(-2) + 8(-1)]k — — — —(1)
=8i - j-10k
. 5. \Ai
Unit normal to the surfacef(x,y,z)=x log z- y“ is m
\%
Now Vf=j £+ j_i+ k_i— log zi + (- 2y)J+—k
X oy oz z

- - -1 - - —
At(-1,2,1), Vf= log(1)i —2(2)j+ —k =—4j—k
1

Vi  —4j-k. —4j-k

Vi V1

i

Directional derivative = V¢| |
v f

_ — —4j—k 4+10
=(8i — j—-10k ). \/— \/— \/—

13: Find a unit normal vector to the given surface x’y+2xz = 4 at the point (2,-2,3).
Sol:- Let the given surface be f= x’y+2xz — 4

On differentiating,

of of . of
— =2Xy +2z, — =X ,— = 2X.
X oy 0z

_af - — i
grad f =Y i—=i(2xy +2z2)+ jx" + 2xk
OX

(grad f) at (2,-2,3) =i(— 8+ 6)+ 4 j+ 4k = 2i + 4 | + 4k
grad (f) is the normal vector to the given surface at the given point.

Vi 2(i+2j+2k). —i+2j+2k
V| 241+ 2% + 27 3

14: Evaluate the angle between the normal to the surface xy= z” at the points (4,1,2) and (3,3,-3).

Hence the required unit normal vector —— |

Sol:- Given surface is f(x,y,z) = xy- z°
Let n, and n, be the normal to this surface at (4,1,2) and (3,3,-3) respectively.

Differentiating partially, we get

of of of
— =y, —=X,—=-22Z.
ox oy oz




gradf= yi_+ xj_— 27k

n.=(gradf)at(4,1,2) =i + 4] - 4k
n,=(gradf)at(3,3,-3) = 3i + 3] + 6k

Let O be the angle between the two normal.

n.n, (i+4j—4k) (3i+3j+6k)
cos 0= —— = .
nn, \/1+16 + 16 \/9+9+36
(3+12 - 24) -9

JaJu  Jm

15: Find a unit normal vector to the surface x’+y*+2z” = 26 at the point (2, 2 ,3).
Sol:- Let the given surface be f(x,y,z) = x’+y*+2z” — 26=0. Then

of of of
— =2X,—=2y,—=41z.
ox oy 0z

- of
grad f= 3" i — = 2xi+2yj+4zk
ox

Normal vector at(2,2,3) = [Vf 223 = 4i_+4 T +12 E

. A 4(i_+ j_+3k_) i+ j_+3k_
Unit normal vector = = =
v 411 N

16: Find the values of a and b so that the surfaces ax*-byz = (a+2)x and 4x’y+z’= 4 may intersect

orthogonally at the point (1, -1,2).

(or) Find the constants a and b so that surface ax*-byz=(a+2)x will orthogonal to 4x’y+z>=4 at the point (1,-
1,2).

Sol:- Let the given surfaces be f(x,y,z) = ax’-byz - (a+2)X------------- (1)

And g(x,y,z) = 4x°y+z°- Beremmmeeeev (2)

Given the two surfaces meet at the point (1,-1,2).
Substituting the pointin (1), we get
a+2b-(a+2)=0= b=1

of of of
Now —=2ax —(a+2), —=—-bzand — = —by.
ox oy o1

V=3 i 2L - [(2ax-(a+2)li-bz+bk = (a-2)i-2bj+bk
0

X

= (a-2)i-2j+k = n_, normal vector to surface 1.




Ve= % 799 _ guyitaxlj+3z%k

oX

(V8) (11,2 = -8i+4j+12k = n,, , normal vector to surface 2.

Given the surfaces f(x,y,z), g(x,y,z) are orthogonal at the point (1,-1,2).
[Vi][vg]= 0= ((a-2)i-2j+k). (-8i+4j+12k)=0

=>-8a+16-8+12 = a =5/2

Hence a =5/2 and b=1.

17: Find a unit normal vector to the surface z= x*+y” at (-1,-2,5)
Sol:- Let the given surface be f = x*+y*-z

of of of
— =2X, —=2y,—=-1.
OX oy oz

gradf=Vf=3"i o _ 2xi+2yj-k
ox
(V) at (-1,-2,5)= -2i-4j-k
Vf is the normal vector to the given surface.

v f
Hence the required unit normal vector = —| =
Vv f

-2i-4j-k -2i-4j-k 1 . .
= - (2i+4j+k)

Ve s - 1 (1)’ Va1 Va1
18: Find the angle of intersection of the spheres x*+y*+z* =29 and x*+y’+z> +4x-6y-8z-47 =0 at the point (4,-
3,2).

Sol:- Let f = x*+y*+z” -29 and g = x’+y’+z2” +4x-6y-82-47

Thengradf=i —+ j—+ k — = 2xi
oX oy oz

-of - of — of - - -
i +2yj+2zk and

gradg= (2x + 4)i + (2y - 6)j + (22 - 8)k
The angle between two surfaces at a point is the angle between the normal to the surfaces at

that point.
Let n, = (grad f) at (4,-3,2) =8i - 6 j + 4k
N, =(gradf)at(4,3,2) =120 -12 j - 4k
The vectors n, and n, are along the normal to the two surfaces at (4,-3,2). Let © be the angle

between the surfaces. Then




Cos 6 n.n, 152
OS - = .
n,|n, /116 /304

19
0 =cos ‘| |—
29

19: Find the angle between the surfaces x*+y*+z° =9, and z = x*+y*- 3 at point (2,-1,2).
Sol:- Let ¢; = x*+y*+z° -9=0 and ¢,= x*+y*-z- 3=0 be the given surfaces. Then
V1= 2xi+2yj+2zk and Vi, = 2xi+2yj-k
Let n, =V, at(2,-1,2)= 4i-2j+4k and
n, =Vo,at (2,-1,2) = 4i-2j-k
The vectors n, and n, are along the normals to the two surfaces at the point (2,-1,2). Let 6 be the angle
between the surfaces. Then

n,n (4i—2j+4k) (4i-2j-k) 16 +4-4 16 8

mn,) erac16 A6 +ar16 621 TVt sV

i 8
.. 0 =cos (3\/21

20: If a is constant vector then prove thatgrad(a .r )=a

Sol:Let a = a,i +a,j+ a,k , where aj,a,,a; are constants.

E.r_=(a1i_+ a2j_+ a3I<_).(xi_+ yJT+ zk_)=alx+ a,y+a,z

grad(a .r)=a,i+a,j+ ask_=5
21: If V¢= yZi + 2Xj + xy k_,ﬁnd 0.

-of - of — Of
Sol:- We know that V¢=i —+ j— + k —

ox oy oz
Given that V= yz i+ o+ xyk_

. . . . 0 0 0
Comparing the corresponding coefficients, we have 29 =vyz, 9 = ,—¢ = xy

OX oy oz
Integrating partially w.r.t. x,y,z, respectively, we get
0= xyz + a constant independent of x.
0= xyz + a constant independent of y.
0= xyz + a constant independent of z.

Here a possible form of ¢ is ¢= xyz+a constant.

DIVERGENCE OF A VECTOR




- 6f - af — Of
Let f be any continuously differentiable vector point function. Then i.—+ j.—+ k.— is called the

oX oy oz
divergence of f and is written as div f .

. . —.—6f_ .—af_ —of (2o -0 -0)-
e, div f=i.—+ j—+k.—=|i—+ j—+k —|f
oX oy 0z ox oy 0z

Hence we can write div f as
div f =V.f

This is a scalar point function.

- . - - of, of, of,
Theorem 1: If the vector f = fi + f, j+ f, k ,thendiv f = + +

oX oy 0z

Prof: Given f = f,i + f, ]+ f3|<_

1

of _of, _of, —of,
oX OX X OX
_of of _of  of —of of
Also i. = . =—tand k. — = =2
OX oX oy y oz oz
8f af of of
Wehavedlvf-z =+, 2,3
O0X ox oy 0z
- of, of, of,
Note : If f isa constantvector then ,—2%,—are zeros.
ox 0y o0z
- div f =0 for a constant vector f .
Theorem 2: div ( f+ g )= div f + div g

Proof: div (f + §)=3 i_.i(f_ig) =y i_.i(f_)iz i__i(g)=div f+divg.
ox ox ox

Note: If ¢ is a scalar function and f isa vector function, then

— [ 0 o -0l
(i) @V)p=|ali—+j—+k—]|¢
| L ox oy oz

|—(a )—+(a )—+(a k)i—|
L OX J oy azJ
r

L

(ii). (a.v) f =y (a.i) a—. by proceeding as in (i) [simply replace ¢ by f in ().
OX

SOLENOIDAL VECTOR




A vector point function f is said to be solenoidal if div f =0.

Physical interpretation of divergence:

Depending upon f ina physical problem, we can interpret div f (=V. f ).

Suppose F (x,y,z,t) is the velocity of a fluid at a point(x,y,z) and time ‘t’. Though time has no role in
computing divergence, it is considered here because velocity vector depends on time.

Imagine a small rectangular box within the fluid as shown in the figure. We would like to measure
the rate per unit volume at which the fluid flows out at any given time. The divergence of F measures the
outward flow or expansions of the fluid from their point at any time. This gives a physical interpretation of
the divergence.

Similar meanings are to be understood with respect to divergence of vectors f from other
branches. A detailed elementary interpretation can be seen in standard books on fluid dynamics, electricity

and magnetism etc.

SOLVED PROBLEMS

L f=xy i +2x%yzj—3yz °k finddiv f at(1,-1,1).
Sol:- Given f = xy 2P+ 2x2yzj_—3yzzk_.

. - 0 of of P P o
Thendiv f = —+ —2+ —=""(xy ?) + — (2x°yz) + —(-3yz ) = y’+2x°2-6yz
oX oy 0z  0Ox oy 0z

(div f )at(l,-1, 1) = 1+2+6 =9

2: Find div f when grad(x*+y*+z>-3xyz)

Sol:- Let ¢p= x*+y*+z°-3xyz.

) d )
Then —¢=3x2—3yz,—¢=3y2—32x,—¢:322—3xy
ox oy oz
_a iy —y - - —
grad ¢=i—¢+ j—¢+k—¢=3[(x2—yz)i+(y2—zx)j+(22—xy)k]
ox oy oz
.- of of of 0 o )
div f =—>+ —2+ — =" 3(x? - yz)] + —[3(y° = x)] + —[3(z2% = xy)]
OX oy oz

oX oy 0z
= 3(2x)+3(2y)+3(2z) = 6(x+y+2)
3:0f f = (x + 3y)i_+ (y-22) i+ (x + pz)k_ is solenoid, find P.

Sol:-Let f = (x+3y)i +(y—22)j+ (x+pz)k = fi+f, j+f k

of, of, of,
We have — =1, =1, =
oX oy 0z
- of,  of, of,
div f = + + —=1+1+p =2+4p

OX oy 0z




since f issolenoid, we havediv f =0 = 2+ p=0= p=-2

4:Find div f = r"r. Find nifitis solenoid?
Sol: Given f = r"r. where © =xi + yi + zk and r = |r_|

We have r? = x*+y*+z°
Differentiating partially w.r.t. x , we get

or or X

2r — =2x=> — = —,

ox o0X r
- or or z
Similarly — = Tang L%
oy r oz r

f_=r"( Xi +yj+ zk_)

-0, o, o .,
div f = —(@r"x)+ —(r"y)+ —(r"z)
0 oy o0z

X
- n-1 6r n n-1 ar n n-1 ar n
= nr —X+r +nr —Yy+r +nr — 7+
ox oy oz
2 2 2 2
n—1|—x y z —| n n-1 (r ) n n n n

=nr L—+—+—J+3r =nr T —43r" =nr'+3r'= (n+3)r

r r r r

Let f =r"r be solenoid. Thendiv f =0

(n+3)r"=0 = n=-3

r
5: Evaluate V(—J where r =xi + yj + zk and r :|F| .

Lr
Sol:- We have

r =xityjtzkandr=4/x* + y* + z°

( r ) of, of, of,
Hence V.| —|= + +
(r°) ox oy oz
- of 0
mmrmveﬁ;rgx:>-—i:r’?1+x(—mr”.—i
oX oX
of _ 4 X _ _
Lot =r o3 == o3
ox

y
V[%): z i:Sr% _3r752 x 2

r) ox

=3r-3r°r? =3r%3r° =0




6: Find div i where © = xi + yj + zk

Sol:- We have r = xi + yj + 7k :fli_+ f, i+ f3k_

of, of o 0 0
+ + =_(X)+—(y)+—(z):1+1+1=3
oX oy 0z  0x oy oz

of

2 3

div r =

CURL OF A VECTOR

Def: Let f be any continuously differentiable vector point function. Then the vector function defined by

_of - of - of . } B}
ix —+ jx —+k x —iscalled curl of f andisdenoted by curl f or(Vxf ).
oX oy 0z
- - Gf_ - 6f_ — af_ - af_
Curl f = ix—+ jx—+kx—= i x —
X oy 0z oX

Theorem 1: If f is differentiable vector point function given by f= fli_+ f, i+ f, k thencurl f =

of of, - of of, ) - of of |-
[ . 2]i+( . 3%[ . l)k

oy oz \ 0z ox ) ox oy

y -0 - -0 - - - (01‘2— of, _-W
Proof:curlf=lea—(f):Zma—(fllJrf21+f3k)=z —2k - j
X X

of, — of, - of, - of - of, - of, -
=( 2k - 3j]+ - —Lk +( Lij- Zi)
\ ox ox ) oy oy \ oz oz )

(of, of,) fof, of,\ —(of, of
ﬂ[ s z]+j( - 3)+k[ . 1J

oy oz \ oz ox ) X oy
Note: (1) the above expression for curl f can be remembered easily through the representation.

k
a -
— | =Vx f
0z

Note (2) : If f isa constant vector thencurl f = o .

