Hall Ticket	No	Question Paper Code: AHS002							
B.Tech I/II Semester Supplementary Examinations - July, 2017 Regulation: IA-R16									
LINEAR ALGEBRA AND ORDINARY DIFFERENTIAL EQUATIONS [Common for : I Semester (all branches)]									
Time: 3 Hou	ırs	Max Marks: 70							
Answer ONE Question from each Unit									
All Questions Carry Equal Marks									
All parts of the question must be answered in one place only									

$\mathbf{UNIT} - \mathbf{I}$

1.	(a) Reduce the matrix	$\begin{bmatrix} 1 & 3 \\ 0 & 11 \\ 2 & -5 \\ 4 & 1 \end{bmatrix}$	-1 -5 3 1	2 3 1 5	to echelon form and hence find its rank.	[7M]
	(b) Using Gauss Jordan	erse of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$	[7M]			

2. (a) Find the normal form of the matrix $\begin{vmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{vmatrix}$ and hence find its rank. [7]							
2. (a) Find the normal form of the matrix $\begin{vmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \end{vmatrix}$ and hence find its rank. [7]		68	75				
$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 2 & 4 & 3 & 2 \end{bmatrix}$ and hence find its rank [7]		3 2 3	13	and hence find its rank.	[••••]		
	(a) Find the normal form of the matrix	2 4 3	$3 \ 2$		[7M]		
		$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$	3 0				

(b) Using factorization method solve the equations: [7M] 3x+2y+7z=4,2x+3y+z=5,3x+4y+z=7.

$\mathbf{UNIT}-\mathbf{II}$

3. (a) Using Cayley -Hamilton theorem, express $A^5 - 4A^4 - 7A^3 + 11A^2 - A - 10I$ as a linear polynomial in A where $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ [7M]

(b) Find the eigen values and corresponding eigen vectors of $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ [7M]

4. (a) If λ is an eigenvalue of a non-singular matrix A, then show that $\frac{|A|}{\lambda}$ is an eigenvalue of adj A. [7M]

(b) Reduce the matrix
$$A = \begin{bmatrix} -1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$
 to a diagonal form. [7M]

$\mathbf{UNIT} - \mathbf{III}$

6. (a) Find orthogonal trajectories of family of circles $x^2 + y^2 + 2\lambda x + c = 0$ where λ is parameter.[7M] (b) Solve $(e^{2y} - y\cos xy) dx + (2xe^{2y} - x\cos xy + 2y) dy = 0.$ [7M]

$\mathbf{UNIT}-\mathbf{IV}$

7. (a) Solve
$$(D^2 + 3D + 2) y = e^{e^x}$$
.
[7M]

(b) Solve $y'' + y = \tan x$ by method of variation of parameters.
[7M]

8. (a) Solve $(D^2 + 2D + 3) y = e^x \cos x$.
[7M]

(b) Solve
$$(D^4 + 1) y = \sin x$$
. [7M]

$\mathbf{UNIT}-\mathbf{V}$

9. (a) Verify Rolle's theorem for
$$f(x) = (x+2)^3(x-3)^4$$
 in $[-2,3]$. [7M]

(b) If u = f(r, s), r = x + at, s = y + bt and x,y,t are independent variables, show that $\frac{\partial u}{\partial t} = a \frac{\partial u}{\partial x} + b \frac{\partial u}{\partial y}$. [7M]

10. (a) If
$$u = x^2 - 2y^2$$
, $v = 2x^2 - y^2$, $x = r \cos \theta$, $y = \sin \theta$ show that $\frac{\partial(u,v)}{\partial(r,\theta)} = 6r^3 \sin 2\theta$. [7M]

(b) A rectangular open box of capacity 32 cubic units is to be prepared. Find the dimensions of the box, to minimize the cost of painting outside. [7M]