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THEORY OF MATRICES 

 

 

 

 
 

 

 

 

 

 

 



 

 

Solution for linear systems 
 

Matrix : A system of mn numbers real (or) complex arranged in the form of an ordered set of ‘m’ rows, each 

row consisting of an ordered set of ‘n’ numbers between * + (or) ( ) (or) || || is called a matrix of order m xn. 

 Eg: 
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        = [aij ]mxn where 1≤ i≤m, 1≤j≤n. 

Some types of matrices: 

1. square matrix : A square matrix A of order n x n is sometimes called as a n- rowed matrix A (or) simply a 

square matrix of order n  

eg : 
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2. Rectangular matrix: A matrix which is not a square matrix is called a rectangular matrix,  
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is a 2x3 matrix  

3. Row matrix: A matrix of order 1xm is called a row matrix 
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4. Column matrix: A matrix of order nx1 is called a column matrix 
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5. Unit matrix: if A= [aij] nxn such that aij = 1 for i = j and aij = 0 for i≠j, then A is called a unit matrx. 

Eg:I2 = 









10

01
   I3=  

6. Zero matrix : it A = [aij] mxn  such that aij = 0 I and j then A is called a zero matrix (or) null matrix 

Eg: O2x3=  

7. Diagonal elements in a matrix: A= [aij]nxn, the elements aij of A for which i = j. i.e. (a11, a22….ann) are called 

the diagonal elements of A 

Eg: A=  diagonal elements are 1,5,9 

 Note: the line along which the diagonal elements lie is called the principle diagonal of A 

 

 





















100

010

001













000

000





















987

654

321



 

 

8. Diagonal matrix: A square matrix all of whose elements except those in leading diagonal are zero is 

called diagonal matrix. 

If d1, d2….. dn are diagonal elements of a diagonal matrix A, then A is written as A = diag 

(d1,d2….dn) 

E.g.  : A = diag (3, 1,-2)=   

9. Scalar matrix: A diagonal matrix whose leading diagonal elements are equal is called a scalar matrix. 

Eg : A=  

10. Equal matrices : Two matrices A = [aij] and b= [bij] are said to be equal if and only if (i) A and B are of 

the same type(order)          (ii) aij = bij for every i & j 

11. The transpose of a matrix: The matrix obtained from any given matrix A, by interchanging its rows 

and columns is called the transpose of A. It is denoted by A1 (or) AT. 

If A = [aij] m x n then the transpose of A is A1 = [bji] n x m, where b ji = a ij Also (A1)1 = A    

Note: A1 and B1 be the transposes of A and B respectively, then  

(i) (A1)1 = A 

    (ii) (A+B)1 = A1+B1 

    (iii) (KA)1 = KA1, K is a scalar  

    (iv) (AB)1= B1A1 

12. The conjugate of a matrix: The matrix obtained from any given matrix A, on replacing its elements by 

corresponding conjugate complex numbers is called the conjugate of A and is denoted by  

Note: if and  be the conjugates of A and B respectively then, 

 

(i)  = A 

    (ii) (A+B) = A+B 

    (iii) (KA) = KA, K is a any complex number  

    (iv) (AB)= B A 

 Eg ; if A=  

 

 

13. The conjugate Transpose of a matrix  

The conjugate of the transpose of the matrix A is called the conjugate transpose of A and is denoted by Aθ 

Thus Aθ =  where A1  is the transpose of A. Now A = [aij]   Aθ =[bij] , where bij =         ij i.e. the 

(i,j)th element of Aθ conjugate complex of the (j, i)th element of A 
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Eg: if A = 

2X3

  then   Aθ =

3x2

 

Note: Aθ = =A 

14. 

 (i) Upper Triangular matrix: A square matrix all of whose elements below the leading diagonal are zero is 

called an Upper triangular matrix. i.e, aij=0  for  i> j 

Eg; 

 

is an  Upper triangular matrix  

 

 

 (ii) Lower triangular matrix: A square matrix all of whose elements above the leading diagonal are zero is 

called a lower triangular matrix. i.e, aij=0 for i< j 

 

Eg: 

                is an Lower triangular matrix

 

 

(iii)  Triangular matrix: A matrix is said to be triangular matrix it is either an upper triangular matrix or a lower 

triangular matrix 

15. Symmetric matrix: A square matrix A =[aij] is said to be symmetric if aij = aji for every i and j 

Thus A is a symmetric matrix if AT= A  

 

 Eg:  is a symmetric matrix 

 

16. Skew – Symmetric: A square matrix A = [aij] is said to be skew – symmetric if aij = – aji for every i and j. 

E.g. :  is a skew – symmetric matrix 

 

 Thus A is a skew – symmetric iff A= -A1                    (or)     -A= A1                                                            

Note: Every diagonal element of a skew – symmetric matrix is necessarily zero. 

 Since aij = -aij  aij = 0  

7. Multiplication of a matrix by a scalar. 

 Let ‘A’ be a matrix. The matrix obtain by multiplying every element of A by  a scalar K, is called the 

product of A by K and is denoted by KA (or) AK 

 Thus:  A + [aij]  then KA = [kaij]  = k[aij]  

18. Sum of matrices:  

 Let A = [aij]  ,B = [bij]  be two matrices. The matrix C = [cij]  where cij = aij+bij is called the sum 

of the matrices A and B. 
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The sum of A and B is denoted by A+B. Thus [aij]  + [bij] = [aij+bij]   and                      [aij+bij]   = [aij]  

+ [bij]  

19. The difference of two matrices: If A, B are two matrices of the same type then A+(-B) is taken as A – B 

 

20. Matrix multiplication: Let A = , B = [bkj]nxp then the matrix C = [cij]mxp where cij is called the product 

of the matrices A and B in that order and we write C = AB. 

The matrix A is called the pre-factor & B is called the post – factor 

Note: If the number of columns of A is equal to the number of rows in B then the matrices are said to be 

conformable for multiplication in that order. 

21. Positive integral powers of a square matrix: 

 Let A be a square matrix. Then A2 is defined A.A 

Now, by associative law A3 = A2.A = (AA)A 

    = A(AA) = AA2 

 Similarly  we have Am-1A = A Am-1 = Am where m is a positive integer  

 

Note:  In = I 

 On = 0 

Note 1: Multiplication of matrices is distributive w.r.t. addition of matrices. 

 i.e,  A(B+C) = AB + AC 

  (B+C)A = BA+CA 

Note 2: If A is a matrix of order mxn then AIn = InA = A 

22. Trace of A square matrix : Let A = [aij]  the trace of the square matrix A is defined as   . And is 

denoted by ‘tr A’  

Thus trA =   = a11+a22+ …….ann 

Eg : A =  then trA = a+b+c  

Properties:  If A and B are square matrices of order n and λ is any scalar, then 

(i) tr (λ A) = λ tr A 

(ii) tr (A+B) = trA + tr B 

(iii) tr(AB) = tr(BA) 

23. Idempotent matrix: If A is a square matrix such that A2 = A then ‘A’ is called idempotent matrix  

24. Nilpotent Matrix: If A is a square matrix such that Am=0 where m is a +ve integer then A is called nilpotent 

matrix. 

Note: If m is least positive integer such that Am = 0 then A is called nilpotent of index m 

25. Involutary : If A is a square matrix such that A2 = I then A is called involuntary matrix. 
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26. Orthogonal Matrix: A square matrix A is said to be orthogonal if AA1 = A1A = I 

Examples: 

1. Show that A =  is orthogonal. 

Sol: Given A =  

 

AT =  

 

 Consider A.AT =    

  

 =  

  

 

A is orthogonal matrix. 

 

2. Prove that the matrix is orthogonal. 

Sol: Given A =  

 

Then AT =  

 

 

 

 

Consider A .AT =   

 

= =  
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A.AT = I 

Similarly AT .A = I 

Hence A is orthogonal Matrix 

3. Determine the values of a, b, c when  is orthogonal. 

 

Sol: - For orthogonal matrix AAT =I 

 

 

So AAT =  

 

  = I =                    

Solving 2b2-c2 =0, a2-b2-c2 =0 

We get c =     a2 =b2+2b2 =3b2 

  a =  

From the diagonal elements of I 

4b2+c2= 1  4b2+2b2=1 (c2=2b2) 

  b =  

 a=  

 =  

 b=  

 c =  

 =  
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27. Determinant of a square matrix: 

 

 If A =  then 
 

 

 

28. Minors and cofactors of a square matrix 

 Let A =[aij]  be a square matrix when form A the elements of ith row and jth column are deleted the 

determinant of (n-1) rowed matrix [Mij] is called the minor of aij of A and is denoted by |Mij|  

 The signed minor (-1) i+j |Mij| is called the cofactor of aij and is denoted by Aij.. 

If A =  then 

 

| A | = a11 |M11| + a12 |M12 | +a13 |M13| (or)  

 = a11 A11 +a12 A12 +a13 A13 

 

E.g.: Find Determinant of  by using minors and co-factors. 

Sol: A =  

  

 det A = 1  

 =1(-12-12)-1(-4-6)+3(-4+6) 

 = -24+10+6 = -8 

 Similarly we find det A by using co-factors also. 

Note 1: If A is a square matrix of order n then , where k is a scalar. 

Note 2: If A is a square matrix of order n, then  

Note 3: If A and B be two square matrices of the same order, then  

29. Inverse of a Matrix: Let A be any square matrix, then a matrix B, if exists such that AB = BA =I then B is 

called inverse of A and is denoted by A-1. 
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Note:1 (A-1)-1 = A 

Note 2: I-1 = I 

30.  Adjoint of a matrix: 

 Let A be a square matrix of order n. The transpose of the matrix got from A  

By replacing the elements of A by the corresponding co-factors is called the adjoint of A and is denoted by adj 

A. 

Note:  For any scalar k, adj(kA) = kn-1 adj A 

Note: The necessary and sufficient condition for a square matrix to posses’ inverse is that  

Note: if   then 

 

3. Singular and Non-singular Matrices: 

 A square matrix A is said to be singular if .                                                                      If   

then ‘ A’ is said to be non-singular. 

Note: 1. only non-singular matrices possess inverses. 

 2. The product of non-singular matrices is also non-singular. 

Theorem 9: If A, B are invertible matrices of the same order, then  

(i). (AB)-1 = B-1A-1 

(ii). (A1)-1 = (A-1)1 

Proof: (i). we have (B-1A-1) (AB) = B-1(A-1A)B 

          = B-1(I B) 

        = B-1B 

      = I 

      (AB)-1 = B-1A-1 

(ii). A-1A = AA-1 = I 

      Consider A-1A =I 

      (A-1 A)1 = I1 

      A1. (A-1)1 = I 

     (A1)-1 = (A-1)1 

Unitary matrix: 

          A square matrix A such that  
T

A =
1

A


 

                     i.e  
T

A A=A  
T

A =I 

             If A


A=I then A is called Unitary matrix 

 

Theorem: The Eigen values of a Hermitian matrix are real. 

Note: The Eigen values of a real symmetric are all real 

Corollary: The Eigen values of a skew-Hermitian matrix are either purely imaginary (or) Zero 

Theorem 3: The Eigen values of an unitary matrix have absolute value l. 
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Note 1: From the above theorem, we have “The characteristic root of an orthogonal matrix is unit 

modulus”. 

         2. The only real Eigen values of unitary matrix and orthogonal matrix can be   1 

Theorem 4: Prove that transpose of a unitary matrix is unitary. 

PROBLEMS 

1) Find the eigen values of A=
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 Thus A is a skew-Hermitian matrix. 

  The characteristic equation of A is 0A I   
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Thus A is a unitary matrix 

  The characteristic equation is 0A I 
 

0

2

1

2

3

2

3

2

1













i

i

                                  

Which gives iandi
2

1

2

3

2

1

2

3



  and  

                           1 / 2 3 1 / 2 i    



 

 

 Hence above   values are Eigen values of A. 

3)     If A=

3 7 4 2 5

7 4 2 3

2 5 3 4

i i

i i

i i

   

 
  

 

    

 then show that  

         A is Hermitian and iA is skew-Hermitian. 

Sol:  Given A=

3 7 4 2 5

7 4 2 3

2 5 3 4

i i

i i

i i

   

 
  

 

    

 then 

3 7 4 2 5

7 4 2 3

2 5 3 4

i i

A i i

i i

   

 
   
 

    

 And  

3 7 4 2 5

7 4 2 3

2 5 3 4

T

i i

A i i

i i

   

 
   
 

    

 

  
T

A A   Hence A is Hermitian matrix. 

Let B= iA 

i.e B=

3 4 7 5 2

4 7 2 1 3

5 2 1 3 4

i i i

i i i

i i i

   

 
    

 

   

 then  

       

3 4 7 5 2

4 7 2 1 3

5 2 1 3 4

i i i

B i i i

i i i

    

 
    
 

    

  

      

3 4 7 5 2

4 7 2 1 3

5 2 1 3 4

T

i i i

B i i i

i i i

    

 
  
 

        

B
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





























43125

31274

25743

)1(  

           
T

B =-B 

   B= iA is a skew Hermitian matrix. 

4) If A  and B are Hermitian matrices, prove that AB-BA is a skew-Hermitian matrix. 

Sol: Given A and B are Hermitan matrices  

             
T

A A   And  
T

B B ------------- (1) 

 Now    
TT

A B B A A B B A    

              
T

A B B A   

                   
T T T T T T

A B B A B A A B     

        BA AB   (By (1)) 

         A B B A    

 Hence AB-BA is a skew-Hemitian matrix. 

 



 

 

5) Show that A=
a ic b id

b id a ic

   

 
  

 is unitary if and only if a
2
+b

2
+c

2
+d

2
=1 

Sol:  Given A=
a ic b id

b id a ic

   

 
  

 

    Then 
a ic b id

A
b id a ic

   
  

  

 

Hence   














icaidb

idbica
AA

T


 

          




























icaidb

idbica

icaidb

idbica
AA


 

            =
2 2 2 2

2 2 2 2

0

0

a b c d

a b c d

   

 
   

 

       A A I


   if and only if 2 2 2 2
1a b c d     

6) Show that every square matrix is uniquely expressible as the sum of a Hermitian matrix 

and a skew- Hermitian matrix. 

    Sol. Let A be any square matrix  

             Now    A A A A
 

  
    

                                           A A


   

             A A A A A A


  
      is a Hermitian matrix. 

             
AA 

2

1
 is also a Hermitian matrix  

  Now    A A A A
 

  
    

   A A


   A A


    

               Hence A A


  is a skew-Hermitian matrix  

                  
1

2
A A


  is also a skew –Hermitian matrix. 

Uniqueness: 

            Let A =R+S be another such representation of A 

             Where R is Hermitian and  

                          S is skew-Hermitian 

 



 

 

 Then  A R S


   

                                R S
 

   

    R S    ,R R S S
 
  

 
     

    QAASandPAAR 


2

1

2

1
  

Hence P=R and Q=S 

                Thus the representation is unique. 

 

7) Given that A=
0 1 2

1 2 0

i

i

 

 
  

, show that   
1

 AIAI  is a unitary matrix. 

Sol: we have 























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210
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i

i
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1 2 1

i

i

  
  

 

 And 

  
























021

210

10
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i

i
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   =
1 1 2

1 2 1

i

i

 

 
  

 

  
  


















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1
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2

1

i

i

i
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1 1 21

1 2 16

i

i

  
  

 
 

Let   
1

 AIAIB  










































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1)21)(21(2121

2121)21)(21(1

6

1
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211
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6

1

iiii

iiii

i

i

i

i
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














442

424

6

1

i

i
B  

Now 
4 2 41

2 4 46

i
B

i

   
  

  

 and  
4 2 41

2 4 46

T i
B

i

  
  

   

 

 
4 2 41

2 4 43 6

T i
B B

i

   
  

  











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3 6 0 1 01

0 3 6 0 13 6
I

   
     

     

 
1

T

B B


  

i.e., B is unitary matrix. 

  
1

 AIAI is a unitary matrix. 

8) Show that the inverse of a unitary matrix is unitary. 

Sol: Let A be a unitary matrix. Then A A I

  

       i.e   
1

1
A A I





  

  
1

1
A A I





   

  
1 1

A A I


 
   

Thus 
1

A


 is unitary. 
 

Problems 
1). Express the matrix A as sum of symmetric and skew – symmetric matrices. Where  

 

A =  

Sol: Given A =  

 

Then AT =  

 

Matrix A can be written as A = ½ (A+AT)+ ½ (A-AT)  

 

P = ½ (A+AT) =  
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


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


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
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













016

472

523

045

172

623

2

1



    

 

 

 

Q= ½ (A-AT)  

 

 =  

s

 

 

A = P+Q where ‘P’ is symmetric matrix 

‘Q’ is skew-symmetric matrix. 

  

 
Sub – Matrix: Any matrix obtained by deleting some rows or columns or both of a given matrix is called is sub 

matrix. 

 

E.g.: Let A =  . Then  is a sub matrix of A obtained by deleting first row and 

4th   column of A. 

 

Minor of a Matrix: Let A be an m x n matrix. The determinant of a square sub matrix of A is called a minor of 

the matrix. 

Note: If the order of the square sub matrix is‘t’ then its determinant is called a minor of order is‘t’. 

 

Eg: A = 

4X3              be  a matrix

 

 is a sub-matrix of order ‘2’ 

 = 2-3 = -1 is a minor of order ‘2’ 

 is a sub-matrix of order ‘3’ 

 

detc=  2(7-12)-1(21-10)+(18-5) 

       = 2(-5)-1(11)+1(13) 

      = -10-11+13 = -8 is a minor of order ‘3’ 
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


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


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




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
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*Rank of a Matrix: 

 Let A be m x n matrix. If A is a null matrix, we define its rank to be ‘0’. If A is a non-zero matrix, we say 

that r is the rank of A if 

(i) Every (r+1)th order minor of A is ‘0’ (zero) & 

(ii) At least one rth order minor of A which is not zero. 

Note: 1. It is denoted by   ρ (A) 

2. Rank of a matrix is unique. 

3. Every matrix will have a rank. 

4. If A is a matrix of order mxn, 

  Rank of A ≤ min (m,n) 

5. If ρ(A) = r then every minor of A of order r+1, or more is zero. 

6. Rank of the Identity matrix In is n. 

7. If A is a matrix of order n and A is non-singular then ρ(A) = n 

 

Important Note: 

1. The rank of a matrix is ≤r if all minors of (r+1)th order are zero. 

2. The rank of a matrix is ≥r, if there is at least one minor of order ‘r’ which is not equal to zero. 

PROBLEMS 

1. Find the rank of the given matrix  

Sol: Given matrix A =  

 

→ det  A = 1(48-40)-2(36-28)+3(30-28) 

              =  8-16+6 = -2 ≠ 0 

 

We have minor of order 3  

ρ(A) =3 

2. Find the rank of the matrix  

 

   Sol: Given the matrix is of order 3x4 

 Its Rank ≤ min(3,4) = 3 

 Highest order of the minor will be 3. 

 










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


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12107

443

321
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
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








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
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443

321





















5078

8765

4321



 

Let us consider the minor  

 

 

 

Determinant of minor is 1(-49)-2(-56)+3(35-48) 

   = -49+112-39 = 24 ≠ 0. 

Hence rank of the given matrix is ‘3’. 

* Elementary Transformations on a Matrix: 

i). Interchange of ith row and jth row is denoted by Ri ↔ Rj 

(ii). If ith row is multiplied with k then it is denoted by Ri K Ri 

(iii). If all the elements of ith row are multiplied with k and added to the corresponding elements of jth row 

then it is denoted by Rj  Rj +KRi 

Note: 1. The corresponding column transformations will be denoted by writing ‘c’. i.e  

ci ↔cj,    ci  k cj cj  cj + kci 

2. The elementary operations on a matrix do not change its rank. 

Equivalence of Matrices: If B is obtained from A after a finite number of elementary transformations on A, 

then B is said to be equivalent to A. 

It is denoted as B~A. 

Note   : 1. If A and B are two equivalent matrices, then rank A = rank B. 

2. If A and B have the same size and the same rank, then the two matrices are equivalent. 

Echelon form of a matrix: 

A matrix is said to be in Echelon form, if  

(i). Zero rows, if any exists, they should be below the non-zero row. 

(ii). the first non-zero entry in each non-zero row is equal to ‘1’. 

(iii). the number of zeros before the first non-zero element in a row is less than the number of such zeros in 

the next row. 

Note: 1. the number of non-zero rows in echelon form of A is the rank of ‘A’. 

2. The rank of the transpose of a matrix is the same as that of original matrix. 

3. The condition (ii) is optional. 

E.g.:  1.  is a row echelon form. 

 

3.  is a row echelon form. 
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PROBLEMS 

 

1. Find the rank of the matrix A =  by reducing it to Echelon form. 

sol: Given A =  

Applying row transformations on  A. 

A ~  R1 ↔ R3 

~  R2 → R2 –3R1 

    R3→ R3 -2R1 

~  R2 → R2/7,R3→ R3/9   

 

 

 

 

 

~  R3 → R3 –R2 

This is the Echelon form of matrix A.  

 The rank of a matrix  A. 

 = Number of non – zero rows =2 

2. For what values of k the matrix   has rank ‘3’. 

Sol: The given matrix is of the order 4x4  

  If its rank is 3  det A =0 
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A =  

 

 

 

 

Applying R2 → 4R2-R1, R3 →4R3 – kR1, R4 → 4R4 – 9R1 

 

 

We get A ~  

 

Since Rank A = 3  det A =0  

 4  

 1[(8-4k)3]-1(8-4k)(4k+27)] = 0 

 (8-4k) (3-4k-27) = 0 

 (8-4k)(-24-4k) =0  

 (2-k)(6+k)=0  

 k =2 or k = -6 

 

Normal Form:  

 Every mxn matrix of rank r can be reduced to the form   (or) (Ir ) (or) (or)  by 

a finite number of elementary transformations, where Ir is the r – rowed unit matrix. 

Note: 1. If  A is an mxn matrix of rank r, there exists non-singular matrices P and Q such that PAQ = 

 

Normal form another name is “canonical form” 

 

e.g.: By reducing the matrix into normal form, find its rank.  

Sol: Given A =  
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1100

1344

k

kkk

0

32740

83848

110









k

kkk















00

0
r

I















0

r
I













 0
r

I















00

0
r

I





















 10503

3412

4321





















 10503

3412

4321



 

 

A ~  R2 → R2 – 2R1 

    R3 → R3 – 3R1 

 

 

A ~  R3 → R3/-2 

 

 

A ~  R3 → R3+R2 

 

A ~  c2→ c2 - 2c1, c3→c3-3c1, c4→c4-4c1    

A ~ c3 → 3 c3 -2c2, c4→3c4-5c2    

A ~  c2→c2/-3, c4→c4/18    

A~ c4 ↔ c3 

 

 

 

This is in normal form [I3 0] 

Hence Rank of A is ‘3’. 

Gauss – Jordan method 

 The inverse of a matrix by elementary Transformations: (Gauss – Jordan method) 

1. suppose A is a non-singular matrix of order ‘n’ then we write A = In A 

2. Now we apply elementary row-operations only to the matrix A and the pre-factor In of the 

R.H.S 

3. We will do this till we get In = BA then obviously B is the inverse of A. 

 

1. Find the inverse of the matrix A using elementary operations where A=  

 

























22460

5230

4321























11230

5230

4321























6000

5230

4321























6000

5230

0000























18000

0030

0001





















1000

0010

0001





















0100

0010

0001





















210

320

461



 

 

Sol: 

Given A =  

 

We can write A = I3 A 

 

 

 

 =  A 

 

 

Applying R3 →2R3-R2, we get 

 =  A 

Applying R1→R1-3R2, we get 

 

 =  A 

Applying R1 → R1+5R3, R2 → R2-3R3 , we get 

 

= A   

 Applying R2 → R2/2, we get                                                            

                = A  I3 = BA 

 B is the inverse of A. 

