

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	MECH	MECHANICS OF SOLIDS					
Course Code	AAEB	04					
Programme	B.Tech	3.Tech					
Semester	III	III AE					
Course Type	Core	Core					
Regulation	IARE - R18						
	Theory				Practical		
Course Structure	Lectu	ires	Tutorials	Credits	Laboratory	Credits	
	3		-	3	-	-	
Chief Coordinator	Mr. G	S D N	Aadhav Assistant	Professor			
Course Faculty	Ms.Y S Mr. G	Shwet S D N	tha, Assistant Pro Madhav Assistant	fessor Professor			

I. COURSE OVERVIEW:

The primary objective of mechanics of solid is concerned with establishing an understanding of the behavior of structure basic structural components such as beams, columns, frames, plates and shells, when subjected to different loads or other actions which have the effect of changing the state of stress and deformation of the structure.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AMEB03	II	Engineering Mechanics	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Mechanics of Solids	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	~	Quiz	>	Assignments	×	MOOCs
>	LCD / PPT	~	Seminars	×	Mini Project	1	Videos
×	Open Ended Expe	erimen	ts				

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weight age in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Component		Total Marka		
Type of Assessment	CIE Exam	Quiz	AAT	1 otal Marks
CIA Marks	20	05	05	30

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz – Online Examination:

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quizzes for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the class room into effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in engineering) five minutes video and MOOCs etc.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Seminars
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	3	Quiz
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Assignments
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	Videos
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change	3	Assignments

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products	3	LCD/PPT
PSO2	Problem-solving Skills: Imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flight vehicles.	2	Assignments
PSO 3	Practical implementation and testing skills: Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies	3	Assignments
PSO4	Successful career and entrepreneurship: To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aerospace and allied systems and become technocrats.	-	_

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES:

The course	The course should enable the students to:				
Ι	Understand the behavior of structure basic structural components under loading conditions				
II	Apply the shear force, bending moment and deflection methods to the beam in different load conditions				
III	Relate the bending and flexural stress solving methods to real time problems				
IV	Pertain the concept of buckling behavior of the columns along with eigen modes				
V	Discuss the equilibrium and compatibility conditions for two-dimensional and three- dimensional elastic bodies				

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	To understand the basics	CLO 1	Calculate the stress strain relations in conjunction
	of material properties,		with elasticity and material properties
	stress and strain.	CLO 2	Describe the resistance and deformation in members
			which are subjected to axial, flexural and torsion
			loads.
		CLO 3	Discuss thermal explanations in solid bars and
			induced thermal stresses
CO 2	To apply knowledge of	CLO 4	Solve for bending and shear parameters of beams
	various kinds of beams		under loading conditions
	for engineering	CLO 5	Explain for deflections of beams under loading with
	applications.		various approaches.
		CLO 6	Determine the deflections of different beams under
			different loading conditions.
CO 3	Ability to identify,	CLO 7	Compute the bending stresses developed in various
	formulate, and solve		sections of beams of real field problems.
	engineering & real life problems.	CLO 8	Apply the bending equation on various sections
		CLO 9	Determine the shear stresses developed in various
			sections of beams
CO 4	Ability to design and	CLO 10	Calculate the stability of structural elements and
	conduct experiments, as		determine buckling loads.
	well as to analyze and interpret data	CLO 11	Discuss critical buckling load for column with
	interpret data		various loading and end conditions
		CLO 12	Apply theories and to predict the performance of
			bars under axial loading including buckling.
		CLO 13	Understand the theory of beam column & determine
			buckling loads on it.
CO 5	Ability to design a	CLO 14	Solve the principal stress problems by graphical
	component to meet		methods.
	realistic constraints of	CLO 15	Explain the stress transformation and concept of
	safety.		principle plane and principle stresses
	5	CLO 16	Evaluate principal stresses, strains and apply the
			concept of failure theories for design
		CLO 17	Acquire knowledge to solve real time problems in
			Aircraft structure subjected loading conditions

