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Module: I 
   INTRODUCTION TO STRESSES & STRAINS

Syllabus    

Introduction, Stress, strain, mechanical properties of materials, Linear elasticity, Hooke’s Law 

and Poisson’s ratio, Stress-Strain relation - behaviour in tension for Mild steel, cast iron and non 

ferrous metals. Extension / Shortening of a bar, bars with cross sections varying in steps, bars 

with continuously varying cross sections (circular and rectangular), Elongation due to self 

weight, Principle of super position. 

 

 INTRODUCTION 

When an external force acts on a body, the body tends to undergo some deformation. Due to 

cohesion between the molecules, the body resists deformation. This resistance by which material 

of the body opposes the deformation is known as strength of material. Within a certain limit (i.e., 

in the elastic stage) the resistance offered by the material is proportional to the deformation 

brought out on the material by the external force. Also within this limit the resistance is equal to 

the external force (or applied load). But beyond the elastic stage, the resistance offered by the 

material is less than the applied load. In such a case, the deformation continues, until failure takes 

place. Within elastic stage, the resisting force equals applied load. This resisting force per unit 

area is called stress or intensity of stress. 

 Types of Loads 

In the mechanics of the deformable bodies, the following types of loads are commonly 

considered: 

 Dead loads—static in nature, such as the self-weight of the roof. 

 Live loads—fluctuating in nature, do not remain constant- such as a weight of a vehicle 

moving on a bridge. 

 Tensile loads. 

 Compressive loads. 

 Shearing loads. 

Depending on the nature of the forces mentioned, the stress can be called the tensile stress or the 

compressive stress. The tensile stress is induced when the applied force has pulling effect on the 

body as shown in Table 1.1. Generally, the tensile stress is considered positive. 
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The compressive stress is induced when the applied load has pushing effect towards a point. 

Generally, the compressive stress is considered negative. On the other hand, the shearing stress is 

induced when the applied load is parallel or tangent to the surface. 

 
Table 1.1 Description of load and corresponding stress 

 

 

 Classification of Materials 

From an engineering point of view, properties concerned with metals are: 

1. Elasticity 

2. Plasticity 

3. Brittleness 

4. Malleability 

5. Ductility 

Many of these properties are contrasting in nature so that a given metal cannot exhibit 

simultaneously all these properties. For example, mild steel exhibits the property of elasticity, 

copper possesses the property of ductility, wrought iron is malleable, lead is plastic and cast iron 

is brittle. 

Elastic Material 

II undergoes a deformation when subjected to an external loading such that the deformation 

disappears on the removal of the loading (rubber). 

Plastic Material 

It undergoes a continuous deformation during the period of loading and the deformation is 

permanent. It does not regain its original dimensions on the removal o\ the loading (aluminium). 

Rigid Material 

It does not undergo any deformation when subjected to an external loading (glass and cast iron). 

Malleability 

Materials ability to be hammered out into thin sheets, such as lead, is called malleability. 
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Brittle Materials 

They exhibit relatively small extensions to fracture such as glass and cast iron. There is little or 

no necking at fracture for brittle materials. 

 
 

 STRESS 
 

 Definition of Stress 

Stress is an internal resistance offered by a unit area of the material, from which a member is 

made, to an externally applied load. Alternatively, the force per unit area or intensity of the  

forces distributed over a given section is called the stress on that section. The resistance of 

material or the internal force acting on a unit area may act in any direction. 

 

Fig. 1.1: Stress 

Direct or normal stress G is calculated by using the following formula: 

 

 

 Units of Stress 

The unit of stress depends upon the unit of load (or force) and unit of area. In M.K.S. units, the 

force is expressed in kgf and area in meter square (i.e., m
2
). Hence unit of stress becomes as 

kgf/m
2
. If area is expressed in centimeter square (i.e., cm

2
), the stress is expressed as kgf/cm

2
. 

In the S.I. units, the force is expressed in newtons (written as N) and area is expressed as m
2
. 

Hence unit of stress becomes as N/m
2
. The area is also expressed in millimeter square then unit 

of force becomes as N/mm
2
 

l N/m
2
 = l N/(100cm)

2
 = 1 N/(10

4
 cm

2
 ) = 10

-4
 N/cm

2
 or 10

-6
 N/mm

2
 or 1 MPa= 1 N/mm

2
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 Types of Stresses 

The stress may be normal stress or a shear stress. Normal stress is the stress which acts in a 

direction perpendicular to the area. It is represented by ζ (sigma). The normal stress is further 

divided into tensile stress and compressive stress. 

Tensile Stress: 

The stress induced in a body, when subjected to two equal and opposite pulls as shown in Fig. 

 as a result of which there is an increase in length, is known as tensile stress. The ratio 

of increase in length to the original length is known as tensile strain. The tensile stress 

acts normal to the area and it pulls on the area. 

  

Fig. 1.2: Tensile stress 

Fig. 1.2 (a) shows a bar subjected to a tensile force P at its ends. Consider a section x-x, which 

divides the bar into two parts. The part left to the section x-x, will be in equilibrium if P = 

Resisting force (R). This is shown in Fig. 1.2 (b). Similarly the part right to the section x-x, will 

be in equilibrium if P = Resisting force as shown in Fig. 1.2 (c). This resisting force per unit area 

is known as stress or intensity of stress. 

 

Compressive Stress: 

The stress induced in a body, when subjected to two equal and opposite pushes as shown in Fig. 

 (a) as a result of which there is a decrease in length of the body, is known as 

compressive stress. And the ratio of decrease in length to the original length is known as 

compressive strain. The compressive stress acts normal to the area and it pushes on the 

area.Let an axial push P is acting on a body in cross-sectional area A. Due to external push P, let 

the original length L of the body decreases by dL. 
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Then compressive stress is given by, 
 

And compressive strain is given by, 
 

 

 

 
Shear Stress: 

Fig. 1.3: Compressive Stress 

The stress induced in a body, when subjected to two equal and opposite forces which are acting 

tangentially across the resisting section as shown in Fig. 1.4 as a result of which the body tends to 

shear off across the section, is known as shear stress. The corresponding strain is known as shear 

strain. The shear stress is the stress which acts tangential to the area. It is represented by τ. 

 
 

 
 

 STRAIN 

Fig. 1.4: Shear Stress 

When a body is subjected to some external force, there is some change of dimension of the body. 

The ratio of change of dimension of the body to the original dimension is known as strain. Strain 

is dimensionless. Strain may be : 

 Tensile strain 



 

7  

 Compressive strain, 

 Volumetric strain 

 Shear strain. 

If there is some increase in length of a body due to external force, then the ratio of increase of 

length to the original length of the body is known as tensile strain. But if there is some decrease 

in length of the body, then the ratio of decrease of the length of the body to the original length is 

known as compressive strain. The ratio of change of volume of the body to the original volume is 

known as volumetric strain. The strain produced by shear stress is known as shear strain. 

 

Linear Strain 

It is defined as 
 

Linear strain may be either tensile or compressive. If there is some increase in the length of a 

body due to external force, then the strain is known as tensile strain. On the other hand, if there is 

some decrease in the length of the body due to external force, then the strain is known as 

compressive strain. Please note that both are linear strain only. 

In the case of rod having uniform cross-section A. the normal stress ζ could be assumed to have a 

constant value P/A. Thus, it is appropriate to define ε as the ratio of the total deformation δL over 

the total length L of the rod. 

Whereas in the case of a member of variable cross-section, however, the normal stress ζ = P/A 

varies along the member, and it is necessary to define the strain at a given point as 
 

Shear Strain 

It is a measure of the angle through which a body is deformed by the applied force, denoted by γ. 

The shear strain is represented by the angle through which the other two faces have rotated as 

shown in Fig. 
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Volumetric Strain 

Fig. 1.5: Shear strain 

The ratio of change in the volume of the body to the original volume is known as volumetric 

strain. 

 
 

 LINEAR ELASTICITY AND ELASTIC LIMIT 

When an external force acts on a body, the body tends to undergo some deformation. If the 

external force is removed and the body comes back to its original shape and size (which means 

the deformation disappears completely), the body is known as elastic body. This property, by 

virtue of which certain materials return back to their original position after the removal of the 

external force, is called elasticity. The body will regain its previous shape and size only when the 

deformation caused by the external force, is within a certain limit. Thus there is a limiting value 

of force up to and within which, the deformation completely disappears on the removal of the 

force. The value of stress corresponding to this limiting force is known as the elastic limit of the 

material. If the external force is so large that the stress exceeds the elastic limit, the material loses 

to some extent its property of elasticity. If now the force is removed, the material will not return 

to its original shape and size and there will be a residual deformation in the material. 

 
 

 1.5 HOOK’S LAW 

For elastic bodies, the ratio of stress to strain is constant and is known as Young's modulus or the 

modulus of elasticity and is denoted by E, i.e., 
 

 

Strain has no units as it is a ratio. Thus, E has the same units as stress. 

The materials that maintain this ratio are said to obey Hooke s law which states that within elastic 

limits, strain is proportional to the stress producing it. The elastic limit of a material is 

determined by plotting a tensile test diagram. Young's modulus is the stress required to cause a 

unit strain. 
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Similarly, for elastic materials, the shear strain is found to be proportional to the applied shear 

stress within the elastic limit. Modulus of rigidity or shear modulus denoted by G is the ratio of 

shear stress to shear strain, i.e., 

  G

The ratio between the volumetric (Identical) stress and the volumetric strain is called Bulk 

modulus of elasticity and is denoted by K. 
 
 

 1.6 POISON’S RATIO 

The ratio of lateral strain to the longitudinal strain is a constant for a given material, when the 

material is stressed within the elastic limit. This ratio is called Poisson's ratio and it is generally 

denoted by μ or ν or 1/m. Hence mathematically, 

 

Longitudinal strain: 

When a body is subjected to an axial tensile load, there is an increase in the length of the 

body. But at the same time there is a decrease in other dimensions of the body at right angles to 

the line of action of the applied load. Thus the body is having axial deformation and also 

deformation at right angles to the line of action of the applied load (i.e., lateral deformation). 

The ratio of axial deformation to the original length of the body is known as longitudinal (or 

linear) strain. The longitudinal strain is also defined as the deformation of the body per unit 

length in the direction of the applied load. 

 
Let L = Length of the body, 

P = Tensile force acting on the body, 

δL = Increase in the length of the body in the direction of P 
 
 

 
Then, 

 

Longitudin 

 

al strain = 
L 

L 
 

 

Fig. 1.6: longitudinal and lateral strain 
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Note: 

1) If longitudinal strain is tensile, the lateral strains will be compressive. 

2) If longitudinal strain is compressive then lateral strains will be tensile. 

3) Hence every longitudinal strain in the direction of load is accompanied by lateral strains of opposite 

kind in all directions perpendicular to the load. 

Lateral strain: 

The strain at right angles to the direction of applied load is known as lateral strain. Let a 

rectangular bar of length L, breadth b and depth d is subjected to an axial tensile load P as shown 

in Fig. 1.6. The length of the bar will increase while the breadth and depth will decrease. 

Let       δL = Increase in length, 

δb= Decrease in breadth, and 

δd = Decrease in depth. 

Lateral strain  
b 

or 
d 

b d 
 

 
 

 STRESS – STRAIN RELATIONSHIPS 
 

For Structural Steel 

Certain important properties of materials used for engineering applications can be determined by 

conducting laboratory tests on small specimens of the material. One such common test is tension test. 