 

 

Cayley - Hamilton Theorem:  

Statement: 

Every square matrix satisfies its own characteristic equation 

                                                                     PROBLEMS  

1. Show that the matrix A =  satisfies its characteristic equation Hence find A
-1

 

Sol: Characteristic equation of A is det (A-λI) = 0 

 

 





















210

320

461





















210

320

461





















100

010

001





















100

320

461





















 210

010

001



















 

100

320

501

























210

010

031





















100

020

001



























210

640

1081





















100

010

001



























210

320

1081



 

 

       C2   C2+C3 

 

 

 

 

 

 

By Cayley – Hamilton theorem, we have A3-A2+A-I=0 





















































































011

122

221

101

211

001

210

321

221

32
AAA  











































































































100

010

001

210

321

221

101

211

001

011

122

221

23
IAAA  

=  

Multiplying with A–1 we get A2 – A + I =A–1 












































































































011

122

221

100

010

001

210

321

221

101

211

001

1
A  

2. Using Cayley - Hamilton Theorem find the inverse and A
4
 of the matrix A =  

Sol: Let A =  

The characteristic equation is given by |A-λI|=0  

0

126

216

227

.,. 













ei  

 

 

 



 

 

By Cayley – Hamilton theorem we have A3-5A2+7A-3I=0…..(1) 

Multiply with A-1 we get 

A-1  

























































252678

262578

262679

7824

8724

8825

32
AA  






























526

256

223

3

11
A

 

 

 

 

 





















































































3618

6318

6621

6956168

5649168

5656175

125130390

130125390

130130395

 





























7980240

8079240

8080241

 

Problems 

1.  Diagonalize the matrix (i) 

2 2 1

1 3 1

1 2 2

 

 

 

  

(ii)

1 2 2

1 2 1

1 1 0

  

 

 

   

 

1. Verify Cayley – Hamilton Theorem for A = . Hence find A-1. 

Linear dependence and independence of Vectors: 

1. Show that the vectors (1,2,3), (3,-2,1), (1,-6,-5) from a linearly dependent set. 

Sol. The Given Vector  

The Vectors X1, X2, X3 from a square matrix. 

Let  

 





































































5

6

1

1

2

3

3

2

1

321
XXX

























513

622

131

A



 

 

Then  

= 1(10+6)-2(15-1)+3(-18+2) 

=16+32-48=0 

 

The given vectors are linearly dependent |A|=0 

2. Show that the Vector X1=(2,2,1), X2=(1,4,-1) and X3=(4,6,-3) are linearly independent. 

Sol. Given Vectors X1=(2,-2,1) X2=(1,4,-1) and X3=(4,6,-3) The Vectors X1, X2, X3 form a square 

matrix. 

 

 

 

 

Then  

=2(-12+6)+2(-3+4)+1(6-16) 

=-20≠ 0 

  The given vectors are linearly independent 

  |A|≠0 

 

 

Eigen Values & Eigen Vectors 

Def:  Characteristic   vector of a matrix: 

Let  A= [ aij] be  an  n x n  matrix.  A non-zero vector X is said to be a   Characteristic Vector of A if there exists a 

scalar such that AX=λX. 

Note:  If AX=λX (X≠0), then we  say ‘λ’  is   the   Eigen  value (or) characteristic root of ‘A’. 

 

Eg: Let A=  
5 4
1 2

       X =  
1

−1
  

AX =  
5 4
1 2

  
1

−1
  =  

1
−1

 = 1.  
1

−1
  

= 1. 𝑋 

 

Here Characteristic vector of A is  
1

−1
  and Characteristic root of A is “1”.  

 

























513

622

131

A



























311

642

412

A

























311

642

412

A



 

 

Note: We notice that an Eigen value of a square matrix A can be 0. But a zero vector cannot be an Eigen 

vector of A.  

Method of finding the Eigen vectors of a matrix.  

Let A = [aij] be a nxn matrix. Let X be an Eigen vector of A corresponding to the Eigen value λ.  

Then by definition   AX = λX.  

 AX = λIX 

 AX –λIX = 0 

 (A-λI)X = 0 ------- (1)  

This is a homogeneous system of n equations in n unknowns.  

(1) Will have a non-zero solution X if and only |A-λI| = 0 

- A-λI is called characteristic matrix of A 

- |A-λI| is a polynomial in λ of degree n and is called the characteristic polynomial of A  

- |A-λI|=0 is called the characteristic equation  

Solving characteristic equation of A, we get the roots, 𝜆1,𝜆2,𝜆3, … … . 𝜆𝑛, these are called the characteristic 

roots or Eigen values of the matrix.  

- Corresponding to each one of these n Eigen values, we can find the characteristic vectors.  

 

 

 

 

 

Procedure to find Eigen values and Eigen vectors  

 

Let A =  

𝑎11 𝑎12 … … 𝑎1𝑛

𝑎21 𝑎22 … . . 𝑎2𝑛

… … . … … . … … .
𝑎𝑛1 𝑎𝑛2 … … . 𝑎𝑛𝑛

  𝑏𝑒 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 

𝐶𝑕𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝐴 𝑖𝑠 𝐴 − λI  

1 1 1 2 1

2 1 2 2 2

1 2

. . ,

n

n

n n n n

a a a

a a a
i e A I

a a a








 

 


  
 

 
 





   



 

 

 

 

 

 

Then the characteristic polynomial is  IA 

  

















nnnn

n

n

aaa

aaa

aaa

IAsay

...

............

...

...

21

22221

11211

 
 

 



The characteristic equation is  |A-λI| = 0 we solve the ∅ λ =  A − λI = 0, we get n roots, these are called  

 

 

 

Eigen values or latent values or proper values.  

Let each one of these Eigen values say λ their Eigen vector X corresponding the given value λ is obtained by 

solving Homogeneous system 

1 1 1 2 1 1

2 1 2 2 2 2

1 2

0

0

0

n

n

n n n n n

a a a x

a a a x

a a a x







     

     


     
     

     
     





   


 

and determining the non-trivial solution.  

 

PROBLEMS  

1.   Find the Eigen values and the corresponding Eigen vectors of   
8 −4
2 2

  

𝑠𝑜𝑙: 𝐿𝑒𝑡 𝐴 =   
8 −4
2 2

   

𝐶𝑕𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑚𝑎𝑡𝑟𝑖𝑥 = 𝐴 − λI  

=   
8 − λ −4

2 2 − λ
   

0C h a ra c te r is t ic e q u a tio n o f A is A I   

⟹   
8 − λ −4

2 2 − λ
 = 0 

 

 

 

⟹  8 − λ  2 − λ + 8 = 0 

⟹ 16 + λ2 − 10λ + 8 = 0  

⟹ λ2 − 10 λ + 24 = 0 

⟹   λ − 6  λ − 4 =  0 

 

⟹  λ = 6, 4 are eigen values of A 

𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑠𝑦𝑠𝑡𝑒𝑚  
8 − λ −4

2 2 − λ
   

𝑥1

𝑥2
 = 0 

 

Eigen vector corresponding to λ = 4 

Put λ = 4 in the above system, we get  

 
4 −4
2 −2

   
𝑥1

𝑥2
 =  

0
0
   

⟹ 4𝑥1 − 4𝑥2 = 0 − − −  1  

2𝑥1 − 2𝑥2 = 0 − − −  2  

𝑓𝑟𝑜𝑚  1 𝑎𝑛𝑑  2 𝑤𝑒 𝑕𝑎𝑣𝑒 𝑥1 = 𝑥2 

 

Let x1 =   

 



 

1

2

1

1

x
E ig en vec to r is

x






     
      
    

 

 
1
1
  𝑖𝑠 𝑎 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑚𝑎𝑡𝑟𝑖𝑥 𝐴, 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑒𝑖𝑔𝑒𝑛 𝑣𝑎𝑙𝑢𝑒 𝜆 = 4 

 

 

Eigen Vector corresponding to λ = 6 

𝑝𝑢𝑡 λ = 6 in the above system, we get 

 
2 −4
2 −4

   
𝑥1

𝑥2
 =  

0
0
  

⟹  2𝑥1 − 4𝑥2 = 0 − − −  1  

2𝑥1 − 4𝑥2 = 0 − − −  2  

from (1) and (2) we have x1 = 2x2 

Say  2
12
 xx  

 

 

2 2

1
E ig en vec to r






   
    
           

 

 
2
1
  𝑖𝑠 𝑒𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑚𝑎𝑡𝑟𝑖𝑥 𝐴 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑒𝑖𝑔𝑒𝑛 𝑣𝑎𝑙𝑢𝑒 𝜆 = 6 

 

 

 

 

 

 

2. Find the eigen values and the corresponding eigen vectors of matrix    
2 0 1
0 2 0
1 0 2

  

Sol: Let A =  
2 0 1
0 2 0
1 0 2

  

The characteristic equation is |A-λI|=0 

i.e. |A-λI| =  
2 − λ 0 1

0 2 − λ 0
1 0 2 − λ

 = 0 

⟹  2 − λ  2 − λ 2 − 0 +  − 2 − λ  = 0 

⟹  2 − λ 3—  λ − 2 = 0 

 

⟹  λ − 2  –  λ − 2 2 − 1 = 0 

 

⟹  λ − 2   −λ2 + 4λ − 3 = 0 

⟹  λ − 2  λ − 3  λ − 1 = 0 

 



  λ=1,2,3 

The eigen values of A is 1,2,3. 

 

𝐹𝑜𝑟 𝑓𝑖𝑛𝑑𝑖𝑛𝑔 𝑒𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑡𝑕𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠  𝐴 − λI X = 0 

⟹  
2 − λ 0 1

0 2 − λ 0
1 0 2 − λ

   

𝑥1

𝑥2

𝑥3

 =  
0
0
0
  

𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 λ = 1 

 
1 0 1
0 1 0
1 0 1

   

𝑥1

𝑥2

𝑥3

 =  
0
0
0
  

𝑥1 + 𝑥3 = 0 

 

𝑥2 = 0 

𝑥1 + 𝑥3 = 0 

𝑥1 = −𝑥3, 𝑥2 = 0 

𝑠𝑎𝑦 𝑥3 = 𝛼 

𝑥1 = −𝛼      𝑥2 = 0,      𝑥3 = 𝛼    

 

𝑥1

𝑥2

𝑥3

 =   
−𝛼
0
𝛼

 = 𝛼  
−1
0
1

  

 
−1
0
1

  𝑖𝑠 𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 

𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 λ = 2 

  
0 0 1
0 0 0
1 0 0

   

𝑥1

𝑥2

𝑥3

 =  
0
0
0
  

𝐻𝑒𝑟𝑒 𝑥1 = 0 𝑎𝑛𝑑 𝑥3 = 0 𝑎𝑛𝑑 𝑤𝑒 𝑐𝑎𝑛 𝑡𝑎𝑘𝑒 𝑎𝑛𝑦 𝑎𝑟𝑏𝑖𝑡𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 𝑥2 𝑖. 𝑒 𝑥2 = 𝛼  𝑠𝑎𝑦  

 

 

 

 

 

𝑥1

𝑥2

𝑥3

 =   
0
𝛼
0
 = 𝛼  

0
1
0
  

𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑠  
0
1
0
   

𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 λ = 3 

  
−1 0 1
0 −1 0
1 0 −1

   

𝑥1

𝑥2

𝑥3

 =  
0
0
0
  

−𝑥1 + 𝑥3 = 0 

−𝑥2 = 0 

𝑥1 − 𝑥3 = 0 

𝑕𝑒𝑟𝑒 𝑏𝑦 𝑠𝑜𝑙𝑣𝑖𝑛𝑔 𝑤𝑒 𝑔𝑒𝑡 𝑥1 = 𝑥3, 𝑥2 = 0 𝑠𝑎𝑦 𝑥3 =∝  

𝑥1 =∝   ,    𝑥2 = 0     , 𝑥3 =∝   

 



 

                     
































































1

0

1

0

3

2

1







x

x

x

 

𝐸𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑠  
1
0
1
  

 

Properties of Eigen Values:   

Theorem 1: The sum of the eigen values of a square matrix is equal to its trace and product of the eigen 

values is equal to its determinant.  

Example: if A=





















 112

520

321

 then trace=1+2+1=4 and determinant=15  

Theorem 2: If  is an Eigen value of A corresponding to the Eigen vector X, then  is Eigen value An 

corresponding to the Eigen vector X.  

Example: if A=





















100

020

001

then Eigen values of A3are 1,8,1 

 

Theorem 3: A Square matrix A and its transpose AT have the same Eigen values.  

Example: if A=





















100

020

001

 then Eigen values of AT are 1,2,1. 

Theorem 4: If A and B are n-rowed square matrices and If A is invertible show that A-1B and B A-1  have same 

Eigen values.  

 

Theorem 5: If 
n

 ..,.........,
21

 are the Eigen values of a matrix A then k 1, k 2, ….. k n are the Eigen value 

of the matrix KA, where K is a non-zero scalar.  

Example: 

If 1,2,3 are eigen values of A then eigen values of 3A  are 3,3,9 

Theorem 6: If  is an Eigen values of the matrix A then +K is an Eigen value of the matrix A+KI  

Example: 

If 1,2,3 are eigen values of A then eigen values of 3+A  are 4,5,6 

 

Theorem 7: If 1, 2 … n are the Eigen values of A, then 1 – K, 2  – K, … n – K, 

scalarzerononaisKwhereKIAmatrixtheofvalueseigentheare  ),(  

Example: 

If 1,2,3 are eigen values of A then eigen values of 3-A  are 2,1,0 

 

 



 

Theorem 8: If  are the Eigen values of A, find the Eigen values of the matrix  

 

Theorem 9: If  is an Eigen value of a non-singular matrix A corresponding to the Eigen vector X, then –1 is 

an Eigen value of A–1 and corresponding Eigen vector X itself. 

Theorem 10: If

atrix Adj A 

 

Theorem 11: If  

Theorem 12: If  is Eigen value of A then prove that the Eigen value of B = a0A2+a1A+a2I is a0
2+a1 +a2 

 

Theorem 14: Suppose that A and P be square matrices of order n such that P is non singular. Then A and P-1AP 

have the same  Eigen values.  

Corollary 1: If A and B are square matrices such that A is non-singular, then A-1B and BA-1 have the same Eigen 

values.  

 

Corollary 2: If A and B are non-singular matrices of the same order, then AB and BA have the same Eigen  

Theorem 15: The Eigen values of a triangular matrix are just the diagonal elements of the matrix.  

Theorem 16: The Eigen values of a real symmetric matrix are always real.  

Theorem 17: For a real symmetric matrix, the Eigen vectors corresponding to two distinct Eigen values are 

orthogonal.  

PROBLEMS 

1. Find the Eigen values and Eigen vectors of the matrix A and its inverse, where  

A =  

Sol: Given A =   

The characteristic equation of A is given by |A-λI| = 0 

 

 

 

 

 

 

 

 

 

 



 

 and 
1

x  













































0

0

1

0

0 



X is the solution where  is arbitrary constant  























0

0

1

X Is the Eigen vector corresponding to 1  
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33
 xx

 

2121
303 xxxx   

















































0

1

3

0

3

3
1

2

kk

k

X

kx

kxLet

 

is the solution 























0

1

3

X

 Is the Eigen vector corresponding to 2  

 

 





































































0

0

0

000

510

432

,3

3

2

1

x

x

x

becomesFor   

 

 

 



 

 

X =   























2

10

19

X is the Eigen vector corresponding to 3  

Eigen values of A –1are  

1 1 1
1, ,

2 3
E ig en va lu es o f A a re


   

We know Eigen vectors of   A –1 are same as Eigen vectors of A.  

 

2.  

 

  

 

 

 

 

 

Let f(A)  =  

Then eigen values of f(A) are f(1), f(3) and f(-2)  

f(1) = 3(1)3+5(1)2-6(1)+2(1) = 4 

f(3) = 3(3)3+5(3)2-6(3)+2(1) = 110 

f(-2) = 3(-2)3+5(-2)2-6(-2)+2(1) = 10 

Eigen values of  are 4,110,10 

Diagonalization of a matrix: 

Theorem: If a square matrix A of order n has n linearly independent eigen vectors (X1,X2…Xn) corresponding to 

the n eigen values λ1,λ2….λn respectively then a matrix P can be found such that 

 P-1AP is a diagonal matrix.  

Proof: Given that (X1,X2…Xn) be eigen vectors of A corresponding to the eigen values λ1,λ2….λn respectively and 

these eigen vectors are linearly independent Define P = (X1,X2…Xn)  

Since the n columns of P are linearly independent |P|≠0 

Hence P-1 exists 

Consider AP = A[X1,X2…Xn]  

 



 

 

= [AX1, AX2…..AXn]  

= *λX1, λ2X2….λnXn]  

[X1,X2…Xn] 

























n






...00

............

0...0

0...0

2

1

 

 

Where D = diag )..,.........,,(
321 n

  

AP=PD 

P–1(AP) = P–1 (PD)  DPPAPP
11 

  

 P–1AP = (I)D 

 

= diag )..,.........,,(
321 n

  

Hence the theorem is proved.  

Modal and Spectral matrices:  

The matrix P in the above result which diagonalizable the square matrix A is called modal matrix of A and the 

resulting diagonal matrix D is known as spectral matrix.  

Note   1: If X1,X2…Xn are not linearly independent this result is not true.  

2: Suppose A is a real symmetric matrix with n pair wise distinct Eigen values 
1 2
,

n
    then 

the corresponding Eigen vectors X1,X2…Xn are pair wise orthogonal.  

Hence if P = (e1,e2…en) 

Where e1 = (X1 / ||X1||), e2 = (X2 / ||X2||)….en = (Xn)/ ||Xn||  

then P will be an orthogonal matrix.  

i.e, P
T
P=PP

T
=I  

Hence P
–1 

= P
T
 

P
–1

P
T
AP=D 

Calculation of powers of a matrix:  

We can obtain the power of a matrix by using diagonalization  

Let A be the square matrix then a non-singular matrix P can be found such that D = P
-1

AP 

D
2
=(P

–1
AP) (P

–1
AP)  

= P
–1

A(PP
–1

)AP  

= P
–1

A
2
P        (since PP

–1
=I) 

Similarly D
3
 = P

–1
A

3
P  

In general D
n
 = P

–1
A

n
P……..(1) 

To obtain A
n
, Pre-multiply (1) by P and post multiply by P

–1
 

Then PD
n
P

–1
 = P(P

–1
A

n
P)P

–1 

 



 

= (PP
–1

)A
n
 (PP

–1
) = A

n 
 

1
 PPDA

nn
 

Hence An = P 

1

12

0 0 0

0 0 0

0 0 0

n

n

n

n

P









 

 

 

 

 
  





   

 

PROBLEMS 

 

2. Determine the modal matrix P of  =  . Verify that  is a diagonal matrix.  

Sol: The characteristic equation of A is |A-λI| = 0 

i.e,  

0  

Thus the eigen values are λ=5, λ=-3 and λ=-3  

 

when λ=5  

By solving above we get X1 =  

Similarly, for the given eigen value λ=-3 we can have two linearly independent eigen vectors X2 = 

 

 

 

 

 

=  

 

  

 

 is a diagonal matrix.  

 



 

 

 

3. Find a matrix P which transform the matrix A = 

 

Sol: Characteristic equation of A is given by |A-λI| = 0 

i.e,  

 

 

 

 

If x1, x2, x3 be the components of an Eigen vector corresponding to the Eigen value λ, we have 

[A-λI+X =  

 

 

  i.e, 0.x1+0.x2+0.x3=0 and x1+x2+x3=0 

x3=0 and x1+x2+x3=0 

x3=0, x1=-x2 

x1=1, x2=-1, x3=0 

Eigen vector is [1,-1,0]T 

Also every non-zero multiple of this vector is an Eigen vector corresponding to λ=1 

For λ=2, λ=3 we can obtain Eigen vector [-2,1,2]T and [-1,1,2]T 

P =   

The Matrix P is called modal matrix of A 

P-1=



























122

022

120

2

1

 











































 


































220

111

121

322

121

101

2

1
11

011

2

1
10

1
APPNow  
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











122

011

2

1
10

8100

0160

001

220

111
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Diagonalization of Symmetric Matrices: 
NOTE: 

a matrix A is diagonalizable if and only if there is an invertible matrix P such that A = P DP 
-1
 where D is a 

diagonal matrix.  

A matrix A is orthogonally diagonalizable if and only if there is an orthogonal matrix P such that  

A = P DP 
-1
 where D is a diagonal matrix. 

Remark :  Recall that any orthogonal matrix A is invertible and also that A
-1

 = A
T
 . Thus we can say that A 

matrix A is orthogonally diagonalizable if there is a square matrix P such that A = P DP
T
 where D is a diagonal 

matrix. 

Remark:  The formula for transpose of a product: (MN) 
T
= N

T
 M

T
 . Using this we can  see that any 

orthogonally diagonalizable A must be symmetric. This is because A 
T
 = (P DP

T
 ) 

T
= ((P 

T
 ) 

T
D 

T
P 

T
 = P DP

T
 = 

A. 

If A is symmetric then any two Eigen values from different Eigen spaces are orthogonal 

Proposition: (The Spectral Theorem) An n × n symmetric matrix has the following properties:  

1. A has n real Eigen values if we count multiplicity  

2. For each Eigen values the dimension of the corresponding Eigen spaces is equal to the algebraic multiplicity 

of that Eigen values  

3. The Eigen spaces are mutually orthogonal. 

 4. A is orthogonally diagonalizable. 

 

NOTE: 

All Eigen values (all roots of the characteristic polynomial) of a symmetric matrix are real. 

Eigenvectors of a symmetric matrix corresponding to different Eigen values are orthogonal. 

Problems: 

1) Find an orthogonal matrix P which diagonalizes





























211

121

112

A  

Sol:   Eigen systems: 

 Eigen values  and  Eigenvector are  3 ,3,0 and (−1, 0, 1) ,(−1, 1, 0), (1, 1, 1) 

                 

      
 

 



 

 

 

 

               
 

2. Find an orthogonal matrix P which diagonalizes





























511

131

113

A  

Sol: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 
 

 

    

 

 

 

 

 

 

 



 

 

 

 

 

      
 

 

 

 

 

 

           

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

       

3) Find an orthogonal matrix P which diagonalizes 























022

202

220

A  

Sol: 

 



 

 

 

 

 

   

   
 

 

 

 

 

 

 

  

 



 

 

 

 

 

 
 

 

 



 

 

 
 
 
 

MODULE-II 

 
FUNCTIONS 

OF SINGLE AND SEVERAL 

VARIABLES 

 

 

 

 

 

 

 



 

 
MEAN VALUE THEOREMS 

I   Rolle’s Theorem: 

Let  f(x) be a function such that  

(i). It is continuous in closed interval [a,b] 

(ii). It is differentiable in open interval (a,b) and  

(iii). f(a) = f(b).  

Then there exists at least one point ‘c’ in (a,b) such that  

f1(c) = 0. 

Geometrical Interpretation of Rolle’s Theorem: 

Let Rbaf ],[:

 

be a function satisfying the three conditions of Rolle ’s Theorem.  Then the graph. 

 

1. y=f(x) in a continuous curve in [a,b]. 

2. There exist a unique tangent line at every point x=c, where a<c<b 

3. The ordinates f(a), f(b) at the end points A,B are equal so that the points A and B are equidistant from 

the X-axis. 

4. By Rolle’s Theorem, There is at least one point x=c between A and B on the curve at which the 

tangent line is parallel to the x-axis and also it is parallel to chord of the curve. 

1. Verify Rolle’s theorem for the function f(x) = sinx/ex or e-x sinx in *0,π+ 

Sol: i) Since sinx and ex are both continuous functions in *0, π+.  

Therefore, sinx/ex is also continuous in *0,π+. 

ii) Since sinx and ex be derivable in (0,π), then f is also derivable in (0,π). 

iii) f(0) = sin0/e0 = 0 and f(π)= sin π/e π =0 

  f(0) = f(π) 

 

Thus all three conditions of Rolle ’s Theorem are satisfied. 



 

There exists c є(0, π) such that f1(c)=0 

Now 
xx

xx

e

xx

e

exxe
xf

sincos

)(

sincos
)(

2

1 



  

f1(c)= 0  => 0
sincos




c
e

cc
 

cos c = sin c => tan c = 1 

 



 

 

 

 

 

 

 

 

c = π/4 є(0,π) 

Hence Rolle’s theorem is verified. 

2. Verify Rolle’s theorem for the functions 

2

lo g  
 

 
 

x a b

x ( a b )
 in[a,b] , a>0, b>0,  

Sol: Let f(x)= 

2

lo g  
 

 
 

x a b

x ( a b )
 

= log(x2+ab) – log x –log(a+b) 

(i). Since f(x) is a composite function of continuous functions in [a,b], it is continuous in [a,b]. 

(ii). f1(x) =  
)(

1
2.

1

2

2

2
abxx

abx

x
x

abx 





 

f1(x) exists for all xє (a,b) 

(iii). f(a) = 01loglog
2

2















aba

aba
 

 f(b) = 01loglog
2

2















abb

abb
 

f(a) = f(b) 

Thus f(x) satisfies all the three conditions of Rolle ’s Theorem. 

So,   c   (a, b)  f1(c) = 0,  

f1(c) = 0, 
2

2





c a b

c( c a b )
= 0   c2 = ab  

),( baabc 

  
Hence Rolle’s theorem verified. 

3. Verify whether Rolle ’s Theorem can be applied to the following functions in the intervals. 

i) f(x) = tan x in*0 , π+ and ii) f(x) = 1/x2 in [-1,1] 

(i) f(x) is discontinuous at x = π/2 as it is not defined there. Thus condition (i) of Rolle ’s Theorem is not 

satisfied. Hence we cannot apply Rolle ’s Theorem here. 

