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CO COURSE OUTCOME

CO 1
Understand the basics of material properties, stress and 

strain.

CO 2
Apply knowledge of various kinds of beams for 

engineering applications.

CO 3
Ability to identify, formulate, and solve engineering & 

real life problems.

CO 4
Ability to design and conduct experiments, as well as to 

analyze and interpret data

CO 5
Ability to design a component to meet desired needs 

within realistic constraints of safety.



MODULE-I

Introduction to Stresses and Strains
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CLOs Course Learning Outcome

CLO 1
Calculate the stress strain relations in conjunction 

with elasticity and material properties

CLO 2

Describe the resistance and deformation in 

members which are subjected to axial, flexural and 

torsion loads.

CLO 3
Discuss thermal explanations in solid bars and 

induced thermal stresses



 Solid mechanics is the branch of mechanics that 
studies the behavior of solid materials.

 Motion and deformation of material under action of

• Force

• Temperature change

• Phase change

• Other external or internal agents

 These changes lead us to some properties that are 
called Mechanical properties

INTRODUCTION
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MECHANICAL PROPERTIES

• Some of the Mechanical Properties

• Ductility

• Hardness

• Impact resistance

• Fracture toughness

• Elasticity

• Fatigue strength

• Endurance limit

• Creep resistance

• Strength of material
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MECHANICAL PROPERTIES

• Ductility: ductility is a solid material's ability to deform under
tensile stress.

• Hardness of a material may refer to resistance to bending,
scratching, abrasion or cutting.

• Impact resistance is the ability of a material to withstand a high
force or shock applied to it over a short period of time.

• Plasticity is ability of a material to deform permanently by the
application of force.
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MECHANICAL PROPERTIES

• Fracture toughness is a property which describes the ability of a material
containing a crack to resist fracture

• Elasticity is the tendency of solid materials to return to their original
shape after being deformed

• Endurance strength/ Fatigue strength: The highest stress that a material
can withstand for a given number of cycles without breaking —called also
endurance strength

• Endurance limit: In fatigue testing, the maximum stress which can be applied
to a material for an infinite number of stress cycles without resulting in failure
of the material is called Endurance limit

• Creep Resistance: It’s the ability of a material not to deform permanently or
slowly under the influence of Mechanical Stress.
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STRESS ANDSTRENGTH

• Stress in a material: In solid mechanics, stress is
a physical quantity that express the internal
force per unit area that neighboring particles of
a continuous material exert on each other.

• Strength of material: it is the measurement in
engineering of the capacity of metal, wood,
concrete, and other materials to withstand stress
and strain.

• Strain: It is the deformation of material due to
stress
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STRENGTH OFMATERIAL

• Different strengths are

• Yield strength/ Tensile strength

• Ultimate Tensile strength

• Rupture strength

• Compressive strength

• Impact strength
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Stress strain Curve of MildIron
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Direct Stress (σ)

When a force is applied to an elastic body, the body deforms. 
The way in which the body deforms depends upon the type of 
force applied to it.

Types of Stresses & Strains

Compressive Stress due to compressive force
A Compression force makes the body shorter.

Tensile Stress due to tensile force
A tensile force makes the body longer
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• Resistance offered by the material per unit cross- sectional
area is called STRESS

• Tensile and compressive forces are called DIRECT FORCES

• Stress is the force per unit area upon which it acts.

A

F

Area

Force
Stress   2/ mN or Pascal (Pa) 
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LONGITUDINAL STRAIN

In each case, a force ‘F’ produces a deformation ‘x’ . In
engineering, we usually change this force into stress and the
deformation into strain and we define these as follows:

• Strain is the deformation per unit of the original length.

Strain, ε = ΔL/L = Change in length/ Original length
(ε is called as Epsilon)

• Strain has no unit’s since it is a ratio of length to length

L DL
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Hooke’s law

Below the yield stress

Stress α Strain (ie) σ α ε

σ = E ε

Where E is a constant called as 

Young’s Modulus or Modulus 

of Elasticity
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• Hooke’s Law:-

Up to elastic limit, Stress is proportional to strain

  

 =E ; where E=Young’s  modulus

=P/A and  =  / L

P/A = E ( / L)     =PL /AE

E
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Stress-Strain diagram
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OA: Initial region which is linear and proportional

Slope of OA is called modulus of elasticity

BC: Considerable elongation occurs with no noticeable increase in stress (yielding)

CD: Strain hardening – changes in crystalline structure (increased resistance to 
further deformation)

DE: Further stretching leads to reduction in the applied load and fracture 

OABCE’: True stress-strain curve

Stress-strain diagram for a typical structural 
steel in tension (not to scale)
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Stress (σ) – strain (ε) diagrams
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 The stress to which the material may be safely subjected in the course
of ordinary use. Also called as Allowable Load or Allowable stress

 Max load that a structural member/machine component will be allowed
to carry under normal conditions of utilization is considerably smaller
than the ultimate load

 This smaller load = Allowable load / Working load / Design load

 Only a fraction of ultimate load capacity of the member is utilised when
allowable load is applied

 The remaining portion of the load-carrying capacity of the member is
kept in reserve to assure its safe performance

Working stress
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Lateral strain
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Poisson’s ratio
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 It is the unit change in volume due to a
deformation. It is an important measure of
deformation.