Tension test involves application of gradually increasing axial tensile load on a standard specimen (the 

test is performed using Universal Testing Machine aptly called UTM). After performing tension or 

compression test and determining stress and strain at various magnitudes of load, we can obtain a diagram 

by plotting stress along Y-axis and strain along X-axis. The stress-strain diagram is of immense help in 

conveying information about mechanical properties and behaviour of the material. We shall restrict 

ourselves to behaviour of structural steel only. Our interest on structural steel stems out from the fact that, 

it is one of the most widely used metals, being used in buildings, bridges, towers, antennas and many 

more structures. Structural steel is also called low carbon steel or mild steel. 

A typical stress strain diagram for mild steel is as shown in Figure. The initial behaviour is portrayed by 

straight line OA. In this region the stress is proportional to strain and thus the behaviour is linear. Beyond 

point A. the linear relationship no longer exists, correspondingly, the stress at A is called proportionality 

limit. However, the material remains elastic even beyond the limit of proportionality. The stress up to 

which the material behaves elastic is called elastic limit. 
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Figure: Stress-strain curve for structural steel 

 
which is shown by point B on the curve. If the load is further increased, the material reaches a 

point where sudden and appreciable increase in strain occurs without appreciable increase in 

stress. This behaviour is shown by point C on the curve. The stress corresponding to point C 

(upper yield point)is called upper yield stress. An accurate testing of the specimen would reveal 

that the curve drops at point D (lower yield point) and the corresponding stress is called lower 

yield stress. In the region of upper and lower yield points, the material becomes perfectly plastic, 

which indicates that it can deform without an increase in applied load. 

After undergoing the large strains in the region of upper and lower yield points, the steel 

begins to strain harden. Strain hardening is a process, where material undergoes changes in its 

atomic and crystalline structure. This process brings in new lease of life for the material and it 

picks up increased resistance to further loading (hence resistance to deformation). Thus, 

additional elongation requires an increase in tensile load, and stress-strain diagram mounts up 

with a positive slope from D to E. Point E signifies the maximum stress the material can bear and 

this point is called ultimate point and the corresponding stress is ultimate stress. Further, 

stretching of the bar is actually accompanied by drastic reduction in area and in load, and fracture 

finally occurs as shown by point F on the diagram. 

Being a ductile material, steel specimen sustains uniform strain over the entire length up 

to the ultimate strength point. Figure shows that the stress decreases beyond the ultimate strength 

of the material and rupture does not occur until a strain considerably in excess of the strain 

corresponding to the ultimate stress has been reached. The strain that occurs during this phase 

tends to be localised over a very short length of the test specimen, leading to necking 

phenomenon (also called waist formation) depicted in Figure (b). This necking is typical of a 

metal which behave in a ductile manner. Figure (c) shows type of failures for ductile and brittle 

materials. 
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After conducting tension test on steel we can determine the following items 

• Elastic modulus 

• Proportional limit 

• Yield stress 

• Ultimate stress 

 

 

 

 

 

 

True Stress-Strain Diagram 

In plotting stress-strain diagram, we make use of original area of cross section while computing 

all stress values and original length while calculating corresponding strains. In this context it is 

pertinent to define the following: 
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Nominal or Conventional or Engineering Stress 

The ratio of load over original area of cross section of a component is nominal stress. 

 
 

True Stress 

The ratio of load over instantaneous area of cross section is true stress. Thus, under tensile load, 

instantaneous area is less than original area and under compressive load, instantaneous area is 

more than original area. 

 
Nominal or Engineering Strain 

Strain values are calculated at various intervals of gradually increasing load considering original 

gauge length of the specimen, such a strain is nominal or engineering strain. Nominal strain is 

change in dimension to corresponding original dimension. 

 
True Strain 

As the load keeps on increasing, the gauge length will also keep on varying (e.g., gauge length 

increases under tensile loading). If actual length is used in calculating the strain, the strain 

obtained is true strain. Crisply, change in dimension to instantaneous dimension is true strain. In 

most of the engineering designs, the stresses considered will be well within proportional limit  

and as the strain involved up to this limit is very small, the change in area is not at all 

appreciable. Therefore, original area of cross section is considered while defining the stress for 

all practical purposes. 

Coming back to true stress-strain diagram, as mentioned above, the lateral contraction of 

the metal occurs when it is stretched under tensile load, this results in decreased cross sectional 

area. However, this decrease is too small to show a noticeable effect on calculated value of stress 

upto point D, but beyond point D, the reduction begins to alter the shape of the diagram. If the 

actual area is used to calculate stress, the true stress-strain curve will follow dashed line that is 

superposed on the diagram. 
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Stress-Strain Diagram for Other Materials 

Every material has its own strength characteristics. Unlike steel, other materials do not show 

clear points of yield stress. But initial linear behaviour is shown by almost all materials. Figure 

presents the stress-strain behaviour of some important materials. Table presents elastic properties 

of certain metals. 

 

 
Proof Stress 

Most of the metals except steel, do not show well-defined yield point and yet undergoes large 

strains after the proportional limit is exceeded. An arbitrary yield stress called proof stress for 

these metals can be found out by offset method. On the stress-strain diagram of the metal under 

consideration, a line is drawn parallel to initial linear part of the curve (Figure 2.14) this line is 

drawn at a standard offset of strain value, such as 0.002 (0.2%). The intersection of the offset line 

and the stress-strain curve (point A in the figure) defines the yield point for the metal and hence 

yield stress. Proof stress is not an inherent property of the metal. Proof stress is also called offset 

yield stress. 
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EXTENSION / SHORTENING OF A BAR 

Consider a prismatic bar of length L and cross-sectional area A subjected to axial force P. We 

have the relation 

upon substitution of ε and ζ in that equation, we get 
 

where 

E = Young’s Modulus, N/mm
2
 

L = original length , mm 

δL = change in length , mm 

A = original cross-sectional area, mm
2
 and 

P = axial force , N 

The above Eq. can also be written as, 

Table 1.2 gives the values of Young's modulus of some commonly used materials. 

Table 1.2: Young’s modulus of some materials 
 

Sl. 

no. 
Material 

Young's modulus 

(kN/mm
2
) 

1 Mild steel 200 

2 Aluminium 70 

3 Copper 100 

4 Cast iron 90 

5 Bronze 120 

6 Wood 10 
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1.8 BARS WITH CROSS SECTIONS VARYING IN STEPS 
 

Consider a bar of varying three sections of lengths L1 L2 and L3 

having respective areas of cross-sections A1, A2 and A3 subjected to an 

axial pull P. Let δL1, δL2, δL3 be the changes in length of the 

respective three sections of the bar, then we have 

 

Now the total elongation of the bar, 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.7: Stepped bar 

 
 

 BARS WITH CONTINUOUSLY VARYING CROSS SECTIONS 
 

 Bars with varying Circular cross section 

A bar uniformly tapering from a diameter D1 at one end to a diameter D2 at the other end is 

shown in Fig. 18. 

Let P = Axial tensile load on the bar 

L = Total length of the bar 

E = Young's modulus. 

Consider a small element of length dx of the bar at a distance x from the left end. Let the  

diameter of the bar be D at a distance x from the left end. 

 

Fig. 1.8: Taper rod of circular cross section 
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Area of cross-section of the bar at a distance x from the left end, 
 

Now the stress at a distance x from the left end is given by, 
 

The strain ex in the small element of length dx is obtained by using equation 
 

Extension of the small elemental length dx 
 

Total extension of the bar is obtained by integrating the above equation between the limits 0 and 

L. 

 

Substituting the value of k in the above equation, we get, 
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Total extension, 
 

If the rod is of uniform diameter, then D1 - D2 = D 
 

1.9.2. Bars with varying rectangular cross section 

A bar of constant thickness and uniformly tapering in width from one end to the other end is 

shown in Fig. 1.9. 

 

Fig. 1.9: Bars with rectangular cross section 

Let P = Axial load on the bar 

L = Length of bar 

a = Width at bigger end 

b = Width at smaller end 

E = Young's modulus 

t = Thickness of bar Consider any section X-X at a distance x from the bigger end. 

 
Width of the bar at the section X-X 
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Total extension of the bar is obtained by integrating the above equation between the limits 0 and 

L. 

Total extension, 
 

 

 ELONGATION OF BAR DUE TO SELF WEIGHT 

Consider a prismatic or circular bar of cross-sectional area A and length L hanging freely under 

its own weight as shown in Fig. 1.10. This circular bar experiences zero load at the free end and 

maximum load at the top. Weight of a body is given by the product of density and volume. Let γ 

be the density of the material. Consider a small section of thickness dx at a distance x from the 

free end. 

The deformation of the element is given by 
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Note: 

The deformation of the bar under its own weight is equal to the half of the deformation, if the body is 

subjected to the direct load equal to the weight of the body. 

Where Wx = weight of the portion below the section = γ A x 

 

Fig.1.10: Elongation due to self weight 

The extension of the entire bar can be obtained by integrating above Eq. 
 

 

If W is the total weight of the bar, then 
 

 

 

 PRINCIPLE OF SUPERPOSITION. 

When a number of loads are acting on a body, the resulting strain, according to principle of 

superposition, will be the algebraic sum of strains caused by individual loads. 
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While using this principle for an elastic body which is subjected to a number of direct forces 

(tensile or compressive) at different sections along the length of the body, first the free body 

diagram of individual section is drawn. Then the deformation of the each section is obtained. The 

total deformation of the body will be then equal to the algebraic sum of deformations of the 

individual sections. 

WORKED EXAMPLES 

1) The following observations were made during a tensile test on a mild steel specimen of 40 

mm diameter and 200 mm long: Elongation with 40,000 N load (within the limit of 

proportionality) = 0.0304 mm, Yield load = 165,000 N, Maximum load = 245,000 N, Length 

of the specimen at fracture = 252 mm, Determine the yield stress, the modulus of elasticity, 

the ultimate stress and the percentage elongation. 

Solution 

Given: 

Diameter of the specimen = 40 mm 

Length of the specimen = 200 mm 

Load = 40,000 N 

Elongation within the limit of proportionality = 0.0304 mm 

Yield load = 165,000 N 

Maximum load = 245,000 N 
Final length of the specimen = 252 mm 

 
To find the yield stress: 

Using the relation for yield stress, we have 
 

To find the modulus of elasticity: 

Consider the load within the proportionality Limit. Then, stress is given by 
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To find the ultimate stress: 

Using the relation for ultimate stress, we have 
 

To find the percentage elongation: 

Using the relation, we have 

Percentage elongation 

 

2) The bar shown in Fig. is subjected to a tensile load of 60 kN. Find the diameter of the middle 

portion of the bar if the stress is limited to 120 N/mm
2
. Also find the length of the middle 

portion if the total elongation of the bar is 0.12 mm. Take E = 2 x 10
5
 N/mm

2
. 

 

Solution 

To find the diameter at the middle portion of the bar: 

Stress in the middle portion of the bar is given by 
 

To find the length of the middle portion of the bar: 

Let the length of the middle portion of the bar be x 

Stress in the end portion is given by 
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Also, total elongation = elongation of the end portion + elongation of the middle portion = 0.12 

mm 

 

 

 
3) A flat steel plate is of trapezoidal form of uniform thickness of 8 mm and tapers uniformly 

from a width of 60 mm to 90 mm in a length of 300 mm. Determine the elongation of the 

plate under the axial force of 40 kN at each end. Assume E = 205 kN/mm
2
. 