  Rolle’s theorem cannot be applicable to f(x) = tan x in *0,π+. 

(ii). f(x) = 1/x2 in [-1,1] 

f(x) is discontinuous at x= 0.Hence Rolle ’s Theorem cannot be applied. 

4. Verify Rolle’s theorem for the function f(x) = (x-a)m(x-b)n where m,n are positive integers in [a,b]. 

Sol: (i). Since every polynomial is continuous for all values, f(x) is also continuous in[a,b]. 

(ii) f(x) = (x-a)m(x-b)n 



 

 

 

 

f1(x) = m(x-a)m-1(x-b)n+(x-a)m.n(x-b)n-1 

 = (x-a)m-1(x-b)n-1[m(x-b)+n(x-a)] 

 =(x-a)m-1(x-b)n-1[(m+n)x-(mb+na)] 

 Which  exists 

Thus f(x) is derivable in (a,b) 

(iii) f(a) = 0 and f(b) = 0 

  f(a) =f(b) 

Thus three conditions of Rolle’s theorem are satisfied. 

 There exists cє(a,b) such that f1(c)=0 

(c-a)m-1(c-b)n-1[(m+n)c-(mb+na)]=0 

  (m+n)c-(mb+na)=0  => (m+n)c = mb+na 

 c = mb+na  є(a,b) 

        m+n                                               

  Rolle ’s Theorem verified. 

 

5. Using Rolle ’s Theorem, show that g(x) = 8x3-6x2-2x+1 has a zero between  

0 and 1. 

Sol: g(x) = 8x3-6x2-2x+1 being a polynomial, it is continuous on [0,1] and differentiable on (0,1) 

Now g(0) = 1 and g(1)= 8-6-2+1 = 1 

Also g(0)=g(1) 

Hence, all the conditions of Rolle’s theorem are satisfied on *0,1+. 

Therefore, there exists a number cє(0,1) such that g1(c)=0. 

Now g1(x) = 24x2-12x-2 

 g1(c)= 0 => 24c2-12c-2 =0  

 c= ie
12

213 
c= 0.63 or -0.132 

only the value c = 0.63 lies in (0,1) 

Thus there exists at least one root between 0 and 1. 

6. Verify Rolle’s theorem for f(x) = x 2/3 -2x 1/3  in the interval (0,8).   

Sol: Given f(x) = x 2/3 -2x 1/3 

 f(x) is continuous in [0,8] 

f1(x) = 2/3 . 1/x1/3 -2/3 . 1/x2/3 = 2/3(1/x1/3 – 1/x2/3) 

Which exists for all x in the interval (0,8) 

 f is derivable (0,8). 

Now f(0) = 0 and f(8) = (8)2/3-2(8)1/3 = 4-4 =0 

 

 i.e., f(0) = f(8) 



Thus all the three conditions of Rolle’s Theorem are satisfied. 

 There exists at least one value of c in(0,8) such that f1(c)=0 

  

 

ie. 0
11

3

2

3

1


cc

=> c = 1 є (0,8) 

Hence Rolle’s Theorem is verified. 

7. Verify Rolle’s theorem for f(x) = x(x+3)e-x/2 in [-3,0]. 

Sol: -  (i). Since x(x+3) being a polynomial is continuous for all values of x and e-x/2 is also continuous for all x, 

their product x(x+3)e-x/2 = f(x) is also continuous for every value of x and in particular f(x) is continuous in the 

[-3,0]. 

(ii). we have f1(x) = x(x+3)( -1/2  e-x/2)+(2x+3)e-x/2 

  = e-x/2 [2x+3-
2

3
2

xx 
] 

  =e-x/2[6+x-x2/2] 

Since f1(x) doesnot become infinite or indeterminate at any point of the interval(-3,0). 

f(x) is derivable in (-3,0) 

(iii) Also we have f(-3) = 0 and f(0) =0 

 f (-3)=f(0)  

Thus f(x) satisfies all the three conditions of Rolle’s theorem in the interval [-3,0]. 

Hence there exist at least one value c of x in the interval (-3,0) such that f1(c)=0 

i.e., ½ e-c/2(6+c-c2)=0 =>6+c-c2=0  (e-c/2≠0 for any c) 

=> c2+c-6 = 0 => (c-3)(c+2)=0 

 c=3,-2 

Clearly, the value c= -2 lies within the (-3,0) which verifies Rolle’s theorem. 

II. Lagrange’s mean value Theorem 

Let f(x) be a function such that (i) it is continuous in closed interval [a,b] & (ii) differentiable in (a,b). Then  at 

least one point c in (a,b) such that 

f1(c) = 
ab

afbf



 )()(

 

Geometrical Interpretation of Lagrange’s Mean Value theorem: 

Let Rbaf ],[:

 
be a function satisfying the two conditions of Lagrange’s theorem. Then the graph. 

 

 

1. y=f(x) is continuous curve in [a,b] 

 

 

 



 

 

 

 

2. At every point x=c, when a<c<b, on the curve y=f(x), there is unique tangent to the curve. By Lagrange’s 

theorem there exists at least one point 
ab

afbf
cfbac






)()(
)(),(

1   

Geometrically there exist at least one point c on the curve between A and B such that the tangent line is 

parallel to the chord 


AB  
 

1. Verify Lagrange’s Mean value theorem for f(x)= x3-x2-5x+3 in [0,4] 

Sol: Let f(x)= x3-x2-5x+3 is a polynomial in x. 

 It is continuous & derivable for every value of x. 

In particular, f(x) is continuous [0,4] & derivable in (0,4) 

Hence by Lagrange’s Mean value theorem   c (0,4)  

f1(c)= 
04

)0()4(



 ff
 

i.e., 3c2-2c-5 = 
4

)0()4( ff 
   …………………….(1) 

Now f(4) = 43-42-5.4+3 =64-16-20-3=67-36= 31 & f(0)=3 

4

)0()4( ff 
= 7

4

)331(




 

From equation (1), we have 
 

3c2-2c-5 =7 => 3c2-2c-12 =0 

c =
3

371

6

1482

6

14442 






 

We see that 
3

371 
lies in open interval (0,4) & thus Lagrange’s Mean value theorem is verified. 

2. Verify Lagrange’s Mean value theorem for f(x) = x
e

log  in [1,e] 

Sol: - f(x) = x
e

log
 

This function is continuous in closed interval [1,e] & derivable in (1,e). Hence L.M.V.T is applicable 

here. By this theorem,  a point c in open interval (1,e) such that 

 

 

  f1(c) = 
1

1

1

01

1

)1()(













eee

fef
 

  But f1(c)= 
1

11

1

1




 ece
 

    c = e - 1 

Note that (e-1) is in the interval (1,e). 

Hence Lagrange’s mean value theorem is verified. 



4. Give an example of a function that is continuous on [-1, 1] and for which mean value theorem does 

not hold with explanations. 

 

 

 

Sol:- The function f(x) = x is continuous on [-1,1] 

But Lagrange Mean value theorem is not applicable for the function f(x) as its derivative does not 

exist in (-1,1) at x=0. 

4. If a<b, P.T 
2

11

2
11 a

ab
aTanbTan

b

ab








 
 using Lagrange’s Mean value theorem. Deduce the 

following. 

i). 
6

1

43

4

25

3

4

1


 
Tan  

ii). 
4

2
2

20

45 1 


  
Tan  

Sol: consider f(x) = Tan-1 x in [a,b] for 0<a<b<1 

Since f(x) is continuous in closed interval [a,b] & derivable in open interval (a,b). 

We can apply Lagrange’s Mean value theorem here. 

Hence there exists a point c in (a,b) 

f1(c) = 
ab

afbf



 )()(
 

Here f1(x) = 
2

1

2
1

1
)(&

1

1

c
cfhence

x 


  

Thus  c, a<c<b  

ab

aTanbTan

c 






 11

2
1

1
 ------- (1) 

 

We have 1+a2<1+c2<1+b2 

222
1

1

1

1

1

1

bca 








 ……….. (2) 

From (1) and (2), we have 

2

11

2
1

1

1

1

bab

aTanbTan

a 











 

or  

2

11

2
11 b

ab
aTanbTan

a

ab








 

     
………………(3) 

Hence the result
 

Deductions: -  

(i) We have 
2

11

2
11 a

ab
aTanbTan

b

ab








 

 

Take 
3

4
b & a=1, we get 



 

 

 

 

 

6

1

4
)

3

4
(

425

3 1


 
Tan  

 

(ii) Taking b=2 and a=1, we get 

 
1 1 1

2 2

2 1 2 1 1 1
2 1 2

1 2 1 1 5 4 2

    
      

 
T a n T a n T a n

 

 
4

2
2

45

1 1  



Tan  

 
14 5 2
2

2 0 4

   
   T a n  

5. Show that for any x > 0, 1 + x < ex < 1 + xex. 

 

Sol: - Let f(x) = ex defined on [0,x]. Then f(x) is continuous on [0,x] & derivable   

             on (0,x). 

By Lagrange’s Mean value theorem  a real number c є(0,x) such that 

)(
0

)0()( 1
cf

x

fxf




  

 

x 0 x

c ce -e e -1
= e = e

x -0 x
 ………….(1) 

Note that 0<c<x => e0<ec<ex ( ex is an increasing function) 

=> x

x

e
x

e





1
1  From (1) 

=> x<ex-1<xex 

=> 1+x<ex<1+xex. 

6. Calculate approximately 
5

2 4 5  by using L.M.V.T. 

Sol:- Let f(x) = 5
x =x1/5 & a=243 , b=245 

Then f1(x) = 1/5 x- 4/5 & f1(c) = 1/5c- 4/5 

By L.M.V.T, we have 

)(
)()( 1

cf
ab

afbf





 

=> 5

4

5

1

243245

)243()245(






c

ff
 

=> f  (245) =f(243)+2/5c
-4/5

 

=> c lies b/w 243 & 245 take c= 243 

2

3

34

4
)

3

4
(

9

25

3

34

11

1
3

4

)1()
3

4
(

9

16
1

1
3

4

1

2

11 














 

TanTanTan



=> 5
245 = (243) 

1/5
 +2/5(243)

-4/5 
= 5

4

55

1

5
)3(

5

2
)3(



  

= 3+ (2/5)(1/81) = 3+2/405 = 3.0049 

 

 

 

7. Find the region in which f(x) = 1-4x-x2 is increasing & the region in which it is decreasing using M.V.T. 

Sol: - Given f(x) = 1-4x-x2 

     f(x) being a polynomial function is continuous on [a,b] & differentiable on (a,b)  a,b R 

 f satisfies the conditions of L.M.V.T on every interval on the real line. 

f1(x)= - 4-2x= -2(2+x) xR 

 

 

f1(x)= 0 if  x = -2 

for x<-2, f1(x) >0 & for x>-2 , f1(x)<0 

Hence f(x) is strictly increasing on (-∞, -2) & strictly decreasing on (-2,∞) 

8. Using Mean value theorem prove that Tan x > x in 0<x</2 

Sol:- Consider f(x) = Tan x in  x,  where 0< <x</2 

 Apply L.M.V.T to f(x) 

  a points c such that 0<  <c<x</2 such that 

   



c

x

TanxTan 2
sec





   

  
c )sec -(x =Tan -Tan x

2


 

  
xxxTanthenTake

2
sec00 

 
  But sec2c>1. 

Hence Tan x > x 

9. If f1(x) = 0 Through out an interval [a,b], prove using M.V.T f(x) is a constant in that interval. 

Sol:- Let  f(x) be function defined in [a,b] & let f1(x) = 0  x in [a,b]. 

 Then f1(t) is defined & continuous in [a,x] where axb. 

 & f(t) exist in open interval (a,x). 

 By L.M.V.T  a point c in open interval (a,x)  

 
)(

)()( 1
cf

ax

afxf






 

 But it is given that f1(c) = 0  

 
 0 = f(a)-f(x)

  
 x  f(a)=f(x) 

 
 Hence f(x) is constant. 

10   Using mean value theorem  

   S.T i) x > log (1+x)  >    x > 0  



   ii)  π/6 + ( /15) < sin
-1

(0.6)   < π/6 + (1/6) 

iii) 1+x  < e
x
  < 1+xe

x
     x > 0   

 

 

 

 

 

iv)   < tan
(-1)

v  - tan
(-1)

u <    where 0 < u <v hence deduce   

a)  π/4+ (3/25)  <  tan
(-1)

(4/3)  < π/4+ (1/6) 

III. Cauchy’s Mean Value Theorem 

If f: [a,b] R,  g:[a,b] R  (i) f,g are continuous on [a,b] (ii) f,g are differentiable on (a,b)  

thenbaxxgiii ),,(0)()(
1

     

)()(

)()(

)(

)(
),(int

1

1

agbg

afbf

cg

cf
bacpoa




  

 

1. Find c of Cauchy’s mean value theorem for 

 x
xgxxf

1
)(&)( 

             
in [a,b] where 0<a<b 

Sol: - Clearly f, g are continuous on [a,b]  R+ 

 We have xx
xgnd

x
xf

2

1
)(

2

1
)(

11 
 a

 which exits on (a,b) 

 

+
R  b)(a,on  abledifferenti are g f, 

  
Also g1 (x)0,  x (a,b)  R+ 

Conditions of Cauchy’s Mean value theorem are satisfied on (a,b) so c(a,b)  

  )(

)(

)()(

)()(

1

1

cg

cf

agbg

afbf






 

 

cab
c

cc

ab

ba

ab

cc

c

ab

ab

















2

2

2

1

2

1

11  

 Since a,b >0 , ab is their geometric mean and we have a<ab <b 

 c(a,b) which verifies Cauchy’s mean value theorem. 

2. Verify Cauchy’s Mean value theorem for f(x) = ex & g(x) = e-x in [3,7] &   

        find the value of c. 

Sol: We are given f(x) = ex & g(x) = e-x 

 f(x) & g(x) are continuous and derivable for all values of x. 

 =>f & g are continuous in [3,7] 

 => f & g are derivable on (3,7) 

 Also g1(x) = e-x 0  x (3,7) 

 Thus f & g satisfies the conditions of Cauchy’s mean value theorem. 



 Consequently,  a point c (3,7) such that 

 

c

c

c

e

ee

ee

e

e

ee

ee

cg

cf

gg

ff 2

37

37

37

37

1

1

11)(

)(

)3()7(

)3()7(





















 

 

 

  =>  -e7+3 = -e2c   

  => 2c = 10 

    => c = 5(3,7)
 

  Hence C.M.T. is verified 

 

 

Partial Differentiation 

 

 

PROBLEMS 



 

 

 

 

 

 



 

 

 

 

 

 



 

 

 

 

 

 



 

 

 

 

 

 

 

 



 

 

 

Chain rule of Partial Differentiation 

 

 

This is called as Chain rule of Partial Differentiation. 

 

Problems 

Example 1:  

 

 



 

 

 

 

 

 

Example 2:  

 

 



 

Example 3:  ,

 

 

 

 

Example 4: 

   



 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Example 1:  



 

 

 

Example 2:  

 

 

Example 3:  

 

 

 



 

 

 

 

 

Example 4:    

     

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 



Example 1:   

 

 

 

 

Example 2:   

 

 

 

 



Example 3:  

 

 

 

Example 4: 

 

 

 

 



 

 

Example 5:

 

 

 

 

** Maximum & Minimum for function of a single Variable: 

To find the Maxima & Minima of f(x) we use the following procedure. 

(i) Find  f
1(x) and equate it to zero 

(ii) Solve the above equation we get x0,x1 as roots. 

(iii) Then find f
11

(x). 

If f
11

(x)(x = x0) > 0, then f(x) is minimum at x0 

If    f
11

(x)(x = x0) , <  0, f(x) is  maximum at x0 .  Similarly we do this for other stationary points. 

 

 

 

PROBLEMS: 



1. Find the max & min of the function f(x) = x
5
 -3x

4
 + 5  (’08  S-1) 

Sol: Given f(x) = x
5
 -3x

4
 + 5  

                   f
1
(x) = 5x

4
 – 12x

3
  

for maxima or minima    f
1
(x) =0 

5x
4
 – 12x

3
 = 0 

 x =0, x= 12/5 

               f
11

(x) = 20 x
3
 – 36 x

2
  

     At   x = 0 =>   f
11

(x) = 0.  So f is neither maximum nor minimum at x = 0 

At  x = (12/5) =>  f
11

(x) =20 (12/5)
3
 – 36(12/5) 

            =144(48-36) /25   =1728/25 > 0 

  So f(x) is minimum at x = 12/5 

The minimum value is f (12/5) = (12/5)
5
 -3(12/5)

4
 + 5  

 

** Maxima & Minima for functions of two Variables:  

Working procedure:  

1. Find  and   Equate each to zero. Solve these equations for x & y we get the pair of 

values (a1, b1) (a2,b2) (a3 ,b3) ……………… 

2. Find l =
2 2

2

 


  

f f
,m

x x y
 , n =  

2

2





f

y
 

3. i. If  l n –m
2
 > 0 and l  < 0 at   (a1,b1) then f(x ,y) is maximum at (a1,b1) and maximum 

value is f(a1,b1) 

ii.  If  l n –m
2
 > 0 and l  > 0 at   (a1,b1) then f(x ,y) is minimum at (a1,b1) and minimum value is 

f(a1,b1) . 

 

 

 

 

 

 

iii. If l n –m
2
 < 0 and at   (a1, b1) then f(x, y) is neither maximum nor minimum at (a1, b1). In 

this case (a1, b1) is saddle point. 

iv. If l n –m
2
 = 0 and at   (a1, b1) , no conclusion can be drawn about maximum  or minimum 

and needs further investigation.   Similarly we do this for other stationary points. 

 

 

 

 

 

 

PROBLEMS: 



1.  Locate the stationary points & examine their nature of the following functions.                                                    

 u =x
4
 + y

4
 -2x

2
 +4xy -2y

2
,   (x > 0, y > 0)   

Sol: Given u(x ,y) = x
4
 + y

4
 -2x

2
 +4xy -2y

2
   

         For maxima & minima 
u

x




= 0, 

u

y




= 0 

          = 4x
3
 -4x + 4y = 0    x

3
 – x + y = 0      -------------------> (1)  

 

 

 

          = 4y
3
 +4x - 4y = 0    y

3
 + x – y = 0      -------------------> (2)   

        Adding (1) & (2),    

      x
3
 + y

3
 = 0   

                                    x = – y -------------------> (3)      

(1)    x
3
 – 2x   x = 0 , 2 , 2   

Hence (3)    y = 0, - 2 , 2   

        l = 
2

2

x

u




= 12x

2
 – 4, m =

yx

u




2

  = (   )   = 4 & n = 
2

2

y

u




  = 12y

2
 – 4  

       ln – m
2
 = (12x

2
 – 4 )( 12y

2
 – 4 ) -16  

     At ( ,     ), ln – m
2
 = (24 – 4)(24 -4) -16  = (20) (20) – 16    >  0 and l=20>0 

      The function has minimum value at ( ,     ) 

 At (0,0) , ln – m
2
 = (0– 4)(0 -4) -16  = 0  

    (0,0) is not a extreme value. 

2. Investigate the maxima & minima, if any, of the function f(x) = x
3
y

2
 (1-x-y).      

   

Sol: Given             f(x) = x
3
y

2
 (1-x-y)     = x

3
y

2
- x

4
y

2
 – x

3
y

3
  

           = 3x
2
y

2
 – 4x

3
y

2
 -3x

2
y

3
        = 2x

3
y – 2x

4
y -3x

3
y

2
  

For maxima & minima    = 0 and      = 0   

 3x
2
y

2
 – 4x

3
y

2
 -3x

2
y

3
   =  0    =>  x

2
y

2
(3 – 4x -3y) = 0 ---------------> (1) 

 

 

 

 2x
3
y – 2x

4
y -3x

3
y

2
    =   0    =>  x

3
y(2 – 2x -3y) = 0  ----------------> (2) 

 From (1) & (2)         4x + 3y – 3 = 0     

    2x + 3y - 2 = 0     

             2x = 1  => x = ½ 

 

4 ( ½) + 3y – 3 = 0  => 3y = 3 -2 , y = (1/3) 

 



 

 

     l = 
2

2

x

f




  = 6xy

2
-12x

2
y

2
 -6xy

3
  



















2

2

x

f
(1/2,1/3) = 6(1/2)(1/3)

2
 -12 (1/2)

2
(1/3)

2
 -6(1/2)(1/3)

3
  = 1/3 – 1/3 -1/9 = -1/9  

     m =
yx

f




2

   = 





















y

f

x
 = 6x

2
y -8 x

3
y – 9x

2
y

2
  



















yx

f
2

 (1/2 ,1/3) = 6(1/2)
2
(1/3) -8 (1/2)

3
(1/3) -9(1/2)

2
(1/3)

3
  =  =  

       n =
2

2

y

f




 = 2x

3
 -2x

4
 -6x

3
y   



















2

2

y

f
 (1/2,1/3) =  2(1/2)

3
 -2(1/2)

4
 -6(1/2)

3
(1/3) =  -  -   =  -     

 

 

 

       ln- m
2
 =(-1/9)(-1/8) –(-1/12)

2
  =   -     =   =    > 0 and l = 0

9

1



 

The function has a maximum value at  (1/2 , 1/3)  

 Maximum value is 
432

1

3

1

2

1

72

1

3

1

2

1
1

9

1

8

1

3

1
,

2

1




































f

 

3.  Find three positive numbers whose sum is 100 and whose product is maximum.  

Sol: Let x ,y ,z be three +ve numbers. 

        Then  x + y + z = 100 

   z = 100 – x – y 

 Let f (x,y) = xyz =xy(100 – x – y) =100xy –x
2
y-xy

2
  

For maxima or minima   = 0 and      = 0   

  =100y –2xy-y
2
  = 0  => y(100- 2x –y) = 0   ----------------> (1) 

 = 100x –x
2
 -2xy = 0 => x(100 –x -2y) = 0   ------------------> (2) 

 

  

                                   100 -2x –y = 0 

          200 -2x -4y =0 

                            -----------------------------   

        -100 + 3y  = 0   => 3y =100    =>  y =100/3 

               100 – x –(200/3) = 0        =>  x = 100/3 

l = 
2

2

x

f




  =- 2y          



















2

2

x

f
 (100/3 , 100/3 ) = - 200/3  



m = 
yx

f




2

  = 






















y

f

x
 = 100 -2x -2y  



















yx

f
2

 (100/3 , 100/3 ) = 100 –(200/3) –(200/3) = -(100/3)  

 n = 
2

2

y

f




   = -2x  



















2

2

y

f
 (100/3 , 100/3 ) = - 200/3   

 ln -m
2
 = (-200/3) (-200/3) - (-100/3)

2
   = (100)

2
 /3  

The function has a maximum value at  (100/3 , 100/3)   

 i.e. at x = 100/3, y = 100/3        z  = 
1 0 0 1 0 0 1 0 0

1 0 0
3 3 3

    

    The required numbers are x = 100/3, y = 100/3,  z = 100/3 

 

4. Find the maxima & minima of the function  f(x) = 2(x
2
 –y

2
) –x

4
 +y

4
   

Sol: Given f(x) = 2(x
2
 –y

2
) –x

4
 +y

4
   = 2x

2
 –2y

2
 –x

4
 +y

4
    

         For maxima & minima   = 0 and      = 0   

         = 4x - 4x
3
 = 0   => 4x(1-x

2
) = 0   => x = 0  , x = ± 1 

        = -4y + 4y
3
 = 0    => -4y (1-y

2
) = 0   =>y = 0, y = ± 1   

l = 


















2

2

x

f
 = 4-12x

2
  

m = 


















yx

f
2

=   

 
  

f

x y

 = 0 

n = 


















2

2

y

f
= -4 +12y

2
   

we have ln – m
2
 = (4-12x

2
)( -4 +12y

2
 ) – 0 

        = -16 +48x
2
 +48y

2
 -144x

2
y

2
  

       = 48x
2
 +48y

2
 -144x

2
y

2
 -16  

i) At ( 0 , ± 1 )  

ln – m
2
 = 0 + 48 - 0 -16 =32 > 0 

l = 4-0 = 4 > 0  

f has minimum value at ( 0 , ± 1 )  

f (x ,y ) = 2(x
2
 –y

2
) –x

4
 +y

4
   

f ( 0 , ± 1 ) = 0 – 2 – 0 + 1  =  -1 

The minimum value is „-1 „.  