Theorem 2: curl (a + b_): curl @+ curl b
Proof: curl(@=b )= ix i(eTi b)
OX

1}
g
;.
TN
I+

curl a +curl b

1. Physical Interpretation of curl




If w is the angular velocity of a rigid body rotating about a fixed axis and v is the velocity of any point
P(x,y,z) on the body, then w =% curl v . Thus the angular velocity of rotation at any point is equal to half
the curl of velocity vector. This justifies the use of the word “curl of a vector”.

2. Irrotational Motion, Irrotational Vector

Any motion in which curl of the velocity vector is a null vector i.e curl V=0 is said to be

Irrotational.

Def: A vector f issaid to be Irrotational if curl f = 0.

If f is Irrotational, there will always exist a scalar function ¢(x,y,z) such that f =grad ¢. This¢ is
called scalar potential of f
It is easy to prove that, if f = grad ¢, then curl f =0.

Hence Vx f =0 <> there exists a scalar function ¢ such that f= Vo.

This idea is useful when we study the “work done by a force” later.

SOLVED PROBLEMS

101 f=xy 2 +2x°yz j—3yz k findcurl f atthe point (1,-1,1).

Sol:-Let f = xy %i + 2x%yz j - 3yz  k . Then

i k
- - 0 0 0
curl f =Vxf=|— — —
ox oy 0z
xy2 2x2yz —3yz2

i 0 2 0 2 .‘(a 2 0 zw 0 2 0 2
= —(Byz ) - —(@xyz) |+ 0y ) - —(8yz ) [+ k| —(2xTyz) - — (v )
oy oz \ oz ox ) ox oy

=i_(—322—2x22)+ j(0-0)+ k_(4xyz —2xy):—(322+2x2y)i-+(4xyz —2xy)E

= curl f_at(l,—1,1)= —i -2k,

2:Find curl f where f = grad(xX’+y*+z>-3xyz)

Sol:- Let ¢= x*+y>+z°>-3xyz. Then

grad ¢= " f%: 3(x> - yz)i +3(y° —x)j+3(z° - xy)k_
oX




0 0 0
curl grad ¢= Vx grad ¢=3|— — —
ox oy 0z
2 2 2

=3[i_(— X+ X)— ]_(— y+y)+ k_(— z+2)] = 0
=0.

-

- curl

Note: We can prove in general that curl (grad ¢)=6 .(i.e) grad ¢ is always irrotational.

3: Prove that if r is the position vector of an point in space, then r"ris Irrotational. (or) Show that
curl(v¥"7) = 0

Sol:-Let r= xi + yj+ zk andr= |F| o =Xy

Differentiating partially w.r.t. ‘x’, we get

or or X
2r — = 2X=> — = —,
OoX ox r
Similarlya—r: Y and o_z
oy r 0z r
We have "t = FUxi 4 Y]+ ozk)
] j K
_ 0 0 0
VX(rnr)z J— - .
oX oy 0z
xr " yr " "
O 0 n 0 n T( 0 n 0 n \W —( 0 n 0 N
Sil—((rz)——(ry)|+ jl —(r x)——(r z)|[+k| —(r y)——(r x)
oy 0z \62 OX ) oxX ay
. n 6r n— ar] n— _[ z ]
=Zi{znr e ynr 1—}:nr IZHZ(XW—Y(—M
( oy oz ] L\r) (rJj

nr " (zy - yz )i_+ (xz - zx)j_+ (xy — yz k1]

—nr"2[0i +0j+0k]=nr"?[0]=0

Hence r"r is Irrotational.

4: Prove that curl 7 =0
Sol-Let r= xi + yj + 7k

_ - 0 ,_ - - - == =
curl r=Y"ix—(r)=3 (ixi)=0+0+0=0
ox

. r is Irrotational vector.




5:If a is a constant vector, prove that curl [ ;

Sol:- We have 1 = xi + yj + 7k

6I’_ —6]’_ _—al’_ —
— =1,— = JI_:k

OX oy oz

If |r_| =rthen r* = x*+y*+7°

or X or y z
— =, —=">—,and — = —
ox r oy r oz r
_ 8 (ExF
curl(a:rW=Zix—(airw
r- ) ox\ r° )
o (axr _ 0 r _ 1 o6r 3 or _
NOW_(aXSrW:aX—(r—swzaxlr—:;———A—rl’—|
ox\ r° ) ox\r) Lr oXx r 0Ox J
_[1- 3 _] axi 3x(@@.xr)
=aXLTI—TXFJ= P p
r r r r
PN LA RSN LI Y 'X(“'>_3_X.‘x(axr)
ox\ r ) Lr r J r

=R i hE - (a7
r

Let a = ali_+ a2j_+ a,k .Theni.a =a;,etc.

(a —a,i) 3x

. ]:Z—s——(xa—a r)

r r

3 ,_ _
-— > (x"a-axr)
r

6: Show that the vector (x° — yz)i + (y — 2x) j + (z° - xy)k is irrotational and find its scalar potential.

Sol: let f = (x> —y2)i +(y* —x)j+(z° —xy)k_

i i k
- |0 0 0 - _
Then curl f =|— — — =3 i(-x+x)=0
oxX oy 0z
2 2 2
X" - yz Yy - z° - xy

f is Irrotational. Then there exists ¢ such that f =V¢.

-0 -0 — 0 - - —
:>|—¢+J—¢+k—¢—(x —y)i+(yi o) j+ (27 - xy)k
ox oy 0z

Comparing components, we get




3

%— NEERY,) b — f(yz_ \/7)rh( —X—_y\/7 £ fl(\/ rA\ ( 1)
oX J 3
a 3
—¢— yz—zx = ¢:y——xyz + f,(z, x)( 2)
oy 3
o¢ , z°
—=7"—-Xxy = ¢=—-xyz + f(X,¥)..( 3)
0z 3

x3+y3+z3
From (1), (2),(3), ¢ = ——— - xyz

3

l 3 3 3
¢ =—(X"+y +2°)—Xxyz +cons tan t

Which is the required scalar potential.

7: Find constants a,b and c if the vector f= (2x +3y+az)i +(bx +2y +3z2) j+ (2x+cy + 3z)k_ is

Irrotational.

Sol:- Given f_=(2x+3y+ az)i + (bx + 2y +32) j+ (2% + ¢y +32)k_

i j K
¢ 0 0 0 - T -
Curl f = |— — — =(c-3)i-(2-a)j+(b-3)k
oX oy oz
2x+3y+a bx +2y+ 3z 2x +cy + 3z

If the vector is Irrotational then curl f = 0
n2-a=0=>a=2b-3=0=>b=3,c-3=0=>c=3

8: If f(r) is differentiable, show that curl { r f(r)} = 0 where r = xi + yi + 7Kk .

— 2 2 2
Sol:r=r=4/x"+y " +z
o = Xy

or or X .. or y or z
=2r — =2x=> — = —, similarly — = = and — = —
OX ox r oy r 0z r

curl{r f(r)}= curlff(r)( xi + yj + zk )=curl (x.f(r)i + y.f(r)j+ z.f(r)k)

] j K

o 0 0 .-|— 0 0 1
9 = - =3 IL_[Zf (r)]— —1[yf (r)]J
OX 6y 0z ay oz

xf (r) yf (r) zf (r)

‘I_ 1 or 1 ar—| .‘|— 1 y 1 Z—|
i| zf — — = f AN —
> IV (r)ay yf (r)azJ > ILZ (r)r yf (r)rJ

=0.




9:1f A isirrotational vector, evaluate div( A xr ) where 1 = xi + yj + zk .
Sol:We have 1 = xi + yj + 7k
Given A is an irrotational vector
VXA =0
div(A xr)=V.(A xr)
=1 .(VxA )-A .(Vxr)
=7.(0)-A .(Vxi) [using(1)]

=- A (VXT )eonr(2)
] i k
_ 0 0 0 - 0 0 -( 0 0 —( 0 0 —
Now Vxr = |— — —|=i| —z-—y —j(—z——x)+k —y-—x|=0
OX oy 0z oy 0z  ox oz ) oX oy
X y z

A (Vxr)=0..(3)

Hence div ( A x1 )=0. [using (2) and (3)]

10: Find constants a,b,c so that the vector A =(x + 2y + az)i_+ (bx =3y - 2) j_+ (4x +cy + Zz)k_ is

Irrotational. Also find ¢ such that A = V¢.

Sol: Given vectoris A =(x + 2y + az)i + (bx =3y — z) j + (4x + ¢y + Zz)k_

Vector A isIrrotational = curl A = 0

i i k
0 0 0
0z

[
o

=|— -
OX oy

X+2y+a bx-3y-z 4Xx +cy + 212

=(c+1)i+(a-4)j+(b-2)k=0

—(c+1)i+(@a-4)j+(-2)k =0i +0j+0k

Comparing both sides,

c+1=0, a-4=0, b-2=0

c=-1, a=4,b=2

Now A =(x+2y + 4z)i_+ (2x -3y -12) j_+ (4x—y+ Zz)k_,on substituting the values of a,b,c
we have A =V¢.

— - - - -9 -0 — 0
=>A=(x+2y+42)i+(2x-3y-2z)j+(4x-y+2z)k = i—¢+ j—¢+k—¢
ox oy 8z

Comparing both sides, we have




9 = x+2y+4z =0= X*/2+2xy+4zx+fo(v,2)

oxX

o¢ _ 2

— = 2x-3y-z == 2xy-3y"/2-yz+f5(z,x)
oy

o¢ _ 2

— = Ax-y+2z =0= Axz-yz+z"+f3(xy)
0z

Hence ¢= x*/2 -3y*/2+7°+2xy+4zx-yz+C
11: If o is a constant vector, evaluate curl V where V = oxr .
_ or |

_ - 0 - [ow
Sol: curl (oxr )= S i x — r) = i x XT+@ x—
Z X@x(wx ) Z Lax axJ

=S ix[0+wxi] [ ax(bxC)=(a.c)b —(ab).c]
=S ix(exi)=Y [((iD)o-((.0)il=Y 0~ (i.0)i=30-0=20
Assignments
1Uf £ =i + j+k) findcurl f .
2. Prove that f = (y + z)i_+ (z + %) j_+ (x+y) k is irrotational.
3.Provethat V.(ax f )=—a .curl f where a is a constant vector.

4. Prove thatcurl (a x r)=2a where a is a constant vector.

5.0 f = x’yi—22x j+2yz k find (i) curl f (i) curl curl f .

OPERATORS
Vector differential operator V
The operator V= i 2 j_i + k2 is defined such that Vo= 728, f% + k22 where ¢ is a scalar
OX oy oz oX oy oz

point function.

Note: If ¢ is a scalar point function then V¢=grad ¢= " i 29
ox

(2) Scalar differential operator a .V

The operator a .V = (eT.i_)%+ (a. j_)%+ (E.k_)% is defined such that
OX oy oz
— _-0 _ -0 _ -0
(a .V)¢=(a.i)—¢+ (a.j)—¢+ (a.k)—¢
OX oy oz

_ - _-of _ - of _ - of
And(a .V) f =(a.i)—+(a.j)—+ (a.k)—
00X oy 0z

(3). Vector differential operator a xV

The operator a xV= (ax i_)i+ (ax j) i+ (@xk) 9 is defined such that
OX oy oz

o — - 04 _ -, 0¢ _ = 0¢

A - 1
T\ AV Jy=—1(a T ) - (A TJ - (A K )

OX oy oz

/
T




— . — of — - of _ - of
(iii). (a xV)x f =(axi)x —+(ax j)x —+(axk)x —
oX oy 0z
(4). Scalar differential operator V.
o o o ~of -of —of
The operator V= i, —+ j.—+ k.- is defined suchthat V. f = i.—+ j—+k.—
oX oy oz ox oy 0z

Note: V. f is definedasdiv f Itisa scalar point function.

(5). Vector differential operator V x

- 0 - 0 - 0 . .
The operator Vx = ix —+ jx —+ k x —is defined such that
OX oy oz
-~ of - of - of
Vxf=ix—+ jx —+k x—
oX oy oz

Note : Vx f is defined as curl f . Itisa vector point function.

(6). Laplacian Operator V>

op -0 -0 o° ot ot o
VV¢ZI—I—¢+J—¢+ % =3 (f: it ——t——|p =V
ox| Ox oy 0z ox oX oy 0z

2 2

0 o . .
Thus the operator V= —+——+— s called Laplacian operator.
00X oy oz

Note : (i). Vo= V.(V) = div(grad ¢)
(ii). If V29=0 then ¢ is said to satisfy Laplacian equation. This ¢ is called a harmonic function.