Solution: 

Thickness of the plate t = 8 mm 

Width at one end b = 60 mm 

Width at other end a = 90 mm 

Length of the plate L = 300 mm 

Axial force P = 40 kN 

Modulus of elasticity E = 205 kN/mm
2
 

Using the relation, we have 

 

 

 

 
 

4) Figure shows the bar AB of uniform cross-sectional area is acted upon by several forces. Find 

the deformation of the bar, assuming E = 2 x 10
5
 N/mm

2
. 

 

Solution: The free body diagram (F.B.D.) of individual sections is shown in Figure. 
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5) A steel bar ABCD of varying cross-section is subjected to the axial forces as shown in Fig. 

Find the value of P for equilibrium. If the modulus of elasticity E = 2.1 x 10
5
 N/mm

2
, 

determine the elongation of the bar. 

 
 

Solution: 

From the equilibrium condition: 

 

 

 

 

To find the elongation of the bar: 

 

 
 

Σ Fx=0 

+8000 -10,000 + P - 5000 = 0 

P = 15,000 - 8000 = 7000 N 

Consider the free body diagram (F.B.D.) of the bar, 
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6) A vertical prismatic bar is fastened at its upper end and supported at the lower end by an 

unyielding floor as shown in Fig. Determine the reaction R exerted by the floor of the bar if 

external loads P1 = 1500 N and P2 
=
 3000 N are applied at the intermediate points shown. 

Solution 

Let A be the cross-sectional area of the bar, and E be the 

modulus of elasticity. 

Elongation of AD = elongation of AB + elongation of BC 

+ elongation of the bar CD 
 

Since there is a rigid support at D, there is a reaction R at 

D which causes contraction of AD, i.e. 

 

As there is no change in the length of the bar AD, we have 
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 VOLUMETRIC STRAIN 

The ratio of change in volume to the original volume of a body (when the body is subjected to a 

single force or a system of forces) is called volumetric strain. It is denoted by εv. 

Mathematically, volumetric strain is given by 

    
V 

v 
V

 

Where 

δV = Change in volume, and V = Original volume. 

 

 
EXPRESSION FOR VOLUMETRIC STRAIN 

Referring to Fig.2.1, the quantity εv represents the change in the volume per unit volume. It is 

referred to as the dilation of the material. Consider a small rectangular element of dimensions x, y 

and z subjected to three mutually perpendicular stresses. 

Fig. 2.1 Rectangular element subjected to three mutually perpendicular stresses. 

Original volume of the element is given by 

V = xyz 

Therefore, the total change in the volume 
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or 
 

Referring to Fig.2.2, consider a bar/rod of length L and diameter d, then the volume of the bar is 

given by 

 

 
 

 
Therefore, 

Fig.2.2. Volumetric strain in circular rod 

 

 

Since V is the function of both d and L, dividing previous Eq. throughout by V, we get 
 

Since, 
 

We have, 
 

Thus, the volumetric strain is the sum of the three mutually perpendicular linear strains. Since εv 

represents a change in volume, it must be independent of the orientation of the element 

considered. It follows that the quantities, 
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εx + εy + εz  and ζx ζy and ζy 

are also independent of the orientation of the element. Since, 

εv = εx + εy + εz 

 

 
ELASTIC CONSTANTS 

Elastic constants arc those factors which determine the deformations produced by a given stress 

system acting on a material. These factors (i.e. elastic constants) arc constant within the limits for 

which Hooke's laws are obeyed. Various elastic constants are: 

 Modulus of elasticity (E) 

 Poisson's ratio (μ or ν or 1/m) 

 Modulus of rigidity (G or N ) 

 Bulk modulus (K) 
 

Young’s Modulus 

When an axial stress ζ (say, tensile) is applied along the longitudinal axis of a bar, the length of 

the bar will be increased. This change in the length (usually called deformation) per unit length  of 

the bar, is termed as longitudinal strain (ε) or primary strain. This ratio of stress to strain, within 

elastic limits, is called the modulus of elasticity (E): 

Thus, modulus of elasticity (E) =ζ/ε 

The modulus of elasticity (also called Young's modulus of elasticity) is the constant of 

proportionality which is defined as the intensity of stress that causes unit strain. 

Table 2.1 gives the values of modulus of elasticity (E) for some common materials. 
 

S. N. Material Modulus of elasticity E 

(kN/mm2 or GPa) 

1 Aluminium (Pure) 70 

2 Aluminium alloys 70 - 79 

3 Brass 96 - 110 

4 Bronze 96-120 

5 Cast iron 83 - 170 

6 Copper (Pure) 110 - 120 

7 Steel 190 - 210 

8 Wrought iron 190 
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Shear Modulus or Modulus of Rigidity 

The shear modules or modulus of rigidity (also called the modulus of transverse elasticity) 

expresses the relation between shear stress and shear strain. It has been found experimentally that, 

within elastic limit, shear stress (η) is proportional to the shear strain (γ) 

Thus G  




Where G = modulus of rigidity 

(Also sometimes denoted by symbol N or C) 

 
 

Table 2.2 gives the values of modulus of rigidity for some common engineering materials. 

Table 2.2. Values of modulus of rigidity 
 

S.N. Material 
Modulus of Rigidity 

(KN\mm
2
 or GPa) 

1 Aluminium (Pure) 26 

2 Aluminium alloys 26-30 

3 Brass 36-41 

4 Bronze 36-44 

5 Cast iron 32 - 69 

6 Copper (Pure) 40-47 

7 Steel 75-80 

8 Wrought iron 75 

 

 

 Bulk modulus 

When a body is subjected to three mutually perpendicular like stresses of equal intensity (ζ), the ratio of 

direct stress (ζ) to the corresponding volumetric strain (εv ) is defined as the bulk modulus K for the 

material of the body. 

Thus , bulk modulus K = Direct stress 
 


	 

Volumetric    strain  v 

 

 

The bulk modulus of elasticity K is defined only when three mutually perpendicular normal 

stresses are equal, i.e. 

ζx = ζy = ζz = ζ 
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Fig. 2.3: Bulk Modulus 

 

 

Relation among Elastic Constants 

i) Relation between E, G and 

Let us establish a relation among the elastic constants E, G and . Consider a cube of material of 

side ‘a' subjected to the action of the shear and complementary shear stresses as shown in the Fig. 

2.4 and producing the strained shape as shown in the figure below. Assuming 

that the strains are small and the angle A C B may be taken as 45
0
. 

Fig. 2.4 

Therefore strain on the diagonal OA = Change in length / original length 

Since angle between OA and OB is very small hence OA  OB therefore BC, is the change in the 

length of the diagonal OA 



 

31  

 

 
 

Now this shear stress system is equivalent or can be replaced by a system of direct stresses  at  45
0
 

as shown in Fig. 2.5. One set will be compressive, the other tensile, and both will be equal in 

value to the applied shear strain. 

Fig. 2.5 

 

 

Thus, for the direct state of stress system which applies along the diagonals: 
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ii) Relation between E, K and : 

Consider a cube subjected to three equal stresses  as shown in the Fig.2.6 
 

Fig.2.6 

The total strain in one direction or along one edge due to the application of hydrostatic stress or 

volumetric stress  is given as 

 

iii) Relation between E, G and K 

The relationship between E, G and K can be easily determined by eliminating  from the already 

derived relations. 

i.e., 

E = 2 G (1 + ) and E = 3 K (1  ) 

Thus, the following relationship may be obtained 
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iv) Relation between E, K and 

From the already derived relations, E can be eliminated 
 

 

 
TEMPERATURE STRESSES 

Thermal stresses are the stresses induced in a body due to change in temperature. Thermal stresses 

are set up in a body, when the temperature of the body is raised or lowered and the body is not 

allowed to expand or contract freely. But if the body is allowed to expand or contract freely, no 

stresses will be set up in the body. 

 
Consider a body which is heated to a certain temperature. 

Let 

L = Original length of the body, 

T = Rise in temperature, 

E = Young's Modulus, 

 = Co-efficient of linear expansion, 

dL = Extension of rod due to rise of temperature. 

 
 

If the rod is free to expand, then extension of the rod is given by 

dL = .T.L 

This is shown in Fig. 2.7 (a) in which AB represents the original length and BB' represents the 

increase in length due to temperature rise. Now suppose that an external compressive load, P is 

applied at B' so that the rod is decreased in its length from (L + .T.L) to L as shown in Figs. (b) 

and (c). 
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Fig. 2.7: Thermal stresses 

 
 

And load or thrust on the rod = Stress x Area = .T.E x A 

If the ends of the body are fixed to rigid supports, so that its expansion is prevented, then 

compressive stress and strain will be set up in the rod. These stresses and strains are known as 

thermal stresses and thermal strain. 

 

Thermal stress is also known as temperature stress. And thermal strain is also known as 

temperature strain. 

Stress and Strain when the Supports Yield: 

If the supports yield by an amount equal to , then the actual expansion 

= Expansion due to rise in temperature -  = .T.L - 

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THERMAL STRESSES IN COMPOSITE BARS 

Fig. 2.8 (a) shows a composite bar consisting of two members, a bar of brass and another of steel. 

Let the composite bar be heated through some temperature. If the members are free to expand then 

no stresses will be induced in the members. But the two members are rigidly fixed and hence the 

composite bar as a whole will expand by the same amount. As the co-efficient of linear expansion 

of brass is more than that of the steel, the brass will expand more than the steel. Hence the free 

expansion of brass will be more than that of the steel. But both the members are not free to 

expand, and hence the expansion of the composite bar, as a whole, will be less than that of the 

brass, but more than that of the steel. Hence the stress induced in the brass will be compressive 

whereas the stress in steel will be tensile as shown in Fig. 2.8 (c). Hence the load or force on the 

brass will be compressive whereas on the steel the load will be tensile. 

 
 

Let 

Ab = Area of cross-section of brass bar 

ζb =  Stress in brass 

b =  Strain in brass 

b = Co-efficient of linear expansion for brass 

Eb = Young’s modulus for copper 

As, s, s, s = Corresponding values of area, stress, strain and co-efficient of linear expansion for 

steel, and 

Es = Young's modulus for steel. 

 = Actual expansion of the composite bar 
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Now load on the brass = Stress in brass x Area of brass= b x Ab 

And load on the steel = Stress in brass x Area of brass= s x As 

For the equilibrium of the system, compression in copper should be equal to tension in the steel 

or 

Load on the brass = Load on the steel 

 
 

Also we know that, 

b x Ab = s x As 

 

actual expansion of steel = Actual expansion of brass (i) 

But actual expansion of steel = Free expansion of steel + Expansion due to tensile stress in steel 
 

And actual expansion of copper = Free expansion of copper - Contraction due to compressive 

stress induced in brass 

 

Substituting these values in equation (i), we get 
 

Where T = Rise of temperature. 
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2.6 WORKED EXAMPLES 

1) A metallic bar 300 mm x 100 mm x 40 mm is subjected to a force of 5 kN (tensile), 6 kN 

(tensile) and 4 kN (tensile) along x, y and z directions respectively. Determine the change in 

the volume of the block. Take E = 2 x 10
5
 N/mm

2
 and Poisson's ratio = 0.25. 

   Solution: 

Given: Dimensions of bar 

= 300 mm x 100 mm x 40 mm 

x = 300 mm, y = 100 mm and z = 40 mm 

V= xyz = 300 x 100x40 = 1200000 mm
3
 

Load in the direction of x=5KN; Load in the direction of y =6KN; Load in the direction of z = 

4KN 
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2) A bar of 30 mm diameter is subjected to a pull of 60 kN. The measured extension on gauge 

length of 200 mm is 0.1 mm and change in diameter is 0.004 mm. Calculate: (i) Young's 

modulus, (ii) Poisson's ratio and (iii) Bulk modulus. 