 

 

ii) At ( ± 1 ,0 )  

           ln – m
2
 =  48 + 0 - 0 -16 =32 > 0 



         l = 4-12 = - 8 < 0 

f has maximum value at ( ± 1 ,0 )  

 f (x ,y ) = 2(x
2
 –y

2
) –x

4
 +y

4
   

f ( ± 1 , 0 ) =2 -0 -1 + 0 = 1  

The maximum value is „1 „. 

iii)     At   (0,0) , (± 1 , ± 1)  

         ln – m
2
 < 0  

         l = 4 -12x
2
  

      (0 , 0)   &  (± 1 , ± 1)  are saddle points. 

  f has no max & min values at (0 , 0) , (± 1 , ± 1). 

 

*Extremum : A function which have a maximum or minimum or both is called                  

                       „extremum‟  

*Extreme  value :- The maximum value or minimum value or both of a function is       

                             Extreme value.  

*Stationary points: - To get stationary points we solve the equations   = 0 and     

                                = 0 i.e the pairs (a1, b1), (a2, b2) ………….. are called  

        Stationary. 

*Maxima & Minima for a function with constant condition :Lagranges Method  

  Suppose f(x , y , z) = 0 ------------(1) 

                          ( x , y , z) = 0 ------------- (2)  

F(x , y , z) = f(x , y , z) +  ( x , y , z)  where  is called Lagrange‟s constant.  

1. 




F

x
= 0  =>   +   = 0 --------------- (3)  





F

y
= 0   =>   +   = 0 --------------- (4) 





F

z
 = 0   =>   +   = 0 --------------- (5) 

 

 

 

2. Solving the equations (2) (3) (4) & (5) we get the stationary point (x, y, z). 

3. Substitute the value of x , y , z in equation (1) we get the extremum. 

 

 

 

 

 

 

 



Problem: 

1. Find the minimum value of x
2
 +y

2
 +z

2
, given x + y + z =3a (’08 S-2) 

Sol: u = x
2
 +y

2
 +z

2
  

        = x + y + z - 3a = 0 

     

   Using Lagrange‟s function  

F(x , y , z) = u(x , y , z) +  ( x , y , z)   

For maxima or minima  





F

x
 =   +   = 2x +  = 0 ------------ (1)  





F

y
  =   +   = 2y +  = 0 ------------ (2)  





F

z
  =   +   = 2z +  = 0 ------------ (3)  

 (1) , (2) & (3)  

 = -2x = -2y = -2z  

 

 = x + x + x - 3a = 0   = a  

 = y =z = a  

Minimum value of u = a
2
 + a

2
 + a

2
 =3 a

2
  

 

 

 

 

 

 



  
             
 

 

 

MODULE-III  

HIGHER ORDER LINEAR 

DIFFERENTIAL EQUATIONS AND 

THEIR APPLICATIONS  

 

 

 

 

 

 

 

 



LINEAR DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER ORDER 

Definition: An equation of the form  + P1(x)  + P2(x)  + --------+  

Pn(x) .y = Q(x) Where P1(x), P2(x), P3(x)… …..Pn(x)  and   Q(x) (functions of x) continuous is called 

a linear differential equation of order n. 

LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS 

Def: An equation of the form  + P1  + P2  + --------+ Pn .y = Q(x) where   P1, P2, 

P3,…..Pn, are real constants and Q(x) is a continuous function of x is called an linear differential 

equation of order „ n‟ with constant coefficients. 

Note:  

1. Operator D =   ; D
2
 =  ; …………………… D

n
 =  

                    Dy =   ; D
2
 y=  ; …………………… D

n
 y=  

2. Operator Q =    i e  D
-1

Q  is called the integral of Q. 

 

To find the general solution of f(D).y = 0 :  

 Where f(D) =  D
n
 + P1 D

n-1
 + P2 D

n-2
 +-----------+Pn is a polynomial in D. 

 Now consider the auxiliary equation : f(m) = 0 

i.e f(m) =  m
n
 + P1 m

n-1
 + P2 m

n-2
 +-----------+Pn  = 0  

where p1,p2,p3 ……………pn are real constants. 

Let the roots of f(m) =0 be m1, m2, m3,…..mn.   

Depending on the nature of the roots we write the complementary function  

as follows:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Consider the following table   

S.No Roots of A.E f(m) =0 Complementary function(C.F) 

1. m1, m2, ..mn are real and distinct. yc = c1e
m

1
x
+ c2e

 m
2
x
 +…+ cne

m
n
x
 

2. m1, m2, ..mn are and two roots are 

equal i.e., m1, m2 are equal and 

real(i.e repeated twice) &the rest 

are real and different. 

 

yc = (c1+c2x)e
m

1
x
+ c3e

m
3
x
 +…+ cne

m
n
x
 

3. m1, m2, ..mn are real and three 

roots are equal i.e., m1, m2 , m3 are 

equal and real(i.e repeated thrice) 

&the rest are real and different. 

yc = (c1+c2x+c3x
2
)e

m
1
x
 + c4e

m
4
x
+…+ cne

m
n
x
 

 

 

  

4. Two roots of A.E  are complex say 

+i  -i  and rest are real and 

distinct.  

yc =  (c1 cos x + c2sin x)+ c3e
m

3
x
 +…+ cne

m
n

x
 

5. If ±i  are repeated twice & rest 

are real and distinct 

yc =  [(c1+c2x)cos x + (c3+c4x) sin x)]+ c5e
m

5
x
 

+…+ cne
m

n
x
 

6. If ±i  are repeated thrice & rest 

are real and distinct 

yc =  [(c1+c2x+ c3x
2
)cos x + (c4+c5x+ c6x

2
) sin

x)]+ c7e
m

7
x
 +………  + cne

m
n
x
 

7. If roots of A.E. irrational say 

  and rest are real and 

distinct. 

  xm

n

xmx

c

nececxcxcey  .......sinhcosh 3

321


  

 

Solve the following Differential equations : 

1. Solve  - 3  + 2y = 0  

 : Given equation is of the form f(D).y = 0 

         Where  f(D) = (D
3
 -3D +2) y = 0  

         Now consider the auxiliary equation f(m) = 0 

 f(m) = m
3
 -3m +2 = 0    (m-1)(m-1)(m+2) = 0 

      m = 1 , 1 ,-2  

        Since m1 and m2 are equal and m3 is -2  

        We have   yc = (c1+c2x)e
x
 + c3e

-2x
 

2. Solve (D
4
 -2 D

3
 - 3 D

2
  + 4D +4)y = 0  

Sol: Given f(D)  = (D
4
 -2 D

3
 - 3 D

2
  + 4D +4) y = 0  

 A.equation  f(m) = (m
4
 -2 m

3
 - 3 m

2
  + 4m +4) = 0 

 (m + 1)
2
 (m – 2)

2
 = 0  

 m= -1 , -1 , 2 , 2  

 

 

 



 yc = (c1+c2x)e
-x

 +(c3+c4x)e
2x

 

3. Solve (D
4
 +8D

2
 + 16) y = 0  

Sol:  Given f(D) = (D
4
 +8D

2
 + 16) y = 0 

        Auxiliary equation f(m) =  (m
4
 +8 m

2
 + 16) = 0 

 (m
2
 + 4)

2
 = 0  

 (m+2i)
2
 (m+2i)

2
 = 0 

 m= 2i ,2i , -2i , -2i 

Yc =  [(c1+c2x)cos x + (c3+c4x) sin x)] 

 

4. Solve y
11

+6y
1
+9y = 0 ; y(0) = -4 , y

1
(0) = 14 

Sol:     Given equation is y
11

+6y
1
+9y = 0 

Auxiliary equationf(D) y = 0      (D
2
 +6D +9) y = 0 

         A.equation f(m) = 0   (m
2
 +6m +9) = 0 

     m = -3 ,-3 

yc = (c1+c2x)e
-3x

  -------------------> (1) 

               Differentiate of (1) w.r.to x      y
1
 =(c1+c2x)(-3e

-3x
 ) + c2(e

-3x
 )  

    Given y1 (0) =14     c1 = -4 & c2 =2  

     Hence we get  y =(-4 + 2x) (e
-3x

 )  

5. Solve  4y
111

 + 4y
11

 +y
1
 = 0  

Sol: Given equation is 4y
111

 + 4y
11

 +y
1
 = 0 

That is (4D
3
+4D

2
+D)y=0 

Auxiliary equation f(m) = 0 

  4m
3
 +4m

2
 + m = 0 

  m(4m
2
 +4m + 1) = 0 

  m(  = 0  

m = 0 , -1/2 ,-1/2  

  y =c1+ (c2+ c3x) e
-x/2

 

6. Solve (D
2
 - 3D +4) y = 0 

Sol: Given equation (D
2
 - 3D +4) y = 0 

A.E. f(m) = 0 

  m
2
-3m + 4 = 0 

  m =   =  

   i = 
2

7

2

3
i  

 y =   (c1 cos x + c2sin x)    

General solution of  f(D) y = Q(x)  

Is given by y = yc + yp 

 

 

 



 

i.e. y = C.F+P.I 

Where the P.I consists of no arbitrary constants and P.I of f (D) y = Q(x)  

 Is evaluated as   P.I =  . Q(x) 

 Depending on the type of function of Q(x). 

P.I is evaluated as follows: 

1. P.I of f (D) y = Q(x) where Q(x) =e
ax

 for (a) ≠ 0 

    Case1:   P.I =  . Q(x) =  e
ax

  =  e
ax

 

                      Provided f(a) ≠ 0 

     Case 2: If f(a) = 0 then the above method fails. Then   

if f(D) = (D-a)
k

(D) 

         (i.e  „ a‟ is a repeated root k times). 

     Then P.I =  e
ax

  .  x
k
 provided  (a) ≠ 0 

2. P.I of f(D) y =Q(x) where Q(x) = sin ax or Q(x) = cos ax where ‘ a ‘ is constant then P.I = 

 . Q(x). 

Case 1: In f(D) put D
2
 = - a

2
 f(-a

2
) ≠ 0 then P.I = 

 2

sin

af

ax


 

Case 2: If  f(-a
2
) = 0  then D

2
 + a

2
 is a factor of (D

2
) and hence it is a factor of f(D). Then let 

f(D) = (D
2
 + a

2
) .Ф(D

2
).  

Then  
  a

axx

aaD

ax

aDaD

ax

Df

ax

2

cos1sin

)(

1

)()(

sin

)(

sin

2222222










  

  a

axx

aaD

ax

aDaD

ax

Df

ax

2

sin1cos

)(

1

)()(

cos

)(

cos

2222222









 

 

3. P.I for f(D) y = Q(x) where Q(x) = x
k
 where k is a positive integer f(D) can be express as 

f(D) =[1± ]  

Express  =   = [1± ] 
-1

 

 Hence P.I =  Q(x). 

                    = [1± ] 
-1

 .x
k
 

4. P.I of f(D) y = Q(x) when Q(x) = e
ax

 V  where  ‘a’ is a constant and V is function of x. 

where V =sin ax or cos ax or x
k
 

Then P.I =  Q(x) 

     =  e
ax

 V 

    = e
ax

 [ (V)]  



 

 

 

&  V is evaluated depending on V. 

5. P.I of f(D) y = Q(x) when Q(x) = x V  where V is a function of x. 

Then P.I =  Q(x) 

     =   x V 

    = [x -  f
1
(D)]  V  

6. i. P.I. of f(D)y=Q(x) where Q(x)=x
m

v where v is a function of x. 

Then P.I. = )sin(cos
)(

1
..

)(

1
)(

)(

1
axiaxx

Df
ofPIvx

Df
xQ

Df

mm
  

iaxm
ex

Df
ofPI

)(

1
..  

ii. P.I. 
iaxmm

ex
Df

ofPRaxx
Df )(

1
..cos

)(

1
  

Formulae 

1.  = (1 – D)
-1

 = 1 + D + D
2
 + D

3
 + ------------------ 

2.  = (1 + D)
-1

 = 1 - D + D
2
 - D

3
 + ------------------ 

3. = (1 – D)
-2

 = 1 + 2D + 3D
2
 + 4D

3
 + ------------------ 

4.  = (1 + D)
-2

 = 1 - 2D + 3D
2
 - 4D

3
 + ------------------ 

5. = (1 – D)
-3

 = 1 + 3D + 6D
2
 + 10D

3
 + ------------------ 

6. = (1 + D)
-3

 = 1 - 3D + 6D
2
 - 10D

3
 + ------------------ 

I. HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS: 

1. Find the Particular integral of f(D) y = when f(a) ≠0 

2. Solve the D.E (D
2
 + 5D +6) y = e

x
 

3. Solve  y
11

+4y
1
+4y = 4 e

3x
 ; y(0) = -1 , y

1
(0) = 3 

4. Solve  y
11

 + 4y
1
 +4y= 4cosx+3sinx , y(0) = 1 , y

1
(0) = 0 

5. Solve (D
2
+9) y = cos3x  

6. Solve y
111

 + 2y
11

 - y
1
 – 2y = 1-4x

3
 

7. Solve the D.E (D
3
 - 7 D

2
 + 14D - 8) y = e

x
 cos2x 

8. Solve the D.E (D
3
 - 4 D

2
 -D + 4) y = e

3x
 cos2x  

9. Solve (D
2
 - 4D +4) y =x

2
sinx + e

2x
 + 3  

 

 



10. Apply the method of variation parameters to solve  + y = cosecx 

11.  Solve  = 3x + 2y ,  + 5x + 3y =0 

12.  Solve (D
2
 + D - 3) y =x

2
e

-3x
 

13.  Solve (D
2
 - D - 2) y =3e

2x
  ,y(0) = 0 , y

1
 (0) = -2 

SOLUTIONS: 

1) Particular integral of f(D) y = when f(a) ≠0 

       Working rule: 

Case (i): 

 In f(D), put D=a and Particular integral will be calculated. 

Particular integral= =  provided f(a) ≠0 

Case (ii) : 

 If f(a)= 0 , then above method fails. Now proceed as below. 

 If f(D)= (D-a)K (D) 

                  i.e. ‘a’ is a repeated root k times, then  

Particular integral=  .  provided (a) ≠0 

2. Solve the Differential equation(D
2
+5D+6)y=e

x
 

Sol : Given equation is (D2+5D+6)y=ex 

 Here Q( x) =e x 

 Auxiliary equation is f(m) = m2+5m+6=0 

 m2+3m+2m+6=0 

 m(m+3)+2(m+3)=0 

 m=-2 or  m=-3  

 The roots are real and distinct 

 C.F = yc= c1e-2x +c2 e-3x 

 Particular Integral = yp=  . Q(x) 

  = ex      =  ex 

 Put D = 1 in f(D) 

 

  



P.I. =  ex 

 Particular Integral = yp=  . ex 

 General solution is y=yc+yp 

 y=c1e-2x+c2 e-3x +  

3)  Solve y
11

-4y
1
+3y=4e

3x
, y(0) = -1, y

1
(0) = 3 

  Sol : Given equation is y11-4y1+3y=4e3x 

 i.e.  - 4  +3y=4e
3x

 

it can be expressed as  

D
2
y-4Dy+3y=4e

3x
 

(D
2
-4D+3)y=4e

3x
 

Here Q(x)=4e
3x

; f(D)= D
2
-4D+3 

Auxiliary equation is f(m)=m
2
-4m+3 = 0 

m
2
-3m-m+3 = 0 

m(m-3) -1(m-3)=0 => m=3 or 1 

The roots are real and distinct. 

C.F= yc=c1e
3x

+c2e
x
 ---- (2) 

P.I.= yp=  . Q(x) 

= yp=  . 4e
3x

 

= yp=  . 4e
3x

 

Put D=3 

    

xx

xx

p
xee

x

D

e

D

e
y

33

133

2
!1

2
32

4

313

4






  

General solution is y=yc+yp 

y=c1e
3x

+c2 e
x
+2xe

3x
 ------------------- (3) 

Equation (3) differentiating with respect to ‘x’ 

y
1
=3c1e

3x
+c2e

x
+2e

3x
+6xe

3x 
----------- (4) 

By data, y(0) = -1 , y
1
(0)=3 

From (3),  -1=c1+c2 ------------------- (5) 

From (4),  3=3c1+c2+2 

   3c1+c2=1  ------------------- (6) 

Solving (5) and (6) we get c1=1 and c2 = -2 

 

y=-2e 
x
 +(1+2x)e

3x
 



 

(4). Solve y11+4y1+4y= 4cosx + 3sinx, y(0) = 0, y1(0) = 0 

Sol:  Given differential equation in operator form 

( )y= 4cosx +3sinx 

A.E is m2+4m+4 = 0 

(m+2)2=0 then m=-2, -2 

 C.F is yc= (c1 + c2x)  

P.I is = yp=   put  = -1 

yp=  =  

=  

Put  = -1 

 yp=  

 =  =  = sinx 

 General equation is y = yc+ yp 

 y = (c1 + c2x)  + sinx ------------ (1) 

By given data, y(0) = 0 c1 = 0 and 

Diff (1) w.r.. t.  y1 = (c1 + c2x)  + (c2) +cosx  ------------ (2) 

given y1(0) = 0 

(2)  -2c1 + c2+1=0  c2 = -1 

 Required solution is y = +sinx 

5. Solve (D2+9)y = cos3x 

Sol:Given equation is (D2+9)y = cos3x 

A.E is m2+9 = 0 

 



  m =  3i 

 

yc = C.F = c1 cos3x+ c2sin3x 

yc =P.I =  =  

 =  sin3x =  sin3x 

General equation is y = yc+ yp 

y = c1cos3x + c2cos3x +  sin3x 

6. Solve y111+2y11 - y1-2y= 1-4x3 

Sol:Given equation can be written as  

 = 1-4x3 

A.E is  = 0 

( (m+2) = 0 

m=- 2 

m = 1, -1, -2 

C.F =c1  + c2  + c3  

P.I =  3
41 x  

  = )41
3

x  

  = )41
3

x  

 = [ 1 +  +  +  + …..+  3
41 x  

       333223
41

8

1
4

4

1
2

2

1
1

2

1
xDDDDDD 













  

= [ 1 -  +  -  D] 1-4 ) 

 



 

=  [(1-4 ) -  +  -  (-12  

= [-4x3+6x2 -30x +16] =  

=  [2x3-3x2 +15x -8] 

The general solution is 

y= C.F + P.I 

y= c1  + c2  + c3  + [2x3-3x2 +15x -8] 

7. Solve  -8)y =  cos2x 

Given equation is  

 -8)y =  cos2x 

A.E is  = 0 

(m-1) (m-2)(m-4) = 0 

Then m = 1,2,4 

C.F = c1  + c2  + c3  

P.I =  

  = . . Cos2x 

 











 v

aDf
eve

Df
IP

axax 1

)(

1
.  

  = .  .cos2x 

  = .  .cos2x (Replacing D2 with -22) 

= .  .cos2x 

= .  .cos2x 

= .  .cos2x 

 



 

= .  .cos2x 

=  (16cos2x – 2sin2x) 

 xx
e

x

2sin2cos8
260

2
  

 xx
e

x

2sin2cos8
130

  

General solution is y = yc + yp 

 xx
e

ecececy

x

xxx
2sin2cos8

130

4

3

2

21
  

 

8. Solve  +4)y =  +3 

Sol:Given  +4)y =  +3 

A.E is  = 0 

(  = 0 then m=2,2 

C.F. = (c1 + c2x)  

P.I =  = +  (3) 

Now ) = ) (I.P of ) 

   = I.P of ) ) 

   = I.P of . ) 

On simplification, we get 

 =  [(220x+244)cosx+(40x+33)sinx] 

and ) = ), 

) =  

P.I =  [(220x+244)cosx+(40x+33)sinx] + ) +  

y = yc+ yp 

 



y= (c1 + c2x)  +  [(220x+244)cosx+(40x+33)sinx] + ) +  

 

Variation of Parameters : 

Working Rule : 

1. Reduce the given equation of the form   RyxQ
dx

dy
xP

dx

yd
 )(

2

2

 

2. Find C.F. 

3. Take P.I. yp=Au+Bv where A= 
1111

vuuv

uRdx
Band

vuuv

vRdx





  

4. Write the G.S. of the given equation 
pc

yyy   

9. Apply the method of variation of parameters to solve  + y = cosecx 

Sol: Given equation in the operator form is ( ----------------(1) 

A.E is  = 0 

im   

The roots are complex conjugate numbers. 

  C.F. is yc=c1cosx + c2sinx 

Let yp = Acosx + Bsinx be P.I. of (1) 

  u  - v  = =1 

    A and B are given by 

 A= 



11

vuuv

vRdx
 -  dx = -  = - x 

 B = 
11

vuuv

uRdx


  =  = log(sinx) 

yp= -xcosx +sinx. log(sinx) 

  General solution is y = yc+ yp. 

y = c1cosx + c2sinx-xcosx +sinx. log(sinx) 

10. Solve (  +1)y = 100 

Sol:A.E is  = 0 

( then m = .  

C.F = (c1+c2x)  



 

P.I =  =  =  = 100 

Hence the general solution is y = C.F +P.I 

y= (c1+c2x)  + 100 

 

Applications of Differential Equations: 

11. The differential equation satisfying a beam uniformly loaded ( w kg/meter) with one end fixed and the 

second end subjected to tensile force p is given by 

EI  = py -  w  

Show that the elastic curve for the beam with conditions y=0=  at x=0 is given by y =  

(1-coshnx) +
p

wx

2

2

where  =  

Sol:The given differential equation can be written as 

 -  y = (or)   

 -  = (or)   

( )y =  -----------(1) 

The auxiliary equation is ( ) = 0 => m = n and m= -n 

  C.F = yc = c1  +c2  

P.I =   (  

  = ) 

  = ) 

  =  

=  



 

=  (  + ) 

  The general solution of equation (1) is given by y= C.F + P.I 

y= c1  +c2 +  ( + ) 

12. A condenser of capacity ‘C’ discharged through an inductance L and resistance R in series and the charge q 

at time t satisfies the equation L  + R  +
C

q
= 0. Given that L=0.25H, R = 250ohms, c=2 * 10  6farads, and 

that when t =0, change q is 0.002 coulombs and the current  = 0, obtain the value of ‘q’ in terms of t. 

Sol: 

Given differential equation is 

L  + R  + 
C

q
 = 0 or  +  + 

LC

q
 = 0 -------------(1) 

Substituting the given values in (1), we get 

 +  +  = 0  or 

 + 1000  + q =0   or 

 ( q = 0 

Its A.E is  =0 

  m=
2

710001000

2

108101000
66

i



 

 = -500  1323i 

         Thus the solution is q= (c1cos1323t+c2sin1323t) 

        When t=0, q=0.002        since c1= 0.002 

Now    tctcetctce
dt

dq tt
1323cos1323sin13231323sin1323cos500

21

500

21

500


  

When 0,0 
dt

dq
t  

There fore c2=0.0008 

 



 

Hence the required solution is  tteq
t

1323sin0008.01323cos002.0
500


  

13. A particle is executing S.H.M, with amplitude 5 meters and time 4 seconds. Find the time required by the 

particle in passing between points which are at distances 4 and 2 meters from the Centre of force and are on 

the same side of it. 

Sol:       The equation of S.H.M is  = - -------------(1) 

             Give time period =  =4 

 =  

           We have the solution of (1) is x=acos t 

           a =5, =  

x = 5cos -------------(2) 

Let the times when the particle is at distances of 4 meters and 2 meters from the centre of motion 

respectively be t1 sec and t2 sec 

 t1 =    since [4= 5cos( )] 

            and  t2 =   since [2= 5cos( )] 

time required in passing through these points  

             t2-t1 = -  = 0.33sec 

differentiating (2) w.r.to ‘t’ 

 =  sin  

                =  

 =  

When x=4 meters v =  = 4.71 m/sec 

When x=2 meters v=  m/sec 

 



 

14. A body weighing 10kgs is hung from a spring. A pull of 20kgs will stretch the spring to 10cms. The body is 

pulled down to 20cms below the static equilibrium position and then released. Find the displacement of the 

body from its equilibrium position at time t seconds the maximum velocity and the period of oscillation. 

Sol:Let 0 be the fixed end and A be the other end of the spring. Since load of 20kg attached to A stretches the 

spring by 0.1m. 

Let e(AB) be the elongation produced by the mass ‘m’ hanging in equilibrium. 

If ‘k’ be the restoring force per unit stretch of the spring due to elasticity, then for the equilibrium at B 

 Mg = T =ke 

 20 = T0 = k * 0.1 

 K = 200kg/m 

 

Let B be the equilibrium position when 10kg weight is 

 10 = TB= k * AB => AB =  = 0.05m 

Now the weight is pulled down to c, where BC=0.2. After any time t of its release from c, let the weight be at 

p, where BP=x. 