Volumetric strain

Consider a rectangular solid of sides x, y and z
under the action of principal stresses σ1 , σ2 ,
σ3 respectively.
Then ε1 , ε2 , and ε3 are the corresponding
linear strains, than the dimensions of the
rectangle and it becomes
( x + ε1 . x ); ( y + ε2 . y ); ( z + ε3 . z )
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Torsion

• Torsion :It is the twisting of an object due to an applied
torque (twisting moment)is expressed in N·m

• 𝜏 =𝑇𝑟𝐽

• T = is the applied torque or moment of torsion in Nm

• 𝜏 =is the maximum shear stress at the outer surface

• J= Polar moment of Inertia
• r= is the distance between the rotational axis and the 

farthest point
in the section (at the outer surface).

• l = is the length of the object

• φ= is the angle of twist in radians.

• G= Modulous of Rigidity
25



• The angular frequency can be calculated with the  
following formula:

• The torque carried by the shaft is related to the
power by the following equation:
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MODULE-II

Forces and deflections in Beams

27



28

CLOs Course Learning Outcome

CLO 4
Solve for bending and shear parameters of beams 

under loading conditions

CLO 5
Explain for deflections of beams under loading with 

various approaches.

CLO 6
Determine the deflections of different beams under 

different loading conditions.



 Forces that act on a Body can be divided into
two Primary types: applied and reactive.

 In common Engineering usage, applied forces are forces that
act directly on a structure like, dead, live load etc.)

 Reactive forces are forces generated by the action of one
body on another and hence typically occur at connections or
supports.

 The existence of reactive forces follows from Newton’s
third law, which state that to every action, there is an
equal and opposite reaction.

APPLIED AND REACTIVE FORCES
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SUPPORTS

• To bear or hold up (a load, mass, structure, part, etc.); serve
as a foundation or base for any structure.
• To sustain or withstand (weight, pressure, strain, etc.) without
giving way

• It is a aid or assistance to any structure by preserve its load

• Supports are used to connect structures to the ground or other
bodies in order to restrict (confine) their movements under the
applied loads.

• The loads tend to move the structures, but supports prevent the
movements by exerting opposing forces, or reactions, to neutralize
the effects of loads thereby keeping the structures in equilibrium.
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TYPES OF SUPPORTS

 Supports are grouped into three categories,
depending on the number of reactions (1,2,or3) they
exert on the structures.

1) Roller support

2) Hinge support

3) fixed support
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ROLLER SUPPORT

 Roller supports are free to rotate and translate
along the surface upon which the roller rests.

 The surface can be horizontal, vertical, or sloped at
any angle.

 The resulting reaction force is always a single

force that is perpendicular to, and away from,
the surface
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Restrains the structure from moving in one or two perpendicular directions.

ROLLER SUPPORT
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ROLLER SUPPORT
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ROLLER SUPPORT
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HINGE SUPPORT

 A Hinge support can resist both vertical and
horizontal forces but not a moment. They will allow
the structural member to rotate, but not to translate
in any direction

 Pin or hinge support is used when we need to
prevent the structure from moving or restrain its
translational degrees of freedom.
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 A hinge is a type of bearing that connects two solid
objects, typically allowing only a limited angle of
rotation between them. Two objects connected by
an ideal hinge rotate relative to each other about a
fixed axis of rotation.

HINGE SUPPORT
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HINGE SUPPORT
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HINGE SUPPORT
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HINGE SUPPORT
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HINGE SUPPORT
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 Fixed supports can resist vertical and horizontal forces as well
as a moment. Since they restrain both rotation and
translation, they are also known as rigid supports.

FIXED SUPPORT
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FIXED SUPPORT
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 A beam is a structural member (horizontal) that is design
to support the applied load (vertical). It resists the applied
loading by a combination of internal transverse shear force
and bending moment.

 It is perhaps the most important and widely used structural
members and can be classified according to its support
conditions.

BEAM
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 A beam is a structural member (horizontal) that is design
to support the applied load (vertical). It resists the applied
loading by a combination of internal transverse shear force
and bending moment.

 It is perhaps the most important and widely used structural
members and can be classified according to its support
conditions.

BEAM

 In buildings majority of loads are vertical and majority of
useable surfaces are horizontal

 Action of beams involves combination of bending
and shear
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TYPES OF BEAMS

The following are the important types of beams:

1. Cantilever

2. Simply supported

3. Overhanging

4. Fixed beams

5. Continuous beam
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CANTILEVER BEAM

 A beam which is fixed at one end and free at 

the other end is known as cantilever  beam.
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CANTILEVER BEAM
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:

SIMPLY SUPPORTED BEAMS

 A beam supported or resting freely on the  supports at 
its both ends,
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A beam whose both ends are fixed and is restrained
against rotation and vertical movement. Also known
as built-in beam or encastred beam.