 
 

 

 

3) A rod is 2 m long at a temperature of 10°C. Find the expansion of the rod, when the 

temperature is raised to 80°C. If this expansion is prevented, find the stress induced in the 

material of the rod. Take E=1.0x 10
5
 MN/m

2
 and  = 0.000012 per degree centigrade. 
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4) A steel rod of 20 mm diameter passes centrally through a copper tube of 50 mm external 

diameter and 40 mm internal diameter. The tube is closed at each end by rigid plates of 

negligible thickness. The nuts are tightened lightly home on the projecting parts of the rod. If 

the temperature of the assembly is raised by 50°C, calculate the stresses developed in copper 

and steel. Take E for steel and copper as 200 GN/m
2
 and 100 GN/m

2
 and  for steel and 

copper as 12 x 10
-6

 per °C and 18 x 10
-6

 per °C. 

 

As  for copper is more than that of steel, hence the free expansion of copper will be more than 

that of steel when there is a rise in temperature. But the ends of the rod and the tube is fixed to the 

rigid plates and the nuts are tightened on the projected parts of the rod. Hence the two members 

are not free to expand. Hence the tube and the rod will expand by the same amount. The free 

expansion of the copper tube will be more than the common expansion, whereas the free 

expansion of the steel rod will be less than the common expansion. Hence the copper tube will be 

subjected to compressive stress and the steel rod will be subjected to tensile stress. 
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Let s = Tensile stress in steel 

c = Compressive stress in copper. 

For the equilibrium of the system, 

Tensile load on steel = Compressive load on copper 

                    …(i) 

We know that the copper tube and steel rod will actually expand by the same amount. Actual 

expansion of steel = Actual expansion of copper … (ii) 

But actual expansion of steel 

= Free expansion of steel + Expansion due to tensile stress in steel 
 

and actual expansion of copper 

= Free expansion of copper - Contraction due to compressive stress in copper 
 

Substituting these values in equation (ii), we get 
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TORSION OF CIRCULAR SHAFTS 

 
 INTRODUCTION 

In this chapter structural members and machine parts that are in torsion will be 

considered. More specifically, the stresses and strains in members of circular cross section 

subjected to twisting couples, or torques, T and T' (Fig. 8.1) are analyzed. These couples have a 

common magnitude T, and opposite senses. They are vector quantities and can be represented 

either by curved arrows as in Fig. 3.1a, or by couple vectors as in Fig.8.1. 

Members in torsion are encountered in many engineering applications. The most common 

application is provided by transmission shafts, which are used to transmit power from one point 

to another. For example, the shaft shown in Fig. 8.1 is used to transmit power from the engine to 

the rear wheels of an automobile. These shafts can be solid, as shown in Fig. 8.1, or hollow. 

Fig. 8.1: Torsion in shafts 
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 PURE TORSION 

A member is said to be in pure torsion when its cross sections are subjected to only torsional 

moments and not accompanied by axial forces or bending moment. Now consider the section of a 

shaft under pure torsion as shown in Fig. 8.2. 

 

Fig. 8.2 Pure torsion 

The internal forces develop so as to counteract this torsional moment. Hence, at any element, the 

force dF developed is in the direction normal to radial direction. This force is obviously shearing 

force and thus the elements are in pure shear. If dA is the area of the element at distance r from 

the axis of shaft, then, 

dF =  dA 

where  is shearing stress, 

and dT = dF x r 

 

 ASSUMPTIONS IN THE THEORY OF PURE TORSION 

In the theory of pure torsion, expressions will be derived for determining shear stress and the 

effect of torsional moment on cross-section i.e. in finding angle of twist. In developing this 

theory the following assumptions are made. 

 The material is homogeneous and isotropic. 

 The stresses are within the elastic limit, i.e. shear stress is proportional to shear strain. 

 Cross-sections which are plane before applying twisting moment remain plane even after 

the application of twisting moment i.e. no warping takes place. 

 Radial lines remain radial even after applying torsional moment. 

 The twist along the shaft is uniform. 
 

 DERIVATION OF TORSIONAL EQUATIONS 

Consider a shaft of length L, radius R fixed at one end and subjected to a torque Tat the other end 

as shown in Fig. 8.3. 

Let O be the centre of circular section and B a point on surface. AB be the line on the shaft 

parallel to the axis of shaft. Due to torque T applied, let B move to B’. If  is shear strain (angle 

BOB') and  is the angle of twist in length L, then 

R = BB' = L
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If s is the shear stress and G is modulus of rigidity then, 

   



G 
 

Fig. 8.3: Torsion in shaft 

R  L 
 s

 

G 

 s  
G 

R L 

Similarly if the point B considered is at any distance r from centre instead of on the surface, it 

can be shown that 

 
 

G … (i) 
r L 

 s    


R r 

Thus shear stress increases linearly from zero at axis to the maximum value s at surface. 

Now consider the torsional resistance developed by an elemental area 'a' at distance r from 

centre. 

If  is the shear stress developed in the element the resisting force is 

dF = da 
 
 

 

 
Resisting torsional moment, 

Fig. 8.4 

 

 

dT= dF x r 

 rda 
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

r 

WKT, 

 

 

Therefore, 

 

 
Total resisting torsional moment, 

 
   

r
 

s  
R

 

 
2 

dT   s 
R 

da 

r 2 

T   s    
R 

da 

 
But  r 

2 
da 

we get, 

T  
 s r 

2 
da 

R 

is nothing but polar moment of inertia of the section. Representing it by notation J 

 

 

T  
 s  J 
R 

 
i.e., 

 

WKT, 

 
There, 

From (i) and (ii), we have, 

T 
 
 s 

J R 

 s    


R r 

T  
 


J r 

 

 

 

 

 

(ii) 

 

 
Where, 

T  
 


J r 
 

G

L 
(iii) 

T - torsional moment , N-mm 

J - polar moment of inertia, mm
4
 

 - shear stress in the element, N/mm
2
 

r- distance of element from centre of shaft, mm 

G - modulus of rigidity, N/mm
2
 

- angle of twist, rad 

L- length of shaft, mm 
 

 POLAR MODULUS 

From the torsion equation, 

 

 
But, 

T  
 


J r 

 
 s    



R r 
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Where s is maximum shear stress (occurring at surface) and R is extreme fibre distance from 

centre. Therefore, 

T 
 
 s 

J R 
or 

T   
J 
    Z 


R  
s p   s 

where Zp is called as 'Polar Modulus of Section’. It may be observed that Zp is the property of the 

section and may be defined as the ratio of polar moment of inertia to extreme radial distance of 

the fibre from the centre. 

(i) For solid circular section of diameter d 
 
 

J R 
(ii) For hollow circular shaft with external diameter d1 and internal diameter d2 

 

 
 TORSIONAL RIGIDITY / STIFFNESS OF SHAFTS 

From the torsion equation, 

 
Angle of twist,    

TL 

GJ 

T - Torsional moment , N-mm 

J - Polar moment of inertia, mm
4
 

G - Modulus of rigidity, N/mm
2
 (sometimes denoted by C) 

 - angle of twist, rad 

For a given specimen, the shaft properties like length L, polar modulus J and material 

properties like rigidity modulus G are constants and hence the angle of twist is directly 

proportional to the twisting moment or torque producing the twist. Torque producing twist in a 

shaft is similar to the bending moment producing bend or deflection in a beam. Similar to the 

flexural rigidity in beams expressed by EI, torsional rigidity is expressed as GJ which can be 

defined as the torque required to produce a twist of unit radian per unit length of the shaft. 
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 POWER TRANSMITTED 

Let us consider a circular shaft running at N rpm under mean torque T. Let P be the power 

transmitted by the shaft in kW. 

The angular speed of the shaft is given by the distance covered by a particle in the circle in 

radians for N revolutions per second, i.e. the particle covers  radians for one revolution and for 

N revolutions the particle covers 2N radians in one minute. Hence the angular speed  is given 

by: 

  
2N 

Rad/s 
60 

Thus, the power transmitted = Mean torque (kN-m) x Angular speed (rad/s) 

i.e., 

P  T  
2NT  

kN-m/s or kW 
60 

It is seen that from the above equation mean torque T in kN-m is obtained. It should be converted 

to N-mm so that the stress due to torque can be obtained in N/mm
2
. Maximum shear stress due to 

torque can be obtained from the torque equation. 

 

 
WORKED EXAMPLES 

T  
 


J r 
 

G

L 

1) A solid shaft has to transmit 120 kW of power at 160 rpm. If the shear stress is not to exceed 

60 MPa and the twist in a length of 3 m must not exceed 1°, find the suitable diameter of the 

shaft. Take G = 80 GPa. 

Solution 

P = 120 kW, N = 160 rpm,  = 60 N/mm
2
,  = 1°, G or C = 80 x 10

3
 N/mm

2
, d = ? 

Power transmitted is given by, 

 
 

 
(i) From the maximum shear stress considerations 
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(ii) From the maximum twist considerations 
 

d = 2 x 55.946 = 111.89 mm 

Choose the higher diameter among the two so that it can be safe. 

2) Find the diameter of the shaft required to transmit 60 kW at 150 rpm if the maximum torque 

exceeds 25% of the mean torque for a maximum permissible shear stress of 60 MN/mm
2
. 

Find also the angle of twist for a length of 4 m. Take G = 80 GPa. 

Solution 

P = 60 kW, N = 150 rpm, s = 60 N/mm
2
,  = ?, G or C = 80 x 10

3
 N/mm

2
, d = ? 

Power transmitted is given by, 

P  
2NT 

60 
 

Tmax = 1.257 = 1.25 x 3.8197 x 106 = 4.77465 x 10
6
 N mm. 

From torque equation, we have 

 

 

 

Where, 

 

 

d 
4
 

J 
32 

 
 

 
R

3
 

2 

T  
 


J r 
 

G

L 

 

 
 

(ii) Angle of twist l = 4 m,  = ? 
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3) A solid cylindrical shaft is to transmit 300 kW power at 100 r.p.m. (a) If the shear stress is 

not to exceed 80 N/mm
2
, find its diameter. (b) What percent saving in weight would be 

obtained if this shaft is replaced by a hollow one whose internal diameter equals to 0.6 of the 

external diameter, the length, the material and maximum shear stress being the same? 

Solution: 

Given: 

Power, P = 300 kW = 300 x 10
3
 W 

Speed,  N = 100rpm 

Max. Shear stress,  = 80 N/mm
2
 

(a) 

Let D = Dia. of solid shaft 

Power transmitted by the shaft is given by, 

 

(b) Percent saving in weight 

Let   D0 = External dia. of hollow shaft Di. = Internal dia. of hollow shaft = 0.6 x Do.   (given) 

The length, material and maximum shear stress in solid and hollow shafts are given the same. 

Hence torque transmitted by solid shaft is equal to the torque transmitted by hollow shaft. 

 
But the torque transmitted by hollow shaft is given by equation, 

 

But torque transmitted by solid shaft = 28647800 N-mm. 

Equating the two torques, we get 
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Internal dia, Di = 0.6 x D0 = 0.6 x 128 = 76.8 mm 

Let, Ws = Weight of solid shaft, 

Wh = Weight of hollow shaft. 