N}

SOLVED PROBLEMS

1: Prove that div.(grad r™)= m(m+1)r™? (or) VA(r™) = m(m+1)r™? (or) V*(r") = n(n+1)r"?
Sol:Let 7 = xi + yj + zk andr= |r_| then r* = x*+y*+2°.,

. . . or
Differentiating w.r.t. 'x’ partially, wet get 2r — = 2x = —=

or X
ox ox r .

S|m|IarIy —_—= = d AN

oy r oz r

m-2

-0 - 0 - -
Now grad(r™)= S i —(r")=Y imr m’l—r:z imr m’lizz imr
OX OX r

0
~ div(gradr") = 3 aa—x[mr "fx1=my [(m -2 LASN rm’ZJ

oX

=my’ [(m=2)r™*x> + r"*]=m[(m - 2"ty x4y r" ]

= m[(m-2)r"*(r*)+3r™?]

= m[(m-2) r"+3r™?]= m[(m-2+3)r"?]= m(m+1)r™?




Hence V*(r"™) = m(m+1)r™?

2

2: Show that V*[f(r)]= d : 2o £ (r) + Efl(r)wherer: |r‘|
dr r dr r

Sol: grad [f(r)] = VA(r)= % ii[f(r)] =i fl(r)a—r: S fl(r)1
oX ox r

. 2 o[ X 1

. div [grad f{r)] = V7[f(r)] = V.Vf(r)= 3 I, Lf (r)—J

o ) B
r—[f (r)x]- f (r)x—(r)

B )

=y = ; >

r

LT ST TS A
k ox ) Lr)

=2 .

r

11 X 1 1 X
fo(r)—x+rf (r)-f (r)x(}
r r
=2 ;

r

3o 11(r)—x+rf(r)—x fl(r)

il \———Zfi(r)——fiﬁrjz\_

e s L e

3: If ¢ satisfies Laplacian equation, show that V¢ is both solenoidal and irrotational.
Sol: Given V*¢ = 0 =div(grad ¢)= 0 = grad ¢ is solenoidal

We know that curl (grad ¢) = E:grad ¢ is always irrotational.

2.Show that (i) (2 .V)d=a .V (i) (a .V)i =a .
Sol: (i).Let a = a,i +a,]+ a3I<_.Then

0 0 0 0 0 0
aV(a|+aj+ak)(|—+J—+k_) a, —+a,—+a, —
oX oy oz OX oy oz

(FV)p=a, P va, a0
ox oy oz

Hence (a .V)o=a .V

(ii). T = xi + yj+ 7k




5: Prove that (i) ( f xV).r =0 (ii). (f xV)xr=-2f

SOI:(i)(f_xV).F=Z(f_xi_).a—r=Z(f_xi_).i_=0
OX
T - - 3 - -0 - -
({i) (f XV)=(f xi)—x(fx j)—x(fxk)—
OX oy oz
(f_xV)xF=(f_xi')xa—r+(FxI)xa—r+(f_xk_)xa—r=2(f_xi')xi'zz[(f_.i)i—f_]
OX oy oz

= (Fi)i+(f.])j+(fk)k—3F=Ff—3f=-2F
6: Find div F , where F =grad (x’+y*+z°-3xyz)
Sol: Let o= x*+y*+2°-3xyz. Then

F =grad ¢

a - — —
=3 i =3(x - yz)i +3(y  —x) j+3(x° —xy)k =F,i+ F,j+ F,k (say)
OX

_ — OF, oF, oF,
sodiv E o= + + = 6X+6y+6z= 6(x+y+2)
OX oy oz

i.e divigrad(xX*+y*+z3-3xyz)]= V> (C+y*+2°-3xyz)= 6(x+y+2).
7: If f= (x*+y*+z°)" then find div grad f and determine n if div grad f= 0.
Sol: Let f= (+y*+z8)"and 1 = xi + yj + 2k

r=|r|=r* =X+

=f(r) = ()" =r?

fl(r)= _zn r-Zn-l
and FHr) = (-2n)(-2n-1)r>"?= 2n(2n+1)r>"?

We have div grad f = V*f(r)= f}(r)+*/f (r)= (2n)(2n+1)r*"? -4n "2
= r2™2[2n(2n+1-2)]= (2n)(2n-1)r*"2

If div grad f(r) is zero,we getn=00r n=%.

8: Provethath[A>;r ] = 2-mA + n(r-Ar .

n n+2
r r r
Sol: Wehave r = xi + yj + zk and r:|r_|:\/x2+y2+z2
r - or - or —
—=i,—=j,—=k and
OX oy 0z

Diff. (1) partially,

or or X .. or y or z
2r — =2x=> — = —, similarly — = —~and — = —
OX ox r oy r oz r




i x (;x r)

e I><—

oX

n n+2

r r

n

- (Axr) _i_x(Kxi_) nx
; -
_ (i_.i_)Kf(i_.K)i_ nx

n n+2

r

[(| r)A f(l A)r]

Let A+ A,j+ Ak. Theni.A = A,

OX r r
le’_ K—Ai_
and2|><—( - ) =3 — n+2[xA Arl
OX r r
3A - A ,—
= - - ——[r Al+ (A x+ A,y + A7)
r
2A n — nr — _ (2-n)A nr — _
= no n'A+ n+2 (A'r): n n+2
r r r r r

Hence the result.

VECTOR IDENTITIES

Theorem 1: If a is a differentiable function and ¢ is a differentiable scalar function, then prove that div(¢

a )=(grad ¢).a +¢ diva orV.(¢a )=(Vd).a +¢(V.a )

Proof: div($a )=V.(pa )= 3" i.aix(qﬁa)

= U L e e L
_Z [ax ¢8xj Z:{'ax J Z( }b

=3 (. —)5 (z fZ—iqu =(V¢).a +¢(V.a )

ox )

Theorem 2:Prove that curl (p a )= (grad ¢)xa +¢ curl a

Proof : curl (¢ 5):Vx(¢§)=z i x ai(qsa_)
X

=Vdxa +(Vxa )p=(grad ¢)xa +¢ curl a




Theorem 3: Prove that grad ( E.b_): (b_.V)aT+ (E.V)b_+ bxcurl a+axcurl b

Proof: Consider

;xcurl(b):;X(th;)zaxZ(i-xﬂ}
L ox)

sz )@l oyila 2! [y lly
_ZT Cox XJ%_Zi.@XJ { Zax}
saxarl b =Y f[a.ﬁ]_(a—.w{....(l)
00X
Similarly, bxcurl b = > f(l; Z—i} - (b_.V)E.........................(2)

(1)+(2) gives

axcurl b +b xcurl a_=zi_[z?.ﬂ]—(i.v)b_+zi_(b_.a—W—(b.V)a_
Ox L ox)

=V(a .b )=grad(a .b )

Theorem 4: Prove that diV(a_x t:) =b.curl a - a.curl b
- - -0 _ - -foa — _ 0b
Proof:div(axb):Zi.—(axb):Zi. —xb +ax—
oX oXx ox

(o7 - -(_ b _ a3 - - b)) _
:zI{gij-FzI'[aX_J:Z(IXg}b_Z[ng]'a

= (V xa_).b_—(v ><b_).a_=b_.curl a-a.curl b

Theorem 5 :Prove that curl ( xb)=adivb —bdiva + (b.V)a - (2.V)b

roof :curl(a x = i x —(a x = I x| —xb +ax—
Z oX Z Lax axJ

— (ea -\ —(_ b))

x| —xb X X ——

zl Lax J+ZI La 6x)|




——oa _(—oa = _(—ob\_ (__ —3\—

—Z(bl}ax_ZLIaXJU TLkI.aXJa_La.LIaXJU

—(b.V)a-(V.a)b +(V.b)a—-(aV)b
—(V.b)a-(V.a)b +(b.V)a - (av)b
—adivb —bdiva+(bV)a-(av)b
Theorem 6: Prove that curl grad ¢ = 0.

Proof: Let ¢ be any scalar point function. Then

-0 -0 — 0

.grad ¢ = i—¢+ j—¢+k—¢

ox oy 0z
ik
0 0 0
curl(gradg) =|— — —
ox oy oz
o 0O¢ 09
ox oy oz

-(9%¢ a'¢ N\ —( 8¢ o%p ) E( o’ 8°¢ ) 5
_i - - - - - =
" (oyoz azayJ JLaxaz 6zaxJ Laxay GyaxJ

Note : Since Curl(gradg¢) = 0, we have grad ¢ isalways irrotational.

7. Prove thatdivcurl f =0

Pr oof : Let f = nf+fzf+ QE

i j k

- - 0 0 0
curl f =vx f =|— — —
OX oy oz

f f f

(o, oty )- (of, o5 fof, o) -
_Léy_6zjl_kax_azJJ+Lax_ayJ

div curl f = V.(V x f_):i(%_ﬂ\_i(i__ Lot af)
axkay c’:‘zJ ayLax azJ L J

o' f, o'f, o'f, o'f, a'f, a'f
= - - + + - =0
oxo0y 0x0z 0yox o0yor 010X 010y

Note : Since div(curl f) = 0, we havecurl f isalways solenoidal.

Theorem 8: If fand g are two scalar point functions, prove that div(fVg)= fV’g+Vf. Vg

Sol: Let f and g be two scalar point functions. Then

-0 -0 — 0
vg 09, ;09 o0

OX oy 07




_ 69 - 89 - 0
Now Vg o it 2L 5 8 g &Y

ox dy R

0 o9 6 0g 0 og
g 2 28], 2 2], 2 2
ox\ ox) oy oy oz\ o0z)
o’y o'y o'y of og of og of og
=t v et o\t o T Y T
oX oy OX ox 0x 0y o0y 0z 01
of - of — of -0 -0 —0
=fVg+| i —+ j—+ k — i 2
00X oy oz ox oy 0z
=fV’g+Vf. Vg
Theorem 9: Prove that Vx(Vxa )=V(V.a )-V’a .
— — 0 _
Proof: Vx(Vxa )= " i x —(V x a)
OX
d o(— o6a — oa — oa)
NOW|><—(V><a)—|><— i x —+ jx—+k x—
oX axL OX oy azJ
— (- 9’a — o'a - o‘a
=1 x]1x + ] % + K X |
L O0X oxoy oxoz )
=0 x| I x—F|+1 x| jx |+ 1 x| k x |
L ox ) L oxay ) ( oxoz )
_—82a_ - 62a_ _—aza_ T —aza_ — .
=l — i - S| J+| . k [ ii=1ij=1ik =0]
oX oX OXoy 0x0z
— 0 (—o0a) o (—oa) o(—o0a) o'a (—oa) o’a
=i —|i.— |+ —]i.— |tk —|i.— |- =V]|i.—|-—F
axL axJ ayL 6yJ azk axJ oX L 6xJ oX
(o°a aza‘ o%a )
le—(an)—VZ|——Z—=V(Va)—| —+ — |
kax 6y oz )

. Vx(Vxa )=V(V.a )-V’a

i.e,curlcurla = grad diva-V°’a

SOLVED PROBLEMS

1: Prove that (Vf xVg)is solenoidal.

Sol: We know thatdiv(a xb )= b.curl a —a.curl b

Take a=Vfand b= Vg

Then div (Vf x Vg) = Vg. curl (Vf) - V¥. curl (Vg):OL"' curl(Vi)=0=curl(Vg )J




- Vi x Vg issolenoidal.

3 Prove that (i) div{(Fx a_)t;} = —2(5.;) (i) curl {(F.;)x b} _bxawhere a and b are constant

vectors.

Sol: (i)

div{(Fxa)xb} =div[(Fb)a - (a.b)r]
—div(Fb)a - (a.b)F

= [(r_.b_)div a+a.grad (r_b_)} - [(a_.b_)div r +r.grad (Eb_)J
We have div a = 0,div r = 3, grad (eT.b_) =0
div{(rxa)xb|=0+agrad(ra)-3(aa)

~ay ~—(rb)-3(ab)

~ab-3(ab)=-2(ab)

=—2(b.a)

i) curt (< a) <] = con(15)a - (ab)1 ]

=curl (Ft:)a_— curl (;E)F

= (r.b)curla_+ grad (r.b)xa

04V (r.b)x a('.- curla = 6)

—bxa Since grad (Ft;) -b

[ r] -2_
3:Provethat V| V.— | = r.
A
Sol: We have V.(EW =y |i(iw
r) ox\r)

[1or  _(-1)x\I _ . (1 T

I ) )
s PRl oy (g | R Py

1. 1 , 3 1 2

==Yii-—rt = ——-—=—

r r rr r

VFV/FH_ I(iKE\L I(ivi\:iLm:—zF
R TR P oy o U




4: Find (AxV)9, if A = yz° i-3x2 +2Xyz k and ¢ = xyz.