Then the tension T = k *AP 

 = 200(0.05+x) = 10 + 200x 

 The equation of motion of the body is  

 = w –T  where g =9.8m/sec2 

                             =  

                  = 10 – (10+200x) 

  = - x  where  = 14 

This shows that the motion of the body in simple harmonic about B as centre and the period of oscillation = 

= 0.45sec 

Also the amplitude of motion being B C=0.2m, the displacement of the body from B at time t is given by x = 

0.2cosect 

 



  

 

 

X = 0.2cosect = 0.2cos14t m. 

 

Maximum velocity =  (amplitude) = 14 * 0.2 = 2.8m/sec 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

MODULE -IV 

Multiple Integrals 

 

 

 

 

 

 

 

 

 

 



 

Multiple Integrals 

Double Integral : 

I. When y1,y2 are functions of x and 
1

x  and x2 are constants. f(x,y)is first integrated w.r.t y 

keeping „x‟ fixed between limits y1,y2 and then the resulting expression is integrated w.r.t „x‟ with in 

the limits x1,x2 i.e., 

 ,

R

f x y d x d y 
  

2 2

1 1

( )

( )

( , )

x x y x

x x y x

f x y d y d x





 

 

 
 

II. When x1,x2 are functions of y and y1 ,y2 are constants, f(x,y)is first integrated w.r.t „x‟ 

keeping „y‟ fixed, with in the limits x1,x2 and then resulting expression is integrated w.r.t „y‟ 

between the limits y1,y2 i.e., 

 ,

R

f x y d x d y 
  

 
 

 22

1 1

,

x yy y

y y x y

f x y d x d y







 

 
 

III. When x1,x2, y1,y2 are all constants. Then 

 ,

R

f x y d x d y 
  

   

2 2 2 2

1 1 1 1

, ,

y x x y

y x x y

f x y d x d y f x y d y d x   
 

Problems 

1. Evaluate 
2 3

2

1 1

xy d x d y   

Sol. 
2 3

2

1 1

x y d x d y
 

 

 
 

 

 

3
2 22 2

2

1 11

. 9 1
2 2

x y
y d y d y

 
   

 
 

 

2 2

2 2

1 1

8
4 .

2
y d y y d y  

 

 

2
3

1

4 4 .7 2 8
4 . 8 1

3 3 3 3

y 
    

 
 

 

2. Evaluate 
2

0 0

x

y d y d x   

Sol. 

2 2

0 0 0 0

x x

x y x y

y d y d x y d y d x

   

 

  

  
   

 

   

2
2 2 22 3

2 2

0 0 00 0

1 1 1 1 8 4
0 8 0

2 2 2 2 3 6 6 3

x

x x x

y x
d x x d x x d x

  

   
           

   
  

 

 

 



 

 

3. Evaluate  

2
5

2 2

0 0

x

x x y d x d y 
    

 

Sol. 

 

 

2
2

5 5 3

2 2 3

0 0 0 0
3

x
x

x y x y

xy
x x y d y d x x y d x

   

 
   

 
  

 

5
65 52 3 7 6 8 8

3 2 5

0 0 0

( ) 1 5 5
. .

3 3 6 3 8 6 2 4
x x

x x x x x
x x d x x d x

 

     
           

     
   

4. Evaluate 

2
1 1

2 2

0 0
1

x

d y d x

x y



 
 

    

 

Sol: 
 

2 2
1 1 1 1

2 2 2 2

0 0 0 0

1

1 1

x x

x y

d y d x
d y d x

x y x y

 

 

 

 
    

 

   
  

 

 

2

2

1

1 1 1

1

2
2 2

2 2
0 0 0

0

1 1

1 11

x

x

x y x

y

y
d y d x T a n d x

x xx y







  



 

  
    

    
 

  
1

2 2

1 1
[ tan ( )]xd x

ax a a





  

1

1 1

2

0

1
1 0

1x

T a n T a n d x

x

 



  
 




 

o r

 

1 1 1

0
(s in h x ) (s in h 1)

4 4

  


 

1
1

2

2 0
0

1
lo g ( 1)

4 41 x
x

d x x x

x

 




    
 


  

lo g (1 2 )
4


   

5. Evaluate 

2
4

/

0 0

x

y x
e d y d x 

                                            Answer: 3e4-7                                                                                                                             

6. Evaluate

 

1

2 2

0

( )

x

x

x y d x d y 
  

Answer: 3/35 

. Evaluate 
2

( )

0 0

x

x y
e d yd x



                                                                     

Ans: 
4 2

2

e e

                                                                                                                            

 

8. Evaluate 

12

2 2

0 1

x y d x d y





                                                                               
                             

 

Ans: 
3

3 6



                                                                                                                         
 

9. Evaluate 
2 2

( )

0 0

x y
e d xd y

 

 

    



 

 

Sol: 
2 2 2 2

( )

0 0 0 0

x y y x
e d xd y e e d x d y

   

   
 

  

 
     

                                 

 

2

0
2

y
e d y





 

                           

2

0
2

x
e d x







 

 

2

0

.
2 2 2 4

y
e d y

   



  

 

Alter:  

2 2 2
2

( )

0 0 0 0

x y r

r

e d x d y e rd rd







  

  

 

   
                               

2 2 2
( )x y r 

 

(changing to polar coordinates taking co s , s inx r y r   )  

2
2 2

0 0
0

0 1

2 2

r
e

d d

 

 


   

    
    

 
 

   2

0

1 1
0

22 2


  

 

4




 

10. Evaluate ( )xy x y d xd y 
  

over the region R bounded by y=x2 and y=x 

Sol: y=
2

x  is a parabola through (0, 0) symmetric about y-axis y=x is a straight line through (0,0) with slope1.  

Let us find their points of intersection solving y=
2

x , y=x we get 
2

x =x   x=0,1Hence y=0, 1 
  The point of intersection of the curves are (0,0), (1,1)  

Consider ( )

R

xy x y d xd y
 

For the evaluation of the integral, we first integrate w.r.t ‘y’ from y=x2 to y=x and then w.r.t. ‘x’ from x=0 to x=1 

   
2 2

1 1
2 2

0 0

x x

x y x x y x

xy x y d y d x x y xy d y d x
   

   
  

         
 

2

32
1

2

0 2 3

x

x

y x

y xy
x d x





 
  

 


                                                               

4 4 6 7
1

0 2 3 2 3x

x x x x
d x



 
    

 


 



 

 

4 6 7
1

0

5

6 2 3x

x x x
d x



 
   

 


 

1
5 7 8

0

5
.

6 5 1 4 2 4

x x x 
   
   

1 1 1 2 8 1 2 7 2 8 1 9 9 3

6 1 4 2 4 1 6 8 1 6 8 1 6 8 5 6

  
        

11. Evaluate 
R

xyd xd y   where R is the region bounded by x-axis and x=2a and the curve x2=4ay. 

Sol. The line x=2a and the parabola x2=4ay intersect at B(2a,a) 

The given integral =    

R

xy d x d y   

Let us fix ‘y’ 

For a fixed ‘y’, x varies from 2 a y

 

to 2a. Then y varies from 0 to a. 

Hence the given integral can also be written as  

2 2

0 2 0 2

a x a a x a

y x a y y x a y

xy d x d y xd x yd y
 

   

 


  
   

                                                                                                                            

 
2

2

0

2
2

a

a

y

x a y

x
y d y





 
  

 


                                                                                                                                        

                                      

2

0

2 2
a

y

a a y y d y


  
 

 

2 2 3

0

2 2

2 3

a

a y a y 
  
 

4 4 4 4

4 2 3 2

3 3 3

a a a a
a


     

12. Evaluate 
2

1

0

0

s inr d d r



     

Sol. 
1

2

0 0

s in
r

r d d r





 
 

 

 
 

 
 

 
1

2

00

c o s
r

r d r







 
 

 
1

0

c o s c o s 0
2r

r d r


  
 

 

1
2

1 1

0 0

0

1 1
0 1 0

2 2 2r

r
r d r rd r



 
        

 
 

 



13. Evaluate  
2 2

x y d x d y  in the positive quadrant  

 

 

 

For  

Which 1x y    

Sol.    
1 1

2 2 2 2

0 0

y x

x y

R

x y d x d y d x x y d y
 

 

    
 

1
3

1
2

0

0
3

x

x

y
x y d x





 
  

 


 

   

1
3 4

1 3 42 3

0

0

1 1
1 1

3 3 4 1 2x

x x
x x x d x x



  
          

   


 

1 1 1 1
0

3 4 1 2 6
    

 

14. Evaluate  
2 2

x y d x d y  over the area bounded by the ellipse 
2 2

2 2
1

x y

a b
   

Sol. Given ellipse is 
2 2

2 2
1

x y

a b
 

 

   
2 2 2

2 2 2 2 2

2 2 2 2

1
. ., 1 ( )

y x b
i e a x o r y a x

b a a a
     

 
2 2b

y a x
a

   

 
Hence the region of integration R can be expressed as 

2 2 2 2
,

b b
a x a a x y a x

a a


      

 

   
2 2

2 2

2 2 2 2
ba a x

a

bx a y a x
a

R

x y d x d y x y d x d y


   

     
 

 

 

 

2 2

2 2 3
2 2 2

0
0

2 2
3

b a x
b aa a x a

a

x a y a

y
x y d x d y x y




   

 
    

 
  

                 

 
3

3
2 2 2 2 2 2

3
2 .

3

a

a

b
bx a x a x d x

a a

 
    

 


 

 
3

3
2 2 2 2 2 2

3
0

4
3

a b
b x a x a x d x

a a

 
    

 


 

Changing to polar coordinates 



s in

c o s

p u tt in g x a

d x a d



 



  

 

 

 

 

1
s in s in

0 , 0

,
2

x x

a a

x

x a

 







  

 

 
 

3

2 2 2 3 3

3
0

4 . s in . co s . co s co s
3

b
b a a a a d

a a



    
 

  
 


 

3 3

2 3 2 2 4 3

0

1 1 3 1
4 s in co s co s 4 . . . . .

3 4 2 2 3 4 2 2

a b a b
a b d a b

  
   

   
      

   


                            

2

0

1
.

1 3 2 2
s in c o s . ... . . . . . .

2

m n n n
d

m n m n m

 

  

 

  
 

  
 
 



 

   
3 3 2 24

1 6 4

a b
a b a b a b

 
   

 

 

Double integrals in polar co-ordinates: 

 

 

1. Evaluate 
s in

4

2 20 0

a r d r d

a r

  


      

Sol. 
s in s in s in

4 4 4

2 2 2 2 2 20 0 0 0 0 0

2
1

2

a a ard rd r r
d r d d r d

a r a r a r

    
 

   
    

     
     

 

   
s in

4 42 2 2 2 2 2

0 00

1
2 1 2 s in 0

2

a

a r d a a a d

 

  


       
  

 

       
4

4

0 0

c o s 1 s ina d a




        
 

   s in 0 0
4 4

a        
  

 

  1 12
4 42 2

a     
    

      

 

 

2. Evaluate 
s in

0 0

a

r d r d
 

    Ans: 
2

4

a 
 

3. Evaluate 
2

2

0 0

r
e r d d r








    Ans:

 
4


 

4. Evaluate 
 1 c o s

0 0

a

r d r d
 




    Ans:

 

2
3

4

a
 

 

 

 



                                                                      

 

 

                                                                  

 

Change of order of Integration: 

1. Change the order of Integration and evaluate 
2

4 2

0
4

a a x

xx y
a

d y d x
    

Sol. In the given integral for a fixed x, y varies from 
2

4

x

a
 

to 2 a x

 

and then x varies from 0 to 4a. Let us draw 

the curves 
2

4

x
y

a


 

and 2y a x                                                                                                                           

he region of integration is the shaded region in diagram.  

The given integral is 
2

4 2

0
4

a a x

xx y
a

d y d x
 

  
                                               

 

 

 

Changing the order of integration, we must fix y first, for a fixed y, x varies from 
2

4

y

a
 

 

to 4 a y and then y varies 

from 0 to 4a. 

Hence the integral is equal to    

2 2

4 2 4 2

0 0
4 4

a a y a a y

y y
y x y x

a a

d x d y d x d y
   

 


 
 

   
 

  2

24 42

0 0
4

2
4

a aa y

yy yx
a

y
x d y a y d y

a 

 
  

 
 

 
 

4
3

32

0

1
2 . .

3 4 3
2

a

y y
a

a

 

  
 
   

34 1
. .4 4 .6 4

3 1 2
a a a a

a
 

 

2 2 23 2 1 6 1 6

3 3 3
a a a  

 

 

 

 

 



 

 

 

 

2. Change the order of integration and evaluate  
2 2

0

xa
a

x
a

x y d x d y    

Sol. In the given integral for a fixed x, y varies from 
x

a
to 

x

a  
and then x varies from 0 to a                    

Hence we shall draw the curves 
x

y
a



 
and 

x
y

a
  

i.e. ay=x and ay2=x                                                                                       

we get 2
a y a y

 
2

0a y a y                                                                                                                                                
 

 1 0ay y  

 
0 , 1y y    

If y=0, x=0 if y=1, x=a 

The shaded region is the region of integration. The given integral is  
2 2

0

xa y
a

xx y
a

x y d x d y


 

   

 

 

Changing the order of integration, we must fix y first. For a fixed y, x varies from ay2 to ay and then y varies 

from 0 to 1. 

Hence the given integral, after change of the order of integration becomes 

 
2

1
2 2

0

a y

y x a y

x y d x d y
 

 
 

 
2

1
2 2

0

a y

y x a y

x y d x d y
 

 
 

   
 

2

3
1

2

0 3

a y

y

x a y

x
x y d y





 
  

 


 

3 3 3 6
1

3 4

0 3 3y

a y a y
a y a y d y



 
    

 


 

 

 



 

 

 

 

1
3 4 4 3 7 5

0
1 2 4 2 1 5

y

a y a y a y a y



 
    
   

3 3 3

1 2 4 2 1 5 2 8 2 0

a a a a a a
     

 

3. Change the order of integration in 
2

1 2

0

x

x

xyd xd y



  and hence evaluate the double integral. 

Sol. In the given integral for a fixed x,y varies from x2 to 2-x and then x varies from 0 to 1. Hence we shall draw 

the curves y=x2 and y=2-x 

The line y=2-x passes through (0,2), (2,0 

Solving y=x2 ,y=2-x 

Then we get 
2

2x x                                                                                       

 

2
2 0x x   

 
2

2 2 0x x x    

 
   2 1 2 0x x x    

 

   1 2 0x x   

 
1, 2x  

 
 

1, 1If x y 

 
2 , 4If x y    

Hence the points of intersection of the curves are      (-2,4) (1,1) 

The Shaded region in the diagram is the region of intersection.  

Changing the order of integration, we must fix y, for the region with in OACO for a fixed y, x varies from 

 0 to y  

Then y varies from 0 to 1 

For the region within CABC, for a fixed y, x varies from 0 to 2-y ,then y varies from 1 to 2 

Hence 
2

1 2

0

x

x

O A C O C A B C

x y d y d x x y d x d y x y d x d y


    
 

1 2 2

0 0 1 0

y y

y x y x

x d x y d y x d x y d y


   

   
 

     
   

 



 

 

 

2

2 2
1 2

0 1

0 0
2 2

y
y

y y

x x

x x
y d y y d y



 

 

   
    

   
 

 

 
2

1 2

0 1

2
.

2 2y y

yy
y d y y d y

 


  

 

 
1 2

2 2 3

0 1

1 1
. 4 4

2 2y y

y d y y y y d y
 

    
 

1 2
3 2 3 4

0 1

1 1 4 4
. .

2 3 2 2 3 4

y y y y   
      

     

   
1 1 1

4 1. 2 .4 2 .1 8 1 1 6 1
3 42 3 2

       
   

1 1 2 8 1 5 1 1 7 2 1 1 2 4 5 1 1 5 4 5 9 3
6

6 2 3 4 6 2 1 2 6 2 1 2 2 4 2 4 8

       
          

     
       

4. Changing the order of integration
2

2
2

0

a a x

x
a

xy d y d x


   

5. Change of the order of integration
2

1 1
2

0 0

:
1 6

x

y d x d y A n s


 
 

Hint : Now limits are 0 1y to and 2
0 1x to y 

 

2

s in

1 c o s

c o s

p u t y

y

d y d





 



 


 

1
2 2

0

1y y d y 
 

2 2 22 2 2 4

0 0 0

s in co s s in s ind d d

  

          
                                                                                                                                   

   
1 3 1

.
2 2 1 62 4 2

    

                                                                                                                          

 

Change of variables: 

The variables x,y in  ,

R

f x y d x d y
 
are changed to u,v with the help of the relations    1 2

, , ,x f u v y f u v 

 

then the double integral is transferred into 

   
 

 1

1 2

,
, , ,

,
R

x y
f f u v f u v d u d v

u v


  


  

Where R1is the region in the uv plane, corresponding to the region R in the xy-plane. 



 

 

 

 

Changing from Cartesian to polar co-ordinates 

co s , s inx r y r  

 

 

 

c o s s in,

s in c o s,

x x

rx y r

y y rr

r

 

 



 

   
   
   
 

 

 

 
2 2

co s s inr r       

1

, co s , s in

R R

f x y d x d y f r r r d r d      

Note : In polar form dx dy is replaced by r d r d  

Problems:  

1. Evaluate the integral by changing to polar co-ordinates 
 

2 2

0 0

x y

e d x d y
   

   

Sol. The limits of x and y are both from 0 to  . 

 The region is in the first quadrant where r varies from 0 to   and 
 
varies from 0 to 

2
  

Substituting  co s , s inx r y r  

 
and d x d y r d r d  

Hence  
2 2

2
2

0 0 0 0

x y r

r

e d x d y e r d r d






    

 

   
 

2

2

2

P u t r t

rd r d t

d tr d r



 

 
 

W here 0 0r t   a n d

 
r t    

 
 

2 2

2

0 0 0 0

1

2

x y
t

t

e d x d y e d t d






   



 

    
 

 
2

00

1

2

t
e d







 

 

   
2 2

00

1 1 1
0 1

2 42 2 2
d

 
  


    

 

2. Evaluate the integral by changing to polar co-ordinates  
2 2

2 2

0 0

a a y

x y d x d y


   

Sol. The limits for x are x=0 to 
2 2

2 2 2

x a y

x y a

 

  

 



 
The given region is the first quadrant of the circle. 

By changing to polar co-ordinates 

co s , s in ,x r y r d x d y r d r d      

Here ‘r’ varies from 0 to a and ' ' varies from 0 to 
2



 

 
2 2

22 2 2

0 0 0 0

a a y a

r

x y d x d y r rd rd








 

       

4 4

2 2

00

0
4 4

a

r a
d

 

 
 

  
 


 



 

 

 

4

8
a  

3. Show that 2

2 2
4

2

2 2
0

4

5
8

2 3

a y

y

a

x y
d x d y a

x y

  
  

  
   

Sol. The region of integration is given by 
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and y=0, y=4a 

                                                                                                                                                             

              

 

i.e., The region is bounded by the parabola y2=4ax and the straight line x=y. 

 Let  co s , s in .x r y r T h en d x d y rd rd      

The limits for r are r=0 at O and for P on the parabola 
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Triple integrals: 

If x1,x2 are constants. y1,y2 are functions of x and z1,z2 are functions of x and y, then f(x,y,z) is first integrated 

w.r.t. ‘z’ between the limits z1 and z2 keeping x and y fixed. The resulting expression is integrated w.r.t ‘y’ 

between the limits y1 and y2 keeping x constant. The resulting expression is integrated w.r.t. ‘x’ from x1 to x2 
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1. Evaluate 
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Definition of an double Integral 

Just as we can take partial derivative by considering only one of the variables a true 

variable and holding the rest of the variables constant, we can take a "partial integral".  We 

indicate which the true variable is by writing "dx", "dy", etc.  Also as with partial 

derivatives, we can take two "partial integrals" taking one variable at a time.  In practice, 

we will either take x first then y or y first then x.  We call this an iterated integral or 

a double integral. 

Let f(x,y) be a function of two variables defined on a region R bounded below and above 

by         

        y  =  g1(x)          and          y  =  g2(x) 

and to the left and right by 

                x  =  a          and          x  =  b 

then the double integral (or iterated integral) of f(x,y) over R is defined by 

 

 

 

Example 1 

Find the double integral of  f(x,y)  =   6x2 + 2y  over R where R is the region 

between y  =  x2 and y  =  4.  

  

Solution 

First we have that the inside limits of integration are x2 and 4.  The region is bounded from 

the left by x  =  -2 and from the right by x  =  2 as indicated by the picture below. 

          

We now integrate 

 



         

Example 2 

Find the double integral of  f(x,y)  =  3y over the triangle with vertices (-1,1), (0,0), 

and (1,1). 

         

Solution 

If we try to integrate with respect y first, we will have to cut the region into two pieces and perform 

two iterated integrals.  Instead we integrate with respect to x first.  The region is bounded on the left 

and the right by x  =  -y  and x  =  y.  The lowest the region gets is y  =  0  and the highest 

is  y  =  1.  The integral is  

         

Example 3 

Evaluate the integral 

          

Solution 

Try as you may, you will not find an antiderivative of and we don't want to get into power series 

expansions.  We have another choice.  The picture below shows the region. 

         

 



 

We can switch the order of integration.  The region is bounded above and below by y  =  1/3 

x  and  y  =  0.  The double integral with respect to y first and then with respect to x is  

         

The integrand is just a constant with respect to y so we get 

         

This integral can be performed with simple u-substitution.  

        u  =  x
2   

     du  =  2x dx 

and the integral becomes 

         

Area and Double Integrals 

 If a region R is bounded below by  y  =  g1(x)  and above by  y  =  g2(x), and  a  <  x  <  b, 

then the area is given by 

                               

Example  

Set up the double integral that gives the area between  y  =  x2  and  y  =  x3.   Then use a 

computer or calculator to evaluate this integral. 

  

Solution 

The picture below shows the region 

         

We set up the integral  

         

 

 



 

 

A computer gives the answer of 1/12. 
 

 

Calculation of Volumes Using Triple Integrals 
 
 
 
 
 
Example 1 Evaluate the following integral. 

                                           ,     

                         
 

Solution 
Just to make the point that order doesn‟t matter let‟s use a different order from that listed above.  We‟ll do the 

integral in the following order. 

                                              

Example 1   Evaluate  where E is the region that lies below the plane 

 above the xy-plane and between the cylinders  and . 

  

Solution 
There really isn‟t too much to do with this one other than do the conversions and then 

evaluate the integral. 

  

We‟ll start out by getting the range for z in terms of cylindrical coordinates. 

                             

Remember that we are above the xy-plane and so we are above the plane  

  

Next, the region D is the region between the two circles  and  in the xy-

plane and so the ranges for it are, 

                                                 

  

Here is the integral. 
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Vector Calculus and Vector Operators 

 

INTRODUCTION 

 In this chapter, vector differential calculus is considered, which extends the basic concepts of 

differential calculus, such as, continuity and differentiability to vector functions in a simple and natural way. 

Also, the new concepts of gradient, divergence and curl are introduced. 

DIFFERENTIATION OF A VECTOR FUNCTION 

 Let S be a set of real numbers. Corresponding to each scalar t ε S, let there be associated a unique 

vector f . Then f  is said to be a vector (vector valued) function. S is called the domain of f . We write f  

= f (t). 

 

 Let kji ,, be three mutually perpendicular unit vectors in three dimensional space. We can write 

f  = f (t)= ktfjtfitf )()()(
321

  , where f1(t), f2(t), f3(t) are real valued functions (which are called 

components of  f ). (we shall assume that kji ,,  are constant vectors). 

 

1. Derivative: 

 Let f  be a vector function on an interval I and a є I. Then  
at

aftf
Lt

at







)()(
, if exists, is called 

the derivative of  f  at a and is denoted by f
1(a) or 














dt

fd
 at t = a. We also say that f  is differentiable at t 

=a if  f
1(a) exists. 

 

2. Higher order derivatives 

Let f be differentiable on an interval I and f
1= 

dt

fd
be the derivative of f . If 

at

aftf
Lt

at







)()(
11

 exists 

for every a Є I1 I . It is denoted by f
11= 

2

2

dt

fd
.  

Similarly we can define f
111(t) etc. 

 

We now state some properties of differentiable functions (without proof) 

(1) Derivative of a constant vector is a . 

If  a  and b  are differentiable vector functions, then 

 (2). 
dt

bd

dt
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ba

dt

d
 )(  

  

 (3). 
dt

bd
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dt
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..).(   

 (4). 
dt

bd
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dt
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 (5). If f is a differentiable vector function and  is a scalar differential function, then 

f
dt

d

dt

fd
f

dt

d 
 )(  

 (6).  If f = ktfjtfitf )()()(
321

  where f1(t), f2(t), f3(t) are cartesian components of the vector 

f , then k
dt

df
j

dt

df
i

dt

df

dt

fd
321

  

 (7). The necessary and sufficient condition for f (t) to be constant vector function is 
dt

fd
= 0 . 