CLO	CLO's	At the end of the course, the student will have	PO's	Strength of
Code		the ability to:	Mapped	
AAEB04.01	CLO 1	with elasticity and material properties	PO1	5
		Describe the resistance and deformation in		2
AAEB04.02	CLO 2	members which are subjected to axial, flexural and	PO1	
		torsion loads.		
AAEB04.03	CLO 3	Discuss thermal explanations in solid bars and induced thermal stresses	PO2	3
		Solve for bending and shear parameters of beams	DOG	3
AAEB04.04	CLO 4	under loading conditions	PO2	
AAEB04.05	CLO 5	Explain for deflections of beams under loading with various approaches.	PO1	2
AAEB04.06	CLO 6	Determine the deflections of different beams under	PO12	1
		different loading conditions.		2
AAEB04.07	CLO 7	sections of beams of real field problems.	PO3	2
AAEB04.08	CLO 8	Apply the bending equation on various sections	PO2	2
AAEB04.09	CLO 9	Determine the shear stresses developed in various	PO4	1
	020 /	sections of beams	101	
AAEB04.10	CLO 10	Calculate the stability of structural elements and determine buckling loads.	PO4	3
		Discuss critical buckling load for column with		3
AAEB04.11	CLO 11	various loading and end conditions	PO1	
ΔΔΕΒ 0/112	CLO 12	Apply theories and to predict the performance of	PO3	2
711LD04.12	CLO 12	bars under axial loading including buckling.	105	
AAEB04.13	CLO 13	Understand the theory of beam column & determine buckling loads on it	PO1	1
		Solve the principal stress problems by graphical		3
AAEB04.14	CLO 14	methods.	PO4	5
A A E D 04 15	CL O 15	Explain the stress transformation and concept of	DO1	1
AAEBU4.13	CL0 15	principle plane and principle stresses	PUI	
A A FR0/ 16	CLO 16	Evaluate principal stresses, strains and apply the	PO1	2
AALD04.10		concept of failure theories for design	rui	
AAEB04.17	CLO 17	Acquire knowledge to solve real time problems in Aircraft structure subjected loading conditions	PO12	2
		Anoran subcure subjected toaunig conditions		

X. COURSE LEARNING OUTCOMES (CLOs):

3 = High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course		P	Program (Outcomes (Program Specific Outcome			
(COs)	PO 1	PO 2	PO 3	PO 4	PO 12	PSO1	PSO2	PSO3
CO 1	3	3				2	1	
CO 2	2	3				1	2	
CO 3	2	3			1	2	1	
CO 4	2	2		1	1	2	2	2
CO 5	2		3	3	2	2		3

Course Learning	Program Outcomes (POs)					Program Specific Outcomes (PSOs)										
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	3													2		
CLO 2	2														1	
CLO 3		3												2		
CLO 4		3												3		
CLO 5	2												1			
CLO 6												1		2		
CLO 7			2												1	
CLO 8		2											1			
CLO 9				1										2		
CLO 10				3										2		
CLO 11	3												2			
CLO 12			2												2	
CLO 13	1												2			
CLO 14				3										2		
CLO 15	1												1			
CLO 16	2														3	
CLO 17												2	2			

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

3 = High; 2 = Medium; 1 = Low

XIII. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO 1, PO2, PO3, PO4,PO12,PSO1, PSO2,PSO3	SEE Exams	PO 1, PO2, PO3, PO4, PO12, PSO1, PSO2,PSO3	Assignments	PO 3, PO 12, PSO2, PSO3	Seminars	PO 1
Laboratory Practices	PO4	Student Viva	PO12	Mini Project	-	Certification	-
Term Paper	-						

XIV. ASSESSMENT METHODOLOGIES-INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

MODULE-I	INTRODUCTION					
Properties of En module, working in shafts, concept	gineering materials, Stresses and strains, Hooke's law, elastic constant, relation between stress, factor of safety, poisons ratio, bars of varying cross section; Thermal stresses. Torsion of Strain energy					
MODULE- II	FORCES, DEFECTIONS IN BEAMS					
Shear force and b and uniform vary	bending moment diagrams for different types of beams with point load, uniform distributed load ing load.					
Deflection of be superposition.	ams by Double integration method, Macaulay's method, moment area method, Principle of					
MODULE- III	STRESSES IN BEAMS					
Bending stresses uniform strength.	and Shear stress variation in beams of symmetric and un-symmetric sections, Beams of					
Flexural stresses: C, angle section	Bending equations, calculation of bending stresses for different sections of beams like I, L, T,					
MODULE- IV	COLUMNS					
Columns, types values and Eigen	of columns, Euler's formula instability of columns, Rakine's and Jonson's formula, Eigen modes, concept of beam-column.					
MODULE- V	THEORY OF ELASTISITY					
Equilibrium and compatibility conditions and constitute relations for elastic solid and plane: generalized plane strain cases Airy's stress function Stress on inclined planes, stress transformations determination of principal stresses and strains by analytical method and graphical method - Mohr's circles and its constructions						
Text Books:						
 R. K Bansal, " B C Punmia, " T. H. G. Me Edition, 2012 	Strength of Materials", Laxmi publications, 5 th Edition, 2012. Mechanics of Materials", Laxmi publications (P) Ltd, 2006. Egson, "Aircraft Structures for Engineering Students", Butterworth-Heinemann Ltd, 5 th					
Reference Books	s:					
 Dym, C. L, Sh Stephen Timo 3rd Edition, 20 	aames, I. H, "Solid Mechanics", McGraw Hill, Kogakusha, Tokyo, 7 th Edition, 2007. shenko, "Strength of Materials", Vol I & II, CBS Publishers and Distributors,)04.					
 R. K. Rajput, "Strength of Materials", S. Chand and Co., 1st Edition, 1999. Timoshenko, S, Young, D. H. "Elements of Strength of Materials", T. Van Nostrand Co. Inc., Princeton N.J, 4th Edition, 1977. 						
5. Gere, Timoshenko, "Mechanics of Materials", McGraw Hill, 3 rd Edition, 1993.						