Sol : We have
i j k
AxV= |yz® -3xz° 2Xyz
0 0 0
00X oy 0z

-1 o , 0 1 -Te , 0 ] 0 , 0 , |
=i —(-3xz")—-—(@2xyz) |- j] —(yz')—-—(2xyz) |+ k| —(yz") - —(-3x2")
Lax oy J Laz oX J Lay oX J

= I_ (-6xz-2xz)- T (2yz-2yz)+ [ (2°+32°)=-8xz |_ -0 T +47° [

5 (AxV)o, = (-8xz i +42% Kk )xyz = -8x°yz* i +4xyz’ K

Vector Integration

Line integral:-(i)f F.d r is called Line integral of F alongc

C

Note : Work done by F along a curve cis IF dr

C

PROBLEMS

1. 1f F (x*-27) i -6yz }+8xzz k, evaluatef F . dr from the point (0,0,0) to the point (1,1,1) along the

Straight line from (0,0,0) to (1,0,0), (1,0,0) to (1,1,0) and (1,1,0) to (1,1,1).
Solution: Given F = (x*-27)i —6yz} +8xz2° k

Now r = xi_+y}+zk = dr = dxi+dy]+dz k

F .d r= (x*-27)dx — (6yz)dy +8xz°dz

(i) Along the straight line from O = (0,0,0) to A = (1,0,0)
Here y =0 =z and dy=dz=0. Also x changes from 0 to 1.

j I;.d;:j (x2—27)dx:{%—27x}:=§—27=—

0A 0

(ii) Alnng the cfr:ighf line from A = (’I,ﬂ,ﬂ) to R = (’I 1 ’ﬂ)

Here x =1, z=0 = dx=0, dz=0. y changes from 0 to 1.




_ 1
] Far= J’(—oyZ)qy =0

(iii) Along the straight line from B=(1,1,0) toC=(1,1,1)
x=1=y _ dx=dy=0and z changes from 0 to 1.
- - ; [8z° 1t 8

. — 2 — — —
J' F.dr ZJ:'OSXZ dz J’xz dz = LSJO S

(i) + (i) + (i) = [ E o dr =88
3

C

2.1f F =(5xy-6x°)i +(2y-4x)}, evaluate [ F .dF Along the curve C in xy-plane y=x*from (1,1) to (2,8).

Solution : Given F =(5xy-6x%)i +(2y-4x)}, ------- (1)

Along the curve y=x°, dy =3x* dx

F =(5x"-6x%)i +(2x3-4x)}, [Putting y=x>in (1)]
dr = dx i_+dy]=dx |- +3x%dx j
_ - 4~ 2. 3 0 N 2, 1
F.dr=[(5x"-6x")i +(2x —4x)J].L dx i+ 3x deJ

= (5x* — 6x%) dx+(2x® — 4x)3x’dx
= (6x°+5x"-12x -6x°)dx
- _ 2
Hence j F.dr ='[(6x5 +5x' —12%° - 6x")d
= 1
( x° x' x°) 2

X
|6.—+5.—-12.——6.— |= (X" +x"-3x" - 2x’)
L 6

5 4 4 )
=16(4+2-3-1) — (1+1-3-2) = 3243 =35

3. Find the work done by the force F = zi +x j + yk , when it moves a particle along the arc of the curve r =

costi +sint j-tkfromt=0tot=2x

Solution : Givenforce F =zi+x j +y k andthearcisr =costi +sint j -tk

i.e.,, x=cost,y=sint,z=-t

B dF:(-sint i +cost T—k )dt

" F.dr=(ti+cost j+sint k ). (-sinti +cost j- k )dt=(tsint+cos’t—sint)dt




I i

N L | —— N L 4 . 2 . TN
AETNCE WOTrKk aomne = F.OarT —J (LSMTUFCOS t=snrt)at

0 0

2 "1+ cos2t e
= [t(-cost)] - j (—S|nt)dt+J'—dt—J'S|nt dt
° 2
0 0 0
1 in 2t
sin .
= -2z —(cos t).” +—(t+ ) +(cost)§
2 2 ),

1
=27z -(1-D)+—Q2x)+(1-V)=-27n+7m=-7x
2
PROBLEMS

1: Evaluate j F.ndS where F =zi +Xj— 3y’zk and S is the surface x* + y* = 16 included in the first

octant betweenz=0and z=5.

Sol. The surface S is x> +y” = 16 included in the first octant betweenz=0and z = 5.

Let d=x"+y* =16
-0 -0 —0 - -
Then Vo =i—¢+j—¢+ k—¢=2xi+2yj
oX oy 0z
-V Xi+ i
unitnormal n = ¢ = 1. x° +y’=16)
Vol 4

Let R be the projection of S on yz-plane

——dydz

Then andS = “Fn e T
s R ‘n . I‘
Given F =zi+xj— 3y’zk
- = 1
F.n=—(xz+Xxy)
4
- - X
and n.i=—
4

Inyz-plane,x=0,y=4

In first octant, y varies from 0 to 4 and z varies from 0 to 5.

4 s(xz + Xy \dydz

I

Fnds =
[Fn X

4

y=0




= [ Jf (v +7)dz dy

2:0fF =zi+ xj — 3y’zk, evaluate j F.ndS where S is the surface of the cube bounded by x=0,x=a,y
S
=0,y=4a,z=0,z=a.

Sol. Given thatSis the surface of thex=0,x=a,y=0,y=a,z=0,z=a, and F=zi+ xj— 3y’zk we

need to evaluate j F.ndS.

S

Y 4
c
B
Q
P
o) A %
R
(i) For OABC
Egnis z=0and dS = dxdy
n =-k
JEnds = -7 [ (y2)dxdy=0
51 x=0 y=10
(ii) For PQRS
Egnis z=aand dS = dxdy
n =k
4
_ a a a
[Fnds= [ ( [ y@)dy)dx=—
S, x=0 y=0 2
(iii) For OCQR
Eqnisx=0, and n = —i,dS=dydz

IE_ndsz [ [ 4xzdydz =0
S, z=0

y=0

(iv) For ABPS

Egnisx=a, and n = —i,dS=dydz




a a

([Ends = [
J 7

s, y

([ 4azdz)v =2a°
A Zi T

0 0

(v) For OASR

Egnisy=0, and ; = —},dS:dxdz

[Fnds = [ [ y'dzdx =0
z=0

Sg y=0

(vi) For PBCQ

Egnisy=a, and ; = —},dS=dxdz

[Fnds =— [ [ y'dzdx=0
S, y=0  2z=0

From (i) — (vi) we get

4 4

—— a . 3a
jF.ndS=0+—+0+2a +0 — ad= —
N 2 2

6

VOLUME INTEGRALS

Let V be the volume bounded by a surface r = 1: (u,v). Let F (r ) be avector point function define over V.
Divide V into m sub-regions of volumes 5V, , 6V, ... 6V ... 6V

Let Pi(r ;) be apointindV, .Then formthesuml,= > F(r;)sV,. Letm — o« insuchaway that 5V,

i=1

shrinks to a point,. The limit of |, if it exists, is called the volume integral of F (r )in the region Vis

denoted by jF(r)dv orJde.
\Y \

Cartesian form: Let F (r)=F i+ F, i+ F, k where Fy, F, F; are functions of x,y,z. We know that

dv = dx dy dz. The volume integral given by

'fl;dv:fjf(Flﬂ F2{+ F3I;)dxdydz: ;”J'F dxdydz+}J”F2 dxdydz+I;JHF3 dxdydz
1




SOLVED EXAMPLES

If F=2xi-x+y%k evaluatejfdv where F is the region bounded by the

surfaces x=0,x=2.y=ﬂ.y=6,z=x2,z=4‘
Solution : Given F = 2xzi - 37 + y°k. . The volume integral is

j?dn Hj{zm’ g+ )y ) dy e
¥

2 6,4 2 6 4 ' 26
=IJ j szm@dxij j jx¢¢¢+fj f Iy de dy da
rall y=0 p=yp? x=0 y=0z=+¥ x=0y=0z=

2 6 2 6 1 6
T [ [T [ [eddid [ [ rehad

x=0y=0 x=0 y=0 x=0 y=0

jjxaﬁ )y - ;j jx(4 Xy - rrj [y{x - 4)de dy

=0 y=0 =0 y=0 x=0y=0

x=0 =0, x=0 3 0
Y’ o Fon)
- il8x -TJ {6}—}[21?—1—] (6) % [41’———] [—_
{ A 4 A A 3J

=1287 - 245 -384k

Vector Integral Theorems

Introduction

In this chapter we discuss three important vector integral theorems: (i) Gauss divergence theorem,

(ii) Green’s theorem in plane and (iii) Stokes theorem. These theorems deal with conversion of




E n dcintnavnlhiime intoaral wihoro Sic a clncod ciirface
O

» e

.d r into a double integral over a region in a plane when C is a closed curve in the

(ii) I F
C
plane and.
(iii) I (V x ;A) .n dsinto a line integral around the boundary of an open two sided surface.

S

. GAUSS’S DIVERGENCE THEOREM
(Transformation between surface integral and volume integral)

Let S be a closed surface enclosing a volume V. If F is a continuously differentiable vector point
function, then

J'didev:jF.n ds
When n is the outward drawn normal vector at any point of S.

SOLVED PROBLEMS

1) Verify Gauss Divergence theorem for F = (x'?' —yz)I— 2x° ¥j+ zk taken over the surface of the

cube bounded by the planes x =y = z = a and coordinate planes.

Sol: By Gauss Divergence theorem we have

JE.Eds - jdiv?dv

RHS = J J J (3x° — 2x* + 1dx dy dz = J J J‘[x:— 1)dx dydz = J J (;—1) dy dz

3 200 2o ° 0
aal—a—+a—|d z_a £+a—|(y) dz_(£+a\aadz:(a—
Wi FR RN

\___/

(az):a?+ a’....(1)

Verification: We will calculate the value of I F .ndS over the six faces of the cube.

S

Q) For S; = PQAS; unit outward drawn normal n =1

x=a; ds=dy dz; 0<y<a, 0<z<a y
A
& s
- 3 3 . R P
~Fn=x"-yz=a -yzsincex=a
a a » X
- A
; ij.ndS = j I (a’- yz)dydz B
Q

i z=0 y=0 z




([ @)
HERANEE A
=z=0
5 Q;- "y
= ﬂ"-:...:__zj

(i) For S; = OCRB; unit outward drawn normal n = —1

x=0; ds=dy dz; 0<y<a, y<z<a

Fia=—(x3—vz)=vzsincex=20
[ (i [ i
- ror V=
J Jfrﬁa = J J vzdydz = J > zdz
£ z=0y=0 e
as [ . o~ .
= — TAF = — |
2 | FET
z=0

(iii)  For S3=RBQP; Z = a; ds = dxdy; 1 = k

0<x<a, 0<y<a

Fn=z=aqa sincez=n

a a

S, y=0 x=0

(iv) ForSq=OASC:z=0; 7 = —k, ds = dxdy;

0<x<a, 0<y<a

i

M =—z=0 sincez =10

J F.AidS=0..(5)

S

(v) For Ss = PSCR; y = a; i1 = J, ds = dzdx;

0<x<a, 0<z<a

Fil=—-2xlyv=—-2ax? sincev=a
fied [}

J F.fids = J J (—2ax?)dzdx
5 x=0=z=0




(vi)  For Sg=0OBQA;y=0; 7 =—J, ds = dzdx;

0<x<a, 0<y<a

F.i=2x*y=0sincey =10

JF.ﬁdS:ﬂJJ?.ﬁdS:JJ+ J+JJ+JJ+ J+JJ
s 5 S Sz Sy L Sz 5.
P a;—+ 340 EQE+t:|
Se Ty e 3

a® C

= —+a? =J J J V.F dvusing (1)
b Hence Gauss Divergence theorem is verified

2. Compute [{ax® + by* + cz")dS over the surface of the sphere x*+y*+z* = 1

Sol: By divergence theorem J’E.Eds =[, V.F dv

Given F.i=ax"+ by
. Normal vector 7 to the surface ¢ is
— (-0 -0 —a) ., ., T
Vg=|i—+ j—+k— (x +y 41z —1):2(Xl+yj+2k)
L oX oy 6yJ
— 2(xi+yj+zk) - -

. Unit normal vector=n = =xi+yj+zk Since x>+ y*+z°=1
2\[x2+ y2+z2

~ F.n =E.(xi-+ y}+ ZE) = (ax2 + by2 + sz) = (a xi-+ by]+ czk_).(xi-+ y}+ z;)

i,e., F=axi+byj+czk V.F=a+b+c

Hence by Gauss Divergence theorem,

- ) ) . 4
J (ax* 4+ by +cz")dS = J (a+ b+ c)dv= [ﬂ—b—cjb’=?‘r[n—b—c)

5 vV

4m
[Sfﬂce V= 3 iz the volume of the sphere of unit radius

3)By transforming into triple integral, evaluate f f x* dy dz+ x*y dz dx + x*dx dy where Sis the
closed surface consisting of the cylinder x>+y” = a® and the circular discs z= 0, z= b.

Sol: Here F; = x*,F, =x*v,F; =x"zand F=F1+Fj+Fk

1 2

oF , OF , OF )
=3x =X = X

OX oy oz




P v

1 6F2+76F
OX oy oz

2

2 2 2 5
:=3x"+x +x° =5x x

V.F =

By Gauss Divergence theorem,

(oF, OF, oF,)
IjFldydz +F,dzdx + F3dxdy:III + + — |dxdydz
Lax oy oz J

Ij(x3dydz +x’ydzdx + x2zdxdy = IIJSXZdXdydz

a a“—x b
= SJ' I j x“dxdydz
—ay__ ’az—xz =0
ayai-x? b
= ZOI J '[ x“dxdydz [Integrand is even function]
0 0 z=0
=20 J J x?(z)5dxdy = 205 J J v dxdy
oo x=0 0

= 20b J a® sin® 8 4/ a? — a?sin?8 (acosfdo)

|:.