FIXED BEAMS
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OVERHANGING BEAM

 If the end portion of a beam is extended  
outside the supports.
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CONTINUOUS BEAMS

A beam which is provided with more than  two
supports.
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TYPES OF LOADS

 Concentrated load assumed to act at a point and
immediately introduce an oversimplification since all
practical loading system must be applied over a finite area.
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 Point loads, from concentrated loads or other beams

 Distributed loads, from anything continuous

Distributed Load
Point Load

Reactions

LOADS ON BEAMS
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UNIFORMLY DISTRIBUTED LOAD

55



UNIFORMLY VARIYING LOAD
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 The loads (& reactions) bend the beam,  and try to 
shear through it

Bending

Shear

WHAT THE LOADS DO
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e

e

e

Bending

C

T

Shear

WHAT THE LOADS DO
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 In architectural structures, bending  moment more
important increases as span increases.

 Short span structures with heavy loads, shear
dominant

 e.g. pin connecting engine parts

 Beams in building designed for bending checked for
shear

DESIGNING BEAMS
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 First, find ALL the forces (loads and 
reactions)

 Make the beam into a free body (cut it out
and artificially support it)

 Find the reactions, using the conditions of
equilibrium

HOW WE CALCULATE THE EFFECTS
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INTERNAL REACTIONS IN BEAMS

L

 At any cut in a beam, there are 3 possible  internal 
reactions required for equilibrium:

normal force,

shear force,

bending moment.

P

a b
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INTERNAL REACTIONS IN BEAMS

Pb/L

x

Left Side of Cut

V

M

N

Positive Directions  
Shown!!!

 At any cut in a beam, there are 3 possible  internal 
reactions required for equilibrium:

normal force,

shear force,

bending moment.
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Pa/L

L - x

Positive Directions  
Shown!!!

Right Side of Cut

INTERNAL REACTIONS IN BEAMS

 At any cut in a beam, there are 3 possible  internal 
reactions required for equilibrium:

normal force,

shear force,

bending moment.
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SHEAR FORCES, BENDING MOMENTS - SIGN
CONVENTIONS

left section right section
Shear forces:

positive shear:

Negative shear:
Bending moments:

Negative
moment

positive
moment

C.W

ACW
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Sagging bending moment is POSITIVE (happy)

+

Hogging bending moment is NEGATIVE  

(sad)

-

SIGN CONVECTIONS
BENDING MOMENT DIAGRAMS
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 Consider cantilever beam with point load on end

W

MR = -WL

vertical reaction, R = -W  
and moment reaction MR = - WL

L

R =- W

 Use the free body idea to isolate part of the beam

 Add in forces required for equilibrium

CANTILEVER BEAM POINT LOAD AT END
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Shear V =- W constant along length

Take section anywhere at distance, x from end

Add in forces, V = -W and moment M = - Wx

V = -W

Bending Moment BM = -W.x

when x = L
when x = 0

BM = -WL
BM = 0

Bending Moment Diagram

BM = WL

Shear Force Diagram

BM = -Wx

x

W

V = -W

CANTILEVER BEAM POINT LOAD AT END

M=Wx
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w /unit length

vertical reaction, R = W = wL

and moment reaction MR = -WL/2 = - wL2/2

L/2 L/2

R = W = wL

For maximum shear V and 
bending moment BM
Total Load = W L

MR = -WL/2
= -wL2/2

UNIFORMLY DISTRIBUTED LOAD FOR 
CANTILEVER BEAM

vertical reaction, R = W = wL

and moment reaction MR = -WL/2 = - wL2/2vertical reaction, R = W = wL

and moment reaction MR = -WL/2 = - wL2/2

68



Shear  when 
x = L  when 
x = 0

V = wx
V = W = wL  
V = 0

Take section anywhere at distance, x from end

Add in forces, V = w.x and moment M = - wx.x/2

Bending Moment BM = w.x2/2
when x = L  
when x = 0

BM = wL2/2 = WL/2  
BM = 0
(parabolic)

V = wL
= W

Shear Force Diagram

wx

X/2 X/2

For distributed V and BM

V = wx

M = -wx2/2

Bending Moment Diagram

BM = wL2/2
= WL/2

BM = wx2 /2

18/39

EXAMPLE-2
CANTILEVER BEAM FOR UNIFORMLY DISTRIBUTED LOAD
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BEAM DEFLECTION

Recall: THE ENGINEERING BEAM THEORY



y


M E


I R

y

x

NA
A B

A’ B’

If deformation is small (i.e. slope is “flat”):

Moment-Curvature Equation

v (Deflection)
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Methods to find slope  and deflection

 Double integration method

 Moment area method

 Macaulay’s method
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Since,
d2 y =    1

2dx EI
Curvature

 
1dy

dx EI
 M dx C1

Slope

1

EI y  1  M dx dx  C  dx C 2
Deflection

Where C1 and C2 are found using the boundaryconditions.

Curvature Slope Deflection

R dy 

dx

y

Double integration method
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Double integration method

Slope Deflection

B

L

L/2

A

C

L/2

yc

Slope =
dy 

dx

A B

2WL
   

16EI

 

Deflection = yc

WL3

48EI

Slope Deflection

A C

yc

L

x w/Unit length

B Slope =
dy 

dx

A B

2WL
   

24EI

 

Deflection = yc

5 WL3

384 EI

Simple supported
W

Uniform distributed load
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Macaulay’s method

 The procedure of finding slope and deflection for
simply supported beam with an eccentric load is very
laborious.