Let, Ws = Weight density x Area of solid shaft x Length 
 

Similarly, 
 

 

 

4) A hollow shaft of diameter ratio 3/8 is to transmit 375 kW power at 100 r.p.m. The maximum 

torque being 20% greater than the mean. The shear stress is not to exceed 60 N/mm
2
 and 

twist in a length of 4 m not to exceed 2°. Calculate its external and internal diameters which 

would satisfy both the above conditions. Assume modulus of rigidity, C = 0.85 x 10
5
 N/mm

2
. 

Solution: 
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i) Diameters of the shaft when shear stress is not to exceed 60 MPa, 

For the hollow shaft, the torque transmitted is given by 
 

 

 

(ii) Diameters of the shaft when the twist is not to exceed 2 degrees. 
 

 

The diameters of the shaft, which would satisfy both the conditions, are the greater of the two 

values. 

External dia., D0 = 157 mm. 

Internal dia.,  Di = 59 mm. 
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Module: II 
FORCES AND DEFLECTIONS IN BEAMS 

Syllabus 

Introduction, Types of beams, loads and reactions, shear forces and bending moments, rate of 

loading, sign conventions, relationship between shear force and bending moments. Shear force and 

bending moment diagrams for different beams subjected to concentrated loads, uniformly 

distributed load, (UDL) uniformly varying load (UVL) and couple for different types of beams. 

 
 

 INTRODUCTION 

Shear and bending moment diagrams are analytical tools used in conjunction with structural 

analysis to help perform structural design by determining the value of shear force and bending 

moment at a given point of a structural element such as a beam. These diagrams can be used to 

easily determine the type, size, and material of a member in a structure so that a given set of loads 

can be supported without structural failure. Another application of shear and moment diagrams is 

that the deflection of a beam can be easily determined using either the moment area method or the 

conjugate beam method. 

The algebraic sum of the vertical forces at any section of a beam to the right or left of the 

section is known as shear force. It is briefly written as S.F. The algebraic sum of the moments of 

all the forces acting to the right or left of the section is known as bending moment. It is written as 

B.M. In this chapter, the shear force and bending moment diagrams for different types of beams 

(i.e., cantilevers, simply supported, fixed, overhanging etc.) for different types of loads (i.e., point 

load, uniformly distributed loads, varying loads etc.) acing on the beams, will be considered. 

 
 

 TYPES OF BEAMS 

The following are the important types of beams: 

1. Cantilever beam, 2. Simply supported beam, 

3. Overhanging beam, 4. Fixed beams, and 

5. Continuous beam. 
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 Cantilever Beam. 

A beam which is fixed at one of its end and the other end is free is called a cantilever beam. Figure 

5.1 (a) shows a cantilever beam with one end rigidly fixed and the other end free. The distance 

between fixed and free ends is called the length of the beam. 

 
 

 

 Simply Supported Beam 

Fig.5.1: Types of beams 

A beam which is freely supported at both ends is called a simply supported beam. The term 'freely 

supported' implies that the end supports exerts only the forces upon the bar but not the moments. 

Therefore there is no restraint offered to the angular rotation of the ends of the bar at the supports 

as the bar deflects under the loads. The beam is shown in Fig. 5.1 (b). 

 Overhanging Beam 

The beam freely supported at any two points and having one or both ends projected 

beyond these supports is called an overhanging beam. Fig. 5.1 (c). 

 Fixed Beams 

A beam, whose both ends are fixed or built-in walls, is known as fixed beam. Such beam is shown 

in Fig. 5.1 (d). A fixed beam is also known as a built-in or encastred beam. 

 Continuous Beam 

A beam which is provided more than two supports as shown in Fig. 5.1 (e), is known as 

continuous beam. 
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 TYPES OF LOADS 

 
 Concentrated Load 

This type of load acts relatively on a smaller area. For example, the force exerted by a chair or 

a table leg on the supporting floor or load exerted by a beam on a supporting column are both 

considered to be concentrated. This type of loading is shown in Fig. 5.2(a). 

 
 

Fig. 5.2. Types of loads 

 

 Uniformly Distributed Load (UDL) 

As the name itself implies, uniformly distributed load is spread over a large area. Its 

magnitude is designated by its intensity (N/m or kN/m). The water pressure on the bottom 

slab of a water tank is an example of such a loading. If a floor slab is supported by beams, 
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the load of the slab on the beams is certainly uniformly distributed. To be simple, the self- 

weight of the beam itself is uniformly distributed. For convenience, uniformly distributed 

load is always converted into its equivalent concentrated load acting at the centre of 

gravity of the loading. This type of load is shown in Fig. 5.2 (b). 

 Uniformly Varying Load (UVL) 

This type of load will be uniformly varying from zero intensity at one end to the 

designated intensity at the other end. A triangular block of brickwork practically imposes 

such a loading on a beam. The water pressure distribution on the walls of a water tank could  

be another example. Here again, equivalent concentrated load (equal to area of the loading 

triangle) is to be used while dealing with this load. The loading, its equivalent replacement and 

its location is displayed in Fig. 5.2 (c). 

 Concentrated Moment 

If for some purpose, a beam is to accommodate a load on a bracket mounted on it, what gets 

transmitted on the beam is a concentrated moment as shown in Fig. 5.2 (d). 

 REACTIONS AT SUPPORTS OF BEAMS 

A beam is a structural member used to support loads applied at various points along its 

length. Beams are generally long, straight and prismatic (i.e. of the same cross-sectional area 

throughout the length of the beam). 

Types of Supports: 

Beams are supported on roller, hinged or fixed supports as shown in Fig.5.3. 

Simple Support: 

If one end of the beam rests in a fixed support, the support is known as simple support. 

The reaction of the simple support is always perpendicular to the surface of support. The 

beam is free to slide and rotate at the simple support. See Fig. 5.3(a). 

Roller Support: 

Here one end of the beam is supported on a roller. The only reaction of the roller support 

is normal to the surface on which the roller rolls without friction. See Fig. 5.3 (b) in 

which four possible situations are illustrated. Examples of roller supports are wheels of a 

motorcycle, or a handcart, or an over-head crane, or of a car, etc. 

Hinged Support: 

At the hinged support [see Fig.5.3 (c)] the beam does not move either along or normal to its axis. 

The beam, however, may rotate at the hinged support. The total support reaction is R and its 
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horizontal and vertical components are H and V, respectively. Since the beam is free to rotate at 

the hinged support, no resisting moment will exist. The hinged support behaves like the hinges 

provide to doors and windows. 

 

 

Fixed Support: 

Fig. 5.3: Types of supports and reactions 

At the fixed support, the beam is not free to rotate or slide along the length of the beam or in the 

direction normal to the beam. Therefore, there are three reaction components, viz., vertical reaction 

component (V), horizontal reaction component (H) and the moment (M), as shown in Fig.5.3 (d). 

Fixed support is also known as built-in support. 

 
 SHEAR FORCES AND BENDING MOMENT DIAMGRAMS 

 Definition of Shear force and bending moment 

A shear force (SF) is defined as the algebraic sum of all the vertical forces, either to the left or to 

the right hand side of the section. 

 

Fig. 5.4. Shear force at section 
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A bending moment (BM) is defined as the algebraic sum of the moments of all the forces either to 

the left or to the right of a section. 

 
 

Fig. 5.5. Bending moment at section 

Bending Moment at section x-x = 
 

 

 Sign convention of SF and BM 

For Shear force: 

We shall remember one easy sign convention, i.e., to the right side of a section, external force 

acting in upward direction is treated as negative (remember this convention as RUN —» Right 

side of a section Upward force is Negative). It is automatic that a downward force acting to the 

right side of a section be treated as positive. Sign convention is shown in Fig.5.6. The signs 

become just reversed when we consider left side of section. 

 

 
 

 

For Bending moment: 

Fig. 5.6: Sign convention of SF 

The internal resistive moment at the section that would make the beam to sag (means to sink down, 

droop) is treated to be positive. A sagged beam will bend such that it exhibits concave curvature at 

top and convex curvature at bottom. Positive bending moment is shown in Fig. 5.7 

(A shear force which tends to rotate the beam in clockwise direction is positive and vice 

versa) 
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(a). The internal resistive moment that would hog the beam is treated as negative. A hogged 

beam will show convex curvature at top and concave curvature at bottom. Negative bending 

moment is shown in Fig. 5.7(b). 

 

Fig. 5.7: Sign convention for BM 

 

 SFD and BMD definitions 

It is clear from foregone discussions that at a section taken on a loaded beam, two internal forces 

can be visualized, namely, the bending moment and the shear force. It is also understood that the 

magnitude of bending moment and shear force varies at different cross sections over the beam. The 

diagram depicting variation of bending moment and shear force over the beam is called bending 

moment diagram [BMD] and shear force diagram [SFD]. Such graphic representation is useful in 

determining where the maximum shearing force and bending moment occur, and we need this 

information to calculate the maximum shear stress and the maximum bending stress in  a beam. 

The moment diagram can also be used to predict the qualitative shape of the deflected axis of a 

beam. 

 General Guidelines on Construction of SFD and BMD 

Before we go on to solving problems, several standard procedures (or practices) in relation with 

construction of shear force and bending moment diagrams need to be noted. 

1) The load, shear and bending moment diagrams should be constructed one below the 

other, in that order, all with the same horizontal scale. 

2) The dimension on the beam need not be scaled but should be relative and proportionate (a 

3 m span length should not look more than 5 m length!). 

3) Ordinates (i.e., BM and SF values) need not be plotted to scale but should be relative. 

Curvature may need to be exaggerated for clarity. 

4) Principal ordinates (BM and SF values at salient points) should be labeled on both SFD 

and BMD. 

5) A clear distinction must be made on all straight lines as to whether the line is horizontal 

or has a positive or negative slope. 

6) The entire diagram may be shaded or hatched for clarity, if desired. 
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 Variation of shear force and bending moment diagrams 
 

 
 

S.N Point Load UDL UVL 

Shear Force Constant Linear Parabolic 

Bending Moment Linear parabolic Cubic 

 
 

 WORKED EXAMPLES 

1) A cantilever beam of length 2 m carries the point loads as shown in Fig. Draw the shear force 

and B.M. diagrams for the cantilever beam. 

 

Shear Force Diagram 

S.F. at D, FD = + 800 N 

S.F. at C, Fc = + 800 + 500 = + 1300 N 

S.F. at B, FB = + 800 + 500 + 300 = 1600 N 

S.F. at A, FA = + 1600 N. 

The shear force, diagram is shown in Fig. 
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Bending Moment Diagram 

The bending moment at D is zero 

B.M. at C, MC = - 800 x 0.8 = - 640 Nm. 

B.M. at B, MB = - 800 x 1.5 - 500 (1.5 - 0.8) 

= 1200 - 350 = - 1550 Nm. 

The B.M. at A, MA = - 800 x 2 - 500 (2 - 0.8) - 300 (2 - 1.5) 

= - 800 x 2 - 500 x 1.2 - 300 x 0.5 

= - 1600 - 600 - 150 = - 2350 Nm. 

Summary 

MD = 0 

Mc = - 640 Nm 

MB = - 1550 Nm 

MA = - 2350 Nm. 

The bending moment diagram is shown in Fig. 

2) A simply supported beam of length 6 m carries point load of 3 kN and 6 kN at distances of 2 

m and 4 m from the left end. Draw the shear force and bending moment diagrams for the 

beam. 

 

First calculate the reactions RA and RB. 