[Put x = asin® == dx = acos@dd6& when x:a:@:landx=0:>9=0]
2

=20a*b fgﬂﬂ: 8 cos*8dd = 5a°b fE_(E sinf cos8)* df =5a*b J:g de

2

P 2

Sa*h sin 48172 5ab 5
> [5‘ — = [ ] = —mwa~b

4: Applying Gauss divergence theorem, Prove that j"F .ndS = 3V or f-F .ds = 3V

Sol: Let 7 = xT + ¥J + zk we know that div 7 = 3




By Gauss divergence theorem, [E.Eds = [divEdv

v

Take F=7 == J F.hds = J 3 dl7 = 3V, Hence the result
5

r

o - T — 4
5: Show that J:c [.ﬂﬂ +byj+ C'Zk)- nds = 3 (@+ b + c), where S is the surface of the sphere
x2+y?+2°=1.
Sol: Take F = axi+ byvj+ czk

3

. — OF 0oF, ©OF
divF = —+ —+
OX oy oz

=a+b+c

By Gauss divergence theorem, _]; F.7dS = f V.FdV =(a+b+c) f dV=(a+b+c)V

We have V= —mr® for the sphere.Herer =1

— = 4r
.'.J'F.ndS =(a+b+c)—
3

S

6: Using Divergence theorem, evaluate
f J;, (x dy dz+ vy dz dx + z dx dy),where §X+y’ +7°=a’

Sol: We have by Gauss divergence theorem, JE.;dS = j divF dv

S v

L.H.S can be written as [(F, dvdz + F,dzdx + Fydxdy) in Cartesian form
Comparing with the given expression, we have Fi=x, F,=y, F3=z
oF, oF, OF

Then divF = —-+ +—2=3
oX oy oz

- [divEdv = [3dv = 3V
[ [

v v

Here V is the volume of the sphere with radius a.

4
“V =—za’
3

Hence [ [(x dv dz+ v dz dx + z dx dy) = 4ma?

7: Apply divergence theorem to evaluate“'(x +2)dydz + (y + z)dzdx + (x + y)dxdy Sis the surface of

S

the sphere x*+y’+z’=4

7

Sal: Given ‘{Jf(v + 2z \dvdz o (v z3\dady o (v o vidydy
S




Here Fy = x+z, F, = y+z, F3= x+y

oF oF oF oF, OF oF
L1, —2-1—2=-0and 4+ —24—2-141+0=2
OX oy oz OoX oy oz
By Gauss Divergence theorem,
(6F, oF, oF,)
IJ’Fldydz+F2dzdx+ F3dxdy:JIJ' Ly —2 4+ —% 1 dxdydz
. VL OX oy oz J

=J J J 2dxdydz = J dv = 2V

=2 [Z;;r[gjg] = E':—F [for the sphere, radius = 2]

8: Evaluate .J; F.7mds,if F = xyl+ z°J + 2yzk over the tetrahedron bounded by x=0, y=0, z=0 and
the plane x+y+z=1.
Sol: Given F = xvi+ z°J + 2vzk, then div. F = y+2y =3y

o _ 1 1-x1l-x-y
.’..[F.ndS :Ididev: j I j 3ydxdydz

x=0y=0 z=0

'.|.1 1?.'«' '.I‘. 17.‘«'
= J J _u'[:];__“'“'_:"dxd_v =3 J J v(l—x—v)dxdy
=0 y=0 x=0y=0
U -2 x(1-2)? (12
fr y & y & i l —_ e = . l —_ A l PR |
= J }__i_L dj_:SJ * —1 * —_ * d_j_‘
2 2 3 2 2 3

- dx:Sj(]_—ijdx: E[—(l;xjel :%

6 &

o 0

9: Use divergence theorem to evaluate J' I F.dsS where F =x’i+y’j+z°k and S is the surface of the sphere

S

X2+y2+22 — r_2

Sol: We have

—— 9 o o

VF=—0)+— )+ — @) =3(x"+y +12°)
X oy 0z

~By divergence theorem,
V.Fadv = [ [ [V.Fav=[[[3(x"+y"+2")dxdydz

-
[ird T £LTE

=3 J J J ri(r’sin@dr df d ¢)
r=08=0¢$=0

[Changing into spherical polar coordinates x = rsinfcosg,v =rsinfsing,z = rcosf]




P [ ]

[ _ . [
J J F.dy¥5 =3 J J T"Slﬂb‘l J d¢IdT dd
5 r=08=0 $=0
a V3 \ a 4|—n —I
:3j J'r sinH(Z;z—O)drdH:GﬂJ'r |jsin€d«9|dr
r=06=0 r=0 LO J
= “
=6 J r*(—cosB)] dr = —E;IJ r*(cosm — cos Q) dr
=0 0
(rd - -
T r*1°  127ma®
=12w J ridr =12 |—| =
5 . 5

10: Use divergence theorem to evaluate [ J’S F.ds where F = 4xi — 2y?j + z°kand S is the surface

bounded by the region x’+y*=4, z=0 and z=3.

Sol: We have

A — 0 0 2 0 2
divF =V.F = —Ux)+ —(-2y )+ —(2")=4-4y+ 22
0X oy 0z

Bv divergence theorm,

[Jra=fffore

L

- J J J (4 —4y + 2z)dx dy dz
x==2 =2t 2=0




J { j 21dy —12 j _v-:f_u" dx
2 [ 4-x? 1
= J\ 21x 2 j dy —12(0) ldx

g

[Since the integrans in forst integral is even and in 2 integral it is on add function]

=42 J (V)3 dx

2 2
:42]'\/4—x2dx=42><2J'\/4—x2dx
—2 0

X — 4 _1X]°
= 84 [— vd—x°+— sin —]
2 2 a

1
=34 [G_E'E_G] = 84n

11: Verify divergence theorem for F = x?i + y?j + z” k over the surface S of the solid cut off by the

plane x+y+z=a in the first octant.

Sol: By Gauss theorem, JE.EdS = IdivEdv

Letg = x+ v +z—a bethe given plane then
0 0 0

2 _ 26 06

0 oy 0z

s - T~
Lgradg =y i—=i+ j+k
oX

gradg¢ T+J+k
|grad ¢| V3

Unit normal =

Let R be the projection of S on xy-plane
Then the equation of the given plane will be x+y=a = y=a-x

Also when y=0, x=a

F d d
jF nds = [ [ =
R ‘n k‘
a a-— i a a—x
x4+ 1.' + == o
J J = J x*+y?+(a—x—y)]dcdy[since x + vy +z = a]
X=0 =0 dx dy =
.'11_3
= J'E': J’EE T[2x% 4 2y% — 2ax + 2xy — 2ay + a?ldx dy
a _ e
(L. 2 AP
— 2 VT T Xl = SOV — Oy - ¥ [
A R I

x=0 o



[ird

J[.u. ktl—l)—gktl—lj (T —=x) —2oniga—x,—ala—xX) T 0 g —x/ux

x==0

a

- 5 2 a . o .
IF.ndS = I(——x3 +3ax’ —2a’x+ —a3\dx = —, on simplification...(1)
L 3 3 J 4

0

Given F = x’i + y2}+ 27k

- 0 2 0 2 0 2
div F = —(x)+—(y )+ —(z7)=2(x+y+12)
oX oy 0z
_ a a-xa-x-y
Now ”J‘divF.dv:ZJ' J' J (x+ y+ z)dxdydz

x=0y=0 z=0

i

i
|

[

N —_—

[ (x + 1)——Hl o dx dy

|:.

(=1

2

ER ]

a—x—¥

(a—x—1v) [x +y —T' dx dy

[[—

I
[
B
R
n =
|
]
=]

£l =]

(a—x—ylla+ x+ v]dx dy

[ —

(=]
[=]

=

I
[ —

o X oco—x

J I] P —(x __1,.):] dy dx = J I] (a® —x% — % — 2xy)dx dy

3
[a®y —x* 1—?—11 167 dx

nL____

= J (a—x)(2a® — x? —ax)dx =g (2)

Hence from (1) and (2), the Gauss Divergence theorem is verified.

12: Verify divergence theorem for 2x%yi —sz +4xz° k taken over the region of first octant of the cylinder
y’+2°=9 and x=2.

(or) Evaluate J' JE.EdS , where F =2x%yi —sz +4xz° k and S is the closed surface of the region in the first

S

octant bounded by the cylinder y*+z* = 9 and the planes x=0, x=2, y=0, z=0
Sol: Let F =2x%y i V2 | +4xZ? K

— 9 2 0 ) 0 )
V. R =—@x )+ —(-y )+ —(4x27) = 4xy - 2y +8xz
oX oy 0z




s

2 3 4F70

7.Fdv = J J J (4xyv —2v + 8xz)dz dy dx

v x=0y=0 =z=0

‘-\___\'.u

‘-\___\'.u

L‘———\.
=l

2 3 ST
= J J l(ﬂlx}'— 2y)z + 8x —] dy dx
o 0 ==0
-
= J J [[41‘_1:— 2v)9 — v+ 4x(9—v?) | dy dx
)

[(1—2x)(—2W4/9—v?+4x(9—yT)] dydx

I
m‘“—_—'..l:u
m‘“—_—um

r_u|r\_1-

(1—2x)[0 = 27] + 4x[27 — 9]} dx = J [—18(1 — 2x) + 72x]dx

|:.

:J{

[18(x —x*)+ 72 X—} = -18(2-4)+36(4) =36 +144 =180...(1)
2

Alraar sura e dl mrlmnaleta I E = e £fram ]l 2bha £ia1a £arne
R ettt R N Ao B -

5




[ F.ndS =[F .ndS + [ F.ndS +... [ F.ndS

s B s

1 2

Where S, is the face OAB, S, is the face CED, S; is the face OBDE, S, is the face OACE and Ss is the curved

surface ABDC.
(i) OnsS :x=0,n=-i..Fn=0 Hence'f;.;ds
(ii) Ons,:x=2,n=i .E;=8y
3 \Jo- 22 3 2\ No-f
—— (y*)
.'.IF.ndS:J‘ j 8ydydz:J'8|—| dz
s, 0o 0 0 \2 )o

(i) OnS,:y=0,n=-j... F.n=0 Hence I;.Eds

S3

—
':ﬁ-
S
o
=
N
k)
I
A=
=1l
I
I
o
n

.fi=0. Hence J F.ads=0
S
- V(y2+zz) 2y]+22; y]+ z[ y]+ z[
’ = 5 5 = - - = \/ =
Ve faytear Naxe e

— = y3+4xz3
- -—  z
Fn=——andnk = —
3 3

— dx dy

Hencef_ F.7ids = _JF_J; F.7

Where R is the projection of 5; on xy — plane.

= J JM{IJ_ dy = J J [4x(9—y7) — @ (9 —_u':)_%] dy dx

-\.,'." g — }.:

FRLex]

x=0 y=0

2 ,
= J 72x dx — 18 J dx = ?2(?) —18(x ;= 144 — 36 =108

0 o e
Thus js FAds=0+724+04+0+108=180..... (2)

Hence the Divergence theorem is verified from the equality of (1) and (2).

13: Use Divergence theorem to evaluatej j ( Xi + y}+ zZE).Eds. Where S is the surface bounded by the

cono v2av?=72 in the nlana 72 =4
T ™




-

Sol: Given | j[_l'f— y] + I'R‘- fl.ds Where Sis the surface bounded by the cone x*+y*=z” in the plane z

-4
let F = xT+vi+z%k

Bv Gauss Divergence theorem,we have

J1 J1|::l'f—_vf—::3?}.ﬁ.d5 = J J J'T;ng

— 0 0 o .,
Now V.F = —(X)+ —(y)+—(z")=1+1+2z=2(1+ z)
oX oy 0z

Onthecone,x’ +y’  =z"andz=4 = x’ + y’ =16

The limits arez=0tod,v=o0to w\."lm_, x=0to 4.
C Friemat 2
JJ JT?.FQ’::= J J JE(l—:)dxd_vd:
v o 0 0
V16 -x7

4 \l16-x2 4 -
=2 | [4+8]dxdy=2xlzj[y]j”’* dx
0 0 0

=24 J V16 —x?dx =24 | /16 — 16 sin® & .4 cosfdf

|:.

e

[putx = 4sinfd = dx =4cosfdb. Also x=0= 6 =0 and x=4:>¢9=1]
2

Fd

2

4+J1-sin’ 6 cosHdO =96 x 4jcos2 0do
0

o t— N |n

”jv.de:geM
\%




[T

J J J 7.F dv =96 5{4J 41— sin 28 c&gﬁ'd5'=96_5{4J cos?@ df
o O
[ 1+ cos28 1l cos28
=9524J d8 = 96X4 J [—— ]
2 2 2
0 W
1 lsinEEf_l
=384 [— += =967
27 T2 2

14: Use Gauss Divergence theorem to evaluate [ [ (yz°T + zx*J + 22°k).ds, where S is the closed

surface bounded by the xy-plane and the upper half of the sphere x*+y*+z°=a*
above this plane.