 Macaulay’s method helps to simplify the calculations
to find the deflection of beams subjected to point
loads.
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9 - 11

Moment-Area Theorems

D

C xC

xD M
 d  

EI
dx

xC

xD M
D  C   EI

dx

• Consider a beam subjected to arbitrary  

loading,

d d2 y M
 

dx dx2 EI

• First Moment-Area Theorem:

area under BM diagram between

C and D.

dx

R d

CD  Rd  dx
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9 - 12

Moment-Area Theorems
• Tangents to the elastic curve at P and P’  

intercept a segment of  length dt on the vertical  

through C.

dt  xd  x
M

EI
dx

xC xC

xD xD

M 1 1
tC D   x 

EI 
dx 

EI 
 xMdx 

EI 
A x



 A= total area of  BM diagram between C & D

x = Distance of  CG of  BM diagram from C

• Second Moment-Area Theorem:

The tangential deviation of  C with respect to  

D is equal to the first moment with respect to  

a vertical axis through C of  the area under  the 

BM diagram between C and D.
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Ken Youssefi Engineering 10, SJSU 15

An Exercise- Moment of Inertia – Comparison

Load

2 x 8 beam

Maximum distance of  1 inch 

to  the centroid

I1

I2 > I1 , orientation 2 deflects less

1

Maximum distance

of   4 inch to the

centroid

I2

Load 2

2 x 8 beam
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MODULE-III

Stresses in Beams
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CLOs Course Learning Outcome

CLO 7
Compute the bending stresses developed in various 

sections of beams of real field problems.

CLO 8 Apply the bending equation on various sections

CLO 9
Determine the shear stresses developed in various 

sections of beams



Shear force

Any force which tries to shear-off the  
member, is termed as shear force.

 Shear force is an unbalanced force,
parallel to the cross-section, mostly
vertical, but not always, either the right or  
left of the section.
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Shear Stresses

 To resist the shear force, the element will develop
the resisting stresses, Which is known as Shear
Stresses.

= =
Shear force

Cross sectional  

area

S

A
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Example

 For the given figure if we want to

calculate the

 Then it will be

Let shear force be S

=S/(bxd)
d

b

S
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Shear Stresses In Beams

 Shear stresses are usually maximum at the neutral axis
of a beam (always if the thickness is constant or if
thickness at neutral axis is minimum for the cross
section, such as for I-beam or T-beam ), but zero at the
top and bottom of the cross section as normal stresses
are max/min.

NA
NA

NA
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v

n

V

z

m

O

 When a beam is subjected to a loading, both bending moments,
M, and shear forces, V, act on the cross section. Let us consider a
beam of rectangular cross section. We can reasonably assume that
the shear stresses τ act parallel to the shear force V.

b

h
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 Shear stresses on one side of an element are  accompanied by 
shear stresses of equal  magnitude acting on perpendicular 
faces of  an element. Thus, there will be horizontal  shear 
stresses between horizontal layers of  the beam, as well as, 
Vertical shear  stresses on the vertical cross section.

m

n
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Horizontal Shear Stress

 Horizontal shear stress occurs due to the variation in
bending moment along the length of beam.

 Let us assume two sections PP' and QQ', which are 'dx'
distance apart, carrying bending moment and shear
forces 'M and S' and 'M+ ∆M and S+ ∆S‘ respectively as
shown in Fig.
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 Let us consider section PP' and QQ' as previous.

 Let us determine magnitude of horizontal shear stress at

level 'AB' which is at distance YI form neutral axis.

 The section above AA' can be assumed to be made up of

numbers of elemental cylinder of area 'dA'. Then total

unbalance horizontal force at level of' AS' shall be the

summation of unbalanced horizontalforces

DERIVATION OF FORMULA: SHEAR  STRESS 
DISTRIBUTION ACROSS BEAM  SECTION
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xya
I

dM

I

dM

I

_

FM

 .y .dA

yy1  

yy1
xy.dA  X

yy1 dM

y1
FH 

y

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 Here, y = distance of centroid of area above AB from
neutral axis, And a= area of section above AB.

 This horizontal shear shall be resisted by shear area ABA'B‘

parallel to the Neutral plane. The horizontal resisting area

here distance of centroid of area above AB from neutral

axis and a=area of section above AB.

 Ah = AB x AA’=b xdx

where ‘b’is width of section at AB.
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 We know that shear force is defined as S=dM/dx

 Therefore, horizontal shear stress acting at any level
across the cross sections.

TH= Say / Ib

dx I b

ay
I 

b.dx

dM

x
A

F
horizontalshearforce

shearres i s t ing

_

H

_

H

M
H


dM

x
a y



 

Horizontal shears t re s s
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SHEAR STRESS DISTRIBUTION DIAGRAM

2.Circular section

maxNA

maxNA

2.Rectangle section
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SIMPLE BENDING OR PURE  BENDING

 When some external force acts on a beam, the shear
force and bending moments are set up at all the
sections of the beam

 Due to shear force and bending moment, the  beam 
undergoes deformation. The material of the  beam offers 
resistance to deformation

 Stresses introduced by bending moment are  
known as bending stresses

 Bending stresses are indirect normal stresses
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SIMPLE BENDING OR PURE  BENDING

 When a length of a beam is subjected to zero  shear force 
and constant bending moment, then  that length of beam 
is subjected to pure bending  or simple pending.