 

3. Partial Derivatives 

 Partial differentiation for vector valued functions can be introduced as was done in the case of 

functions of real variables. Let f  be a vector function of scalar variables p, q, t. Then we write f = f

(p,q,t). Treating t as a variable and p,q as constants, we define  

    
t

tqpfttqpf
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t






),,(),,(

0
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
 

if exists, as partial derivative of  f  w.r.t. t and is denote by 
t

f




 

 Similarly, we can define 
p

f




,

q

f




also. The following are some useful results on partial 

differentiation. 

 

4. Properties 
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7). Let f = kfjfif
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  , where f1, f2, f3are differential scalar functions of more than one variable, 

Then 
t

f
k

t

f
j

t

f
i

t

f



















321 (treating kji ,,  as fixed directions) 

5. Higher order partial derivatives 

 Let f = f (p,q,t). Then .,
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6.Scalar and vector point functions: Consider a region in three dimensional space. To each point p(x,y,z), 

suppose we associate a unique real number (called scalar) say . This (x,y,z) is called a scalar point 

function. Scalar point function defined on the region. Similarly if to each point p(x,y,z)we associate a unique  

 

 

 

vector f (x,y,z), f  is called a vector point function. 

Examples: 

 For example take a heated solid. At each point p(x,y,z)of the solid, there will be temperature 

T(x,y,z). This T is a scalar point function. 

 Suppose a particle (or a very small insect) is tracing a path in space. When it occupies a position 

p(x,y,z) in space, it will be having some speed, say, v. This speedv is a scalar point function. 

 Consider a particle moving in space. At each point P on its path, the particle will be having a velocity 

v  which is vector point function. Similarly, the acceleration of the particle is also a vector point function. 

 In a magnetic field, at any point P(x,y,z) there will be a magnetic force f (x,y,z). This is called 

magnetic force field. This is also an example of a vector point function.  

 

7. Tangent vector to a curve in space. 

 Consider an interval [a,b]. 

Let x = x(t),y=y(t),z=z(t)be continuous and derivable for a t b. 

 Then the set of all points (x(t),y(t),z(t)) is called a curve in a space. 

Let A = (x(a),y(a),z(a)) and B = (x(b),y(b),z(b)). These A,B are called the end points of the curve. If A =B, the 

curve in said to be a closed curve. 

 Let P and Q be two neighbouring points on the curve. 

 Let  

 Then 
t

r




is along the vector PQ. As Q→P, PQ and hence 

t

PQ


 tends to be along the tangent to the 

curve at P. 

Hence  
t

r
lt
t 



 0

= 
dt

rd
 will be a tangent vector to the curve at P. (This 

dt

rd
 may not be a unit vector) 

 Suppose arc length AP = s. If we take the parameter as the arc length parameter, we can observe 

that 
ds

rd
 is unit tangent vector at P to the curve. 

VECTOR DIFFERENTIAL OPERATOR 

 Def. The vector differential operator (read as del) is defined as  


z

k
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j
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i



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







. This operator possesses properties analogous to those of ordinary vectors as well as 

differentiation operator. We will define now some quantities known as “gradient”, “divergence” and “curl”  

 

 



 

 

involving this operator . We must note that this operator has no meaning by itself unless it operates on  

some function suitably. 

 

GRADIENT OF A SCALAR POINT FUNCTION 

 Let (x,y,z) be a scalar point function of position defined in some region of space. Then the vector 

function 
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 is known as the gradient of  or  
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Properties: 

(1) If f and g are two scalar functions then grad(f g)= grad f  grad g 

(2) The necessary and sufficient condition for a scalar point function to be constant is that f = 


0  

(3) grad(fg) = f(grad g)+g(grad f) 

(4) If c is a constant, grad (cf) = c(grad f) 

(5) grad )0(,
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DIRECTIONAL DERIVATIVE  

Let (x,y,z) be a scalar function defined throughout some region of space. Let this function have a value  at 

a point P whose position vector referred to the origin O is OP  = r . Let +Δ  be the value of the function 

at neighboring point Q.  If  Δ r . Let Δr be the length of Δ  

gives a measure of the rate at which  change when we move from P to Q. The limiting value of

is called the derivative of  in the direction of PQ  or simply directional derivative of  at P 

and is denoted by d/dr. 

Theorem 1: The directional derivative of a scalar point function  at a point P(x,y,z) in the direction of a unit 

vector e is equal to e . grad = e . . 

Level Surface 

If a surface (x,y,z)= c be drawn through any point P( r ), such that at each point on it, function has the same 

value as at P, then such a surface is called a level surface of the function  through P. 

e.g. : equipotential or isothermal surface. 



Theorem 2:   at any point is a vector normal to the level surface (x,y,z)=c through that point, where c is 

a constant. 

The physical interpretation of  

 

 

 

 The gradient of a scalar function (x,y,z) at a point P(x,y,z) is a vector along the normal to the level 

surface (x,y,z) = c at P and is in increasing direction. Its magnitude is equal to the greatest rate of increase 

of . Greatest value of directional derivative of   at a point P = |grad | at that point.  

 

 

SOLVED PROBLEMS 
1:  If a=x+y+z, b= x2+y2+z2 , c = xy+yz+zx, prove that [grad a, grad b, grad c] = 0. 

Sol:- Given a=x+y+z       
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2: Show that [f(r)] = r
r
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where r = kzjyix  . 

Sol:- Since r = kzjyix  , we have r2= x2+y2+z2 

 Differentiating w.r.t. ‘x’ partially, we get 
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Note : From the above result, (log r) = r
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3: Prove that (rn)= nrn-2
r . 

Sol:- Let  r = kzjyix   and r = r . Then we have r2 = x2+y2+z2 Differentiating w.r.t. x partially, we have 
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Note : From the above result, we can have 
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4: Find the directional derivative of f = xy+yz+zx in the direction of vector kji 22   at the point (1,2,0). 

Sol:- Given f = xy+yz+zx. 
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If e  is the unit vector in the direction of the vector kji 22  , then  
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5: Find the directional derivative of the function xy2+yz2+zx2 along the tangent to the curve x =t, y = t2, z = t3 

at the point (1,1,1). 

Sol: - Here f = xy2+yz2+zx2 

  f = 
z

f
k

y

f
j

x

f
i














=      kyzxjxyzixzy 222

222
  

 At (1,1,1) ,   f = kji 333   

 Let r  be the position vector of any point on the curve x =t , y = t2, z = t3. Then  

  r  =  kzjyix ktjtit
32

  

  



ktjti

t

r 2
32 )32( kji  at (1,1,1) 

We know that 
t

r




 is the vector along the tangent to the curve. 

Unit vector along the tangent = e

14

32

321

32

22

kjikji
e







  

 

Directional derivative along the tangent = f .e  

  = 
14

1
)32( kji  .3 )( kji 

14

18
)321(

14

3
  



6: Find the directional derivative of the function f = x2-y2+2z2 at the point P =(1,2,3) in the direction of the 

line P Q  where Q = (5,0,4). 

 

Sol:- The position vectors of P and Q with respect to the origin are OP  = kji 32   and  

OQ = ki 45   

 P Q = O Q  – O P  = kji  24  

 Let e  be the unit vector in the direction of PQ . Then  
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 The directional derivative of f  at P (1,2,3) in the direction of PQ  = e .f 
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7: Find the greatest value of the directional derivative of the function f = x2yz3 at (2,1,-1). 

Sol: we have 
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32  = kji 1244   at (2,1,-1). 

 Greatest value of the directional derivative of f = 1441616  f = .114  

 

 

8:  Find the directional derivative of xyz2+xz at (1, 1 ,1) in a direction of the normal to the surface 3xy2+y= z 

at (0,1,1). 

Sol:- Let f(x, y, z)  3xy2+y- z = 0 

 Let us find the unit normal e to this surface at (0,1,1). Then  
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 f = 3y2i+(6xy+1)j-k 

 (f)(0,1,1) = 3i+j-k = n  
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 g=(yz2+z)i+xz2j+(2xyz+x)k 

 And [g] (1,1,1) = 2i+j+3k 

 Directional derivative of the given function in the direction of e  at (1,1,1) = g. e  

     =(2i+j+3k). 
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9: Find the directional derivative of 2xy+z2 at (1,-1,3) in the direction of kji 32  . 

Sol: Let  f = 2xy+z2then .2,2,2 z
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 Directional derivative of f in the direction of a is 
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10: Find the directional derivative of  = x2yz+4xz2 at (1,-2,-1) in the direction 2i-j-2k. 

Sol:- Given  = x2yz+4xz2 
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  at (1,-2,-1) = i(4+4)+j(-1)+k(-2-8)= 8i-j-10k. 

 The unit vector in the direction 2i-j-2k is 
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 Required directional derivative along the given direction = . a  

        = (8i-j-10k). 1/3 (2i-j-2k) 

        = 1/3(16+1+20) = 37/3. 

11: If the temperature at any point in space is given by t = xy+yz+zx, find the direction in which temperature 

changes most rapidly with distance from the point (1,1,1) and determine the maximum rate of change. 

Sol:- The greatest rate of increase of t at any point is given in magnitude and direction by t. 

 We have t = )( zxyzxy
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 = kjiyxkxzjzyi 222)()()(  at (1,1,1) 

 Magnitude of this vector is 3212222
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 Hence at the point (1,1,1) the temperature changes most rapidly in the direction given by the 

vector kji 222  and greatest rate of increase = 32 . 

12: Findthe directional derivative of (x,y,z) = x2yz+4xz2 at the point (1,-2,-1) in the direction of the normal 

to the surface f(x,y,z) = x log z-y2 at (-1,2,1). 

 

 



 

Sol:- Given (x,y,z) = x2yz+4xz2 at (1,-2,-1) and f(x,y,z) = x log z-y2 at (-1,2,1) 
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13: Find a unit normal vector to the given surface x2y+2xz = 4 at the point (2,-2,3). 

Sol:- Let the given surface be f = x2y+2xz – 4 

 On differentiating, 
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grad (f) is the normal vector to the given surface at the given point. 
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14: Evaluate the angle between the normal to the surface xy= z2 at the points (4,1,2) and (3,3,-3). 

Sol:- Given surface is f(x,y,z) = xy- z2 

Let 
1

n  and 
2

n be the normal to this surface at (4,1,2) and (3,3,-3) respectively. 

Differentiating partially, we get 
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 grad f = kzjxiy 2  

  

1
n = (grad f) at (4,1,2)  = kji 44   
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n = (grad f) at (3,3,-3) = kji 633   

 Let  be the angle between the two normal.  
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15: Find a unit normal vector to the surface x2+y2+2z2 = 26 at the point (2, 2 ,3). 

 

Sol:- Let the given surface be f(x,y,z)  x2+y2+2z2 – 26=0. Then 
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 Normal vector at(2,2,3) = [f ](2,2,3) = 4 i +4 j +12 k  
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16: Find the values of a and b so that the surfaces ax2-byz = (a+2)x and 4x2y+z3= 4 may intersect 

orthogonally at the point (1, -1,2). 

(or) Find the constants a and b so that surface ax2-byz=(a+2)x will orthogonal to 4x2y+z3=4 at the point (1,-

1,2).  

Sol:- Let the given surfaces be f(x,y,z) = ax2-byz - (a+2)x-------------(1) 

         And g(x,y,z) = 4x2y+z3- 4------------(2) 

 

 

         Given the two surfaces meet at the point (1,-1,2). 

        Substituting the point in (1), we get 

 a+2b-(a+2) = 0  b=1 
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(g)(1,-1,2) = -8i+4j+12k = 
2

n , normal vector to surface 2. 

Given the surfaces f(x,y,z), g(x,y,z) are orthogonal at the point (1,-1,2). 

     0. gf ((a-2)i-2j+k). (-8i+4j+12k)=0 

-8a+16-8+12  a =5/2 

Hence a = 5/2 and b=1. 

 

17: Find a unit normal vector to the surface z= x2+y2 at (-1,-2,5) 

Sol:- Let the given surface be f = x2+y2-z 
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 (f) at (-1,-2,5)= -2i-4j-k  

 f  is the normal vector to the given surface. 

Hence the required unit normal vector = 
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18: Find the angle of intersection of the spheres x2+y2+z2 =29 and x2+y2+z2 +4x-6y-8z-47 =0 at the point (4,-

3,2). 

Sol:- Let f =  x2+y2+z2 -29 and g = x2+y2+z2 +4x-6y-8z-47 

 Then grad f= 
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 grad g = kzjyix )82()62()42(   

 The angle between two surfaces at a point is the angle between the normal to the surfaces at 

that point. 

 Let 
1

n = (grad f) at (4,-3,2)  =8 kji 46   

 
2

n = (grad f) at (4,-3,2) = kji 41212   

 The vectors 
1

n  and 
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n are along the normal to the two surfaces at (4,-3,2). Let θ be the angle 

between the surfaces. Then  
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19: Find the angle between the surfaces x2+y2+z2 =9, and z = x2+y2- 3 at point (2,-1,2). 

Sol:- Let 1 = x2+y2+z2 -9=0 and 2= x2+y2-z- 3=0 be the given surfaces. Then  

 1= 2xi+2yj+2zk and 2 = 2xi+2yj-k 

Let 
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n = 1 at(2,-1,2)=  4i-2j+4k  and  
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n = 2 at (2,-1,2) = 4i-2j-k 

The vectors 
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n are along the normals to the two surfaces at the point (2,-1,2). Let θ be the angle 

between the surfaces. Then 
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20: If  a  is constant vector then prove that grad ( a . r )= a  

Sol: Let a = kajaia
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 , where a1,a2,a3 are constants. 
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grad ( a . r )= kajaia
321

 = a  

21: If  =  kxyjzxiyz  , find . 

Sol:- We know that = 
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 Integrating partially w.r.t. x,y,z, respectively, we get 

= xyz + a constant independent of x. 

= xyz + a constant independent of y. 

= xyz + a constant independent of z. 

Here a possible form of  is = xyz+a constant. 

 

DIVERGENCE OF A VECTOR 

  



 

 

Let f be any continuously differentiable vector point function. Then 
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divergence of f and is written as div f . 
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 Hence we can write div f as  

 div f = . f  

 This is a scalar point function. 

 

Theorem 1: If the vector f = kfjfif
321

 , then div f  =  
z

f

y

f

x

f














321  

Prof:  Given f = kfjfif
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Note : If f  is a constant vector then 
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,, are zeros. 

 div f =0 for a constant vector f . 

 

Theorem 2: div ( gf  ) = gdivfdiv   

Proof: div ( gf  )=  gf
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Note: If  is a scalar function and f  is a vector function, then 
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 by proceeding as in (i) [simply replace  by f  in (i)]. 

 

SOLENOIDAL VECTOR 

 



  

 

A vector point function f  is said to be solenoidal if div f =0. 

 

 

Physical interpretation of divergence: 

 Depending upon f  in a physical problem, we can interpret div f  (= . f ). 

 Suppose F (x,y,z,t) is the velocity of a fluid at a point(x,y,z) and time ‘t’. Though time has no role in 

computing divergence, it is considered here because velocity vector depends on time. 

 Imagine a small rectangular box within the fluid as shown in the figure. We would like to measure 

the rate per unit volume at which the fluid flows out at any given time. The divergence of F  measures the 

outward flow or expansions of the fluid from their point at any time. This gives a physical interpretation of 

the divergence. 

 Similar meanings are to be understood with respect to divergence of vectors f from other 

branches. A detailed elementary interpretation can be seen in standard books on fluid dynamics, electricity 

and magnetism etc. 

 

SOLVED PROBLEMS 

 

1: If f = kyzjyzxixy
222

32   find div f  at(1, -1, 1). 

Sol:- Given f = kyzjyzxixy
222

32  .  
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(div f ) at (1, -1, 1) = 1+2+6 =9 

 

 

2: Find div f when grad(x3+y3+z3-3xyz) 

Sol:- Let = x3+y3+z3-3xyz.  

Then  xyz
z
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 = 3(2x)+3(2y)+3(2z) = 6(x+y+z) 

3: If  f = kpzxjzyiyx )()2()3(   is solenoid, find P. 

Sol:- Let f = kpzxjzyiyx )()2()3(  = kfjfif
321

  

 We have p
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  div f =
z

f

y

f

x

f














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 since  f  is solenoid, we have div  f  = 0 202  pp  

 

4: Find div f = .rr
n Find n if it is solenoid? 

Sol: Given f = .rr
n where  rrandkzjyixr   

 We have r2 = x2+y2+z2 

 Differentiating partially w.r.t. x , we get 
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n

 be solenoid. Then div f = 0 

 (n+3)rn = 0   n= -3  

 

5: Evaluate . 
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
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3
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r
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Sol:- We have 

 r  = xi+yj+zk and r = 
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6: Find div r where r = kzjyix   

 

Sol:- We have r = kzjyix  = kfjfif
321

  
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CURL OF A VECTOR 
 

Def: Let f  be any continuously differentiable vector point function. Then the vector function defined by 
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Theorem 1: If f  is differentiable vector point function given by f = kfjfif
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  then curl f  = 
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Proof : curl f  =   
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Note: (1) the above expression for curl f  can be remembered easily through the representation. 

 curl f  = 
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
 =x f  

 

 

 

 

 Note (2)  : If f  is a constant vector then curl f = o . 

Theorem 2:  curl   bcurlacurlba   
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1. Physical Interpretation of curl 



  

 

 

 

 If w is the angular velocity of a rigid body rotating about a fixed axis and v is the velocity of any point 

P(x,y,z) on the body, then w  = ½ curl v . Thus the angular velocity of rotation at any point is equal to half 

the curl of velocity vector. This justifies the use of the word “curl of a vector”.  

2. Irrotational Motion, Irrotational Vector 

 Any motion in which curl of the velocity vector is a null vector i.e curl v = 0  is said to be 

Irrotational. 

Def: A vector f  is said to be Irrotational if curl f  = 0 . 

 If f is Irrotational, there will always exist a scalar function (x,y,z) such that f =grad . This is 

called scalar potential of f . 

It is easy to prove that, if f  = grad , then curl f = 0. 

Hence x f  = 0  there exists a scalar function  such that f = . 

This idea is useful when we study the “work done by a force” later. 

 

 

SOLVED PROBLEMS 

 

1: If f = kyzjyzxixy
222

32  find curl f at the point (1,-1,1). 

Sol:- Let f = kyzjyzxixy
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32  . Then  

 curl f = x f = 
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= curl f  at (1,-1,1) = .2 ki   
 

 

 

 

 

 

 

 

 

2: Find curl f  where f = grad(x3+y3+z3-3xyz) 

Sol:- Let = x3+y3+z3-3xyz. Then  

grad = kxyzjzxyiyzx
x

i )(3)(3)(3
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curl grad = x grad = 3
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   =       0][3  zzkyyjxxi  

   curl f = 0 . 

Note: We can prove in general that curl (grad )= 0 .(i.e) grad  is always irrotational. 

 

3: Prove that if r is the position vector of an point in space, then rn
r is Irrotational. (or) Show that  

curl  

Sol:- Let r = kzjyix   and r = r r2= x2+y2+z2. 

 

 Differentiating partially w.r.t. ‘x’, we get 
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Hence rn
r is Irrotational. 

 

4: Prove that curl r = 0  

Sol:- Let r = kzjyix   

 curl r =    



 )( ixir

x
i 0 + 0 + 0 = 0  

  r  is Irrotational vector. 

 

 

 



 

 

 

 

5: If a is a constant vector, prove that curl )..(
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Sol:- We have r = kzjyix   
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6: Show that the vector kxyzjzxyiyzx )()()(
222
  is irrotational and find its scalar potential. 

Sol: let f = kxyzjzxyiyzx )()()(
222
  

 Then curl f =

xyzzxyyzx

zyx

kji
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 f  is Irrotational. Then there exists  such that f =. 


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Comparing components, we get 
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Which is the required scalar potential. 

 

7: Find constants a,b and c if the vector f = kzcyxjzybxiazyx )32()32()32(   is 

Irrotational. 

 

Sol:- Given f = kzcyxjzybxiazyx )32()32()32(   

 Curl f =  

zcyxzybxazyx

zyx

kji

323232 








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
= kbjaic )3()2()3(   

 

If the vector is Irrotational then curl f = 0  

303,303,202  ccbbaa  

8: If f(r) is differentiable, show that curl { r f(r)} = 0  where r  = kzjyix  . 

Sol: r = r =
222

zyx   

 r2 = x2+y2+z2 

 ,22
r

x

x

r
x

x

r
r 









 similarly 

r

z

z

r
and

r

y

y

r










,  

curl{ r f(r)}= curl{f(r)( kzjyix  )}= curl ))(.)(.)(.( krfzjrfyirfx   

 

=  






























)]([)]([

)()()(

ryf
z

rzf
y

i

rzfryfrxf

zyx

kji

 

 

  




























r

z
ryf

r

y
rzfi

z

r
ryf

y

r
rzfi )()()()(

1111  

 

= 0 . 

 

 

 



 

 

 

 

 

9: If A  is irrotational vector, evaluate div( A x r ) where r  = kzjyix  . 

Sol:We have r  = kzjyix   

Given A  is an irrotational vector 

x A  = 0  

div ( A x r ) = .( A x r ) 

 = r .(x A )- A .(x r ) 

 = r .( 0 )- A .(x r )   [ using (1)] 

 = - A .(x r )…..(2) 

 

Now  x r = 
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










= 0

































































x

y
y

x
kx

z
z

x
jy

z
z

y
i  

 

 A .(x r )=0 …(3) 

 

Hence div ( A x r )=0.  [using (2) and (3)] 

 

 

10:  Find constants a,b,c so that the vector A = kzcyxjzybxiazyx )24()3()2(   is 

Irrotational. Also find  such that A = . 

 

Sol: Given vector is A = kzcyxjzybxiazyx )24()3()2(   

 Vector A  is Irrotational  curl A  =  0  

 

 0
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 0)2()4()1(  kbjaic  

 kbjaic )2()4()1(  = kji 000   

Comparing both sides, 

c+1=0, a-4=0, b-2=0 

c= -1, a=4,b=2 

Now A = kzyxjzyxizyx )24()32()42(  , on substituting the values of a,b,c  

we have  A = . 

 A = kzyxjzyxizyx )24()32()42(  = 
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i
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Comparing both sides, we have 




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

x


x+2y+4z = x2/2+2xy+4zx+f1(y,z) 

 

 

 






y


2x-3y-z = 2xy-3y2/2-yz+f2(z,x) 






z


4x-y+2z = 4xz-yz+z2+f3(x,y) 

Hence = x2/2 -3y2/2+z2+2xy+4zx-yz+c 

11: If  is a constant vector, evaluate curl V where V = x r .  

 

Sol: curl (x r ) =  
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Assignments 

1. If f  = ex+y+z
)( kji   find curl f .  

2. Prove that f  = kyxjxzizy )()()(   is irrotational. 

3. Prove that .( a f )= a  . curl f  where a is a constant vector. 

4. Prove that curl ( a r )=2 a  where a  is a constant vector. 

5. If f = kyzjzxiyx 22
2

 find (i) curl f  (ii) curl curl f . 

 

OPERATORS 
 

Vector differential operator  

 The operator  = 
z

k
y

j
x

i




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





 is defined such that = 
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
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
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 
 where  is a scalar 

point function. 

Note: If  is a scalar point function then = grad = 
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

x
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(2) Scalar differential operator a . 

The operator a . = 
z
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x
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(3). Vector differential operator a x 

The operator a x= 
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(iii). ( a x)x f =
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(4). Scalar differential operator . 

            The operator  = 
z

k
y

j
x

i

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Note: . f  is defined as div f . It is a scalar point function. 

(5). Vector differential operator  x 

The operator  x = 
z

k
y

j
x

i



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
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Note : x f  is defined as curl f . It is a vector point function. 

(6). Laplacian Operator 2 
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
 is called Laplacian operator. 

Note : (i). 2
= .() = div(grad ) 

 (ii). If 2
=0 then  is said to satisfy Laplacian equation. This  is called a harmonic function. 

 

 

SOLVED PROBLEMS 

 

1: Prove that div.(grad rm)= m(m+1)rm-2 (or) 2(rm) = m(m+1)rm-2 (or) 2(rn) = n(n+1)rn-2 

Sol: Let kzjyixr   and r = r  then r2 = x2+y2+z2. 

Differentiating w.r.t. ’x’ partially, wet get 2r
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 div (grad rm) = 
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  = m[(m-2)rm-4(r2)+3rm-2] 

  = m[(m-2) rm-2+3rm-2]= m[(m-2+3)rm-2]= m(m+1)rm-2. 