Upward load =Downward loads 

RA+ RB = 9 kN 
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Taking moments of the force about A, 

RBx6 = 3x2 + 6x4 = 30 

RB = 5 kN ; RA = 4 kN 

Shear Force Diagram 

Shear force at A, FA = + RA = + 4 kN 

Shear force between A and C is constant and equal to + 4 kN 

Shear force at C, Fc = + 4 - 3.0 = + 1 kN 

Shear force between C and D is constant and equal to + 1 kN. 

Shear force at D, FD = + l - 6 = -5kN 

The shear force between D and B is constant and equal to - 5 kN. 

Shear force at B, FB = -5 kN 

The shear force diagram is drawn as shown in Fig. 

Bending Moment Diagram 

B.M. at A, MA = 0 

B.M. at C, Mc = RA x 2 = 4x2 = + 8 kNm 

B.M. at D MD = RA x 4 – 3 x 2 = 4 x 4 – 3 x 2 = + 10 kNm 

B.M. at B, MB = 0 

The bending moment diagram is drawn as shown in Fig. 

 
 

3) Draw the S.F. and BM. diagrams for the overhanging beam carrying uniformly distributed 

load of 2 kN/m over the entire length and a point load of 2 kN as shown in Fig. Locate the 

point of contra-flexure. 

First calculate the reactions RA and RB. 

Upward forces = Downward forces 

RA + RB = 2 X 6 +2 = 14 kN 

Taking moments of all forces about A, we get 

RB x 4 = 2 x 6 x 3 + 2 x 6 = 48 kNm 

RB = 12 kN ; RA = 2 kN 

Shear force diagram 
 

Shear force 

At point 

Shear force towards 

Left of the section Right of the section 

A -- 2x6 + 2 – 12 = 2kN 

B 2 – 2 x 4 = -6 kN 2 x 2 +2 = 6 kN 

C 2 + 12 – 2 x 6 = 2 kN -- 
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Bending Moment Diagram: 

MA = 0 

MB = -(2 x 2) x 1 – 2 x 2 = -8kN-m 

MC = 0 
 

To find maximum bending moment: 

WKT, bending moment is maximum where shear force is zero. 

Therefore, FD =  0 = RA -2 x x ; x=1m 

MD = 2 x 1 – 2 x 1 x 0.5 = 1 kN-m 

Point of Contra-flexure 

This point is at E between A and B, where B.M. is zero after changing its sign. The distance of E 

from A is obtained by putting Mx = 0 ,in the following equation 
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Module: III 

 

STRESSES IN BEAMS 

Syllabus 

Introduction, Theory of simple bending, assumptions in simple bending, Bending stress 

equation, relationship between bending stress, radius of curvature, relationship between bending 

moment and radius of curvature, Moment carrying capacity of a section. Shearing stresses in 

beams, shear stress across rectangular, circular, symmetrical I and T sections. (composite / 

notched beams not included). 

 
 

 INTRODUCTION 

When some external load acts on a beam, the shear force and bending moments are set up 

at all sections of the beam. Due to the shear force and bending moment, the beam undergoes 

certain deformation. The material of the beam will offer resistance or stresses against these 

deformations. These stresses with certain assumptions can be calculated. The stresses introduced 

by bending moment are known as bending stresses. In this chapter, the theory of pure bending, 

expression for bending stresses, bending stress in symmetrical and unsymmetrical sections, 

strength of a beam and composite beams will be discussed. 

E.g., Consider a piece of rubber, most conveniently of rectangular cross-section, is bent 

between one’s fingers it is readily apparent that one surface of the rubber is stretched, i.e. put into 

tension, and the opposite surface is compressed. 

 
 

 SIMPLE BENDING 

A theory which deals with finding stresses at a section due to pure moment is called 

bending theory. If we now consider a beam initially unstressed and subjected to a constant B.M. 

along its length, it will bend to a radius R as shown in Fig. b. As a result of this bending the top 

fibres of the beam will be subjected to tension and the bottom to compression. Somewhere 

between the two surfaces, there are points at which the stress is zero. The locus of all such points 

is termed the neutral axis (N.A). The radius of curvature R is then measured to this axis. For 

symmetrical sections the N.A. is the axis of symmetry, but whatever the section the N.A. will 

always pass through the centre of area or centroid. 
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Beam subjected to pure bending (a) before, and (b) after, the moment 

M has been applied. 

 
 

In simple bending the plane of transverse loads and the centroidal plane coincide. The theory of 

simple bending was developed by Galelio, Bernoulli and St. Venant. Sometimes this theory is 

called Bernoulli's theory of simple bending. 

 ASSUMPTIONS IN SIMPLE BENDING 

The following assumptions are made in the theory of simple bending: 

1 The beam is initially straight and unstressed. 

2 The material of the beam is perfectly homogeneous and isotropic, i.e. of the same density 

and elastic properties throughout. 

3 The elastic limit is nowhere exceeded. 

4 Young's modulus for the material is the same in tension and compression. 

5 Plane cross-sections remain plane before and after bending. 

6 Every cross-section of the beam is symmetrical about the plane of bending, i.e. about an 

axis perpendicular to the N.A. 

7 There is no resultant force perpendicular to any cross-section. 

8 The radius of curvature is large compared to depth of beam. 

 

 
 DERIVATION OF BENDING EQUATION 

Consider a length of beam under the action of a bending moment M as shown in Fig. 6.2a. N-N is 

the original length considered of the beam. The neutral surface is a plane through X-X. In the side 

view NA indicates the neutral axis. O is the centre of curvature on bending (Fig. 6.2b). 
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Fig. 6.2 

Let R = radius of curvature of the neutral surface 

 = angle subtended by the beam length at centre O 

 = longitudinal stress 

A filament of original length NN at a distance v from the neutral axis will be elongated to a 

length AB 

 

 

 

 

 

 

 

 

..(i) 

Thus stress is proportional to the distance from the neutral axis NA. This suggests that for the 

sake of weight reduction and economy, it is always advisable to make the cross-section of beams 

such that most of the material is concentrated at the greatest distance from the neutral axis. Thus 

there is universal adoption of the I-section for steel beams. Now let A be an element of cross- 

sectional area of a transverse plane at a distance v from the neutral axis NA (Fig. 6.2). 

 
For pure bending, Net normal force on the cross-section = 0 
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This indicates the condition that the neutral axis passes through the centroid of the section. Also, 

bending moment = moment of the normal forces about neutral axis 

 
 

Or 
M 
 

E
 

 
(ii) 

I R 

Where I   y 
2 
dA and is known as the moment of inertia or second moment of area of the 

section. From (i) and (ii),  
M 
 

E 
 


I R y 

Where, 

M = Bending Moment at a section (N-mm). 

I = Moment of Inertia of the cross section of the beam about Neutral axis (mm
4
). 

 = Bending stress in a fibre located at distance y from neutral axis (N/mm
2
). This stress could be 

compressive stress or tensile stress depending on the location of the fibre. 

y = Distance of the fibre under consideration from neutral axis (mm). 

E = Young's Modulus of the material of the beam (N/mm
2
). 

R = Radius of curvature of the bent beam (mm). 

 

 
 SECTION MODULUS 

The maximum tensile and compressive stresses in the beam occur at points located farthest from 

the neutral axis. Let us denote y1 and y2 as the distances from the neutral axis to the extreme 

fibres at the top and the bottom of the beam. Then the maximum bending normal stresses are 

 

 
 bc 

 
My1 

I 
 

M 

I y1 

 
M 

, 

Zt 

 

 bc is bending compressive stress in the topmost layer. 

Similarly, 

 bt 
 

My2 

I 
 

M 

I y2 

 
M 

, 

Zb 

bt is bending compressive stress in the topmost layer. 

 

 

Here, Zt and Zb are called section moduli of the cross sectional area, and they have dimensions 

of length to the third power (ex. mm
3
). If the cross section is symmetrical (like rectangular or 

square sections), then Zt = Zb = Z, and Z is called as section modulus. Section modulus is defined 
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as the ratio of rectangular moment of inertia of the section to the distance of the remote layer 

from the neutral axis. Thus, general expression for bending stress reduces to 

   
M

 
Z 

It is seen from the above expression that for a given bending moment, it is in the best interests of 

the designer of the beam to procure high value for section modulus so as to minimise the bending 

stress. More the section modulus designer provides for the beam, less will be the bending stress 

generated for a given value of bending moment. 

 
 

 MOMENT CARRYING CAPACITY OF A SECTION 

From bending equation we have 

   
My 

I 

It shows bending stress is maximum on the extreme fibre where y is maximum. In any design this 

extreme fibre stress should not exceed maximum permissible stress. If per is the permissible 

stress, then in a design 

 max    per 

M 
y  

I 

 
 

per 

Or if M is taken as maximum moment carrying capacity of the section, 

M 

I 
ymax 

  per 

Or M 
I 

ymax 

 per 

The moment of inertia I and extreme fibre distance ymax are the properties of cross-section. 

Hence, I/ymax is the property of cross-sectional area and is termed as section modulus and is 

denoted by Z. Thus the moment carrying capacity of a section is given by 

M   per Z 

If permissible stresses in tension and compression are different, moment carrying capacity in 

tension and compression are found separately by considering respective extreme fibres and the 

smallest one is taken as moment carrying capacity of the section. 



 

67  

Expressions for section modulus of various standard cross-sections are derived below. 
 

Rectangular section of width b and depth d: 

 

 

 

 

 

Hollow rectangular section with symmetrically 

placed opening: 

Consider the section of size B 
x
 D with 

symmetrical opening bx d as shown in Fig.. 

 

 

 

 
Circular section of diameter d 

 

 

 
 

Hollow circular section of uniform thickness: 
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Triangular Section 

 

 

 

 

 SHEARING STRESSES IN BEAMS 

we know that beams are usually subjected to varying bending moment and shearing 

forces. The relation between bending moment M and shearing force F is dM/dx=F. 

Bending stress act longitudinally and its intensity is directly proportional to its distance 

from neutral axis. Now we will find the stresses induced by shearing force. 

Consider an elemental length of beam between the sections A-A and B- B 

separated by a distance dx as shown in Fig. 6.3a. Let the moments acting at A- A and B-B 

be M and M+dM. 

 

Fig. 6.3 
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

Let CD be a fibre at a distance y-from neutral axis. Then bending stress at left side of the element 

 

 
The force on the element on left side 

= 
M  

y 
I 

= 
M 

ybdy 
I 

Similarly due to bending, force on the right side of the element 

= 
M  dM 

I 
ybdy 

Unbalanced force towards right in element 

= 
M  dM 

I 
ybdy  

M
 

I 
ybdy  

dM
 

I 
ybdy 

There are a number of such elements above section CD. Hence unbalance horizontal force above 

section CD 

y
'  

dM 
= ybdy 

y I 

This horizontal force is resisted by shearing stresses acting horizontally on plane at CD. Let 

intensity of shearing stress be q. Then equating shearing force to unbalanced horizontal force we 

get 
y

'  

dM 

=bdx  
y 

ybdy 

Or   
dM 


y' 

 ya 

 
Where a = b dy is area of element. 

y' 

The term  ya can be looked as 
y 

dx bI y 

 

 

 
y' 

 

 
Where ay 

 ay  ay 
y 

is the moment of area above the section under consideration about neutral axis. 

From equation, dM/dx=F 
 

  
F 

ay 
bI 

From the above expression it may be noted that shearing stress on extreme fibre is zero. 
 