 The stress set up in that length of the beam due simple 
bending stresses to pure bending is called
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SIMPLE BENDING OR PURE  BENDING

 Consider a simply supported beam with over  hanging 
portions of equal lengths. Suppose the  beam is 
subjected to equal loads of intensity W at  either ends of 
the over hanging portion

 In the portion of beam of length l, the beam is  
subjected to constant bending moment of  intensity w 
x a and shear force in this portion is  zero

 Hence the portion AB is said to be subjected to  pure 
bending or simple bending
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ASSUMPTIONS FOR THE  THEORY OF PURE 
BENDING

 The material of the beam is isotropic and

homogeneous. Ie of same density and elastic 

properties throughout

 The beam is initially straight and unstressed and  all the 

longitudinal filaments bend into a circular  arc with a

common centre of curvature

 The elastic limit is nowhere exceeded during the  

bending

 Young's modulus for the material is the same in  tension 

and compression
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 The transverse sections which were plane before  
bending remain plane after bending also

 Radius of curvature is large compared to the  
dimensions of the cross section of the beam

 There is no resultant force perpendicular to any  
cross section

 All the layers of the beam are free to elongate  and 
contract, independently of the layer, above or  below
it.

ASSUMPTIONS FOR THE THEORY OF PURE 
BENDING
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THEORY OF SIMPLE  BENDING

 Consider a beam subjected to simple bending.  Consider 
an infinitesimal element of length dx which is a part of 
this beam. Consider two transverse sections AB and CD 
which are normal to the axis of the beam and parallel 
to each other.

 Due to the bending action the element ABCD is  
deformed to A’B’C’D’ (concave curve).

 The layers of the beam are not of the same  length 
before bending and after bending .
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THEORY OF SIMPLE  BENDING

 The layer AC is shortened to A’C’. Hence it is  

subjected to compressive stress

 The layer BD is elongated to B’D’. Hence it is  

subjected to tensile stresses.

 Hence the amount of shortening decrease from  the top 

layer towards bottom and the amount of  elongation 

decreases from the bottom layer  towards top

 Therefore there is a layer in between which neither

elongates nor shortens. This layer is called neutral

layer .
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THEORY OF SIMPLE  BENDING

 The filaments/ fibers of the material are  subjected to 
neither compression nor to tension

 The line of intersection of the neutral layer with  
transverse section is called neutral axis (N-N).

 Hence the theory of pure bending states that the  
amount by which a layer in a beam subjected to  pure
bending, increases or decreases in length,  depends upon 
the position of the layer w.r.t  neutral axis N-N.

100



EXPRESSION FOR BENDING  STRESS

 Consider a beam subjected to simple bending.  Consider 
an infinitesimal element of length dx  which is a part of 
this beam. Consider two  transverse sections AB and CD 
which are normal  to the axis of the beam. Due to the 
bending action  the element ABCD is deformed to A’B’C’D’  
(concave curve).

 The lines B’A’ and D’C’ when extended meet at point O
(which is the centre of curvature for the circular arc
formed).

 Let R be the radius of curvature of the neutral axis.
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STRAIN VARIATION ALONG THE  DEPTH OF BEAM

 Consider a layer EF at a distance y from the  neutral axis. 
After bending this layer will be  deformed to E’F’.

 Strain developed= (E’F’-EF)/EF  

 EF=NN=dx=R x θ
E’F’= (R + y) x θ
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STRAIN VARIATION ALONG  THE DEPTH OF BEAM

 Strain developed eb= { (R + y) x θ - R x θ)}/ R x  θ=y/R

 STRESS VARIATION WITH DEPTH OF BEAM

 σ/E= y/R or σ= Ey/R or σ/y = E/R

 Hence σ varies linearly with y (distance from  neutral
axis)

 Therefore stress in any layer is directly  proportional to 
the distance of the layer from the  neutral layer
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 For a beam subjected to a pure bending moment,  the 
stresses generated on the neutral layer is  zero.

 Neutral axis is the line of intersection of neutral  layer 
with the transverse section

 Consider the cross section of a beam subjected  to pure 
bending. The stress at a distance y from

NEUTRAL AXIS

the neutral axis is given by σ/y

= E/R
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 σ= E x y/R;

 The force acting perpendicular to this section,  dF= E x y/R 
x dA, where dA is the cross sectional  area of the 
strip/layer considered.

 Pure bending theory is based on an assumption that
“There is no resultant force perpendicular to any cross
section”. Hence F=0;

 Hence, E/R x ∫ydA=0

=> ∫ydA= Moment of area of the entire cross section
w.r.t the neutral axis=0

NEUTRAL AXIS
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NEUTRAL AXIS

ntroidal axis gives the p

 Moment of area of any surface w.r.t the centroidal  axis 
is zero. Hence neutral axis and centroidal  axis for a 
beam subjected to simple bending are  the same.