 Hence 2(rm) = m(m+1)rm-2 

 

 

2: Show that 2[f(r)]= )(
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 div [grad f(r)] = 2[f(r)] = .f(r)= 
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3: If  satisfies Laplacian equation, show that  is both solenoidal and irrotational. 

Sol: Given 2
 = 0 div(grad )= 0  grad  is solenoidal 

We know that curl (grad ) = 0 grad  is always irrotational. 

 

2.Show that (i) ( a .)= a . (ii) ( a .) r = a . 

Sol: (i). Let a  = kajaia
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 . Then  
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Hence  ( a .)= a . 

(ii). r  = kzjyix   
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5: Prove that (i) ( f x). r =0      (ii). ( f x)x r = f2  

Sol: (i) ( f x). r =
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r
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 ( f x)x r =    













 fiifiif

z

r
kf

y

r
jf

x

r
if ).()()()()(  

 = ffffkkfjjfiif 233).().().(   

6: Find div F , where F = grad (x3+y3+z3-3xyz)  

Sol:  Let = x3+y3+z3-3xyz. Then  

 F = grad  
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321 = 6x+6y+6z= 6(x+y+z) 

 i.e div[grad(x3+y3+z3-3xyz)]= 2(x3+y3+z3-3xyz)= 6(x+y+z). 

7: If  f= (x2+y2+z2)-n  then find div grad f and determine n if div grad f= 0. 

Sol:  Let  f= (x2+y2+z2)-n and r  = kzjyix   

 r = r  r2 = x2+y2+z2 

 f(r) = (r2)-n = r-2n 

  f1(r)= -2n r-2n-1 

and  f11(r) = (-2n)(-2n-1)r-2n-2= 2n(2n+1)r-2n-2 

 

We have div grad f = 2f(r)= f11(r)+2/rf
1(r)= (2n)(2n+1)r-2n-2 -4n r-2n-2 

   = r-2n-2[2n(2n+1-2)]= (2n)(2n-1)r-2n-2 

If div grad f(r) is zero, we get n = 0 or  n = ½ . 
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Sol:   We have r  = kzjyix  and  r = r  = 
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Hence  the result. 

 

VECTOR IDENTITIES 

 

Theorem 1: If a  is a differentiable function and  is a differentiable scalar function, then prove that div(

a )= (grad ). a + div a  or .( a )= (). a +(. a ) 
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Theorem 2:Prove that curl ( a )= (grad )x a + curl a  
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Theorem 3: Prove that grad ( a . b )= bcurlaacurlbbaab  ).().(  
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Theorem 5 :Prove that ( ) ( . ) ( . )c u r l a b a d iv b b d iv a b a a b        
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Theorem 6: Prove that curl grad  = 0. 

Proof: Let  be any scalar point function. Then  
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Note : Since ( ) 0C u r l g r a d   , we have g ra d   is always irrotational. 

7. Prove that div 0c u r l f   
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Note : Since ( ) 0 ,d iv c u r l f   we have c u r l f  is always solenoidal. 

  

Theorem 8: If f and g are two scalar point functions, prove that div(fg)= f2g+f. g   

Sol: Let f and g be two scalar point functions. Then  
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  x(x a )= (. a )-2
a  

i.e., c u r lc u r l a g r a d
2

d iv a a   

 

SOLVED PROBLEMS 

 

 1: Prove that (f xg)is solenoidal. 

Sol:  We know that div ( a x b ) = bcurlaacurlb ..   

Take a=f and b= g 

Then div (f x g) = g. curl (f) - f. curl (g)=0 ( ) 0 ( )cu r l f cu r l g    
 
  



f g    is solenoidal. 

 

 

 

 

 

 

 

3. Prove that (i)  ( ) 2 ( . )d iv r a b b a    (ii)  ( . )cu r l r a b b a   where a  and b  are constant 

vectors. 

Sol: (i)  

   [( . ) ( .. ) ]d iv r a b d iv r b a a b r     

    

  rbaabrdiv )..().(   

 

        . . . . . .r b d iv a a g ra d r b a b d iv r r g ra d a b      
   

 

0).(,3,0  bagradrdivadivhaveWe  

      

   

 

   

   

 

0 . . 3 .

. . 3 .

. . 3 .

. . 3 .

. 3 . 2 .

2 .

d iv r a b a g r a d r a a a

i
a r b a b

x

r
a i b a b

x

a i i b a b

a b a b a b

b a

    


 




 



 

   

 







 
 

(ii)       . .c u r l r a b c u r l r b a a b r    
 

 

   

   

   

. .

. .

0 . 0

c u r l r b a c u r l a b r

r b c u r l a g ra d r b a

r b a c u r l a

 

  

    

 

b a    Since  .g ra d r b = b  

3: Prove that .
2

.
3

r
rr

r 











  

Sol: We have 




















 

r

r

x
i

r

r
..  

 =
2 3

1 1 1
. .

r x r
i r i i x

r x r r r r

       
          

       

 

 =
rrr

r
r

ii
r

2131
.

1 2

3
  

 

 .
r

r

  
     

  

2
i

x r

   
  

   
 =

2 3 3

2 2 2
.

x r
i x i

r r r r

     
     

   
  





4: Find (Ax), if A = yz2
i - 3xz2

j +2xyz k and  = xyz. 

Sol  : We have 

 

 

 

 

 

 

 

Ax= 
2 2

3 2

i j k

y z x z x y z

x y z



  

  

 

= 2 2 2 2
( 3 ) ( 2 ) ( ) ( 2 ) ( ) ( 3 )i x z xyz j y z xyz k yz xz

x y z x y x

         
          

         

 

= i (-6xz-2xz)- j (2yz-2yz)+ k (z2+3z2)= -8xz i -0 j +4z2
k  

 (Ax), = (-8xz i +4z2
k )xyz = -8x2yz2

i +4xyz3
k  

 

 

 

 

Vector Integration 

 

Line integral:- (i)


 rdF

c

. is called Line integral of 


F  along c  

Note : Work done  by


F along a curve c is 


 rdF

c

.  

PROBLEMS 

 

1. If 


F (x2-27) 


i -6yz 


j +8xz2 


k , evaluate  d


r from the point (0,0,0) to the point (1,1,1) along the 

Straight line from (0,0,0) to (1,0,0), (1,0,0) to (1,1,0) and (1,1,0) to (1,1,1). 

Solution: Given 


F = (x2-27)


i  -6yz


j +8xz2


k  

Now r = ix + jy + kz  rd d x i + jyd + kdz  



F . rd  = (x2-27)dx – (6yz)dy +8xz2dz 

 

(i) Along the straight line from O = (0,0,0) to A = (1,0,0) 

Here y =0 =z and dy=dz=0. Also x changes from 0 to 1. 

O A

  



F . rd = 

1

o

(x2-27)dx = 
1

0

3

27
3










 x

x
= 

3

80
27

3

1 
  

 

(ii) Along the straight line from A = (1,0,0) to B = (1,1,0) 

Here x =1, z=0   dx=0, dz=0. y changes from 0 to 1. 







A B

  


F . rd = 




1

0

0)6(

y

dyyz

 

 

 

 

 

(iii) Along the straight line from B = (1,1,0) to C = (1,1,1) 

x =1 =y 


 dx=dy=0 and z changes from 0 to 1. 

B C

  



F . rd = 




1

0

2
8

z

dzxz 




1

0

2
8

z

dzxz

3 1

0

8 8

3 3

z 
 

 

 



C

iiiiii )()()(



F . rd  = 
3

88

 

2. If 


F =(5xy-6x2)


i +(2y-4x)


j , evaluate 
C



F . rd  Along the curve C in xy-plane y=x3from (1,1) to (2,8). 

Solution  : Given 


F =(5xy-6x2)


i +(2y-4x)


j ,-------(1) 

Along the curve y=x3, dy =3x2 dx 



F =(5x4-6x2)


i +(2x3-4x)


j , [Putting y=x3 in (1)] 

           d r = idx + jdy = idx  +3x2dx 


j  

.



F d r = [(5x4-6x2)


i +(2x3-4x)


j ].
2

 d x 3 x d x ji







 
 

 

= (5x4 – 6x2) dx+(2x3 – 4x)3x3dx 

 = (6x5+5x4-12x3 -6x2)dx 

Hence 


3
xy



F . rd =  

2

1

2345
)61256( dxxxxx  

=  
6 5 4 3

2
6 5 4 3

1

6 . 5 . 1 2 . 6 . 3 2
6 5 4 4

x x x x
x x x x

 
       

 

 

 = 16(4+2-3-1) – (1+1-3-2) = 32+3 = 35 

3. Find the work done by the force 


F  = iz + jx + ky , when it moves a particle along the arc of the curve 


r  = 

cost 


i  + sint j -t k from t = 0 to t = 2  

Solution :  Given force 


F  = z


i + x j  +y k and the arc is 


r  = cost 


i  + sin t j -t k  

i.e., x = cost, y= sin t, z = -t 

 d r = (-sin t 


i  +cost j - k )dt 

 .



F d r = (-t 


i +cost j +sin t k ). (-sin t 


i  + cost j - k )dt = (t sin t + cos2 t – sin t)dt 



Hence work done = 

2

0

  .



F d r  = 

2

0

  (t sin t + cos2 t – sin t ) dt 

 

 

 

 

  =  

2 2 2

2

0

0 0 0

1 c o s 2
( c o s ) ( s in ) s in

2

t
t t t d t d t t

  

 
       dt  

 

 

 

  =  







2

0

2

0

2

0
cos

2

2sin

2

1
)(cos2 t

t
tt 








  

  =   2)11()2(
2

1
)11(2   

PROBLEMS 

 

1 : Evaluate F.n d S  where F  = zi + xj   3y2zk and S is the surface x2 + y2 = 16 included in the first 

octant between z = 0 and z = 5. 

Sol.   The surface S is x2 + y2 = 16 included in the first octant between z = 0 and z = 5. 

Let  = x2 + y2 = 16 

Then    = i j k 2 x i 2 y j
x y z

  
   

  
 

   unit normal  
2 2

x i y j
n   (  x  +  y  =  1 6 )

4

  
 

 
  

Let R be the projection of S on yz-plane 

Then  
S

F.n d S  = 
R

d yd z
F.n

n  . i
  ……………. * 

Given  F  = zi + xj   3y2zk 

 
1

F  . n ( x z x y )
4

   

and  
x

n  . i
4

  

In yz-plane, x = 0, y = 4 

In first octant, y varies from 0 to 4 and z varies from 0 to 5. 

 
S

F.n d S  = 
4 5

z 0y 0

x z x y d yd z

x4

4



 
 
 

   



   = 
4 5

z 0y 0

( y z ) d z  d y


 
 

 

   = 90. 

 

 

2 : If F  = zi + xj   3y2zk, evaluate 
S

F.nd S where S is the surface of the cube bounded by x = 0, x = a, y 

= 0, y= a, z = 0, z = a. 

Sol.  Given that S is the surface of the x = 0, x = a, y = 0, y = a, z = 0, z = a,  and F  = zi + xj   3y2zk we 

need to evaluate
S

F.nd S . 

O A

S
R

Q

y

C

P

B

X

 

(i) For OABC 

Eqn is z = 0 and dS = dxdy 

 n  k   

S
1

F.nd S  = 
a

x 0

 
a

y 0

  (yz) dxdy = 0 

(ii) For PQRS 

Eqn is z = a and dS = dxdy 

n  k  

2
S

F.n d S  =  
4

aa

x 0 y 0

a
y (a )d y  d x

2 

   

(iii) For OCQR 

Eqn is x = 0,  and n  i  , dS = dydz 

3
S

F.n d S  = 
aa

z 0y 0

4 x z d yd z  0


   

(iv) For ABPS 

Eqn is x = a,  and n  i  , dS = dydz 

 

 

 



3
S

F.nd S  =  
aa

4

z 0y 0

4 a z d z d y  2 a


   

(v) For OASR 

Eqn is y = 0,  and n  j  , dS = dxdz 

 

 

 

 

5
S

F.n d S  = 
aa

2

z 0y 0

y d z d x 0


   

(vi) For PBCQ 

Eqn is y = a,  and n  j  , dS = dxdz 

 

 

 

 

6
S

F.nd S  = 
aa

2

z 0y 0

y d z d x 0


   

From (i) – (vi) we get 

6
S

F.nd S  = 0 + 

4

a

2
 + 0 + 

4

2 a  + 0   a4 = 

4

3a

2
 

VOLUME INTEGRALS 

Let V be the volume bounded by a surface 


 fr (u,v). Let 


F (


r ) be a vector point function define over V. 

Divide V into m sub-regions of volumes 
mp

VVVV  ....,....,
21

 

Let Pi (


r i ) be a point in
i

V .Then form the sum Im = 
1

( ) .

m

i i

i

F r V





  Let m   in such a way that 
i

V

shrinks to a point,. The limit of Im if it exists, is called the volume integral of 


F (


r ) in the region V is 

denoted by dvrF

V



 )( or .dvF

V




 

Cartesian form : Let   1 2 3
F r F i F i F k

   

   where F1, F2, F3 are functions of x,y,z. We know that  

dv = dx dy dz. The volume integral given by 

1 2 3
( )

v

F d v F i F i F k

   

      dx dy dz = 
1

i F



   dxdydz +
2

j F



   dxdydz +
3

k F



   dxdydz 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Vector Integral Theorems 

Introduction  

 

In this chapter we discuss three important vector integral theorems: (i) Gauss divergence theorem, 

(ii) Green’s theorem in plane and (iii) Stokes theorem. These theorems deal with conversion of  



(i) 
S



nF . ds into a volume integral where S is a closed surface. 

(ii) 
C



rdF .  into a double integral over a region in a plane when C is a closed curve in the 

plane and. 

(iii) 
S

( )A



  .


n ds into a line integral around the boundary of an open two sided surface. 

 
 
 
 
 
 
 
 

I. GAUSS’S DIVERGENCE THEOREM 

(Transformation between surface integral and volume integral) 

 Let S be a closed surface enclosing a volume V. If 


F is a continuously differentiable vector point 

function, then 

.

V s

d iv F d v F n

 

   dS 

When 


n is the outward drawn normal vector at any point of S. 

SOLVED PROBLEMS 

1) Verify Gauss Divergence theorem for  taken over the surface of the 

cube bounded by the planes x = y = z = a and coordinate planes.  

Sol: By Gauss Divergence theorem we have 

.

S V

F nd S d iv F d v   

 

 
3 3 3 3 5

2 3

0

0 0 0 0

( )
3 3 3 3 3

a a a a

aa a a a a
a d yd z a y d z a a d z a a a

       
              

       
    ……(1) 

Verification: We will calculate the value of .

S

F nd S  over the six faces of the cube. 

(i) For S1 = PQAS; unit outward drawn normal  

x=a; ds=dy dz; 0≤y≤a, 0≤z≤a  

  

3 3
. s inF n x y z a y z c e x a       

1

3

0 0

. (a )

a a

S z y

F nd S y z d y d z

 

       

 



 

 

(ii) For S2 = OCRB; unit outward drawn normal  

x=0; ds=dy dz; 0≤y≤a, y≤z≤a  

 

 

 

 

 

 

 

 

 

 

 

 

 

(iii) For S3 = RBQP; Z = a; ds = dxdy;  

0≤x≤a, 0≤y≤a  

 

3

3

0 0

. . . . .( 4 )

a a

S y x

F nd S a d x d y a

 

       

(iv) For S4 = OASC; z = 0; , ds = dxdy; 

0≤x≤a, 0≤y≤a  

 

 

(v) For S5 = PSCR; y = a; , ds = dzdx; 

0≤x≤a, 0≤z≤a  

 

 

2

0

0

( 2 )

a

a

z

x

a x z d x




  

 



(vi) For S6 = OBQA; y = 0; , ds = dzdx; 

0≤x≤a, 0≤y≤a  

 

 

 

 

 

 

 

2. Compute over the surface of the sphere x2+y2+z2 = 1 

Sol: By divergence theorem .

S

F nd S =  

 

  

 
2 2 2

1 2 ( )V i j k x y z x i y j z k
x y y


   

         
   

 

  Unit normal vector = n =
2 2 2

2 ( )

2

x i y j z k
x i y j z k

x y z

 
  

 

 Since 2 2 2
x y z  =1 

 .F n =
2 2 2

.( ) ( ) (a ) .( )F x i y j z k a x b y c z x i b y j c z k x i y j z k           

i.e., F a x i b y j c z k   .F a b c     

Hence by Gauss Divergence theorem,  

 

 

 

3)By transforming into triple integral, evaluate  where S is the 

closed surface consisting of the cylinder x2+y2 = a2 and the circular discs z= 0 , z= b.  

Sol: Here  

2 2 231 2
3 , ,

FF F
x x x

x y z

 
  

  
 



2 2 2 231 2
. 3 5

FF F
F x x x x

x y z

 
       

  
 

 

By Gauss Divergence theorem,  

 

 

 

 

 

 

31 2

1 2 3

FF F
F d yd z F d zd x F d xd y d xd yd z

x y z

  
     

   
      

3 2 2 2
( 5

s

x d yd z x yd zd x x zd xd y x d xd yd z         

2 2

2 2

2

0

5

a a x b

a zy a x

x d xd yd z



   

     

2 2

2

0 0 0

2 0

a a x b

z

x d x d y d z





    [Integrand is even function] 

 

 

 

[Put sin cosx a dx a d      when 
2

x a


   and 0 0 ]x     

  =  

 

 

4: Applying Gauss divergence theorem, Prove that  

Sol: Let  we know that div  



By Gauss divergence theorem, .

v

F nd S d iv F d v   

 

 

5: Show that where S is the surface of the sphere 

x2+y2+z2=1.  

Sol: Take  

31 2
FF F

d iv F
x y

a
z

b c
 

   
 

 
  

 

 

 

 

 

By Gauss divergence theorem,  

 

4
. ( )

3
s

F nd S a b c


     

6: Using Divergence theorem, evaluate  

x2+y2+z2=a2 

Sol: We have by Gauss divergence theorem, .

s v

F nd S d iv F d v   

L.H.S can be written as  in Cartesian form  

Comparing with the given expression, we have F1=x, F2=y, F3=z 

 

Then 31 2
3

FF F
d iv F

x y z

 
   

  
 

3 3

v v

d iv F d v d v V     

Here V is the volume of the sphere with radius a.  

34

3
V a   

Hence  

7: Apply divergence theorem to evaluate ( ) ( ) ( )

s

x z d yd z y z d zd x x y d xd y       S is the surface of 

the sphere x2+y2+z2=4 

Sol: Given ( ) ( ) ( )

s

x z d yd z y z d zd x x y d xd y       



Here F1 = x+z, F2 = y+z, F3= x+y 

31 2
1, 1, 0

FF F

x y z

 
  

  
and 31 2

1 1 0 2
FF F

x y z

 
     

  
 

By Gauss Divergence theorem,  

31 2

1 2 3

s V

FF F
F d yd z F d zd x F d xd y d xd yd z

x y z

  
     

   
      

 

 

 

 

 

 

 

8: Evaluate  over the tetrahedron bounded by x=0, y=0, z=0 and 

the plane x+y+z=1.  

Sol: Given F = , then div. F = y+2y = 3y 

11 1

0 0 0

. 3

x yx

s v x y z

F nd S d iv F d v y d x d y d z

 

  

        

 

 

 

9: Use divergence theorem to evaluate .

s

F d S  where F =x3i+y3j+z3k and S is the surface of the sphere 

x2+y2+z2 = r2 

Sol: We have  

3 3 3 2 2 2
. ( ) (y ) (z ) 3 ( )V F x x y z

x y z

  
     

  
  

∴By divergence theorem,  

 = 2 2 2
3( )

v

x y z d xd yd z     

 

 



 

4 4

0 0 0 0

3 s in ( 2 0 ) 6 s in

a a

r r

r d rd r d d r

 



     

  

 
    

 
     

 

 

10: Use divergence theorem to evaluate  where  and S is the surface 

bounded by the region x2+y2=4, z=0 and z=3.  

 

 

 

 

 

Sol: We have 

2 2
. ( 4 ) ( 2 ) (z ) 4 4 2d iv F F x y y z

x y z

  
        

  
 

 

 

 

 

 

 

 

 



 

2
2 4

2 0

2 1 2 1 2 (0 )

x

d y d x





 

   

 
 

   

[Since the integrans in forst integral is even and in 2nd integral it is on add function] 

 

2 2

2 2

2 0

4 2 4 4 2 2 4x d x x d x



       

 

 

 

11: Verify divergence theorem for  over the surface S of the solid cut off by the 

plane x+y+z=a in the first octant.  

 

 

 

Sol: By Gauss theorem, .

s v

F nd S d iv F d v   

 

1, 1, 1
x y z

g r a d i i j k
x

  




  
  

  


    




 

 

 

Let R be the projection of S on xy-plane 

Then the equation of the given plane will be x+y=a   y=a-x 

Also when y=0, x=a 

 

.
.

.s R

F nd x d y
F nd S

n k

     

 

=  

 



 
 

4

3 2 2 3

0

5 2
. 3 2 ,

3 3 4

a

s

a
F nd S x a x a x a d x

 
       

 
   on simplification…(1) 

Given 2 2 2
F x i y j z k    

d iv
2 2 2

( ) ( ) ( ) 2 ( )F x y z x y z
x y z

  
     

  
 

N ow

0 0 0

. 2 ( )

a x ya a x

x y z

d iv F d v x y z d x d y d z

 

  

     
 

 

 

 

 
 

 

 

 

 

 

 

 
Hence from (1) and (2), the Gauss Divergence theorem is verified.  

 

 

12: Verify divergence theorem for 2x2y i -y2
j +4xz2

k taken over the region of first octant of the cylinder 

y2+z2=9 and x=2.  

(or) Evaluate . ,

s

F nd S  where F =2x2y i -y2
j +4xz2

k and S is the closed surface of the region in the first 

octant bounded by the cylinder y2+z2 = 9 and the planes x=0, x=2, y=0, z=0 

Sol: Let F =2x2y i -y2
j +4xz2

k  

. 
2 2 2

( 2 ) ( ) ( 4 ) 4 2 8F x y x z x y y x z
x y z

  
      

  
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2
2

2

0

1 8 ( ) 7 2 1 8 ( 2 4 ) 3 6 ( 4 ) 3 6 1 4 4 1 8 0 ...(1)
2

x
x x

 
          

 

 



.

s

F nd S =

1

.

s

F nd S +

2

.

s

F nd S +……+

5

.

s

F nd S  

 

Where S1 is the face OAB, S2 is the face CED, S3 is the face OBDE, S4 is the face OACE and S5 is the curved 

surface ABDC.  

(i) On 
1

: 0 ,S x n i   . 0F n  H en ce

1

.

s

F nd S  

(ii) On 
2

: 2 ,S x n i  . 8F n y   

2
2

2

9
3 9 3 2

0 0 0 0

. 8 8
2

z
z

s

y
F nd S yd yd z d z




 
    

 
     

 

    (iii)    On 
3

: 0, .S y n j   . 0F n  H en ce

3

.

s

F nd S  

 

(v) On 

2 2

2 2

5 2 2 2 2

( ) 2 2
: 9 ,

3( ) 4 94 4

y z y j z k y j z k y j z k
S y z n

y z y z

    
     

  
 

 

 

 

3 3
4

.
3

y x z
F n

 
 and 21

. 9
3 3

z
n k y    

Hence  

 

 

 

 

 = 180 … … (2) 

Hence the Divergence theorem is verified from the equality of (1) and (2).  

 

 

13: Use Divergence theorem to evaluate  
2

. .x i y j z k nd s   Where S is the surface bounded by the 

cone x2+y2=z2 in the plane z = 4.  



Sol: Given S is the surface bounded by the cone x2+y2=z2 in the plane z 

= 4.  

Let  

 

 

N ow
2

. ( ) ( ) ( ) 1 1 2 2 (1 )F x y z z z
x y z

  
        

  
 

On the cone, 2 2 2
x y z  and z=4 

2 2
1 6x y   

 

 

 

 

 

 

 

 

2

2

4 1 6 4

1 6

0

0 0 0

2 [ 4 8 ] 2 1 2 [ ]

x

x
d x d y y d x




       

 

[ 4 s in 4 co s .p u tx d x d     A lso 0 0x    a n d 4
2

x


   ] 

2 2

2 2

0 0

. 9 6 4 4 1 s in c o s 9 6 4 c o s

V

F d v d d

 

              
 

 

 



 

 

 

 

14: Use Gauss Divergence theorem to evaluate S is the closed 

surface bounded by the xy-plane and the upper half of the sphere x2+y2+z2=a2 

above this plane. 