6.8 SHEAR STRESSES ACROSS RECTANGULAR SECTIONS 

Consider a rectangular section of width b and depth d subjected to shearing force F. Let A-A be 

the section at distance y from neutral axis as shown in Fig. 6.4. 

We know that shear stress at this section. 

  
F 

ay 
bI 

1 

I 
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where ay 

Fig. 6.4 

is the moment of area above this section (shown shaded) about the neutral axis. 
 

 
 

i.e., shear stress varies parabolically. 

When y=d/2,   

y=d/2,   

y = 0,  is maximum and its value is 

 

 

 

 

 
 max 

 

 

 

 

 
 

 
6F d 

bd 
3 
4 

 

 

 
Where 

 1.5 
F

 
bd 

 1.5




avg 

 avg 
  

ShearingForce  
 

F 

Area bd 

Thus, maximum shear stress is 1.5 times the average shear stress in rectangular section and 

occurs at the neutral axis. Shear stress variation is parabolic. Shear stress variation diagram 

across the section is shown in Fig.6.4b. 

2 
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WORKED EXAMPLES 

1) A simply supported beam of span 5 m has a cross-section 150 mm * 250 mm. If the 

permissible stress is 10 N/mm
2
, find (a) maximum intensity of uniformly distributed load it 

can carry. (b) maximum concentrated load P applied at 2 m from one end it can carry. 

Solution: 
 

Moment carrying capacity M =  Z = l0 x 1562500 N - mm 

(a) If w is the intensity of load in N/m units, then maximum moment 
 

Equating it to moment carrying capacity, we get maximum intensity of load as 
 

(b) If P is the concentrated load as shown in Fig., then maximum moment occurs under the load 

and its value 

 

 

2) A symmetric I-section has flanges of size 180 mm x 10 mm and its overall depth is 500 mm. 

Thickness of web is 8 mm. It is strengthened with a plate of size 240 mm x 12 mm on 

compression side. Find the moment of resistance of the section, if permissible stress is 150 

N/mm
2
. How much uniformly distributed load it can carry if it is used as a cantilever of span 

3 m? 

Solution 

The section of beam is as shown in Fig. Let y be the distance of centroid from the bottom-most 

fibre. 
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Moment of resistance (Moment carrying capacity) 
 



 

73  

Let the load on cantilever be w/m length as shown in Fig. 
 

 

 
 

3) A T-section is formed by cutting the bottom flange of an I-section. The flange is 100 mm x 

20 mm and the web is 150 mm x 20 mm. Draw the bending stress distribution diagrams if 

bending moment at a section of the beam is 10 kN-m (hogging). 

Solution 

M = 10 kN-m = 10 x 10
6
 N mm (hogging) 

Maximum bending stresses occur at extreme fibres, i.e. at the top bottom fibres which can be 

computed as 

  
My 

I 
 

(i) 
 

 
 

Moment of inertia is given by 

Substituting these values in Eq. (1), 

Stress in the top fibre = 

 

Stress in the bottom fibre = 
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The given bending moment is hogging and hence negative and the tensile stresses occur at top 

fibre and compressive stresses in bottom fibres. 

 

 
 

4) Fig. shows the cross-section of a beam which is subjected to a shear force of 20 kN. Draw 

shear stress distribution across the depth marking values at salient points. 

 

Solution 

Let y, be the distance of C.G form top fibre. Then taking moment of area about top 

fibre and dividing it by total area, we get 
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  
F 

ay 
bI 

  



 

76  

 

Module IV 

COLUMNS 

 

 INTRODUCTION 

Buckling is characterized by a sudden sideways failure of a structural member subjected 

to high compressive stress, where the compressive stress at the point of failure is less than the 

ultimate compressive stress that the material is capable of withstanding. Mathematical analysis of 

buckling often makes use of an "artificial" axial load eccentricity that introduces a secondary 

bending moment that is not a part of the primary applied forces being studied. As an applied load 

is increased on a member, such as a column, it will ultimately become large enough to cause the 

member to become unstable and is said to have buckled. Further load will cause significant and 

somewhat unpredictable deformations, possibly leading to complete loss of the member's load- 

carrying capacity. If the deformations that follow buckling are not catastrophic the member will 

continue to carry the load that caused it to buckle. If the buckled member is part of a larger 

assemblage of components such as a building, any load applied to the structure beyond that 

which caused the member to buckle will be redistributed within the structure. 

 
 

 DEFINITIONS 

Column: A vertical slender bar or member subjected to an axial compressive load is called a 

column. 

Strut: A slender bar or member in any position other than vertical, subjected to an axial 

compressive load, is called a strut. 

Slenderness ratio: It is the ratio of the length of the column to the minimum radius of gyration 

of the cross-sectional area of the column. 

Buckling factor: The ratio between the equivalent lengths of the column to the minimum radius 

of gyration is called the buckling factor. 

Buckling Load: When the axial load increases continuously on a column, at a certain value of 

the load, the column will just slightly be deflected or a little lateral displacement will take place 

in it. At this position, the internal forces which tend to straighten the column are just equal to the 

applied load. The minimum limiting load at which the column tends to have lateral displacement 

or tends to buckle, is called a buckling or crippling or critical load. Buckling takes place about 

the axis having minimum radius of gyration or least moment of inertia. 

Safe load: The load to which a column is subjected and which is below the buckling load is 
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called the safe load. It is obtained by dividing the buckling load by a suitable factor of safety. 
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 EULER'S FORMULA 

In 1757, Swiss mathematician Leonhard Euler first analysed the long columns mathematically 

ignoring the effect of direct stress, and determined critical loads that would cause failure due 

to buckling only. His analysis is based on certain assumptions. 

 Assumptions Made in Euler's Column Theory 

The following assumptions are made in the Euler's column theory: 

 The column is initially perfectly straight and the load is applied axially. 

 The cross-section of the column is uniform throughout its length. 

 The column material is perfectly elastic, homogeneous, isotropic and obeys Hooke's law. 

 The length of the column is very large as compared to its lateral dimensions. 

 The direct stress is very small as compared to the bending stress. 

 The column will fail by buckling alone. 

 The self-weight of column is negligible. 
 

 Sign Conventions 

The following sign conventions for the bending of the columns will be used: 

 A moment which will bend the column with its convexity towards its initial central line is 

taken as positive 

 A moment which will tend to bend the column with its concavity towards its initial centre 

line is taken as negative. 

 Expression for Crippling Load 

In this section, we will derive expressions for buckling loads on columns with following end 

conditions: 

 Both ends pinned (or hinged) 

 One end fixed and other end free 

 Both ends fixed 

 One end fixed and other end hinged 
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a) Both ends pinned (or hinged) 
 

Consider a column AB of length l and uniform cross-sectional area, hinged at 

both of its ends A and B. Let P be the crippling load at which the column has 

just buckled. Due to the crippling load, the column will deflect into a curved 

form ACB as shown in fig. 8.5. Consider any section at a distance x from the 

end A. Let y = Deflection (lateral displacement) at the section. 

The moment due to the crippling load at the section = - P . y 

 

 

Fig. 8.5 

   (i) 
 

Where C1 and C2 are the constants of integration. The values of C1 and C2 are obtained as given 

below: 

(i) At A, x = 0 and y = 0 

Substituting these values in equation (i), we get 

0 = C1. cos 0° + C2 sin 0 

= C1 x 1 + C2 x 0 

Therefore, C1=0 (ii) 

(ii) At B, x=l and y = 0 

Substituting these values in equation (i), we 
 

From equation (iii), it is clear that either C2 = 0 
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As C1 = 0, then if C2 is also equal to zero, then from equation (i) we will get y = 0. This means 

that the bending of the column will be zero or the column will not bend at all. This is not true. 

b) One end fixed and other end free 
 

Consider a column AB, of length l and uniform cross-sectional area, 

fixed at the end A and free at the end B. The free end will sway 

sideways when load is applied at free end and curvature in the length l 

will be similar to that of upper half of the column whose both ends are 

hinged. Let P is the crippling load at which the column has just 

buckled. Due to the crippling load P, the column will deflect as shown 

in Fig. 8.6 in which AB is the original position of the column and AB', 

is the deflected position due to crippling load P. Consider any section 

at a distance x from the fixed end A. 

Let y = Deflection (or lateral displacement) at the section 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.8.6 

a = Deflection at the free end B. Then moment at the section due to the 

crippling load = P (a - y) 

But moment, M  EI 
d 

2 
y 

 

 

dx 
2

 

Equating the two moments, we get 
 

The solution* of the differential equation is 
 

 

 

 

 

 

 

 

 

 

 

 

 

(i) 
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P 

EI 

P 

EI 

Where C1 and C2 are constant of integration; the values of C1 and C2 are obtained from boundary 

conditions. The boundary conditions are: 

(i) For a fixed end, the deflection as well as slope is zero. 

Hence at end A (which is fixed), the deflection y = 0 and also slope 

Hence at A, x = 0 and y = 0 

Substituting these values in equation (i), we get 

0 = C1 cos 0 + C2 sin 0 + a 

= C1 x l + C2 x 0 + a 

= C1 + a (ii) 

dy 
 0

 

dx 

 
At A, x = 0 and 

dy 
 0

 

dx 
Differentiating the equation (i) w.r.t. x, we get 

 

 

But at x = 0 and 
dy 

 0
 

dx 

The above equation becomes as 

From the above equation it is clear that either C2 = 0, 
 

or  0 

 

But for the crippling load P, the value of 

Therefore, C2 = 0. 

cannot be equal to zero. 

Substituting the values of C1 = - a and C2 = 0 in equation (i) we get 


y  a  cos x 




  a 





(iii) 

But at the free end of the column, x =l and y = a. Substituting these values in equation (iii) we 

get 

But ‘a' cannot be equal to zero 

P 

EI 
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Taking the least practical value, 
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Syllabus 

                               Module V 

THOERY OF ELASTISITY 

Introduction, Plane stress, stresses on inclined sections, principal stresses and maximum shear 

stresses, Mohr's circle for plane stress. 

3.1. INTRODUCTION 

In actual Engineering problems combination of stresses will act. The member may be subjected 

to direct stresses in different directions. The shear stresses (direct or due to torsion) may also act. 

A beam is always under bending and shear. A shaft may be under torque, bending and direct 

forces. In this chapter we will see the effect of combined/compound stresses. In a three 

dimensional stress system, the various stresses acting are shown in Fig. 3.1. 

Fig.3.1 Stress at a point 

In many problems two dimensional idealizations is possible and the general stress system in such 

case is shown in Fig.3.2. In this book discussion is limited to two dimensional problems only. 

 

Fig. 3.2 2D Stress 
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 STRESSES ON AN INCLINED PLANE 

To find the stresses acting on an inclined plane in a stressed material we consider a general plane 

inclined at an angle  to the known plane in an element and we find normal and tangential 

(shearing) stresses on this plane. The following three types of stressed conditions in an element 

are considered. 

a) Uniaxial direct stresses 

b) Biaxial direct stresses 

c) General two dimensional stress system 
 

 ELEMENT SUBJECTED TO UNIAXIAL DIRECT STRESS 

Consider the element subjected to direct uniaxial stress as shown in Fig. 3.3 (a & b). Now we are 

interested to find the normal and tangential stresses acting on plane DE which makes angle  to 

the plane of stress P,  is measured in anticlockwise direction. Fig. 3.3c shows the stresses acting 

on the element and Fig. 3.3d shows that forces acting. Consider the equilibrium of element CDE. 