 Neutral axis coincides with centrodial axis or the  ce
osition of neutral axis
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MOMENT OF RESISTANCE

 Due to the tensile and compressive stresses,  forces 
are exerted on the layers of a beam  subjected to 
simple bending

 These forces will have moment about the neutral axis.
The total moment of these forces about the neutral axis
is known as moment of resistance of that section

 We have seen that force on a layer of cross  sectional 
area dA at a distance y from the neutral  axis,

dF= (E x y x dA)/R

Moment of force dF about the neutral axis= dF x  y= (E x 
y x dA)/R x y= E/R x (y²dA)
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MOMENT OF RESISTANCE

 Hence the total moment of force about the neutral  
axis= Bending moment applied= ∫ E/R x (y²dA)=  E/R x 
Ixx; Ixx is the moment of area about the  neutral 
axis/centroidal axis.
Hence M=E/R x Ixx  Or

M/Ixx=E/R

 Hence M/Ixx=E/R = σb/y;σb is also known as  
flexural stress (Fb)

 Hence M/Ixx=E/R=Fb/y
 The above equation is known as bending  

equation
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CONDITION OF SIMPLE  BENDING & FLEXURAL
RIGIDITY

 Bending equation is applicable to a beam  subjected to 
pure/simple bending. Ie the bending  moment acting on 
the beam is constant and the  shear stress is zero

 However in practical applications, the bending  
moment varies from section to section and the  shear 
force is not zero

 But in the section where bending moment is
maximum, shear force (derivative of bending
moment) is zero

 Hence the bending equation is valid for the  section 
where bending moment is maximum
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CONDITION OF SIMPLE  BENDING & FLEXURAL
RIGIDITY

 Or in other words, the condition of simple  
bending may be satisfied at a section where  
bending moment is maximum.

 Therefore beams and structures are designed  using 
bending equation considering the section of  maximum 
bending moment

 Flexural rigidity/Flexural resistance of a beam:-

 For pure bending of uniform sections, beam will  
deflect into circular arcs and for this reason the  term 
circular bending is often used.
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CONDITION OF SIMPLE  BENDING & FLEXURAL
RIGIDITY

 The radius of curvature to which any beam is  bent by 
an applied moment M is given by R=EI/M

 Hence for a given bending moment, the radius of  
curvature is directly related to “EI”

 Since radius of curvature is a direct indication of  the 
degree of flexibility of the beam (larger the  value of R, 
less flexible the beam is, more rigid  the beam is), EI is 
known as flexural rigidity of  flexural stiffness of the
beam.

 The relative stiffnesses of beam sections can  then 
easily be compared by their EI value
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SECTIONAL MODULUS (Z)

 Section modulus is defined as the ratio of moment of 

area about the centroidal axis/neutral axis of a beam 

subjected to bending to the distance of outermost 

layer/fibre/filament from the centroidal axis

 Z= Ixx/ymax

 From the bending equation, M/Ixx= σbmax/ymax

Hence Ixx/ymax=M/ σbmax  M= 

σbmax X Z

 Higher the Z value for a section, the higher the  BM 

which it can withstand for a given maximum  stress
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VARIOUS SHAPES OR BEAM  SECTIONS

io
n

 1) For a Rectangular section  

Z=Ixx/ymax

Ixx=INA= bd³/12  

ymax= d/2

Z= bd²/6
 2) For a Rectangular hollow sect  

Ixx= 1/12 x (BD³/12 - bd³/12)  

Ymax = D/2

Z=(BD³ -bd³)/6D
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VARIOUS SHAPES OR BEAM  SECTIONS

 3) For a circular section of diameter D,

Ixx= πD^4/64  

ymax = D/2

Z= πD³/32

 4) For a hollow circular section of outer diameter  D 
and inner diameter d,

Ina= (πD^4 - d^4)/64  

ymax=D/2

Z= (πD^4 -d^4)/32D
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BENDING OF FLITCHED  BEAMS

 A beam made up of two or more different  materials 

assumed to be rigidly connected  together and behaving 

like a single piece is called  a flitched beam or a 

composite beam.

 Consider a wooden beam re-inforced by steel  

plates. Let

E1= Modulus of elasticity of steel plate  

E2= Modulus of elasticity of wooden beam  

M1= Moment of resistance of steel plate

M2= Moment of resistance of wooden beam
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BENDING OF FLITCHED  BEAMS

I1= Moment of inertia of steel plate about neutral  axis

I2= Moment of inertia of wooden beam about  
neutral axis.

The bending stresses can be calculated using two  
conditions.

 Strain developed on a layer at a particular  distance 
from the neutral axis is the same for  both the
materials

 Moment of resistance of composite beam is equal  to the 
sum of individual moment of resistance of  the members
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BENDING OF FLITCHED  BEAMS

e same distance y fro

 Let σ1 be the bending stress developed in steel  at a 
distance y from the neutral axis and σ2 be  the bending 
stress developed in wooden beam at  th m neutral
axis.
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BENDING OF FLITCHED  BEAMS

 Using condition-1:

σ1/E1= σ 2/E2;

σ1= σ 2 x (E1/E2) or 

σ1= σ2 x m; 

where m=  E1/E2 is the modular ratio between steel and  
wood

 Using condition-2:

M=M1 + M2;

M1= σ1x I1/y  M1= σ2x

I2/y
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BENDING OF FLITCHED  BEAMS

 Hence M= σ1x I1/y + σ2x I2/y  M= σ2/ y x 

(I2 + I1x σ1/ σ2)  M= σ2/y x (I2 + I1 x m)

 (I2 + I1 x m)= I = equivalent moment of inertia of  the cross
section;

 Hence M= σ2/y x I
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MODULE-IV
Columns
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CLOs Course Learning Outcome

CLO 10 Calculate the stability of structural elements and 

determine buckling loads.