Sol: Divergence theorem states that

JJF@=[IJFF@

5

- 0 2 0 2 0 2
Here V.F = —(yz° )+ —(zx" )+ —(22") = 42
oxX oy 0z

”E.ds = [ [ [42dxdydz

Introducing spherical polar coordinates x = rsin @ cos¢,y = rsin @sin ¢,

z = rcos@ then dxdydz = r’drd6d¢

a T 2z

J'J'E.ds:4j' J' I (rcos@)(r’sinodrdodg)

r=00=0¢=0

Al

jird T
=4 J J?S sinf cos &

r=08=0 &

de | dr dg

1] e 12

|:.

il T

=4, J J’rgsinﬁcosﬁ' (2m — 0)dr d@

r=0&=0
T r : ¢ cos28\T
= 4 J?“" JsinEEﬂ’E dr = 4w J’f“[— ) dr
2 o
r=0 o r=0

=(—2m) f; ri(1—1)dr=10
15: Verify Gauss divergence theorem for F = x*T+ y*J+ 2% k taken over the cube bounded by
x=0,x=a,y=0,y=2a,z=0,z=a.

Sol: We have F = x*T+ v+ 23k




— 0 0 0
VE = — (x> Yo — (v o — (75 —3y* 1 3v% 4377
oX oy o0z

J J J V.Fdv = J J J(S:L':—S_v: +3z)dx dv dz
=3 J J J(xj—_v:—::)a’xd_vd:
=0 y=0x=0
. 3 . a
=3 J J (——1‘_1."—:'1) dyv dz
, 3
z=0y=0 e
s . .
=3 J J[——a}"—a:')d}'d:
. a
Z=0y=0
" a® y 3 - B
=3 J[—_k—ﬂ——ﬂ:'k) z
L 3
=0 0

To evaluate the surface integral divide the closed surface S of the cube into 6 parts.

i.e., S::The face DEFA  ;S,: The face OBDC K

S, : The face AGCO ; Ss: The face GCDE R

S; : The face AGEF ; Sg: The face AFBO

[ [raae [ [rases [ [rress [ [P |

5 5, 5 5,

J'_[Egds = _[ J' (a3i-+ y3}+ Z3E).i-dydz

J J F.nds = J J (a°T+v37 + 2%k) . 1dy dz
5, z=0y=0
= J J aldy dz = L‘IEJ (v)§ dz
==0 :;:I:- o
= ()5 =af

OnS,wehaven=—-Lx=0




(35 73|1_\ (_ildudz — 0
{ 7 U T

P ra Maaro 78 — T ar —
OnSpwehaven=J,v=a

J'IE.;ds = j' j' (xsi-+ a’j+ z3k_).jdxdz =a’ Ja' Ja' dxdz = a3}adz = aA(z):
5 220 x=0 220 x=0 o

-3’
OnS,wehaven=—jy=20

- -

J J F.nds = J J (x31+ z%k) . (—J)dx dz= 0
5, 2=0x=0
On 5., we have n = kz=a

a a

5z 0x
- “
= J J a*dx dy = a® J (x)5dy = a*(¥)§ = a®
y=0x=0 o
On S, we have n = —k,z=0

[ (3T + v37). [:—E}a’x dy= 0

Thu_f:J JF.’Ed3= a®+0+a®+04+a®+0=134°

5

Hence J JF.’E{IE = J J V.F dv

s v

. The Gauss divergence theorem is verified.

Il. GREEN’S THEOREM IN A PLANE

(Transformation Between Line Integral and Surface Integral) [JNTU 2001S].
If S is Closed region in xy plane bounded by a simple closed curve C and if M and N are continuous functions

of x and y having continuous derivatives in R, then

(oN oM )
d dy = — - — |dxdy.
@M x + Ndy ”Lax anyy

R

Where C is traversed in the positive(anti clock-wise) direction




g
Al
Y=t | E
- =5
X=a /WY
®)
SOLVED PROBLEMS

Verify Green’s theorem in plane for 95(3 x?— 8_1.':]::1’1' + (4v — 6xv)dyv where Cis the region
bounded by y=yx and y=x" .

Solution: Let M=3:x*-8v* and N=4y-6xy. Then
anM
By

= —16y, —1 = —6y

A
\\ y=k Ly yex’
A1)
\
0 »s
\\
We have by Green’s theorem,
(N oM )
dex+ Ndy_J.J.Lax > dedy.
Now (oN _ oM \dxd 16y —6y)dxd
”L@X 6yJ y—jj( y -6y )dxdy
s et
-10” ydxdy = 1OI I ydydx =10 I|—| dx
x=0 y=x? x:Ok 2 )

1 2 x*  x 101 3
Verification:
We can write the line integral along ¢
=[line integral along y=2x*(from O to A) + [line integral along ¥~ =x(from A to O)]

=1, +1,(say)

Now 51:,&.1:.;.{[39-': —8(x?) ] dx + [4x? —6x(xD)]2xdx} |v v =x= ZT = 2x

=Jrc-_l (3x% +8x% — 20x¥)dx = —1




And IZ:I[(3x2—8x)dx+(4x/;—6x%) dx}:-[(:3x2—11x+2)dx:E

1

Ayt e yssia=a0

o

From(1) and (2), we have [ﬁMdX+ Ndy = ”{aN om dedy.

oX oy

hence the verification of the Green’s theorem.

Evaluate by Green’s theorem jrc (v —sinx)dx + cosx dv where C is the triangle enclosed by the lines
y=0, x==, Ty = 2x.

Solution: Let M=y-sin x and N = cos x Then

AM aN \ ]
a_-.-_l and S.osinx
(6N oM )
. By Green’s theorem [ﬁde+ Ndy—” dxdy.
Lax oy J
V4\
= I(yfsin x)dx+cosxdy=”(—1—sin x)dxdy .
c R 2x
y=2
x=n/2
j f (1+ sinx) dxdy .
0 y=0 A >
w2 2x S l 0
=- j--:c- (sinx + 1) [¥], edx [2’ J

——f_ . 1[51111 + 1)dx

L %
=—x(- - (1= d
. [x( cosx+x)]0 J; (-cosx + x)dx
= H[ (—cosx—x}—sml——:r:-

Evaluate by Green’s theorem for QSE (1': — Cr:rshj.'] dx + (_1.' + sin :L':Ia’_‘.' where C is the rectangle with
vertices(0,0),(m, 0), (7, 1), (0,1).

Solution: Let M=x* — coshv,N = v + sinx

(01 1) (n‘ 1)

aM v 0| (. 0)

. AN
= —ginhv and — = cosx

o [




By Green's thearem $ Mdy o Ndy — I‘l‘u(aN oM \m dy

Wlox oy

c

= [ﬁ(x2 —cosh y)dx + (y +sin x)dy = J'f(cos X +sinh y)dxdy

c R

= 95': (x* —coshy)dx + (v +sinx)dy = [ [(cosx +sinhy)dxdy

:_J':zc_ j;:':c_(cr:rs x + sinh v)dvdx = L:c- (vcosx + coshy)ldx

= J (cos x + cosh1—1)dx

x=0

=m(coshl — 1)

E A Vector field is given by F - (sin y)i_+ Xx(1+ cos y)}
Evaluate the line integral over the circular path x“+v* = a*, z=0
(i) Directly (ii) By using Green’s theorem
Solution: (i) Using the line integral

gfi F.dr = 95': Fidx + Fdy = gﬁc sin yvdx + x(1 + cosy)dy

=msin ydx + xcos ydy + xdy :md(xsin y) + xdy

Given Circle is x*+v* = a®. Take x=a cos# and y=a sin & so that dx=-a sin & d& and

dy=a cosfdfandf =0 — 27

Eﬁﬁ.cf?: fc_:xn’[a cos@ sin(a sinf)] —fc_:xa[ cosf)a cosfdf

=[a cosfsin(a sin §)]5* + 4a” fEF ®cos? 8 do

T 2

1
=0+4a’.=. =ra
2 2

(ii)Using Green’s theorem

Let M=sin v and N=x{1 + cosy). Then

oM N
=cosVy and %:(l + cosv)

By Green’s theorem,

(6N oM )
m Mdx + Ndy = ”L———dedy
< o\ ox oy

msin ydx + x(1+ cos y)dy = ”(— cosy+1+cosy)dxdy == ”dxdy

c R

= “’dA: A=ra’(: area of circle=ra’)

R

We observe that the values obtained in (i) and (ii) are same to that Green’s theorem is verified.




EShow that area bounded by a simple closed curve Cis given by }qs xdv — vdx and hence find the area of

2 2

(i)The ellipse x=a cos @,y = bsing (i_e)x—2+ y_z =1
a

b

(i )The Circle x=acos 8, v = asin 8 (i.e)x> + yv? = a°

. , ON oM
Solution: We have by Green’s theorem [ﬁ Mdx + Ndy = H[—— —dedy
C R

oX oy
f:‘.‘r_r N
Here M=-y and N=x so that —— = -1 c‘md; =1

Uj xdy — ydx = ZJ' dxdy = 2 A where A is the area of the surface.

c R

%f xdy—yvdx = 4

(i)For the ellipse x=acos 8 andy=bsin & and 8 = 0 — 2x

+ Area, A=-¢ xdy — ydx = 2 ["[(a cos€)(bcos8) — (b sinb (—a sin8))]d 6
=%ab J’E_:'T[coszﬁ + sin* @) df = %ab[ﬁ'}é” = % (2m — 0) = wab

(ii)Put a=b to get area of the circle A=a’

6: Verify Green’s theorem for L[(l‘_‘.’ + _1.':]-:1'1' + :au:::'fj.']J where C is bounded by y=x and

y=x

. ON oM
Solution: By Green’s theorem, we have m Mdx + Ndy = H[—— —]dxdy
C

OX oy

R

Here M=xy +v~ and N=x*

C2

(o}

The line y=x and the parabola y=x~ intersect at 0{0,0) and A{1,1)

Now dex+ Ndy:Ide+ Ndy+J‘de+ Ndy...... ) (1)

c cy c,

Along Cy (i.e.v = x7), the line integral is

jde+ Ndy = J[x(x2)+ x"]dx + xzd(xz)J(xa +x'+2x)dx = j(3x3 +x“)dx
Cl C1 4 0

4 C
:[3.%_ J.:. ;-:_%=_ ene(2)

[4) ] | H




Along C, (i.e.v = x)from (1,1) to (0,0), the line integral is

_[ Mdx + Ndy = J'(x.x + x3)dx + x2dx [ dyv = dx]

i)
—f 3x7dx =3 f xidx =3 ( AT\] = (x%)]=01=-1 ...(3)
L= 1

From (1), (2) and (3), we have

j Mdx + Ndv = r =21 ...(4)
c 20 20
Now

(aN M)

1o
<[ 167 =2 = (° = x9]dx = [} (x* — x7)dx

- dedy —J.[(Zx—x—Zy)dxdy

(£ 45 212 ..(5)
Yoo =4ip 2 = £
From(4)and(5), We hav E'm M dx + Ndy = H[ﬂ ﬂ} dxdy
oX oy

Hence the verification of the Green’s theorem.

Using Green’s theorem evaluate L(E Xy — :L'::Id:t + (1': + _k':;ln:'f_u Where “C” is the closed curve of

the region bounded by y=x~ and v* = x

Solution:

The two parabolas _1,': =xandv= x? are intersecting at 0(0,0), and P(1,1)

Here M=2xy-x~ and N=x* +1°

aM
n— = 2x and N — 2x
|.':'_‘. ﬂ.«'
N oM
—— —=2x—2x=0
Hence 5 2y

By Green’s theorem J'M dx + Ndy = .”I(aN oM \dedy

oX Yakvi




N
i.e.,J'(ny—xz)dx+(x2+yz)dyz J '[ (0)dxdy = 0

c x=0 y=x?

EVerify Green’s theorem for J;[(S 1% — 8v*)dx + (4v — 6xv)dv] where ¢ is the region bounded by
x=0, y=0 and x+y=1.
Solution : By Green’s theorem, we have

(6N oM )
.!de+ Ndy:IILg—?JdXdy

R

Here M=3x~ — 8v~ and N=4y-6xy

A (1,0

Now jde+ Ndy = j M dx + Ndy + j Mdx + Ndy + j M dx + Ndy...(1)

c OA AB BC

Along OA,y=0 -~ dv =10
[ Mdx+Ndy = [*32%dx =(Z) =
oqax = Nay = | 3x 1—\?“}—1

Along AB, x+y=1 =~ dv = —dx and x=1-y and y varies from O to 1.