Let the thickness of element be ‘t’ and depth be ‘a’ 

 

Fig. 3.3 
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 ELEMENTS SUBJECTED TO BIAXIAL DIRECT STRESSES 

Consider the element shown in Fig. 3.4 subjected to direct tensile stresses, p1 and p2. Let the 

thickness of the element (perpendicular to plane of paper) be unity. Our interest is to study the 

stresses acting on plane DE, which makes anticlockwise angle  with the plane p1 stress. 

  
 

Fig.3.4 
Fig.3.5 

Now consider the element DCE shown in Fig. 3.5a and 3.5b. In Fig. 3.5a the stresses are shown 

in Fig. 3.5bb the forces acting are shown. 

 Forces normal to plane DE =0, gives 
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 Forces parallel to plane DE =0, gives 
 

Resultant Stress on the plane 
 

If the angle between the resultant stresses 'p' and the given plane is  then 
 

And hence, resultant makes angle    with the plane of p1. 

 

GENERAL STRESS SYSTEM 

When a body is subjected to axial bending and shearing stresses, then the element in the body 

experiences a general two-dimensional stress system. The resultant of these stresses on any plane 

in the body can be resolved into a normal stress and shearing stress. Consider a small element 

subjected to two-dimensional stress system, as shown in Figure 3.6. 

Normal Stress in an inclined plane 

In this diagram, we have three stresses acting on an element, i.e. x, y and . To develop a 

relationship between the stresses acting on an inclined plane AC and the stresses x, y and . 

Consider the equilibrium of the element in Figure 3.6b. The forces acting parallel and 

perpendicular to the plane AC inclined at an angle  with the horizontal are shown in Figure 3.6b. 
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Fig.3.6: General stresses system 

Considering the algebraic sum of forces perpendicular to the plane, acting away from AC as 

positive, we get, 

Substituting these values, we get 
 

 
 

(3.1) 
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The expression (3.1) gives the normal stress acting on any inclined plane. Similarly considering 

the algebraic sum of forces parallel to the plane acting downwards or along CA as positive, we 

get 

 

 

 

 

 

 

 

 

 

 

 
Or (3.2) 

The above expression (3.2) gives the shear stress acting on any inclined plane. 

Sign conventions: The tensile normal stresses are considered as positive and shear stress 

developing clockwise rotation is treated as positive. 

 Maximum Normal Stress on an Inclined Plane 

Equation (3.1) can be written as 

                   (3.1a) 

Differentiating Eq. (3.1a), with respect to  and equating to zero (maxima-minima), we get 

 

 

 

 

 

 
(3.3) 

Equation (3.3) can be used to find the inclination of a plane for which the maximum normal 

stress is acting on it. Substituting  = 0 in Eq. (3.2), we get. 
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Hence, it is seen that on a plane where the normal stress is maximum, the shear stress is zero or 

absent. 

 Principal Planes and Principal Stress 

In general stress system, the equation for normal and shear stress on an inclined plane is given by 
 

The normal stress is maximum on a plane inclined at an angle , given by 
 

The plane on which the normal stress is maximum and shear stresses are absent is known as 

principal plane and the corresponding normal stress is principal stress. In general, at any point in 

a strained material, there are three principal planes mutually perpendicular to each other. Out of 

the three planes, the plane carrying maximum normal stress is called major principal plane and 

corresponding stress as major principal stress. The plane carrying minimum normal stress is 

called minor principal plane and corresponding stress as minor principal stress. In two- 

dimensional analysis, only two principal planes exist. 

Consider Eq. (3.3), which represents inclination of principal plane. This can be 

represented with a right-angled triangle with an angle 2, as shown in Fig. 3.7. 

 

Fig. 3.7 Right-angled triangle with an angle 2
Fig.3.8 

 

From the triangle shown in Figure 3.7 and from trigonometry (Fig. 3.8), we know that 
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(3.4) 

Substituting Eq. (3.4) in Eq. (3.1a), the principal stress is given by, 
 

 

The principal stresses can be written as 
 

 

 

 

 

( 3.5 and 3.6) 

Where n1 and n2 are known as principal stresses 

 Maximum Shear Stress 

From Eq. (3.2), we have the shear stress on the inclined plane given by 
 

From maxima-minima, the maximum shear stress is obtained by differentiating Eq. (3.2) with 

respect to  and equating it to zero. 

 

This can be represented with a right-angled triangle with an angle 2, as shown in Figure 3.9. 

From the triangle shown (from trigonometry), we know that 

      (3.7) 
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Substituting Eq. (3.7) in Eq. (3.2), we have 

Fig. 3.9 

 

 

 

 

 

 

 

 

 

 

 

(3.8) 

Comparing Eqs. (3.5), (3.6) and (3.8), we get 
 

 
 

(3.9) 

From Eq. (3.9), it is clear that maximum shear stress is equal to the half the algebraic sum of 

major and minor principal stresses. The planes of maximum shear stresses are inclined at 45° to 

the principal plane as the product of tan 2 is -1. Hence, 2 differs by 90° or 0 differs by 45
o
. 

 

 GRAPHICAL METHOD OF COMPOUND STRESS 

3.6.1. Mohr's Circle 

The circle used in the preceding section to derive some of the basic formulas relating to the 

transformation of plane stress was first introduced by the German engineer Otto Mohr (1835— 

1918) and is known as Mohr's circle for plane stress. As you will see presently, this circle can be 

used to obtain an alternative method for the solution of the various problems. This method is 

based on simple geometric considerations and does not require the use of specialized formulas. 

While originally designed for graphical solutions, it lends itself well to the use of a calculator. 
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3.6.2 Construction of Mohr's Circle 

Consider a square element of a material subjected to plane stress (Fig.3.10), and let x, y and xy 

be the components of the stress exerted on the element. 

 

Fig. 3.10 
 

 

Fig. 3.11 

We plot a point X of coordinates x and -xy and a point Y of coordinates x and +xy (Fig. 3.11). 

If xy is positive, point X is located below the  axis and point Y above, as shown in Fig. 3.11 &. 

If xy is negative, X is located above the  axis and Y below. Joining X and Y by a straight line, 
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we define the point C of intersection of line XY with the  axis and draw the circle of center C 

and diameter XY. Noting that the abscissa of C and the radius of the circle are respectively equal 

to the quantities ave and R defined by Eqs. 

Thus the abscissas of points A and B where the circle intersects the  axis represent respectively 

the principal stresses max and min at the point considered. 

We also note that, since tan (XCA) = 2xy/(x – y) the angle XCA is equal in magnitude 

to one of the angles 2p that satisfy Eq. 

Thus, the angle  that defines in Fig. 3.10,  the orientation of the principal plane corresponding  

to point A in Fig. 3.11 can be obtained by dividing in half the angle XCA measured on Mohr's 

circle. 

The construction of Mohrs circle for plane stress is greatly simplified if we consider 

separately each face of the element used to define the stress components. when the shearing 

stress exerted on a given face tends to rotate the element clockwise, the point on Mohrs circle 

corresponding to that face is located above the  axis. When the shearing stress on a given face 

tends to rotate the element counterclockwise, the point corresponding to that face is located  

below the  axis . As far as the normal stresses are concerned, the usual convention holds, i.e., a 

tensile stress is considered as positive and is plotted to the right, while a compressive stress is 

considered as negative and is plotted to the left. 
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WORKED EXAMPLES 

1) The direct stresses acting at a point in a strained material are as shown in Fig. Find the 

normal, tangential and the resultant stresses on a plane 30° to the plane of major principle 

stress. Find the obliquity of the resultant stress also. 

Solution: 
 

 

 
= 81.05° (as shown in Fig.) 

i.e., it makes 81.05 + 30 = 111.05° with the plane of 120 N/mm
2
 stress. 

 

2) For the state of stress shown in Fig, determine the principal stresses and locate principal 

planes. Also obtain maximum tangential stress and locate corresponding planes. 

Solution 

Given: x = 85 N/mm
2
, y = -60 N/mm

2
,  = 45 N/mm

2
, n = ?,  = ?, max = ? 
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Principal stresses are given by 

 

And its inclination is 

 

Maximum shear stress 

 

located at 

Substituting the values 

 

 
Magnitude of the maximum shear stress 

 

Location of the plane 
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3) For the state of plane stress shown in Fig., (a) construct Mohr's circle, (b) determine the 

principal stresses, (c) determine the maximum shearing stress and the corresponding normal 

stress. 

Solution: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

(a) Construction of Mohr's Circle. 

Note from Fig. that the normal stress exerted on the face oriented toward the x axis is tensile 

(positive) and that the shearing stress exerted on that face tends to rotate the element 

counterclockwise. Point X of Mohrs circle, therefore, will be plotted to the right of the vertical 

axis and below the horizontal axis . A similar inspection of the normal stress and shearing stress 

exerted on the upper face of the element shows that point Y should be plotted to the left of the 

vertical axis and above the horizontal axis. 
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The following jingle is helpful 

in remembering this 

convention. "In the kitchen, 

the clock is above, and the 

counter is below. 

 
 

Drawing the line XY, we obtain the center C of Mohrs circle; its abscissa is 

 

 

 
(b) Principal Planes and Principal Stresses. 

The principal stresses are 

max = OA = OC + CA = 20 + 50 = 70 MPa 

min = OB = OC - BC = 20 - 50 = -30 MPa 

Recalling that the angle ACX represents 2., , we write 
 

 
Since the rotation which brings CX into CA in Fig. is counterclockwise, the rotation that brings 

Ox into the axis Oa corresponding to max is also counterclockwise. 



 

98  

(c) Maximum Shearing Stress. 

Since a further rotation of 90° counterclockwise brings CA into CD in Fig. a further rotation of 

45° counterclockwise will bring the axis Oa into the axis Od corresponding to the maximum 

shearing stress in Fig. We note from Fig. that max = R = 50 MPa and that the corresponding 

normal stress is ’ = ave = 20 MPa. Since point D is located above the  axis in Fig. , the 

shearing stresses exerted on the faces perpendicular to Od must be directed so that they will tend 

to rotate the element clockwise. 

 
4) For the state of piano stress shown, determine (a) the principal planes and the principal 

stresses, (b) the stress components exerted on the element obtained by rotating the given 

element counterclockwise through 30°. 

Solution: 
Construction of Mohr's Circle. We note that on a face 

perpendicular to there axis, the normal stress is tensile and the 

shearing stress tends to rotate the element clockwise; thus, we plot 

X at a point 100 units to the right of the vertical axis and 48 units 

above the horizontal axis. In a similar fashion, we examine 

the stress components on the upper face and plot point 

Y(60, - 48). Joining points X and Y by a straight line, we define the center C of Mohr's circle. The 

abscissa of C, which represents ave, and the radius R of the circle can be measured directly or 

calculated as follows: 
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a) Principal Planes and Principal Stresses. 

We rotate the diameter XY clockwise through 2„ until it coincides with the diameter AB. We 

have 

The principal stresses are represented by the abscissas of points A and B: 
 

Since the rotation that brings XY into AB is clockwise, the rotation that brings Ox into the axis 

Oa corresponding to max is also clockwise; we obtain the orientation shown for the principal 

planes. 

  

 
b) Stress Components on Element Rotated 30° 

Points X' and Y' on Mohr's circle that correspond to the stress components on the rotated 

element are obtained by rotating XY counterclockwise through 2 = 60°. We find 

 
Since X' is located above the horizontal axis, the shearing stress on the face perpendicular to Ox' 

tends to rotate the element clockwise. 
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