CLO 11 Discuss critical buckling load for column with various 

loading and end conditions

CLO 12 Apply theories and to predict the performance of bars 

under axial loading including buckling.

CLO 13 Understand the theory of beam column & determine 

buckling loads on it.



What is a column?

 A structural member subjected to axial compressive

force is called a column.

 Normally, columns carry heavy compressive

loads.

 Columns are used in concrete and steel buildings.
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Real world examples
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Real world examples
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Types Of Columns

 Long

 Short (Strut)

 Intermediate
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Classification

 LONG COLUMN :

 When length of column is more as compared to its
c/s dimension, it is called long column.

Long Column  Le/rmin >50

Where,

Le = effective length of column

rmin = Minimum radius of gyration
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Real world example:

 Here in picture we can see long columns on front
of building in “The White house” Washington
D.C(USA).
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SHORT COLUMN :

 When length of column is less as  compared to its c/s 
dimension, it is called  Short column.
Short Column Le/rmin<50

Or,

Le/d < 15

 Crushing Load : The load at which short  column fails 
by crushing is called crushing  load.
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INTERMEDIATE COLUMN:

Column is intermediate when  4d < L < 30d and 30

< Le /r min < 100 or Critical  slenderness ratio.
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Before we move onward….

 Crippling Load (Pcr)

 Radius of gyration (r)

 Moment of inertia (I)

 Area (A)

 Effective Length (Le)

 Slenderness ratio (λ)

 Stronger Axis

 Weaker Axis
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Types of supports

 Roller type support (1)

 Pin type support (2)

 Fixed support (3)
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Effective Length (Le)

 The distance between points of two zero  moments.

 Depends upon the type of support  conditions.
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COLUMN END CONDITION &EFFECTIVE LENTH:

1. Both ends hinged. 

2. Both ends fixed.

3. One end fixed and other hinged.

4. One end fixed and other free.
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(L e) for differentsupport  conditions
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Slenderness ratio (λ)

 Slenderness ratio is the ratio of the  length of a 
column and the least radius  of gyration of its cross 
section. Often  denoted by lambda. It is used  
extensively for finding out the design  load as well 
as in classifying various  columns in 
short/intermediate/long.

 λ = le/rmin
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Radius of Gyration(r) , r = √(I/A) or I = Ar²

K=radius of gyration

I = Moment of Inertia (mm4)  

A = Area of Section (mm2)

Slenderness ratio,

Slenderness Ratio = effective length of  
column/Minimum radius of gyration

λ = le/rmin
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CRIPPLING LOAD OR  BUCKLING LOAD

 The load at which, long column starts  
buckling(bending) is called buckling load or  crippling
load.

 Buckling of column depends upon the  
following factors.

1. Amount of load.
2. Length of column
3. End condition of column
4. C/s dimensions of column
5. Material of column.
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 Euler’s Crippling Load,  PE = ∏²EI
/le²

 Where, E is Modulus of Elasticity  
(Mpa)

Euler’s Formula

(mm4)
I is MOI or 2nd Moment ofarea

Le is Effective length (mm)

Also known as Critical Buckling Load
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MODULE-V
Theory of Elasticity
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CLOs Course Learning Outcome

CLO 14 Solve the principal stress problems by graphical 

methods.

CLO 15 Explain the stress transformation and concept of 

principle plane and principle stresses

CLO 16 Evaluate principal stresses, strains and apply the 

concept of failure theories for design

CLO 17 Acquire  knowledge to solve real time problems in 

Aircraft structure subjected loading conditions



 The property of solid materials to deform under the
application of an external force and to regain their
original shape after the force is removed is referred to
as its elasticity.

 The external force applied on a specified area is
known as stress,while the amount of deformation is
called the strain.

ELASTICITY
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 It is the branch of Solid Mechanics which deals with

the stress and displacements in elastic solids

produced by external forces or changes in

temperature.