[ Mdx+Ndy = [[3(y -1)" =8y 1(~dy) +[4y + 6y(y - 1)]dy
=j:'(—5_v: —6v + 3)(—dv) + (6v7 — 2v)dy
= z 1
1 2 . L= ¥4 ¥ _ al,
= (11y? + 4y —3)dy = (115 + 42 3'1'):-

:1;—1—2—3=

o

| o

Along BO, x=0 .. dx = 0 and limits of y are from 1to 0

20
[y, Mdx+ Ndy = [[ aydy = (4%) = (2yD)i= -2
SEVA




|

from (1), we have [ Mdx + Ndy =1 + E_2=

(N oM ) b
Now ”Lax . dedy: j J'(—6y+16y)dxdy

x=0y=0
2 1—x

=10 j__i_c_ [fi__l; _1,'.:1’_1,'] dx =10 f; (T] dx
=0 [Yy= 2z /,

.1-;:-3]1

Sl -1° - (1- 0=

w |n|

From (2) and (3), we have J'M dx + Ndy = H{aN om dedy
OX oy

Hence the verification of the Green’s Theorem.

aAppIy Green’s theorem to evaluate 95,:(2 = vi)dx + (x*+ v¥)dv, where c is

the boundary of the area enclosed by the x-axis and upper half of the circle x* + v* = a”
Solution : Let M=2x> — v? and N=x~ + v Then

oM N
— = —2vand — = 2x
ay - g

ks

O a
Figure
(6N oM )
By Green'sTheorem, JM dx + Ndy = 'HL o a—dedy
X y




ML2x" = y*)ydx+ (x* + y*)dyl = [ [(2x + 2y)dxdy

c R

=2II(X+ y)dy

=2_J: Jrl; r(cos@ +sinf).rd Bdr

[Changing to polar coordinates (r,&], r varies from 0 to a and & varies from 0 to 7]

. [Ij[(zx2 —yHdx+ (x* + y3)dy] = 2J'r2dr_|'(c050+sin 0)do

0

b4

c 0

4"

=2_E?E(l—l}=

Find the area of the Folium of Descartes x* + v* = 3axv{a = 0)using Green's
Theorem.

Solution: from Green’s theorem, we have
T [ﬂ
E-..'l.

1
By Green’s theorem, Area = _[ﬁ (xdy — ydx)
2

BB
'Inum

[Pdx+Qdy =

Considering the loop of folium Descartes(a>0)

? d (3 [d (3at’ )]
Let x= 3at3|y: 3at3 ,Then dx _ 4 ( sat —|dtand dy = | —| 7| | dt
1+t 1+t Ld k JJ Ldt\1+t )]
. . . _ (3a 3a)
The point of intersection of the loop is L— _J > t=1
2
Along OA, t varies from 0 to1.
d f3at” 3ac’ d Jat
380y = yan) =1 [ (55) [£ G55 - (25 [ (355) |
‘iﬂ 3at |r3at(2—t3)—{ 3at’ I—3a(1—2t3)u
2"{1” | @) | Y ey ]
ggz? .1 [efl2—:%) #F1—2:F 5a? ~1 268 —p5—s2s2:5
e e = e
C9a’ '+t 9a’ tfa+t))
2 ‘[(1+t3)3 2 J;(l+t3)3
== : -’1—:3 —dt [Put1+t® = x = 3t dt = dx

LL :x=1, U.L

:x=2]




2

1 3a

Ay n nite(asN)
U A} T

a a
2 6

: Verify Green’s theorem in the plane for fc(l': —xyv)dx + (v? — 2xv)dy

4

Where C is square with vertices (0,0), (2,0), (2,2), (0,2).

Solution: The Cartesian form of Green’s theorem in the plane is

(ON oM )
d dy = — — —— |dxd
J;M X + Ndy 'H.Lax 6nyy

R

Here M=x~ — xv® and N=v~* — 2xvy

M 3ay?and =2y
dy - x
" y=2
o %
(0.2) B2
N\
x=0 v b x=2
o -
(2,0

Evaluation of ff(de + Ndy)

To Evaluate fc(l': - 1‘_‘.’3] dx + (_1.': - 21‘_1.') dv, we shall take C in four different segments viz (i) along

OA(y=0) (ii) along AB(x=2) (iii) along BC(y=2) (iv) along CO(x=0).

(i)Along OA(y=0)

-

fc(x: —xydx + (v — 2xy)dy = jc- xldx = (%] =

(ii)Along AB(x=2)

fc(x: —xyv dx + (v = 2xv)dy = fc: (v?—4v)dy [~ x=2,dx =0]

W O

(iii)Along BC(y=2)

“(£-2v7) =(

ol | oo

A 4 I

[(x? — 2y de + (v — 2xy)dy = ﬂﬂ'(x: — 8x)dx [*y=2dy=0]
,: 2

—g)=5(-2)= -

(1)

(2)




(iv)Along CO(x=0)

fc(x: —xvdx + (v? —2xv)dy = ff}': de [vx=0dx=0]= (—:] == ()
Adding(1),(2),(3) and (4), we get

I(xz—xya)dx+(y2—2xy)dy:———+——§= =8 ..(5)

C

Evaluation of J'J'[aN ﬂdedy

oX oy

Here x ranges from 0 to 2 and y ranges from 0 to 2.

22

(oN oM )
dedy J'J'( 2y + 3xy’)dxdy

%0

X

=J’E_: [—21‘_1' + E'f—':_v: ] ) dy

2 ‘o

2
2

=[(-ay+6y’)dy = (-2y +2y°)
0

=-8+16=8 ...(6)

From (5) and (6), we have

(N oM )

J'de+Ndy—J'J'LaX > dedy

Hence the Green’s theorem is verified.

1ll. STOKE’S THEOREM

(Transformation between Line Integral and Surface Integral) [JNTU 2000]

Let S be a open surface bounded by a closed, non intersecting curve C. If F is any differentieable
vector point function then 95.: F.d ’F:j;_ curl F.7ds where c is traversed in the positive direction

and 7 is unit outward drawn normal at any point of the surface.

Prove by Stokes theorem, Curl grad ¢=0
Solution: Let S be the surface enclosed by a simple closed curve C.

« By Stokes theorem

[ (curl grandg).7i ds = [ (VxV¢).7 dS = 95.: Vg.dr = 95{ Vo.dr
¢ - - -
=m| — 4+ j—+k—]. (IdX+ jdy+kdz)

(8o LY

p) A\
=m —dx+—dy+—(édz Jd¢:[¢J where P IS any point on C.
L ay oz J '




. [eurl grad¢.fi ds =0 = curl gradg = 0

Eprovethat I¢cur| f.ds = I;zﬁ?.d;fj'curlg rad¢x?ds

Solution: Applying Stokes theorem to the function @ f

_[¢T-d;: qurl((p?).gds = J'(grad¢x?+ ¢cur|?)ds

S

fqﬁcurl?.ds = J’¢?.d?— J'V¢>< fds

3: Prove that 955 fVf.dr =0.
Solution: By Stokes Theorem,

J(EVE)dr=[curlfv f.nds=[[feurlVf +Vixvfln ds

4 S

= jo.nds =0[ curlvf =0and Vf x Vf = 0]

i: Provethatm ng.dF: J'(Vf ng).Eds

Solution: By Stokes Theorem,

m(ng.d;):J’[Vx(ng)];ds:“Vf xVg+ feurlg radg].;ds

c S S

=I[Vf ng].Eds [ curl(gradg) = 5}

Verify Stokes theorem for F = —v 37 + x %7, Where S is the circular disc

xt+ vyt 1,z =

Solution: Given that F = —v 37 + x*j. The boundary of C of Sis a circle in xy plane.

x* + v? < 1,z = 0. We use the parametric co-ordinates x=cos®, v = sinf,z = 0,0 < 8§ < 2m;
dx=-sinf df and dy =cos® df

95': F.dr = J; Fidx + Fydy +Fdz = | —y3dx + x3dy

=Jr.;.:?rf—5£ﬂ3ﬂ?ﬁ—5iﬂ8) + cos?Bcosldl = Jr.;.:T(CGF;'E + sin*6)d6
:.Jr.;.:?r (1—2sin@ c-:rs:'g:'d'g:fc.:x dé — %.ch:‘_ (25inf cosd)*dé

_yam 12w , 2 _ _ _ 1 eIm _
=f, d8 —< [ sin®2d6 = (2 — 0) — 3 [[7 (1 — cos46)dE

1 i, =T . o
=T + _TE_ESLTT‘]:E F o EE _ 3T

o 2 = 2




=
|
E

NowV X F =

o
e

= '-lllu,- —
o
ta

oD
2 (VX F)ids =3 [ (% + y*)k. fids

We have (k.n)ds = dxdy and R is the region on xy-plane

s JI(vx F)ads =3 [[ (x* +y®) dx dy

Put x=r cos@, v = r sind.. dxdy = rdr d@
risvarying fromOto land 0= @ =< 2m.
(VX F)oads =377 [ rPrdrdo =2

L.H.S=R.H.S.Hence the theorem is verified.

S

ilf F - yi_+ (x - 2xz)]— xy[, evaluate J'(V x F ).Eds . Where S is the surface of sphere

el -

x? 4+ y- L+ z-= a’, above the xy — plane.
Solution: GivenF = vi + (x — 2xz)j — xvk.
By Stokes Theorem,
L('\?’ X F]_ﬁds:j Fdr= J; Fydx + F,dy + Fydz = j; vdx + (x — 2xz)dy — xvdz

- el

Above the xy plane the sphereis x* + v +=a”,z = 0

Put x=a cos &,y=asin@ so that dx = —a sinfdf, dy = acosfdf andfd =0 — 2m

-

[ F.dr = J (a sinf)(—a sinf) df + (acosf)(acosf)dE

=a’ J]: cos28 df = a* [E‘H'E]D. = ET (0)=0

Verify Stokes theorem for F = (2x — v)T— vz?7 — v*zk over the upper half surface of the sphere
x* + y? + z7 = 1bounded by the projection of the xy-plane.

Solution: The boundary C of Sis a circle in xy plane i.e x* + v*=1, z=0

The parametric equations are x=cos8, v = sinf,8 = 0 — 2m

dx = —sinf df, dv = cos8 df

J‘F dr_IFdXJrFdy+FdZ—I(2X—y)dx_yZ dy -y 2dz

j 2x — v)dx(since z=0and dz = 0)




2z

[ cin2AadA

2

N
N

2cncA cin Alcin Ada — [ cin’Aada
7 J

A~

0 0

o ——

[
L

5' — —5'??,2:5' += casEE‘
0

In  1-cos28 i S _
=lazo 7 dﬂ—fc_ sin2f8 df =

1(27— o)+0 —}. (cosdm —cos0) =m

T 7 k
. _ 8 8 8
Again V x F=| - 3y P =i(—2yz+2vz)—jl0o-0)+k(0+1)=k
2x—y —vz® —viz
; fs('\? X Fj,ﬁds:fsk. fids = fﬁf dxdy
Where R is the projection of S on xy plane and k. fids = dxdy
1
-1,

x =7, 1.
TWVl—x"+—-sin Tx

n’ua’ —4f NI—xPdy =47
o E

Nowff dxdy = 4f f

=4 [ sin” l] =y
. The Stokes theorem is verified.
8: Verify Stokes theorem for the function F = x* T+ x J integrated round the square in the plan z=0

whose sides are along the lines x=0, y=0, x=a, y=a

Solution: Given F = x? T+ xvJ

-
C y=2a B (a, a)
(0, a)
X=a
= A@o
Fig. 13

By Stokes Theorem, IEKT X Fj.ﬁds:j Fdr

C

|'-'.|.- |
I
=
<

Now ¥V x F=

TT
o Fe m

o
23




L.H.S.=f5(? X F).’Eds:J y(;;)ds = I ydxdy

. . k.ds = dxdy and R is the region bounded for the square.

@

o [ (VX F)ads = f; f; ydydzx ==

R.H.S. =J'E.dF= .[(xzdx + xydy)

[ C

But [FodF=[ F.df+ [ F.dF+[ F.df+[ F.dF

(i)Along OA:y=0, z=0, dy=0, dz=0

o f Fodi= [fxlde =%

(ii)Along AB:x=a, z=0,dx=0,dz=0

_— - a 1 3
dr = dy = —
J'F r Iayy 2a

AB 0

(iii)Along BC: y=a,z=0,dy=0,dz=0

~ [ F.df = f; 0dx = 2a3
(iv)Along CO: x=0, z=0, dx=0, dz=0

[ F.d7 = [°0dy =0

1 o
—a®*+0 ==-a
b=

Adding [ F.d7 = a® +2a° +

Hence the verification.
9: Apply Stokes theorem, to evaluate [ﬁ (ydx + zdy + xdz) where cis the curve of intersection of the

4

sphere x~ + v= + z° = a~ and x+z=a.
a~ and the plane x+z=a. is a circle in the plane

Solution : The intersection of the sphere x* + v~ +

x+z=a. with AB as diameter.

Equation of the plane is x+z=a= “; + g =1

. OA=0B=ai.e, A=(a,0,0) andB=(0,0,a)

.. Length of the diameter AB= vya’ +a’ + 0 :a".,E
Radius of the circle, r=—=
Let F.d7 = vdx + zdy + xdz = F.drf = F. [ Idx + jdv + Ed:} = vdx + zdy + xdz

+xk

=F=vit+zjJ
TF7 ok

el Bl® 8 8- (7ai7aF)
Ax dv 2= K - 7
¥y z x



-

-1

Let 7 be the unit normal to this surface. i1 =

Lol

Hence QSEF. d7 = [ curl F.7ids (by Stokes Theorem)

D (4 )

- -
B ¥

=_~.,"3_st ds = —\/25 = —1.,"5[“ J =

10: Apply the Stoke’s theorem and show that jsj curl F.7nds = 0 where Fisanyvectorand S =
+ylizi=1
Solution: Cut the surface if the Sphere x* + v= + z* = 1 by any plane, Let 5, and S,denotes its upper

and lower portions a C, be the common curve bounding both these portions.