XVI. COURSE PLAN: The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning	Reference
		Outcomes (CLOs)	
1-3	Mechanical properties of engineering materials, Hooke's law, derivation of relation between three elastic constants	CLO 1	T1:1.1-1.6
4	Derivation of Bars of varying cross-section, explaining the concept factor of safety applied to various problems	CLO 1	T1:1.10
5	Explanation of Concept of thermal stresses, problems on thermal stresses	CLO 2	T1:1.14
6	Derivation of Torsion in shafts. Different Problems on torsion of shafts	CLO 2	T1:1.14
7	Explanation of strain energy concept for different structures and derivation of strain energy equation.	CLO 2	T1:4.1-4.6

Lecture	Topics to be covered		Reference
No			
		(CLOs)	
8-9	Problems on design of bars, problems on three elastic constants	CLO 3	T1:1.17
10	Explaining different type of beams under various loads and also the	CLO 3	T1:6.1-6.5
11	concept of shear force and bending moment.		R1:4.1-4.10
11	Problems on shear force and bending moment diagram of cantilever	CLO 4	T1:6.6-6.9 P1:5.1.5.6
12	Problems on shear force and bending moment diagram of SSB beams	CLO4	T1:6 10-6 12
12	subjected to point load, udl, uvl.	CLO I	11.0.10 0.12
13	Problems on shear force and bending moment diagram of SSB beams subjected to point load, udl, uvl.	CLO 5	T1:6.10-6.12
14	Problems on shear force and bending moment diagram of overhanging beams subjected to point load, udl, uvl.	CLO 5	T1:7.1-7.3
15-16	Assumptions of pure bending, derivation of deflection of beams. Problems on deflection on beams by double integration method.	CLO 6	T1:7.1-7.3 R1:8.2-8.9
17-18	Problems on double integration method for various beams like cantilever, simply supported beam under various loading conditions.	CLO 6	T1:12.1-12.3
19	Problems on moment area method for various beams like cantilever, simply supported beam under various loading conditions.	CLO 7	T1:13.1-13.5
20-22	Concept of principal of superposition and application on various problems.	CLO 8	T1:7.4-7.5
23-24	Explanation of pure bending and derivation of equation of bending stresses	CLO 8	T1:7.4-7.5 R3:8.5-8 10
24-26	Concept of shear stresses and its variation on beams of symmetric sections	CLO 8	T1:8.1-8.3
27	Shear stresses variations on unsymmetrical sections.	CLO 9	T1:8.1-8.3
28-30	Problems on shear stresses and for symmetrical and unsymmetrical sections	CLO 9	T1:8.1-8.3
30	Derivation of beam of uniform strength and problems on it.	CLO 9	T1:7.1-7.3
31-32	Concept of flexural stress and derivation of bending equation.	CLO 9	T1:19.1-19.3
33-35	Calculation of bending stresses for different cross sections.	CLO 10	T1:19.1-19.3
36	Explaining about different types of columns and their applications	CLO 11	T1:19.3
37-39	Assumptions for Euler's formula of instability of columns	CLO 11	T1:19.3
40-41	Derivation of Euler's formula for buckling of column	CLO 12	T1:19.4-19.6
42-44	Problems on Euler's formula of buckling for long and intermediate columns.	CLO 12	T1:19.6-19.9 R2: 9.1-9.10
45-47	Explanation of short columns and their applications.	CLO 13	T1:19.11 R2: 10.1-10.5
48-50	Derivation of Rankine's short column formula for short column crushing load.	CLO 13	T1:19.11 R3: 5.5-5.12
50	Derivation of Jonson's short column formula for short column crushing load	CLO 14	T1:19.13-
51-52	Concept of analysis of beam-column and its applications. Problems on beam columns.	CLO 14	T1:19.8
53-54	Explaining the stresses acting on a 3dimensional elastic body and deriving the stress equations.	CLO 15	T3:1.1-1.6
55	Derivation of compatibility equations for 3dimensional elastic body	CLO 15	T3:1.10-
56	Problems on equilibrium and compatibility equations	CLO 15	T3:1.16
57-58	Concept of Airy's stress function for 3Dimensional elastic body and application on problems	CLO 16	T3:2.1-2.2
59	Explanation of plane stresses and plane strains by analytical methods and graphical methods	CLO 16	T3:1.14
60	Problems on principal stresses and strains using various methods.	CLO 16	T3:1.16

XVII. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S no	Description	Proposed actions	Relevance with pos	Relevance with PSO's
1	Shear force and Bending moment for inclined loading conditions on various beams.	Guest Lecture/Seminar	PO1,PO2,PO4	PSO 2
2	Deflection of beams by using conjugate beam method.	Seminars	PO 5	PSO 2, PSO 3
3	Concept of combined bending and torsion on shafts.	Seminars	PO 3	PSO 1, PSO 3

Prepared By: Mr. G S D Madhav Assistant Professor

HOD, AE