 The purpose of study is to check the sufficiency of the

strength, stiffness and stability of structural and

machine elements.
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IMPORTANT CONCEPT IN THEORY OF  

ELASTICITY

 External forces

 Stresses - (internal force)

 Deformations-strain and displacements
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There aretwo kinds of external forces thatact on
the  bodies

 Body forces
Gravitational forces  
Inertia forces(in
motion)

 Surface forces

Pressure(in water, 
atmosphere)  Contact forces

.
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Internal forces: produced by external force

Deformation: By deformation we mean the change of 

shape of a  body

 Strain components: completely define the deformation

condition  (or strain condition) at that point

 Displacement: The change of position, the displacement 

components in the x, y,  z axes are denoted by u, v, w

respectively.
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BASIC ASSUMPTIONS IN THEORY OF  ELASTICITY

 The body is continuous

 The body is perfectly elastic

 The body is homogeneous

 The body is isotropic

Example: polycrystalline ceramics and steel

wood and fiber reinforced composite

 The displacements and strains are small
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Many problems in elasticity may be treated by two
dimensional or plane theory of elasticity. The
purpose of application of elasticity is to analyze
the stress and displacements of elements within
in the elastic range. There are two general types of
problems involved

 Plane stress

 plane strain
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 Plane stress condition can be visualized as thin

plate with stresses acting along its plane. There

is no stress acting perpendicular to the plane and

(∂/∂z) components in equations are zero.
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 Plain strain can be idealized as long wire with stresses 

acting  perpendicular to its length. Therefore the strain or 

displacement  along the length is zero.

 Again(∂/∂z) components in equations are zero.
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 Example for plane stress

 Example for plain strain

150



Plane stress condition Plane strain condition
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APPLICATIONS OF THEORY OF ELASTICITY

 In designing mechanical parts

 Stress calculations on beams

 Stress concentration factor
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By using strength of materials we cant predict the
stress directly under a load or supports in a simple
beam where theory of elasticity is applied.

Generally factor of safety used for a mechanical
members is 3or 4.But in the design of precision
parts where strength to weight ratio is minimum
accuracy of stress values is more important.

Stresses and strains
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Stresses and strains

 In last lecture we looked at stresses were acting in a  
plane that was at right angles/parallel to the action 
of  force.

Tensile Stress Shear Stress
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Stresses and strains

Stresses are acting normal to the surface yet the
material failed in a different plane

Failure in shearCompressive load
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Principal stresses and  strains

 What are principal stresses.

 Planes that have no shear stress are called as 
principal  planes.

 Principal planes carry only normal stresses
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Stresses in oblique plane

 In real life stresses does not act in normal direction 
but  rather in inclined planes.

Normal Plane Oblique Plane
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Stresses in oblique plane


n

 t

Unit depth 2

n cos 

t 2
 


sin2

 
P

A
P =Axial Force  
A=Cross-sectional area  
perpendicular to force


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Stresses in oblique plane

 Member subjected to direct stress 
in one plane

 Member subjected to direct stress 

in two mutually  perpendicular

plane

 Member subjected to simple shear
stress.

 Member subjected to direct 
stress in two mutually 
perpendicular directions + simple
shear  stress

1 1

1 1

2

2









1

2

2

1








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Stresses in oblique plane

 Member subjected to direct stress in two
mutually  perpendicular directions + simple 
shear stress

n 
12 

12 cos2  sin2
2 2

t 
1

2

2 sin2  cos2
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Stresses in oblique plane

 Member subjected to direct stress in two
mutually  perpendicular directions + simple 
shear stress

 Position of principal planes

 Shear stress should be zero

t
 

1

2
2

tan2 
1 2

2 sin2  cos2  0
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Stresses in oblique plane

 Member subjected to direct stress in two mutually  
perpendicular directions + simple shear stress

 Position of principal planes

2
tan2 

1 2 2



12

2
sin2 

1 2  
2

 42

cos2 
1 2

1 2  
2

 42
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Stresses in oblique plane

 Member subjected to direct stress in two
mutually  perpendicular directions + simple 
shear stress

1 2

2

 

2
 

 



1 2 
2
 2Major principal Stress =

1 2

2


 

2










1 2 
2
 2

Minor principal Stress 
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Stresses in oblique plane

 Member subjected to direct stress in two
mutually  perpendicular directions + simple 
shear stress

 Max shear stress

d 1

d  2 

 2 sin2  cos2

 0

d

d
 t 0

tan2 
1

2

2
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Stresses in oblique plane

 Member subjected to direct stress in 
two mutually  perpendicular directions 
+ simple shear stress

 Max shear stress

tan2 
1

2

2

t
 

1

2

2 sin2  cos2

t max 2 1 2

1
   

2
 42

Evaluate the following equation at
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Stresses in oblique plane

 Member subjected to direct stress in one plane

 Member subjected to direct stress in two 
mutually  perpendicular plane

 Member subjected to simple shear stress.

 Member subjected to direct stress in two
mutually  perpendicular directions + simple 
shear stress
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Stresses in oblique plane

 Member subjected to direct stress in one plane

n 2 2
 

12 
12 cos2  sin2

t 
1

2

2 sin2  cos2

Stress in one direction and no 
shear stress

2  0  0

n

1 
 

1

2 2
cos2 1 2  cos2

t 
1

2
sin2
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Stresses in oblique plane

 Member subjected to direct stress in two mutually  
perpendicular plane

n 2 2
 

12 
12 cos2  sin2

t 
1

2

2 sin2  cos2

Stress in two direction and no shear stress  0

n 2 2
 

12 
12 cos2

t 
1

2

2 sin2
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Stresses in oblique plane

 Member subjected to simple shear stress.

n 2
 

1  2 
1

2

2 cos2  sin2

t 
1

2

2 sin2  cos2

No stress in axial direction but only 
shear stress

1   2  0

n   sin2

t   cos2
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