IcurlE.dgz jF.d§+IE.d§

Applying Stoke’s theorem,

J'curI;.d;: J'E.dE+IE.dE: 0

Sy S2

The 2" integral curl F.d 3 is negative because it is traversed in opposite direction to first integral.

The above result is true for any closed surface S.
11: Evaluate by Stokes theorem E}SE(:L' +vldx + (2x — z)dv + (v + z)dz where Cis the boundary of

the triangle with vertices (0,0,0), (1,0,0) and (1,1,0).
solution: Let F.d7 = F. [ dx +jdy + Ea’:} =(x+v)de +(2x —z)dv+ (v +z)dz

ThenF=(x+v)i+(2x—z)j+ (v +2)k

By Stokes theorem, 95:: Fdr=] Jrs curl F.nds

/ B(1,1,0)

P A(1,0,0)




Where S is the surface of the triangle OAB which lies
in the xy plane. Since the z Co-ordinates of O,A and B
Are zero. Thereforefl = k. Equation of OA is y=0 and
that of OB, y=x in the xy plane.

=T+ k

1 7
= ] ]
~ ecurl F=| — —
fx gy

ol

i+v 2x—z v+=z

. curl F.ads=curl F.K dx dv = dx dy
E}SEF. dr = | j; dedy = | j; dA =A =areaof the A OAEB

1 1
=20A X AB="x1x1=—

2 2

12: Use Stoke’s theorem to evaluate j J; curl F.7dS over the surface of the paraboloid

T

z+x +y’ =1z>0where F=yT+zj+xk

Solution : By Stoke’s theorem

.pungugszthj(ﬁ+zf+xb(hx+hy+ﬂn)

c

Where C isthecircle x* + v =1

The parametric equations of the circle are x=cos8, v = sind
W dx = — sind df
Hence (1) becomes

_ 2z - - 2 o, 2 o, 1 po
J'curIF.ds: IsmH(—SInG)d@:—J'sm 9d49z—4_[sm 0d0 = —4x —x —=—x
2 2

s 0=0 6=0 0
13: Verify Stoke’s theorem for F = (x? + v?)T — 2xv] taken round the rectangle bounded by the lines x=
Ta,v=01yv =5

Solution: Let ABCD be the rectangle whose vertices are (a,0), (a,b), (-a,b) and (-a,0).

Equations of AB, BC, CD and DA are x=a, y=b, x=-a and y=0.




We have to prove that QSEF_. dir = _J; curl F.nds

gﬁf. dr = gﬁc{(x: + v T — 2xvjh{ tdx + jdv}
=5}5c (x7 + v ) dx — 2xvdy
(1)

=vl:-15 Tlge T jcn - IDA

C(-a,b) y=b B(a,b)
<
X=-ay - A X=4
g —PX
D(-a,0) O vy=0 A(a,0)

(i) Along AB, x=a, dx=0

from (1), Lis = _J:'::J:D—Qﬂ_‘.' dv = —2a [T] = —ab®
- = Jdp
(ii)Along BC, y=b, dy=0
o 2 2 Xa 2 —|7a -2a° 1.2
from (1), J: j (x" +b )dx:{—+b XJ = — 2ab“
BC X=a 3 X=a
(iii) Along CD, x=-a, dx=0
° [y? 1
from (1), [ = | 2aydy:ZaLy—J = -ab’
CD y=b ’Z y=b
(iv)Along DA, y=0, dy=0
e [x*1 2a’
from (1), J': I xzdx:[—J =
DA x=-a 3 X=—a 3
(i)+(ii)+(iii)+(iv) gives
gSEF_.dF = —ab:--_:"':_ — 2ab? — absz_ = —4ab?

Consider Jrs curl F.7dS

Vector Perpendicular to the xy-planeis 7 = k
T I k
B g A R
curl F= e 3y 2| = VK
(x2+v*) —2xv 0

F=x3 2l " - . | 1
SITTCE UIMTE TELLATIZTIT TTES TIT UINTT Xy PIdric,



1 = k and ds =dx dy
vl F.7idS = [ —4vEk. kdx dv = [© 5 s e
_]; curl F.ads f5 dvk. kdx dy J;:_E J;.-:c- 4v dx dy

b a b

=JF.E.J=,:. .'.:z_c—ﬂl_vn’x dyv=4 [ y[x] dy=-4 [ 2aydy

y=0 a y=0
=—¢La[_1.':]_f’l_=,:, = —4qab? )|
Hence from (2) and (3), the Stoke’s theorem is verified.
14: Verify Stoke’s theorem for F = (v —z + 2)T+ (vz + 4)7 — xzk where S is the surface of the cube x
=0, y=0, z=0, x=2, y=2,z=2 above the xy plane.
Solution: Given F = (v —z + 2)T+ (vz + 4)J — xzk where S is the surface of the cube.
x=0, y=0, z=0, x=2, y=2, z=2 above the xy plane.

By Stoke’s theorem, we have [ curl F.fids = [ F.d7

k
Ei =f0+v)—jl—z+ 1)+ k(0-1)=vi-(1-z)]-k
+2 v+4 —x=z

2 UXFRA=VXFk=(yvi-(1-2)j-k)k=-1

# [VxFiids =[ [ —1dxdy (vz=0.dz=0)=—4 (1)
Tofind [ F.dF
[Fdr=] [[_u'— z+2) T+ (vz+4)7 - 1‘:EJ (dxT + dv] + dzk)

= [[(y—z+ 2)dx+ (vz+4)dy — (xz)dz]

Sis the surface of the cube above the xy-plane

o [Fdi= [(v+2)dx+ [ 4dy
Along0A,v =0,z =0,dy =0,dz = 0,x change from 0 to 2.
[ 2dx = 2[x]2=4 en(2)

Along BC,y = 2,z =0,dv = 0,dz = 0,x change from 2to 0.

[} 4dx = 4[x]3

—35 ceeene (3)

Along AB,x = 2,z =0,dx = 0,dz = 0,y change from 0to 2.

2 2

[F.df=[ady=[ay] =8 .. (4)

0

Along€0,x = 0,z =0,dx =0,dz = 0,y change from 2 to 0.

Sy 4dy=-8 .. (5)




Above the surface When z=2

Along 0’4", [FFdr=0 ...(6)

Along A'B',x = 2,z = 2,dx = 0,dz = 0,y changes from 0 to 2

2 2
- - [
IF.dr:J‘(Zy+4)dy=2Ly—J +4[y]z=4+8=12 (7)
2
0 0
Along B'C',v =2,z = 2,dv = 0,dz = 0, x changes from 2to 0
JiFdr=0 ...(8)

Along €'D',x = 0,z = 2,dx = 0,dz = 0, y changes from 2 to 0.

0 270

[y :
IQY+M:2L%T caly] =12 . 9)

(2)+(3)+(4)+(5)+(6)+(7)+(8)+(9) gives
JFd7=4-8+8-8+0+12+0-12=—4 -(10)
By Stokes theorem, We have
[ F.d=[ curl F.fids=-4
Hence Stoke’s theorem is verified.

: Verify the Stoke’s theorem for F = vT + zj + xk and surface is the part of the sphere
x? + v+ z? =1 above the xv plane.

Solution: Given F = v + zj + xk over the surface x> + v* + z% = 1 is xv plane.
We have to prove jc F.dv=f LC’LL?E F.ads

F.d7=.(yI+z] +xk). (dsT+ dyj + dzk)=ydx + zdy + xdz

jc (vdx + zdy + xdz) = [ vdx (inxyplane z=0,dz = 0)

Let x= cos8, v = sinf = dx = —sinf df,dyv = cos8 df

- L__ Fdv= fc v.dx = Jr:'T vdx [“x?+yi=1,z=0]

o

=f," sinf (~sin6)df = —4 [ sin®6 d6

=—4 fl;z 1_':;529 df = —4 [(% ] —l (sinm ]

N =

<[49)-0]= -+ =

|_'||._1

T J K
CurlF={d/dx d/dv d/dz|=—-(C+]+k)
v =z X
v _ xT#IyJ+izk o _ T
Unit normal vector 11 = H T T 12t XKlTV]T ZIK

Substituting the spherical polar coordinates, we get

fl= sinf cosp T+ sinf sin¢ j+ cosfk

™
P
5

rlF. i = —(sinf cos¢ + sinf sin ¢ + cosf)




b3
AZ/!

[JcuTTFnas = | | (sinocosgtsmosmg+cosg)smoaoag

6=0¢=0

=— _j:;z [sind sin ¢p — sinf cos ¢ + ¢pcosf)i™ sinfdl

=271 Jrcvr: cosBsinBds = _JTJFI:_.-': cin28d6 = E_H:I [—cost‘]

2 o
:':E E—]_ —_ ]_j = —7T (2)

From (1) and (2), we have

[.F.d7=[]Curl F.Ads =—m

. Stoke’s theorem is verified.

]

16: Verify Stoke’s theorem for F - (x*=y%)i+ 2xy j over the box bounded by the planes

x=0,x=a,y=0,y=b.

Solution :

(0,b)C B(a, b)
|

0 A(a,0)

Stoke”s theorem states that J E.d F = I Curl E.;ds

Given F = (x? — v3)T+ 2xv]

i j k

5_| 0 o o/ |_i _ N CAvk

CurlF= Ax Ay AZ—I(O,O) j(0,0)+k(2y+2y) =4yk
-

2

y 2xy 0

R.H.S= JCurIE.Eds = I4y(;.;)ds

S S

Let R be the region bounded bv the rectangle




[:E.ﬁ}ds =dxdy

_ a b a |— y -|
CurlF.nds = 4ydxdy = 4— ) dx =2b
! /] L[,

X=0 y=0 x
=2b*(x)5 =2ab?
To Calculate L.H.S
F.dF = (x* —vHdx + 2xv dy
Let 0=(0,0),4 = (a,0),E = (a,b) and
C=(0,b) are the vertices of the rectangle.
(i)Along the line OA

y=0; dy=0, x ranges from O to a.

LE7E z
J,, F.di = [° x%x = H.} =<

o

(ii)Along the line AB

x=a; dx=0, y ranges from 0 to b.

_];i F.df = J:E_J_E_[Ex_v) dy = [EHT] =ab”
¥= o

(iii)Along the line BC
y=b; dy=0, x ranges fromato 0

- - 2, [x* ] a’ )
J'F.dr:_[(x—y)dx: —-b'x| =0-| —-b"a|
BC X=a \; 3 J

-

1

at
:a-ﬂ'- -
3

(iv) Along the line CO

x=0,dx=0,y changes from b to 0

ICF_.d’F= J‘ 2xydy = 0

y=b

Adding these four values

_ &3 - -
F.dr=— + ab“+ab- —
jco 3

w | B
I
[&8]
]
(5_.

o

L.H.S = R.H.S

Hence the verification of the stoke’s theorem.

17: Verify Stoke’s theorem for F=v* T — 2xy]j taken round the rectangle bounded by

x==b, y=0,y=a.

Solution:




C < B
X=-Dy A X=b
D > O > A y=0 » X
T 7 k
Curl A= a.-"fl.ﬂ . al,."'.a}, al.."ll az=1= -4y.E
y? —2xv 0

For the given surface S, = k

“(Curl Fl.n = —4y
Now jff(ﬁ'm‘i‘ F)ndS= J:L —4vydxdy
a |’ b ‘I
= j | .f -4 ydx |dy
y-0 L x=- i

a b

= j[—4xy] dy

0 b
N —SE’J_urd_y=[—4by2J: = —4a’b.....(1)

LF":H =IDA_ a8 Jec T Jep

[F.dF=v*dx— 2xydy

Along DA, y=0,dy=0 = [ . F.d7 =0 F.dr=0)

Along AB, x=b,dx=0

a

IAS F.dF= _J:'_:zc_—Eb_vd_v=[—by2}o =-a’

Along BC,y=a,dy=0

IEC F.dr= ja: aldy=—2a"h

Along CD, x=-b,dx=0
= e A A S 27° 2
ICDF Ldr = J; EQ_Rd_R—[—by L =—a’b.
J:: F.d7f =0—a’b—2a’b —a’b=—4a’b - (2)

From (1),(2) _J:: F.dr :_jl[ﬂ'm‘f F).nds

Hence the theorem is verified




19: Using Stroke’s theorem evaluate the integral _J:: F.dr where

F=2v?143x7] -(2x+z)E and C is the boundary of the triangle whose vertices are (0,0,0),(2,0,0),(2,2,0).

Solution:
T i k
crlF=|%, %5,  %la- | =2i+(6xank

-

2y© 3x7 —2x—z

» <

B(2,2)
& > » X
(0,0) A (2,0)

Since the z-coordinate of each vertex of the triangle is zero, the triangle lies in the xy-plane .
L=k

v (Curl F'). 7= 6x-dy

Consider the triangle in xy-plane .

Equation of the straight line OB is y=x.

By Stroke’s theorem

JE.dF: J‘I(curlE).;ds

=, o (6x —4y)dxdy = ., [ [ (62 — 4y)dy|dx

X -

= J’ [6xy—2y2J0dx jc— (6x% — 2x%)dx

(]

1

N
—
© |
I —
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w