Sol: Divergence theorem states that  

 

Here 
2 2 2

. ( ) ( ) ( 2 ) 4F y z z x z z
x y z

  
    

  
 

. 4

s V

F d s zd xd yd z       

Introducing spherical polar coordinates s in co s , s in s in ,x r y r      

cosz r  then 2
d x d y d z r d rd d   

2

2

0 0 0

. 4 ( co s )( s in )

a

s r

F d s r r d rd d

 

 

   

  

       

 

 

 

 

 

15: Verify Gauss divergence theorem for  taken over the cube bounded by  

x = 0, x = a, y= 0, y = a, z = 0, z = a.  

Sol: We have  

 

 

 

 



3 3 3 2 2 2
. ( ) ( ) ( ) 3 3 3F x y z x y z

x y z

  
      

  
 

 

 

 

 

 

 

 

 

To evaluate the surface integral divide the closed surface S of the cube into 6 parts.  

i.e.,  S1 : The face DEFA      ; S4 : The face OBDC 

  

S2 : The face AGCO     ; S5 : The face GCDE 

 S3 : The face AGEF   ; S6: The face AFBO 

 

 

 
1

3 3 3

0 0

. .

a a

s z y

F nd s a i y j z k id y d z

 

        

 

 

 

 

 

 

 



   
2

3 3

0 0

. . 0

a a

s z y

F nd s y j z k i d yd z

 

        

 

   

3

3 3 3 3 3 4

0

0 0 0 0 0

. .

a a a a a

a

s z x z x

F nd s x i a j z k jd xd z a d xd z a a d z a z

   

             

5
a  

 

 

 

 

 

 

 

 

 

 

T h e Gauss divergence theorem is verified. 

 

II. GREEN’S THEOREM IN A PLANE 

 

(Transformation Between Line Integral and Surface Integral ) [JNTU 2001S]. 

If S is Closed region in xy plane bounded by a simple closed curve C and if M and N are continuous functions 

of x and y having continuous derivatives in R, then 

.

C R

N M
M d x N d y d xd y

x y

  
   

  
   

Where C  is traversed in the positive(anti  clock-wise) direction 

 

 

 

 

 



 

 

 SOLVED PROBLEMS 

1: Verify Green’s theorem in plane for    where C is the region 

bounded by y=   and y=  . 

Solution: Let  M=3 -  and N=4y-6xy. Then 

,  

 

 

We have by Green’s theorem, 

.

C R

N M
M d x N d y d xd y

x y

  
   

  
   

Now   1 6 6

R R

N M
d xd y y y d xd y

x y

  
   

  
   

                                                    =1 0

R

yd xd y =10
2

2

1 1 2

0 0

1 0
2

x
x

x xy x x

y
yd yd x d x

 

 
  

 
    

                                                     =5        ….(1) 

Verification: 

     We can write the line integral along c 

=[line integral along y= (from O to A) + [line integral along =x(from A to O)] 

= + (say) 

Now     =  

                 =  

 

 



 

And             
0 0

3
2 22

2

1 1

1 5
3 8 4 6 3 1 1 2

22

l x x d x x x d x x x d x

x

 
       

 
 
   

 

From(1) and (2), we have  .

C R

N M
M d x N d y d xd y

x y

  
   

  
 

 

 

 

hence the verification of the Green’s theorem. 

 

2:  Evaluate by Green’s theorem   where C  is the triangle enclosed by the lines 

y=0, x= ,  

Solution:  Let M=y-  Then 

=1 and       =-  

 By Green’s  theorem  .

C R

N M
M d x N d y d xd y

x y

  
   

  
   

( s in ) co s ( 1 s in )

c R

y x d x xd y x d xd y            

                                                            =-  

                                                           = -  

                                                           =  

                                                                =  

2

0

0

2
c o s 1( c o s )x x x x x d x








         

                                                                 =  

                                                                  =  

 

3:  Evaluate by Green’s theorem for   where C is the rectangle with 

vertices ,  

Solution:  Let M=      

 

 

 

 



By Green’s theorem,    .

C R

N M
M d x N d y d xd y

x y

  
   

  
    

2
( co sh ) ( s in ) (co s s in h )

c R

x y d x y x d y x y d xd y         

   

=  

                                                                          =
0

(co s co sh 1 1)

x

x d x





   

                                                                          =  

 

4:  A Vector field is given by (s in ) (1 c o s )F y i x y j    

Evaluate the line integral over the circular path + , z=0 

(i) Directly  (ii) By using Green’s theorem  

Solution:   (i) Using the line integral                            

 

                     = s in co s ( s in )

c c

yd x x yd y xd y d x y xd y       

Given Circle is + . Take x=a  and y=a  so that dx=-a  and  

dy=a  and  

 

 

 

 

                                 =  

                                =0+ 2 21
4 . .

2 2
a a


  

 

(ii)Using Green’s theorem 

Let M=  and N=x  Then 

=   and       =  

By Green’s theorem, 

C R

N M
M d x N d y d xd y

x y

  
   

  
   

s in (1 co s ) ( co s 1 co s )

c R

yd x x y d y y y d xd y d xd y           

                                                                    = 
2

(

R

d A A a a r e a     of  circle=
2

)a  

 

 

We observe that the values obtained in (i) and (ii) are same to that Green’s theorem is verified. 

 



 

5: Show that area bounded by a simple closed curve C is given by  and hence find the area of  

(i)The ellipse x= co s ,a y b s in 

2 2

2 2
( . ) 1

x y
i e

a b
   

(ii )The Circle x=  

Solution: We have by Green’s theorem     
C R

N M
M d x N d y d xd y

x y

  
   

  
    

Here M=-y and N=x so that  

2 2

c R

xd y yd x d xd y A    where A is the area of the surface. 

 

(i)For  the ellipse x=  and y=  and  

=  

                   =  

(ii)Put  a=b to get area of the circle A=  

 

6: Verify Green’s theorem for   where C is bounded by y=x and  

y=  

 

 

 

Solution: By Green’s theorem, we have 
C R

N M
M d x N d y d xd y

x y

  
   

  
    

 

Here M=xy +  and N=  

 

The line y=x and the parabola y=  intersect at O  and A  

Now  

1 2

......(1)

c c c

M d x N d y M d x N d y M d x N d y                             …..(1) 

Along   the line integral is  

1 1

1

2 4 2 2 3 4 3 3 4

0

[ ( ) ] ( ) ( 2 ) (3 )

c c c

M d x N d y x x x d x x d x x x x d x x x d x            

=   =                                 …….(2) 

 



 

 

Along   from  to  the line integral is  

2 2

2 2
( . )

c c

M d x N d y x x x d x x d x      

                               = =0-1=-1       ….(3) 

From (1), (2) and (3), we have 

                                                                                                       …(4) 

Now  

 

 

R

N M
d xd y

x y

  
 

  
   = ( 2 2 )

R

x x y d xd y    

  =  

                                                  =  =                                                                  ….(5) 

From
c

M d x N d y =
R

N M

x y

  
 

  
  dxdy 

Hence the verification of the Green’s  theorem. 

 

 7: Using Green’s theorem evaluate Where “C” is the closed curve of 

the region bounded by   y=   and  

 

Solution: 

 

The two parabolas   are intersecting at O and P(1,1) 

Here M=2xy-    and N=   +  

 

Hence  

By Green’s theorem 
c

M d x N d y =
R

N M

x y

  
 

  
  dxdy 



 

 

i.e.,
2

1

2 2 2

0

( 2 ) ( ) (0 ) 0

x

c x y x

x y x d x x y d y d x d y

 

        

 

8: Verify Green’s theorem for  where c  is the region bounded by 

x=0, y=0 and x+y=1.                                    

Solution : By Green’s theorem, we have 

c R

N M
M d x N d y d xd y

x y

  
   

  
    

Here M=3  and N=4y-6xy 

 

 

 

 

\ 1 6
M

y
y


  


 and 6

N
y

x


 


 

Now  ...(1)

c O A A B B C

M d x N d y M d x N d y M d x N d y M d x N d y         
 

 

Along OA, y=0      

 

Along AB, x+y=1   and x=1-y and y varies from 0 to 1. 

A B

M d x N d y  = 
1

2 2

0

[3( 1) 8 ]( ) [ 4 6 ( 1)]y y d y y y y d y       

  =  

                           =  

                          =  

Along BO, x=0  and limits of y are from 1 to 0 

.     

 



 

 from (1), we have   

 

 

 

 

Now  

1 1

0 0

( 6 1 6 )

x

R x y

N M
d xd y y y d xd y

x y



 

  
    

  
     

                                                 =10  

                                                =5  

                                                =- =  

From (2) and (3), we have  
c R

N M
M d x N d y d xd y

x y

  
   

  
    

Hence the verification of the Green’s  Theorem. 

 

9: Apply Green’s theorem to evaluate  

the boundary of the area enclosed by the x-axis and upper half of the circle  

 

 

 

Solution : Let M=  and N=  Then 

 

 

 

c R

N M
M d x N d y d xd y

x y

  
   

  
  

 

 

 



2 2 2 2
[( 2 ) ( ) ] ( 2 2 )

c R

x y d x x y d y x y d xd y        

 =2 ( )

R

x y d y   

                                                =2  

[Changing to polar coordinates (r, , r varies from 0 to a and  varies from 0 to ] 

 

 

 

2 2 2 2 2

0 0

[( 2 ) ( ) ] 2 (co s s in )

a

c

x y d x x y d y r d r d



           

 =2.  

 

 

10: Find the area of the Folium of Descartes  

Theorem.                                                                             

Solution: from Green’s theorem, we have 

 

By Green‟s theorem, Area = 
1

( )
2

x d y y d x
 

 

Considering the loop of folium Descartes(a>0) 

      

  Let x=
2

3 3

3 3
, ,

1 1

a t a t
y T h e n

t t


 
3

3

1

d a t
d x d t

d t t

  
   

  

and 

2

3

3

1

d a t
d y d t

d t t

  
   

  

 

The point of intersection of the loop is 
3 3

, 1
2 2

a a
t

 
  

 

 

Along OA, t varies from 0 to1. 

 

                                      =
   

1 3 2 3

2 23 3
3 3

0

1 3 3 ( 2 ) 3 3 (1 2 )

2 1 11 1

a t a t t a t a t
d t

t tt t

    
  

    
      
    

  

                                        =  

 

1 12 2 5 2 2 3

3 3 3 3

0 0

9 9 (1 )

2 (1 ) 2 (1 )

a t t a t t
d t d t

t t

 
 

 
   

                                        =  [Put 1+  

                                                                                             L.L. : x=1, U.L.:x=2] 



                                         =
2 22 2 2 2

2 2 2

1 1

9 9 1 3
. .

2 3 6 4

a t d x a a
d x sq

x t x
   units(a>0). 

11: Verify  Green’s theorem in the plane for  

Where C  is square with vertices (0,0), (2,0), (2,2), (0,2).                                                        

Solution: The Cartesian form of Green’s theorem in the plane is  

c R

N M
M d x N d y d xd y

x y

  
   

  
    

Here M=  and N=  

 

 

 

 - 3  and  

 

 

 

Evaluation of  

   To Evaluate , we shall take C in four different segments viz (i) along 

OA(y=0) (ii) along AB(x=2) (iii) along BC(y=2) (iv) along CO(x=0). 

(i)Along OA(y=0) 

                                                    …..(1) 

 

 

 

(ii)Along  AB(x=2) 

[  

                                                                  =                   ….(2) 

(iii)Along BC(y=2) 

[  

                                                                 =

2
3

2

0

8 4 0
4 1 6 .... . .(3 )

3 3 3

x
x

   
       

  

 



(iv)Along CO(x=0) 

[            …..(4) 

Adding(1),(2),(3) and (4), we get 

   
2 3 2 8 1 6 4 0 8 2 4

2 8
3 3 3 3 3

c

x x y d x y x y d y                                          …(5) 

Evaluation of  
R

N M
d xd y

x y

  
 

  
   

Here x ranges from 0 to 2 and y ranges from 0 to 2. 

 

 

 

 

R

N M
d xd y

x y

  
 

  
  =

2 2

2

0 0

( 2 3 )y x y d xd y    

                                      =  

                                       =  
2

2
2 2 3

0

0

( 4 6 ) 2 2y y d y y y      

                                       =-8+16=8                                                                                     …(6) 

From (5) and (6), we have 

c R

N M
M d x N d y d xd y

x y

  
   

  
    

 

Hence the Green’s theorem is verified. 

 

 

III. STOKE’S THEOREM 

          (Transformation between Line Integral and Surface Integral)                      [JNTU 2000] 

         Let S be a open surface bounded by a closed, non intersecting curve C. If   is any differentieable 

vector point function then =  direction 

and   

PROBLEMS: 

1: Prove by Stokes theorem, Curl grad =  

Solution: Let S be the surface enclosed by a simple closed curve C. 

 

 

                                              =  .

c

i
j k id x jd y k d z

x y z

     
    

   
  

                                               =  
p

c

d x d y d z d
x y z

  
 

   
    

   
   where P is any point on C. 



  

2: prove that 
s

c u r l . . g

c s

f d S f d r cu r l ra d f d S      

Solution: Applying Stokes theorem to the function  

   . .

c s

f d r cu r l f nd s g ra d f cu r l f d s          

. . .

c c

cu r l f d s f d r f d s          

 

 

 

3: Prove that  

Solution: By Stokes Theorem, 

  . .

c s

f f d r cu r lf f n     .
s

d s fcu r l f f f n      d s  

 

0. 0[ 0nd s cu rl f     and 0 ]f f     

4: Prove that  . .

c

f g d r f g nd s       

Solution: By Stokes Theorem, 

     . lg .

c s s

f g d r f g nd s f g fcu r ra d g nd s               

                     

 

    =   .f g nd s   ( ) 0c u r l g ra d g 
 
   

 

 

5: Verify Stokes theorem for , Where S is the circular disc 

 

Solution: Given that . The boundary of C of S is a circle in xy plane. 

We use the parametric co-ordinates x=cos  

dx=-sin  and dy =cos  

 

                          =  

                          = =  

                          =  

                           =2 =2  



Now  

 

We have ( . )k n d s d x d y and R is the region on xy-plane 

.  

 

 

Put x=r cos  

r is varying from 0 to 1 and 0  

 . .rdr d  

 

 

 

L.H.S=R.H.S.Hence the theorem is verified. 

6: If ( 2 ) ,F y i x x z j x y k    evaluate   .

s

F nd s  . Where S is the surface of sphere 

 

Solution: Given  

    By Stokes Theorem, 

. = .

c

F d r   

 Above the xy plane the sphere is  

 

 

 

Put x=a cos ,y=asin  

 

                                          =  

7: Verify Stokes theorem for  over the upper half surface of the sphere 

bounded by the projection of the xy-plane.                                   

Solution: The boundary C of S is a circle in xy plane i.e =1, z=0 

The parametric equations are x=  

 

2 2

1 2 3
. ( 2 )

c c c

F d r F d x F d y F d z x y d x yz d y y zd z          

                  =  



2 2 2

2

0 0 0

( 2 co s s in ) s in s in s in 2d d d

  

             
 

 

 

                    =  

                    =  

Again  =  

. =  

Where R is the projection of S on xy plane and  

      Now  

                                      

 

 

 

= 2 =  

 Stokes theorem is verified. 

 

8: Verify Stokes theorem for the function   integrated round the square in the plan z=0 

whose sides are along the lines x=0, y=0, x=a, y=a. 

Solution: Given  

 

 

 

By Stokes Theorem, . = .

c

F d r  

Now = y 

 



 

L.H.S.= . = ( . )

s s

y n k d s yd xd y   

 and R is the region bounded for the square. 

.  

R.H.S. = 2
. ( )

C C

F d r x d x xyd y    

But   

(i)Along  OA: y=0, z=0, dy=0, dz=0 

 

(ii)Along AB:x=a, z=0,dx=0,dz=0 

3

0

1
.

2

a

A B

F d r a yd y a    

(iii)Along BC: y=a,z=0,dy=0,dz=0 

 

 

 

 

 

(iv)Along CO: x=0, z=0, dx=0, dz=0 

 

Adding   

 

 

Hence the verification. 

 9: Apply Stokes theorem, to evaluate ( )

c

yd x zd y xd z  where c is the curve of intersection of the 

sphere  and x+z=a.           

Solution : The intersection of the sphere  the plane x+z=a. is a circle in the plane 

x+z=a.  with AB as diameter. 

Equation of the plane is x+z=a  

O A O B a   i.e., ( , 0 , 0 )A a  and B=(0,0,a) 

 Length of the diameter AB
2 2

0a a   =a  

       Radius of the circle, r=  

        Let  

 

=  



Let  be the unit normal to this surface.  

Then s=x+z-a, S = i k  

Hence   

                               =- ds =  

                                =-  

10: Apply the Stoke’s theorem and show that  is any vector and S =

 

Solution: Cut the surface if the Sphere  Let denotes its upper 

and lower portions a C, be the common curve bounding both these portions. 

1 2

. . .

s s s

cu r l F d s F d s F d s      

Applying Stoke’s theorem, 

1 2

. . . 0

s s s

cu r l F d s F d R F d R      

The 2nd integral curl  is negative because it is traversed in opposite direction to first integral. 

 

 

 

The above result is true for any closed surface S. 

11: Evaluate by Stokes theorem   where C is the boundary of 

the triangle with vertices (0,0,0), (1,0,0) and (1,1,0). 

 

 

Solution: Let   

 

 

Then  

By Stokes theorem,  

  



  

Where S is the surface of the triangle OAB which lies 

in the xy plane. Since the z Co-ordinates of O,A and B  

Are zero. Therefore . Equation of OA is y=0 and  

that  of OB, y=x in the xy plane. 

= 2  

 

ds=curl  

  the  

                     = OA   AB=
1 1

1 1
2 2
    

 

12: Use Stoke’s theorem to evaluate  over the surface of the paraboloid  

2 2
1, 0z x y z    where  

 

 

 

 

 

 

Solution : By Stoke’s theorem  

 

 

. . ( ) .( )

s c c

cu r l F d s F d r y i z j x k id x jd y k d z         

                 =
c

y d x (Since z=0,dz=0) ……(1) 

Where C  is the circle  

The parametric equations of the circle are x=  

 

Hence (1) becomes  

2 2 2

2 2

0 0 0

1
. s in ( s in ) s in 4 s in 4

2 2
s

c u r l F d s d d d



 

 


       

 

                

13: Verify Stoke’s theorem for  taken round the rectangle bounded by the lines x=

 

Solution: Let ABCD be the rectangle whose vertices are (a,0), (a,b), (-a,b) and (-a,0). 

Equations of AB, BC, CD and DA are x=a, y=b, x=-a and y=0. 



We have to prove that  

 

                  =  

                   =          …..(1)      

 

(i) Along AB, x=a, dx=0 

 from (1),  

(ii)Along BC, y=b, dy=0 

 from (1), 

3

2 2 2
( )

3

a
x a

B C x a x a

x
x b d x b x


 

 

 
    

 
  =  

(iii) Along CD, x=-a, dx=0 

 

 

 

from (1),

0
0 2

2
2 2

2
C D y b y b

y
a yd y a a b

 

 
    

 
   

(iv)Along DA, y=0, dy=0 

 from (1), 

3 3

2 2

3 3

a
x a

D A x a x a

x a
x d x



   

 
   

 
   

(i)+(ii)+(iii)+(iv) gives  

-- +                                          ….(2) 

Consider  

Vector Perpendicular to the xy-plane is  

=  

Since the rectangle lies in the xy plane, 



 

 

and ds =dx dy 

 

                               =  = 4  
0 0

4 2

a
b b

y ya

y x d y a y d y

 

    

                                =                                                                    …..(3) 

Hence from (2) and (3), the Stoke’s theorem is verified. 

14: Verify Stoke’s theorem for  where S is the surface of the cube x 

=0, y=0, z=0, x=2, y=2,z=2 above the xy plane.                       

Solution: Given  where S is the surface of the cube. 

x=0, y=0, z=0, x=2, y=2, z=2 above the xy plane.  

By Stoke’s theorem, we have  

=  

 

                                               …..(1) 

To find  

 . (dx  

             =   

Sis the surface of the cube above the xy-plane 

 

 

 

 

 

Along  

  ……..(2) 

Along  

 

 

  ……. .(3) 

Along  

=  

22

0 0

4 4 8d y y      ……(4) 

Along  

.    …..(5) 



Above the surface When z=2 

Along     ….(6) 

Along y changes from 0 to 2 

 

2
2 2 2

2

0

0 0 0

. ( 2 4 ) 2 4 4 8 1 2
2

y
F d r y d y y

 
       

 
      ….(7)   

Along x changes from 2 to 0 

                                                                                                         ….(8) 

Along y changes from 2 to 0. 

 

0
0 2

0

2

2 2

( 2 4 ) 2 4 1 2
2

y
y y

 
     

 
                                                           …..(9) 

       (2)+(3)+(4)+(5)+(6)+(7)+(8)+(9) gives 

                                     …..(10) 

By Stokes theorem, We have 

= ds=-4 

Hence Stoke’s theorem is verified. 

15: Verify the Stoke’s  theorem for  and surface is the part of the sphere  

 

Solution: Given   over the surface  

We have to prove =  

. (y =ydx + zdy + xdz 

 

Let x=  

 [  

 

 

 

                        =  

                         =  

                       =-                                                           …..(1) 

Curl = (  

Unit normal vector =  

Substituting the spherical polar coordinates, we get  

 

 



 

22

0 0

. s in co s s in s in co s s incu r l F nd s d d




 

       

 

       

                              =  

                              =-2  

                               =                                                                …..(2) 

From (1) and (2), we have 

 

 

 

’s theorem is verified. 

16: Verify Stoke’s theorem for  
2 2

2F x y i xy j    over the box bounded by the planes 

x=0,x=a,y=0,y=b.                                                                             

 

Solution : 

 

Stoke”s theorem states that      . .

c s

F d r C u r l F nd s   

 

 

 

Given  

Curl =

2 2

( 0 , 0 ) ( 0 , 0 ) ( 2 2 ) 4

2 0

i j k

i j k y y y k
x y z

x y x y

       
  



 

R.H.S=  . 4 .

s s

C u r l F nd s y k n d s   

Let R be the region bounded by the rectangle 



 

2

2

0 0 0 00

. 4 4 2 1
2

b
a b a a

s x y x x

y
C u r l F nd s y d x d y d x b d x

   

 
   

 
      

                              =2 2a  

To  Calculate L.H.S 

 

Let  O= and  

          C=(0,b) are the vertices of the rectangle. 

(i)Along the line OA 

y=0; dy=0, x ranges from 0 to a. 

 

(ii)Along the line AB 

x=a; dx=0, y ranges from 0 to b. 

=a  

(iii)Along the line BC 

y=b; dy=0, x ranges from a to 0 

0
0 3 3

2 2 2 2
. ( ) 0

3 3
B C x a a

x a
F d r x y d x b x b a



   
        

   
   

=a  

(iv) Along the line CO 

x=0,dx=0,y changes from b to 0 

 =
0

2 0

y b

xyd y



  

Adding these four values 

 

 

 

 =  =  

 

 L.H.S  =   R.H.S 

Hence the verification of the stoke’s theorem. 

 

17: Verify Stoke’s theorem for =  – 2xy  taken round the rectangle bounded by  

x= , y=0,y=a. 

 

Solution:  



 

    Curl  =  = -4y  

For the given surface S,  

 

  

Now   =  

                                        = 
0

4

a b

y x b

y d x d y

  

 
 

 
   

                                       =  
0

4

ba

b

x y d y



  

                                  =  = 2 2

0

4 4 .... . . . .(1)
a

b y a b   
 

 

  =  

 =  

Along DA , y=0,dy=0   =0 ( . 0 )F d r   

Along AB, x=b,dx=0 

 

 = = 2 2

0

a

b y a b   
   

 

 

Along BC,y=a,dy=0 

 = =  

 

Along CD, x=-b,dx=0 

 = =
0

2 2

a

b y a b   
 

. 

  = 0 =   -------(2) 

From (1),(2)  =  

Hence the theorem is verified. 

 



19: Using Stroke’s theorem evaluate the integral   where 

=2 +3  -(2x+z  and C is the boundary of the triangle whose vertices are (0,0,0),(2,0,0),(2,2,0). 

Solution: 

Curl  =    = 2  + (6x-4y)  

 

Since the z-coordinate of each vertex of the triangle is zero , the triangle lies in the xy-plane . 

  =k 

(Curl = 6x-4y 

Consider the triangle in xy-plane . 

Equation of the straight line OB is y=x. 

By Stroke’s theorem  

. ( ) .

c s

F d r cu r l F nd s    

              =         =  

            =      
2

2

0

0

6 2
x

x

xy y d x



 
   =   

          =  

2
3

0

4
3

x 

 
 

   =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 


